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Summary

Building on Yu and Kumbier's predictability, computability and stability (PCS) framework
and for randomised experiments, we introduce a novel methodology for Stable Discovery of
Interpretable Subgroups via Calibration (StaDISC), with large heterogeneous treatment effects.
StaDISC was developed during our re-analysis of the 1999-2000 VIGOR study, an 8076-patient
randomised controlled trial that compared the risk of adverse events from a then newly approved
drug, rofecoxib (Vioxx), with that from an older drug naproxen. Vioxx was found to, on average
and in comparison with naproxen, reduce the risk of gastrointestinal events but increase the risk of
thrombotic cardiovascular events. Applying StaDISC, we fit 18 popular conditional average treat-
ment effect (CATE) estimators for both outcomes and use calibration to demonstrate their poor
global performance. However, they are locally well-calibrated and stable, enabling the identification
of patient groups with larger than (estimated) average treatment effects. In fact, StaDISC discovers
three clinically interpretable subgroups each for the gastrointestinal outcome (totalling 29.4% of the
study size) and the thrombotic cardiovascular outcome (totalling 11.0%). Complementary analyses
of the found subgroups using the 2001-2004 APPROVe study, a separate independently conducted
randomised controlled trial with 2587 patients, provide further supporting evidence for the promise
of StaDISC.
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1 Introduction

Since its inception, the field of statistics has aimed to produce tools to help scientists seek
scientific truth. Scientific truth, however, is not of a singular quality. While some relations in
physics like Hooke's law are made apparent using simple linear regression, questions dealing
with complex, emergent phenomena such as the efficacy of drugs or job training programmes
seem to have more contingent answers. It was the urge to formalise and investigate such
questions that begot and nurtured the field of causal inference in statistics over the past cen-
tury. One of the two most influential frameworks for causal inference, the Neyman—Rubin
causal model (Holland, 1986), has its roots in Fisher and Neyman's (Fisher, 1936;
Splawa-Neyman et al., 1990; Neyman & Iwaszkiewicz, 1935) work on randomised exper-
iments for agriculture and was later codified by Rubin (1974), who was then interested
in psychometrics. !

Historically, causal inference researchers have used traditional regression methods in their
analyses, with econometricians in particular developing a comprehensive theory of drawing
inference from linear models (Angrist & Pischke, 2008). This is rapidly changing, however,
with recent works (Athey, 2018; Kiinzel et al., 2019; Chernozhukov et al., 2018; Molina &
Garip, 2019) bringing in machine learning tools to tackle causal inference problems, one genre
of which has been the investigation of heterogeneous treatment effects.

1.1 Heterogeneous Treatment Effects

In both randomised experiments as well as observational studies, apart from the treatment
and response variables, additional pre-treatment information is often known about the study
subjects. For instance, information on medical risk factors is collected in clinical trials, while
demographic and socioeconomic data are collected in social science studies. Such side informa-
tion has always been important because it allows us to adjust for confounding in observational
studies and also to create more efficient estimators in randomised experiments (Lin, 2013;
Imbens & Rubin, 2015).

In addition to these uses, researchers are also increasingly interested in drawing inference
about how the effect of a treatment varies depending on an individual's observed covariates. The
past decade in particular has witnessed a wave of innovation in the modelling and estimation
of heterogeneous treatment effects. Underlying the hot topic of precision medicine (Collins &
Varmus, 2015) is a realisation that how a patient responds to a particular drug or treatment
depends on the patient's genetics, lifestyle and environment and that, consequently, accounting
for these differences will allow doctors to deliver better and more targeted care. Moreover,
this emphasis on understanding and exploiting heterogeneity is not unique to the biomedical
sciences and has also arisen in economics (Imbens & Wooldridge, 2009), political sciences
(Gerber et al., 2008; Feller & Holmes, 2009), online advertising (Michel et al., 2019) and many
other fields (Feller & Holmes, 2009).

Broadly speaking, methodological research on heterogeneous treatment effects can be put
into two categories: (i) conditional average treatment effect (CATE) function estimation
(Imbens & Wooldridge, 2009; Gerber et al., 2008; Feller & Holmes, 2009; Cai et al., 2011;
Foster et al., 2011; Tian et al., 2014; Bloniarz et al., 2016) and (ii) subgroup analysis (Wang
et al., 2007; Peck, 2003; Athey & Imbens, 2016; Lipkovich et al., 2011), with the latter having
a longer history. Here, we attempt a brief review of the existing literature and refer the readers
to referenced papers for further background.
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1.1.1 CATE estimation

For a binary treatment, the CATE is defined to be the expected difference between the poten-
tial outcome under treatment and that under no treatment, conditional on a subject's observed
covariates (see Section 3 for formal definitions). While the average treatment effect (ATE) is
a scalar quantity, the CATE is a function and thus far more challenging to estimate. Because
one observes only one of the two potential outcomes for every individual—an issue referred to
as the fundamental problem of missing data in causal inference (Holland, 1986)—one cannot
directly solve this problem using the conventional supervised learning techniques.

