
Explaining Soft-Goal Conflicts through Constraint Relaxations

Rebecca Eifler1 , Jeremy Frank2 and Jörg Hoffmann1,3

1Saarland University, Saarland Informatics Campus, Germany
2NASA Ames Research Center, Mountain View, CA, USA

3German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
{eifler, hoffmann}@cs.uni-saarland.de, Jeremy.D.Frank@nasa.gov,

Abstract
Recent work suggests to explain trade-offs between
soft-goals in terms of their conflicts, i. e., minimal
unsolvable soft-goal subsets. But this does not ex-
plain the conflicts themselves: Why can a given
set of soft-goals not be jointly achieved? Here we
approach that question in terms of the underlying
constraints on plans in the task at hand, namely re-
source availability and time windows. In this con-
text, a natural form of explanation for a soft-goal
conflict is a minimal constraint relaxation under
which the conflict disappears (“if the deadline was
1 hour later, it would work”). We explore algo-
rithms for computing such explanations. A baseline
is to simply loop over all relaxed tasks and com-
pute the conflicts for each separately. We improve
over this by two algorithms that leverage informa-
tion – conflicts, reachable states – across relaxed
tasks. We show that these algorithms can exponen-
tially outperform the baseline in theory, and we run
experiments confirming that advantage in practice.

1 Introduction
Imagine planning the next Mars Rover Mission. Due to the
rovers’ limited resources and timing constraints for data col-
lection and uploads, only some of the rovers’ tasks can be
planned. Recent work by Eifler et al. [2020a; 2020b] sug-
gests explaining trade-offs between such soft goals in terms
of conflicts, i. e., minimal unsolvable soft-goal subsets. How-
ever, this does not give further insights into why the soft-goals
can not be jointly achieved. Understanding the cause of these
conflicts and possible resolutions is crucial to reasoning about
different options and finding the best trade-offs.

Here, we explore the question of what causes soft-goal
conflicts in tasks with constraints such as resource avail-
ability and time windows. In this context, soft-goal con-
flicts can naturally be explained by identifying the mini-
mal constraint relaxations under which the conflict disap-
pears. For example the conflict {x-ray image, soil sample}
could be explained by: “The rover needs 2 more units of
energy or the upload window to relay X needs to be 3 time
units longer, to perform both tasks”. A similar approach is
used in constraint programming [Lauffer and Topcu, 2019;

Senthooran et al., 2021], where they introduce soft con-
straints, to provide suggestions on how to modify an unfeasi-
ble subset of constraints to make it feasible. We investigate al-
gorithms for computing such explanations based on minimal
relaxations in a set of given relaxations, which we instantiate
with resource and time window constraint relaxations.

Eifler et al. [2020b] introduced an algorithm that computes
all minimal unsolvable goal subsets of a task by expanding
the whole search space while tracking all maximal solvable
goal subsets. To reduce the search space size they prune all
states from which, according to a given heuristic, no superset
of the incumbent solution is reachable. The basic adaption
of this procedure is to iteratively call it for each relaxed task
separately and compute the minimal relaxed task where each
conflict disappears in a post-processing step.

We introduce two algorithms that improve over this base-
line by exploiting the fact that information like reachable goal
subsets and states can be propagated from one relaxed task to
another if the latter is more relaxed. The first algorithm, In-
ternal Constraint Reuse (ICR), iteratively computes the con-
flicts for each increasingly relaxed planning task and reuses
the reachable subgoals from less relaxed tasks. This provides
the pruning function with a growing set of reachable subgoals
that it can use to prune parts of the search space that do not
contain any subgoals that have not yet been achieved. The
second algorithm, Search Space Reuse (SSR), reduces dupli-
cate work by iteratively increasing one search space instead
of generating a new one per relaxed task. This is done by
storing the search frontier for each task, and using it as the
starting point for more relaxed tasks. Thus for each relaxed
task, only the newly reachable states are generated.

We show that these algorithms can exponentially outper-
form the baseline, with respect to the number of generated
states, in theory. Experiments on 4 resource-centric domains
and 3 domains with time windows show that both algorithms
perform significantly better than the baseline in practice, and
that they are complementary to each other in terms of finding
explanations on resource- and time-centric domains.

2 Preliminaries
2.1 Planning Formalism
A finite-domain representation (FDR) [Bäckström and Nebel,
1995] planning task with soft-goals is a tuple τ =

(V,A, I,Ghard, Gsoft), where V is a finite set of state vari-
ables v with domain D(v), A is a finite set of actions, and
I is a complete assignment to V called initial state. Ghard

and Gsoft are disjoint partial assignment to V called hard and
soft-goal. A state is a complete assignment to V . Variable-
value pairs v = d are referred to as facts, and (partial) vari-
able assignments are identified by sets of facts. The value of
v in the (partial) variable assignments s is referred to as s(v).
Each action consists of a precondition and effect (prea, effa)
defined as partial assignments to V . An action a is applicable
in state s (appl(a, s)) if prea ⊆ s. Applying a to s, denoted
by s[[a]] = s′, changes the values of s to s′(v) := effa(v)
if effa(v) is defined and s′(v) := s(v) otherwise. The re-
sulting state of an iteratively applicable action sequence π
is denoted by s[[π]]. A plan is an action sequence π where
Ghard ⊆ I[[π]]. It achieves the soft-goalsGsoft∩I[[π]]. Instead
of a cost-function with an upper bound, as in oversubscription
planning by [Smith, 2004; Domshlak and Mirkis, 2015], here
we consider constraints such as resources and time as a lim-
iting factor for achievable soft-goals. The prefix a0 · · · ai of
plan π = a0 · · · ai, aj · · · an is denoted by prefix(π, aj).

Running Example Our running example is based on the
IPC Rovers domain. A rover must collect up to three samples
S0, S1, S2 and upload the data to a relay satellite. The rover
can perform three different actions: move between locations,
take a sample when it is at the corresponding location, and
upload the collected data at l0 or l3. The road map and the
initial location of the rover are depicted on the left in Figure 1.

l0

S0

l1 S1

l2 S2l3

δB = 1
δt = 2

δ
B

=
2

δ
t
=

1

δB = 1
δt = 1

δ
B

=
2

δ
t
=

2

δ
B

=
1

δ
t =

2Si :

δB = 1

δt = 1

0 1 2 3 4 5 6 7 8 9 10

resource initρb ρbmax

0 1 2 3 4 5 6 7 8 9 10

time window tmaxo c

Figure 1: Running Example

2.2 Planning with Consumed Resources
A consumed resource ρ with domain D(ρ) = [0, ρmax] ⊂ N
has an initial value initρ ∈ D(ρ) and a function δρ : A 7→ N
that maps each action to the amount of resource consumed
by that action. A state represents a complete assignment to
V ∪ {ρ}. Action a is applicable in state s if prea ⊆ s and
the remaining value of ρ is sufficient to execute the action
s(ρ) ≥ δρ(a). Applying a in s decreases the resource by
δρ(a): s[[a]](ρ) = s(ρ) − δρ(a). The amount of resource
ρ consumed by an action sequence π is given by con(π) =∑
a∈π δρ(a). An extension to multiple resources is defined

accordingly, where the set of all resources is denoted by R.
In our running example, there is battery ρb as a resource.

2.3 Planning with Simple Time Windows
We restrict ourselves to a concept of time that can be com-
piled to classical planning. This means discrete time units and
no parallel execution of actions. A (start) time window is a tu-
pleW = (AW , o, c) with 0 ≤ o ≤ c ≤ tmax. The application

of the actions in AW ⊂ A is constrained by the opening time
o and closing time c. The function δt : A 7→ N maps each
action to its execution duration. The passed time units are
represented by the variable t with domain D(t) = [0, tmax].
A state represents a complete assignment to V ∪ {t}. Action
a is applicable in state s if prea ⊆ s and if a ∈ AW then
o ≤ s(t) ≤ c. Applying a in s increases the passed time
by δt(a): s[[a]](t) = s(t) + δt(a). The execution duration
of an action sequence π is given by dur(π) =

∑
a∈π δt(a)

and the execution time point of action a in π by exec(π, a) =
dur(prefix(π, a)). An extension to multiple time windows is
defined accordingly, where the set of all time windows is de-
noted with W . In our example, there is one time window
WU = ({upload(Si) | i ∈ {0, 1, 2}}, 4, 6) which allows to
upload data to the relay only between the time points 4 and 6.

2.4 Explanation Framework
In [Eifler et al., 2020a; Eifler et al., 2020b] Gsoft represents
a set of plan properties, specifically LTLf plan-preference
formulas compiled into soft-goal facts [Baier and McIlraith,
2006; Edelkamp, 2006]. The framework uses conflicts be-
tween these plan properties to generate answers to the users
question. The soft-goals X,Y ⊆ Gsoft conflict each other if
all plans of τ that achieve all g ∈ X , do not achieve all g ∈ Y .
The strongest dependencies of this kind are given by the min-
imal unsolvable goal subsets (MUGS) X ∪ Y = G ⊆ Gsoft

where G cannot be achieved but every G′ (G can. The set
of all MUGS for a task τ is denoted by MUGS(τ).

3 Conflict Explanation Through Relaxations
We provide explanations for a soft-goal conflict based on
minimal constraint relaxations under which the conflict dis-
appears. In the following sections, we define the relaxations
that are considered and how we identify explanations based
on a given set of relaxed tasks.

3.1 Relaxation Orders
The most general property of an abstraction or relaxation
T ′ of a planning task T is that all plans of T are pre-
served [Culberson and Schaeffer, 1998; Edelkamp, 2001;
Seipp and Helmert, 2013]. This gives the most general defi-
nition of a relaxed task as:

Definition 1 (Relaxed Task). Let T be a planning task and
Π(T) the set of all possible plans for task T . Then T ′ is a
relaxed task of T (denoted by T v T ′) iff Π(T) ⊆ Π(T ′).