Over the past decade or so, researchers have made tremendous progress with CATE estima-
tion and proposed numerous methods for it (Imbens & Wooldridge, 2009; Gerber et al., 2008;
Feller & Holmes, 2009; Cai et al., 2011; Foster et al., 2011; Tian et al., 2014; Bloniarz
et al., 2016). A large fraction of these (Imbens & Wooldridge, 2009; Feller & Holmes, 2009;
Cai et al., 2011; Bloniarz et al., 2016) fall under the framework of meta-learners. These are
‘meta-algorithms [that] decompose estimating the CATE into several regression sub-problems
that can be solved with any regression or supervised learning method’ (Kiinzel et al., 2019).
Some of these meta-algorithms are fairly obvious. For instance, the 7-learner strategy (Foster
et al., 2011) comprises fitting models for the two response functions (the conditional expecta-
tion of each potential outcome) and then taking their difference. Others, such as the X-learner
(Kiinzel et al., 2019) and R-learner (Nie & Wager, 2017) strategies, are more sophisticated
and require more notation to explain (see Section 4.1 for further details). Not all proposed
algorithms follow a meta-learner strategy, the popular causal tree and causal forest algorithms
(Athey & Imbens, 2016; Wager & Athey, 2018) being prominent examples.

1.1.2 Concerns with model choice for CATE estimation

With such a diverse range of estimators, most of which come with hyperparameters, model
choice becomes a primary concern. Some researchers have used asymptotic efficiency (Nie &
Wager, 2017; Kennedy, 2020) to establish when certain estimators can be definitely favoured
under (uncheckable) generative models. Such arguments, however, rely on smoothness assump-
tions and asymptotic data regimes that are typically hard to verify for the problems typically
considered by causal inference researchers. Meanwhile, plug-in prediction accuracy on holdout
test sets is frequently used to do model selection in supervised learning, but this is infeasible
for CATE estimation owing to the data missingness we alluded to earlier. To circumvent this
issue, researchers have formulated proxy loss functions (Schuler ef al., 2018) for data-driven
model choice, with ideas including using nearest neighbour matching (Rolling & Yang, 2014),
kernel-based local linear squares fit (Cai et al., 2011) and influence functions (Alaa & Van Der
Schaar, 2019). These model choice methods, however, have only been justified using simula-
tions often in strong signal regime, a scenario that does not hold in many if not most real data
problems (including the one considered in this work).

1.1.3 Concerns with model validation for CATE estimation

Before deciding which estimator to choose for a given task, we would first like to know
whether there is even enough signal in the data to fit a generalisable model. Again, data missing-
ness means that there is no clear answer to this problem. The proxy loss functions are not good
substitutes for quantities like R? or area under the receiver operating characteristic curve scores
because they can be noisy, and furthermore, they do not have an easily interpretable scale. This
is especially concerning because randomised experiments often have low-signal strength.?
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1.1.4 Subgroup analysis

An older approach to investigating heterogeneity is through ‘subgroup analysis’. The goal
here is to identify subgroups of subjects in the study over which the treatment effect is signif-
icantly larger or smaller than that the population average. Such a conception of heterogeneity
has two advantages over CATE estimation: (a) It is less ambitious and thus promises to be
more tractable given the low data regime in real settings, and (b) it is often more aligned
with the downstream tasks involving decision making (e.g., identifying which subgroup of
individuals to treat).

Traditionally, for subgroup analysis, researchers check the treatment effect over a pre-
determined list of subgroups that are suggested by prior domain knowledge. Doing this,
however, ignores potential unforeseen heterogeneity in the data, and there has been much
recent work on how to conduct a data-driven search for subgroups. Naive searching can
quickly overfit,> so any search method has to balance aggressiveness of searching with the
need to account for multiple testing. Proposed methods include using recursive partitioning (Su
et al., 2009; Athey & Imbens, 2016), Cox modelling (Negassa et al., 2005), controlled parti-
tioning with significance checks using data splits (Lipkovich ef al., 2011) and several variants
(Dusseldorp & Van Mechelen, 2014; Ballarini et al., 2018). Unfortunately, systematic analyses
of these methods have usually provided unsatisfactory results in real data settings and in low-
signal simulations (Ondra ef al., 2016; Huber et al., 2019). We refer the readers to the book of
Carini et al. (2014) (Chapter 8) and the review papers (Ondra et al., 2016; Huber et al., 2019)
for further discussion on these methods.