Our explanation approach and algorithms make no further
assumptions about the specific implementation of relaxation.
To compute the explanation for a conflict C ∈ MUGS(T),
we assume a final set of relaxed tasks T for T , where T ∈ T
and for all T ′ ∈ T : T v T ′, is given. For T the relation
Ti v Tj represents a partial order, which we will use to define
a minimal relaxed task that resolves C. The partially ordered
set T̂ = (T,v) we call in the following a relaxation order
for T . The functions CU (T ′) and CL(T ′) denote the upper
and lower covers of T ′ within T̂ . Given a partially ordered
set S then the upper cover of an element e ∈ S is the set
CU (e) = {e′ ∈ S | e′ > e ∧ @e′′ ∈ S : e′ > e′′ > e}, and

the lower cover the setCL(e) = {e′ ∈ S | e′ < e ∧@e′′ ∈ S :
e′ < e′′ < e}. One of our algorithms additionally assumes,
that T̂ has a supremum.

3.2 Resource and Time Constraint Relaxations
Next we instantiate the above with resource and time window
constraint relaxations.

Resource Constraint Relaxations
A task with consumed resources can be relaxed by increasing
the initial resource value.
Definition 2 (Resource Relaxed Task). Let T = (τ,R) be a
planning task τ with resources R. Then a resource relaxed
task for resource ρ ∈ R is defined as T ′ = (τ,R′) where ρ
is replaced by resource ρ′ with D(ρ) = D(ρ′) = [0, ρmax],
δρ′ = δρ and ρmax ≥ initρ′ ≥ initρ.

A resource relaxed task indeed represents a relaxed task
according to Definition 1:
Proposition 1. Let T ′ be a resource relaxed task of T . Then,
Π(T) ⊆ Π(T ′).

Proof sketch: Π(T) ⊆ Π(T ′), because every action se-
quence π = a0 · · · an applicable in I of T is also applicable
in I ′ of T ′. For all actions ai ∈ π with πi = prefix(π, ai),
s = I[[πi]], s′ = I ′[[πi]] and c = con(πi), ai is applicable
in s′ because ai is applicable in s and s(V) = s′(V) and
initρ − c = s(ρ) < s′(ρ′) = initρ′ − c.

Making the application of an action cheaper by reducing
δρ is another way to relax a task with respect to a resource.
This is almost equivalent to increasing the initially available
resource, given that the resource is exhaustible and the action
appears once in the plan. We use increasing resource avail-
ability as a proxy for any reduction in resource consumption.

Using the set Tρ of all resource relaxed tasks of task T for
ρ, we get a well-defined relaxation order T̂ρ = (Tρ,v) for
T . Since all Ti ∈ Tρ are exclusively distinguished by initρi
we have T v T ′ iff initρ < initρ′ , which results in a total
order for Tρ. The task T ′ where initρ′ = ρmax represents
the supremum of T̂ρ. The upper/lower cover of T ′ ∈ Tρ is
the relaxed task where the initial resource value is one unit
larger/smaller than in T ′.

For our running example, we have four relaxed tasks for
the battery Tρb = {Ti | i ∈ {7, 8, 9, 10}}, where in Ti the
initial battery level is i.

Time Constraint Relaxations
A task with simple time windows can be relaxed by increas-
ing the time window, either by decreasing the opening time
or by increasing the closing time.
Definition 3 (Time-Window Relaxed Task). Let T = (τ,W)
be a planning task τ with simple time windowsW . Then a re-
laxed task for time window W = (AW , o, c) ∈ W is defined
as T ′ = (τ,W ′) where W is replaced by W ′ = (AW , o

′, c′)
with 0 ≤ o′ ≤ o ≤ c ≤ c′ ≤ tmax.

A time-window relaxed task indeed represents a relaxed
task according to Definition 1:
Proposition 2. Let T ′ be a time-window relaxed task of T .
Then, Π(T) ⊆ Π(T ′).

Proof sketch: Π(T) ⊆ Π(T ′), because every action se-
quence π = a0 · · · an applicable in I of T is also applicable
in I ′ of T ′. For all actions ai ∈ π, exec(π, ai) is the same
in both tasks and with πi = prefix(π, ai), s = I[[πi]] and
s′ = I ′[[πi]], ai is applicable in s′ because ai is applicable in
s and if ai ∈ AW then o′ ≤ o ≤ exec(π, ai) ≤ c ≤ c′.

An alternative approach to relax a task with respect to time
constraints is the reduction of the execution time of an action
by decreasing δt. However, in addition to affecting multi-
ple time windows, handling the explosion of possible relaxed
tasks is not trivial, which is why we leave this for future work.

The subsumption relation of the intervals [o′, c′] for time
window W yields the partial order for T̂W = (TW ,v),
where TW is the set of all time-window relaxed tasks of T
with respect to W . The task with W ′ = (AW , 0, tmax) is the
supremum of T̂W . The upper/lower cover of T ′ ∈ TW are
the relaxed tasks where either o is decreased/increased or c is
increased/decreased by one compared to T ′.

For our running example we have 25 different relaxed tasks
for the upload windowTWU

= {Ti,j | i ∈ {0, 1, 2, 3, 4}∧j ∈
{6, 7, 8, 9, 10}}, where in Ti,j the opening time is at i and the
closing time at j.

3.3 Conflict Explanation
We aim to generate explanations for the conflicts in
MUGS(T). Given a relaxation order, we can now define for
each conflict whether a task is minimally relaxed for it.

Definition 4 (Minimally Relaxed Task). Let T̂ = (T,v) be
a relaxation order for task T and C ∈ MUGS(T) a conflict.
Then T ′ ∈ T is minimally relaxed for C /∈ MUGS(T ′) if for
all T ′′ ∈ T : T ′′ < T ′ → C ∈ MUGS(T ′′).

Thus, a minimally relaxed task for conflict C is one in
which C is not a conflict, but for all less relaxed tasks it is.
All conflicts in MUGS(T), for which T ′ ∈ T̂ is minimally
relaxed are denoted by mr-MUGS(T̂ , T ′). The explanation
for a conflict in MUGS(T) can then be defined as:
Definition 5 (Conflict Explanation). Let T be a task with con-
flict C ∈ MUGS(T) and T̂ a relaxation order for T . Then
the set of all minimally relaxed tasks for C, E(T̂ , C) = {T ′ |
C ∈ mr-MUGS(T̂ , T ′)}, is the conflict explanation for C.

To illustrate the explanation for conflict C = {S0, S2}
in our running example, we use the diagram in Figure 2.
The minimal relaxed tasks and therefore the explanations are
given as E = {T1,6, T4,7}: “Sample S0 and S2 can not both
be uploaded, because the upload window, needs either to start
3 time units earlier or to end 1 time unit later”.

[4, 6]

[3, 6]

[4, 7]

[2, 6]

[3, 7]

[4, 8]

[1, 6]

[2, 7]

[3, 8]

[4, 9]

C ∈ MUGS(Ti,j)

C /∈ MUGS(Ti,j)

Ti,j ∈ E(T̂ , C)

Figure 2: Part of hasse diagram for the time relaxed tasks of the
running example. [i1, j1] → [i2, j2] means Ti1,j1 v Ti2,j2 . T3,7 /∈
E(T̂ , C) because T4,7 < T3,7.

Algorithm 1 Internal Constraint Reuse (ICR)

1: Given: relaxation order T̂ , heuristic h
2: function COMPUTEMSGS(T̂ , h)
3: M← {} .map of MSGSs
4: while HASNEXT(T̂) do
5: T̂ ← NEXT(T̂) .current relaxed task
6: M[T̂]←

⋃
T̂ ′∈CL(T̂)M[T̂ ′] .propagate MSGS

7: O ← {INIT(T̂)} .initial state of relaxed task
8: while |O| 6= 0 do
9: s← NEXT(O, h) .next state acording to expansion order

10: ifGhard ⊆ s then .update MSGS
11: M[T̂]← EXTEND(M[T̂], s ∩Gsoft)

12: if (Ghard ∪Gsoft) ⊆ s then .check and propagate solvability
13: ∀T ′ ∈ T̂ ∧ T̂ v T ′ :M[T ′]← Ghard ∪Gsoft

14: break
15: O ← O ∪ {s′ ∈ SUCC(T̂ , s) | ¬PRUNE(T̂ ,M[T̂], h, s′)}
16: returnM

4 Internal Constraint Reuse (ICR)
In the following, we introduce two algorithms that given a
relaxation order T̂ compute the maximal solvable goal sub-
sets (MSGS) for each task. The MSGS can then be used to
compute the mr-MUGS of each task as follows.

From MSGS to mr-MUGS A MSGS is a soft-goal subset
G ⊆ Gsoft whereG can be achieved but everyG′) G cannot.
Given MSGS(T ′) for T ′ ∈ T we compute mr-MUGS(T̂ , T ′)
in two steps. First, we compute MUGS(T ′) by performing
a bottom-up tree search over all subsets of Gsoft and use the
MSGS as a fast solvability check as introduced by [Eifler et
al., 2020b]. Then, the MUGS for which T ′ is minimally re-
laxed are computed as mr-MUGS(T̂ , T ′) = MUGS(T) ∩
((
⋂
T ′′∈CL(T ′) MUGS(T ′′)) \MUGS(T ′)).

MSGS Computation Eifler et al. [2020b] compute the
MSGS for a task by exhaustively exploring the state space
while tracking all reached MSGS. To reduce the search space
size they introduce a pruning function, which prunes all states
from which no superset of the current MSGS is reachable.

Extending this algorithm, given a relaxation order T̂ =
(T,v) for T , we compute the MSGS for all T ′ ∈ T by iter-
ating overT according to the partial ordering, starting with T ,
and computing the MSGS for each task individually. Since all
plans are preserved, for all Ti, Tj ∈ T with Ti v Tj , all soft-
goals G ⊆ Gsoft that are reachable in Ti are also reachable in
Tj . Thus, the MSGS of Ti can be propagated to Tj .

Pseudo Code of ICR The pseudo code of the Internal Con-
straint Reuse (ICR) algorithm is given in Algorithm 1. The
underlying search algorithm for the state space exploration
of one task is depth first search (DFS) guided by a heuristic
(see [Eifler et al., 2020b]). This is abstracted by the func-
tion NEXT(O, h), which mimics the expansion order of DFS.
M (line 3) is a map from task to a set of soft-goal subsets
storing the MSGS for each task. The aforementioned prop-
agation of MSGS is realized by initializing M[T̂] with all
MSGS reached in the lower cover of T̂ (line 6). Iterating
over the relaxed tasks according to the partial ordering is
represented by the functions HASNEXT(T̂) and NEXT(T̂).
The order of incomparable elements is resolved randomly.

Algorithm 2 Search Space Reuse (SSR)

1: Given: relaxation order T̂ , heuristic h
2: function COMPUTEMSGS(T̂ , h)
3: Ts ← SUPREMUM(T̂) .maximal relaxed task
4: M← {} .map of MSGSs
5: F ← {} .map of search frontiers
6: O ← INIT(Ts) .initial state of maximally relaxed task
7: T̂ ← NEXT(T̂) .current relaxed task
8: while True do
9: while |O| 6= 0 do

10: s← NEXT(O, h) .next state acording to expansion order
11: ifGhard ⊆ s then .update MSGS
12: M[T̂]← EXTEND(M[T̂], s ∩Gsoft)

13: if (Ghard ∪Gsoft) ⊆ s then .check and propagate solvability
14: ∀T ′ ∈ T̂ ∧ T̂ v T ′ :M[T ′]← Ghard ∪Gsoft

15: break
16: Ssuc ← {s′ ∈ SUCC(Ts, s) | ¬PRUNE(Ts,M[T̂], h, s′)}
17: F [T̂]← F [T̂] ∪ {s′,∈ Ssuc | ¬APPL(T̂ , π(s′))}
18: O ← O ∪ {s′ ∈ Ssuc | APPL(T̂ , π(s′))}
19: if ¬HASNEXT(T̂) then
20: returnM
21: T̂ ← NEXT(T̂) .current relaxed task
22: M[T̂]←

⋃
T̂ ′∈CL(T̂)M[T̂ ′] .propagate MSGS

23: FC ←
⋃

T̂ ′∈CL(T̂){s
′ ∈ F [T̂ ′] | ¬PRUNE(Ts,M[T̂], h, s′)}

24: F [T̂]← {s′ ∈ FC | ¬APPL(T̂ , π(s′))}
25: O ← {s′ ∈ FC | APPL(T̂ , π(s′))}

M[T̂] is only updated (line 11) in case no superset has al-
ready been reached: EXTEND(M,G) returns M if there is
a G′ ∈ M : G ⊆ G′ and {G′ ∈ M |G′ * G} ∪ {G}
otherwise. The generation of successor states of state s ac-
cording to the semantics of task T (SUCC(T, s)) is based
on standard progression (see Sections 2.2 and 2.3). States
are pruned (line 15) if no superset of soft-goals or the hard
goal cannot be reached: PRUNE(T ′,M, h, s) returns true if
Ghard * R ∨ ∃G ∈M : R ∩Gsoft ⊂ G, where R is the set of
facts reachable from state s in task T ′ according to heuristic
h and false otherwise. This can for example be realized by
checking for each fact whether its hmax [Haslum and Geffner,
2000] estimation is finite, for more details we refer to [Eifler
et al., 2020b]. If a state satisfies all hard and soft goals the
search for the current task can be terminated early (line 12).
All more relaxed tasks are also solvable, so their MSGS are
updated accordingly (line 13). Tasks whose MSGS have al-
ready been determined are skipped by HASNEXT/NEXT.

5 Search Space Reuse (SSR)
ICR causes overhead, because equivalent states are generated
multiple times in the separate search spaces. In addition to
the MSGS, it can be beneficial to reuse the search space too.

Since all plans are preserved in the relaxationsT of task T ,
for all T ′ ∈ T and the most relaxed task Ts = supremum(T̂)
holds (

⋃
T ′′∈CL(T ′) ST ′′) ⊆ ST ′ , where ST ′ are the states

reachable from the initial state Is of Ts by plans of T ′. Thus,
we can base the computation of the MSGS for all relaxed
tasks on the search space of Ts. We begin by exploring the
reachable state space for T . All states that are generated, but
which are not reachable in T , are stored in a search frontier.
To decide whether a state s is reachable in a task T ′, we check
whether the action sequence π(s) leading to s is applicable
in T ′ (APPL(T ′, π(s))). In our example, states reached by

paths consuming more than 7 energy units are not reachable
in T7 and are therefore stored in the frontier. In subsequent
iterations, the search frontiers of less relaxed tasks are further
extended for more relaxed tasks. For example, for T8 the
frontier states of T7 are further extended. This limits the states
generated for each task to the newly reachable states.

Pseudo Code of SSR The pseudo-code of the Search Space
Reuse (SSR) algorithm is depicted by Algorithm 2. Unless
explicitly mentioned, the algorithm parts work as described
for Algorithm 1. The map F (line 5) stores for each task T̂
the states which were generated during the search for T̂ but
were not reachable (line 17). In the first iteration, the openlist
is initialized with the initial state of the most relaxed task Ts
(line 6). In each subsequent iteration, it is initialized with the
states in F of all tasks in the lower cover of T̂ that are reach-
able in T̂ (line 23-25). States are pruned by following the
same approach as in Algorithm 1 (line 16/23). However, in-
stead of basing the pruning on the current relaxed task T̂ it is
based on the most relaxed task Ts, since otherwise states that
might be reachable in more relaxed tasked, would be pruned.

6 Theoretical Comparison
The propagation of MSGS can improve the pruning func-
tion, which is beneficial to both ICR and SSR. Reusing the
search space in SSR reduces duplicate work, but states are
only pruned based on the reachability in the most relaxed
task, not the current task. We compare the overall number
of generated states by each algorithm as a measure to decide
whether they are exponentially separated. As the baseline al-
gorithm, we consider ICR without the propagation of MSGS.

Definition 6 (Exponential Separation). Let {Tn|n ∈ N} be a
family of planning tasks of size (number of facts and actions)
polynomially related to n and S(X) the number of states gen-
erated by search method X. Then, search method X is expo-
nentially separated from search method Y iff |S(Y)− S(X)|
is exponential in n.

To give a family of planning tasks to prove the exponential
separations of the algorithms we consider a planning task,
where a robot has to visit different locations. The robot’s
movement is restricted by the resource ρ, which can have the
values {0, 1, 2}, with initial value 1. Moving between con-
nected locations consumes the amount of resources depicted
in the maps in Figure 3. There is one location annotated with
K which holds a set of n keys. The robot can pick up one key
at a time (without using any resources) if it is in the same lo-
cation as the key. To take the dashed connection the robot has
to hold all keys. Since the robot can pick up any combination
of keys, there can be exponentially many search states.

In the following examples, the pruning function uses the h2
heuristic [Haslum and Geffner, 2000] to decide reachability.

Theorem 1. ICR and SSR are exponentially separated from
the baseline.

Example Consider the map depicted on the left in Figure 3.
In the first iteration with initρ = 1 ICR and the baseline gen-
erate 2 states (R atL0 andL1). SSR, with initρ = 2, generates
the same two states and 2 additional states (R at L2 and L3),

L0

R
L1 L2

L3 K

1

1

2

0 L0

R

L1

K

L2

1
1

1

Figure 3: left: Map of separation of ICR and SSR from baseline,
initial location: L0, goal: visit L1 and L2. right: Map of separation
of ICR from SSR, initial location L0 , goal: visit L2.

which are not reachable and stored in the frontier. For both
ICR and SSR MSGS = {{L1}} is propagated. In the next
iteration of ICR (initρ = 2), moving to L3 is pruned because
no new locations are reachable from there. The same holds
for SSR. This leads to 2 + 3 and 4 + 1 states for ICR and
SSR respectively. For the baseline, the reachability of L1 is
not propagated and moving to L3 is not pruned. Thus, we get
2 + 3 + 2 ∗ 2n states, for picking up any combination of keys.
Theorem 2. ICR is exponentially separated from SSR.

Example Consider the map depicted on the right in Fig-
ure 3. In the first iteration with initρ = 1, ICR generates only
one state. Moving to L1 is pruned because h2 recognizes that
L2 is not reachable with ρ = 1. In SSR, the weaker constraint
initρ = 2 prevents pruning L1 and picking up any combina-
tion of keys. Thus, 1 + 2n reachable and 2n (at L2 with any
combination of keys) unreachable states are generated. In the
last iteration in ICR with initρ = 2 visiting L2 via the upper
connection and extending the MSGS to {{L2}} leads to early
termination. The same holds for SSR. This results in 1 + 3
states for ICR and 1 + 2 ∗ 2n for SSR.

7 Experiments
We implemented both algorithms in the Fast Downward plan-
ning system [Helmert, 2006], extending the code base of Ei-
fler et al. [2020b] and using hmax as a base heuristic for the
pruning function1. The experiments were run on Intel E5-
2660 machines running at 2.20 GHz, with a time (memory)
limit of 2h (4GB) per benchmark instance.
Benchmark Our benchmark consists of 4 resource-
constraint domains (Blocksworld, NoMystery, Rovers R,
TPP) and 3 domains (Parent’s Afternoon, Rovers T, Satel-
lite) with time constraints. The former part builds on the re-
source constraint benchmark by Eifler et al. [2020b]. In each
instance there are two individual resources R. For each re-
source ρ ∈ R we generated one benchmark instance, scaling
initρ between 0 and two times the initial value in the origi-
nal instance. Rover T and Satellite are extension of the IPC
domains with data upload windows for Rovers and time win-
dows to take the images for Satellite. Parents’Afternoon [Ei-
fler et al., 2022] models a parent’s afternoon routine, includ-
ing shopping and family member activities. The execution of
these activities is constraint by time windows. For each time
window W ∈ W we generated one benchmark instance. For
Parent’s Afternoon and Satellite, each time window is relaxed
between its original size and the maximal value of the time

1The source code and the benchmark are available at: https://
github.com/XPP-explainable-planning

https://github.com/XPP-explainable-planning
https://github.com/XPP-explainable-planning

variable domain. For Rovers the relaxation of an upload win-
dow is additionally bounded by the other upload windows.
Each benchmark instance has up to 5 plan properties that, for
example, restrict the order in which two goal facts are to be
achieved. All plan properties and the original goal facts of the
instance are soft goals. There are no hard goals.

7.1 Evaluation
The coverage results are shown in Table 1. An instance is
considered to be solved, when the MUGS for all relaxed tasks
are computed. Comparing the ICR to the baseline shows
propagating the MSGS increases the coverage in 5 domains,
while not decreasing it in any. SSR solves more instances in 4
domains, while it is worse than the baseline in 2. ICR clearly
has the advantage over SSR in the resource domains, while it
is the opposite in the time constraint domains.

domain # base ICR SSR

re
so

ur
ce Blocksworld 40 18 18 19

NoMystery 50 12 24 9
Rovers R 40 20 20 15
TPP 30 11 19 9

tim
e

Parent’s A. 72 35 37 53
Rovers T 138 47 53 96
Satellite 198 123 130 144

Table 1: Coverage (number of instances solved); ICR and SSR: al-
gorithms introduced in Section 4 and 5; base: ICR without propaga-
tion of MSGS. Best result for each domain is highlighted in bold.

The increase in reachable states caused by relaxing a time
window is usually much smaller than for a resource. Increas-
ing a time window only adds few more times at which a single
action a ∈ AW could start. However, as a is also constrained
by all other time dependent actions, there may not be many
added reachable states. In contrast, relaxing a resource allows
you to add new actions and increases the number of action or-
derings. This is in favor for SSR, because it only considers
the newly reachable states. A comparison of the number of
expansions each algorithm requires per relaxed task, as de-
picted in Figure 4, confirms this assumption. In the time con-
straint domains SSR expands more states than ICR in the first
task, but has many fewer expansions than ICR thereafter. In
the resource-constraint task, the stronger pruning function in
ICR is advantageous for a wider span of relaxed tasks, such
that SSR only needs fewer expansions in more relaxed tasks.

Problems may not be solved either due to the exhaustion
of the time or the memory limit. For Blocksworld and all
time constraint domains, all algorithms ran out of time. For
the other resource constraint domains SSR failed due to the
memory limit. In TPP ICR failed due to the time limit and
in rovers due to the memory. In Nomystery failure of ICR-
was cased by about 25% timeouts and 75% memory limit ex-
haustion. Overall, timeout is most common. This could be
addressed by parallelization of tasks without a strict order.

8 Related Work
Sreedharan et al. [2019] explain the unsolvability of a task
by identifying necessary subgoals of relaxed tasks, that are
unachievable in the original task. However, due to use of re-
laxations based on projections on subsets of variables, this

0 2 4 6 8 10 12 14 16
100

105

av
g

#e
xp

an
si

on
s

resource
constraint

0 2 4 6 8 10 12
100

103

106

av
g

#e
xp

an
si

on
s tim

e
constraint

Blocksworld NoMystery Rovers R TPP
Parent’s A. Rovers T Satellite

baseline ICR
SSR

Figure 4: Comparison of average number of expansions over com-
monly solved task. Error bars represent the 95% confidence inter-
vals. top: resource constraint domains, x value corresponds initρ;
bottom: time constraint domains, x value corresponds to size differ-
ence of the relaxed time window to the original one.

approach is not suitable for quantifying the relaxation neces-
sary to make the task solvable. An ‘excuse’ for unsolvability,
as defined by [Göbelbecker et al., 2010], is a series of value
changes in the initial state and additional objects to make a
task solvable. Their approach does not provide an explanation
for a specific conflict, but explains why the task is not solv-
able and focuses on pointing out errors in the model descrip-
tion. The scheduling system by Agraval et al. [2020] pro-
vide information about constraint relaxations for not sched-
uled activities. Their main focus is to identify all unmet con-
straints of an activity and present them alongside the schedule
to facilitate user review. Their analysis does not yet include
any reasoning on the extent to which a constraint needs to
be relaxed to schedule the activity. The unsolvability certifi-
cates provided by the proof system of Eriksson et al. [2017;
2018] are not intended to be human-readable and do not pro-
vide information on how the task could be made solvable.

The resource and time window constraints we consider
here, can be compiled to classical planning and relaxation
can be represented by domain abstractions [Domshlak et al.,
2009]. Resources constraint relaxation could additionally be
simulated by cost bound relaxation in classical planning with
multiple cost functions [Katz et al., 2019; Altman, 1999].

9 Conclusion
Our approach addresses the question why soft-goal conflicts
exist by identifying the minimal relaxation under which a
conflict disappears. Combined with the work of Eifler et
al.[2020a; 2020b], this provides an explanation framework
that can explain trade-offs between soft goals by identifying
not only conflicts, but also options for resolving them. This
not only helps to better understand why a conflict exists, but
also whether it can be resolved. In addition it enables the user
to evaluate the trade-offs and benefits of a relaxation.

Future work includes the evaluation in an application set-
ting and the automatic identification of relevant relaxations
for a user and conflict.

Acknowledgments
This material is based upon work supported by the Air Force
Office of Scientific Research under award number FA9550-
18-1-0245, and by the German Research Foundation (DFG)
under grant 389792660 as part of TRR 248 (see https://
perspicuous-computing.science).

References
[Agrawal et al., 2020] Jagriti Agrawal, Amruta Yelaman-

chili, and Steve Chien. Using explainable scheduling for
the mars 2020 rover mission. In ICAPS XAIP, 2020.

[Altman, 1999] Eitan Altman. Constrained Markov Deci-
sion Processes. CRC Press, 1999.

[Bäckström and Nebel, 1995] Christer Bäckström and Bern-
hard Nebel. Complexity results for SAS+ planning. Com-
putational Intelligence, 11(4):625–655, 1995.

[Baier and McIlraith, 2006] Jorge A. Baier and Sheila A.
McIlraith. Planning with first-order temporally extended
goals using heuristic search. In Proc. AAAI, pages 788–
795, 2006.

[Culberson and Schaeffer, 1998] Joseph C. Culberson and
Jonathan Schaeffer. Pattern databases. Computational In-
telligence, 14(3):318–334, 1998.

[Domshlak and Mirkis, 2015] Carmel Domshlak and Vitaly
Mirkis. Deterministic oversubscription planning as heuris-
tic search: Abstractions and reformulations. JAIR, 52:97–
169, 2015.

[Domshlak et al., 2009] Carmel Domshlak, Jörg Hoffmann,
and Ashish Sabharwal. Friends or foes? on planning as
satisfiability and abstract cnf encodings. JAIR, 36:415–
469, 2009.

[Edelkamp, 2001] Stefan Edelkamp. Planning with pattern
databases. In A. Cesta and D. Borrajo, editors, Pro-
ceedings of the 6th European Conference on Planning
(ECP’01), pages 13–24. Springer-Verlag, 2001.

[Edelkamp, 2006] Stefan Edelkamp. On the compilation of
plan constraints and preferences. In ICAPS, pages 374–
377, 2006.

[Eifler et al., 2020a] Rebecca Eifler, Michael Cashmore,
Jörg Hoffmann, Daniele Magazzeni, and Marcel Stein-
metz. A new approach to plan-space explanation: Analyz-
ing plan-property dependencies in oversubscription plan-
ning. In AAAI, 2020.

[Eifler et al., 2020b] Rebecca Eifler, Marcel Steinmetz, Al-
varo Torralba, and Jörg Hoffmann. Plan-space explanation
via plan-property dependencies: Faster algorithms & more
powerful properties. In IJCAI, pages 4091–4097, 2020.

[Eifler et al., 2022] Rebecca Eifler, Martim Brandao,
Amanda Coles, Jeremy Frank, and Jörg Hoffmann.
Evaluating plan-property dependencies: A web-based
platform and user study. In ICAPS, 2022.

[Eriksson et al., 2017] Salomé Eriksson, Gabriele Röger,
and Malte Helmert. Unsolvability certificates for classi-
cal planning. In ICAPS, pages 88–97, 2017.

[Eriksson et al., 2018] Salomé Eriksson, Gabriele Röger,
and Malte Helmert. A proof system for unsolvable plan-
ning tasks. In ICAPS, volume 28, 2018.

[Göbelbecker et al., 2010] Moritz Göbelbecker, Thomas
Keller, Patrick Eyerich, Michael Brenner, and Bernhard
Nebel. Coming up with good excuses: What to do when
no plan can be found. In Proc. ICAPS, pages 81–88, 2010.

[Haslum and Geffner, 2000] Patrik Haslum and Hector
Geffner. Admissible heuristics for optimal planning. In
Proc. AIPS, pages 140–149, 2000.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. JAIR, 26:191–246, 2006.

[Katz et al., 2019] Michael Katz, Emil Keyder, Dominik
Winterer, and Florian Pommerening. Oversubscription
planning as classical planning with multiple cost func-
tions. In ICAPS, pages 237–245, 2019.

[Lauffer and Topcu, 2019] Niklas Lauffer and Ufuk Topcu.
Human-understandable explanations of infeasibility for
resource-constrained scheduling problems. In Proceedings
of the 2nd Workshop on Explainable Planning (XAIP’19),
2019.

[Seipp and Helmert, 2013] Jendrik Seipp and Malte
Helmert. Counterexample-guided Cartesian abstrac-
tion refinement. In Proc. ICAPS, pages 347–351,
2013.

[Senthooran et al., 2021] Ilankaikone Senthooran, Matthias
Klapperstueck, Gleb Belov, Tobias Czauderna, Kevin Leo,
Mark Wallace, Michael Wybrow, and Maria Garcia de la
Banda. Human-centred feasibility restoration. In 27th
International Conference on Principles and Practice of
Constraint Programming (CP 2021). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2021.

[Smith, 2004] David E. Smith. Choosing objectives in over-
subscription planning. In ICAPS, pages 393–401, 2004.

[Sreedharan et al., 2019] Sarath Sreedharan, Siddharth Sri-
vastava, David Smith, and Subbarao Kambhampati. Why
can’t you do that HAL? explaining unsolvability of plan-
ning tasks. In IJCAI, pages 1422–1430, 2019.

https://perspicuous-computing.science
https://perspicuous-computing.science

	Introduction
	Preliminaries
	Planning Formalism
	Planning with Consumed Resources
	Planning with Simple Time Windows
	Explanation Framework

	Conflict Explanation Through Relaxations
	Relaxation Orders
	Resource and Time Constraint Relaxations
	Resource Constraint Relaxations
	Time Constraint Relaxations

	Conflict Explanation

	Internal Constraint Reuse (ICR)
	Search Space Reuse (SSR)
	Theoretical Comparison
	Experiments
	Evaluation

	Related Work
	Conclusion