Finally, we note that some researchers have proposed using CATE estimation as a stepping
stone to finding subgroups. Such a strategy was proposed by Foster et al. (2011) with their
Virtual Twins method, namely, the 7-learner with random forests (RFs), while Chernozhukov
et al. (2018) recapitulate this idea in the context of a broader call to perform inference on
features of the CATE function rather than the function itself. In another line of work, Shahn
& Madigan (2017) integrate (linear) CATE modelling with latent class mixture modelling in
a Bayesian framework to allow for treatment effect heterogeneity in discrete levels. They then
use the feature importance from the latent (logistic) model and the posteriors for the CATE, to
estimate qualitatively, subgroups with large treatment effect.

1.2 The PCS Framework for Veridical Data Science

As argued in the previous section, obtaining reliable conclusions with respect to hetero-
geneous treatment effects is fraught with difficulty. On the one hand, poor signal and weak
priors are prevalent, and on the other hand, missing potential outcomes means that test-set val-
idation is not directly feasible. Methods validated on simulation studies may not work well
for real data problems because their performance is often misleading. Furthermore, empiri-
cal evidence tells us that the relative and absolute performance of estimation algorithms is
highly data and context dependent (Olson et al., 2018).* Given these problems, it is puz-
zling to see that much new methodology is being developed that is detached from solving real
data problems.

In this paper, we re-analysed the 1999-2000 VIGOR study (an 8076-patient randomised
clinical trial) and had to face precisely these challenges. To overcome them, we take advantage
of the recent works on CATE estimation (Bloniarz ef al., 2016; Kiinzel et al., 2019; Athey &
Imbens, 2016; Nie & Wager, 2017; Wager & Athey, 2018) and build on the PCS framework
for veridical data science recently introduced by Yu & Kumbier (2020). As a result, we develop
a methodology called Stable Discovery of Interpretable Subgroups via Calibration (StaDISC),
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which is generally applicable beyond this dataset. We now briefly review the PCS framework,
before turning to the overview of our contributions and StaDISC in Section 1.3.

The PCS framework bridges, unifies and expands on ideas from machine learning and statis-
tics for the entire data science life cycle. The letters in PCS stand for the three core principles of
data science, namely, predictability, computability and stability. In a nutshell, the PCS frame-
work advocates using both predictability and stability analysis, argued and documented in a
PCS documentation, for reliable and reproducible scientific investigations, thereby providing
a way for bridging Breiman's Two Cultures (Breiman, 2001). More specifically, predictabil-
ity emphasises reality checks for the modelling stage, by integrating the use of data-driven
validation such as out-of-sample testing favoured by machine learning and that of goodness-
of-fit measures that have a rich history in traditional statistics. Stability, besides encompassing
sampling variability, expands to other stability or robustness concerns of the contingency of
modelling conclusions to researcher ‘judgement calls’. These calls include the choices made by
the researcher at various stages of the data science life cycle, including data cleaning in addi-
tion to the modelling decisions such as model choices and data perturbations. Computability
reflects the need to keep computational feasibility and efficiency in mind when constructing any
modern data analysis pipeline, especially those that subscribe to the first two principles, which
are usually more demanding computationally.

The PCS framework addresses to a certain extent Professor Efron's concern (Efron, 2020)
that machine learning methods (or pure prediction algorithms) are not ready to be used on
scientific problems.’ The PCS framework adds a paramount consideration of stability to pre-
dictability and computability that are hallmarks of machine learning. It guides researchers in
validating machine learning and statistical methods with respect to the specific task they are to
be applied and extracting data conclusions that can be relied upon. As one of us has previously
discussed (Yu & Barter, 2020), even though 100% truth is beyond reach, a useful goal is an
‘accurate approximation for a particular domain, and relative to a particular performance met-
ric’, which is a more precise articulation of George Box's belief that ‘all models are wrong, but
some are useful’.

1.3 Our Contributions

This paper makes three main contributions. First, we seek subgroups with demonstrable het-
erogeneous treatment effects in the dataset from the 1999—2000 VIGOR study. Complementary
analyses with the 2001-2004 APPPROVe study provides additional evidence for the hetero-
geneity in treatment effect for the found subgroups. Enroute, building on the recent CATE
literature and the PCS framework, we develop a new methodology, which we call StaDISC. We
provide an overview of this methodology toward the end of this section. Finally, this paper also
serves as the first articulation of the PCS framework in the context of causal inference, with
StaDISC providing a template for more informative understanding of heterogeneous outcomes.

1.3.1 Organisation

The rest of the paper is organised as follows. In Section 2, we start with a brief history of
the VIGOR study, and then we describe the dataset and data engineering and splitting done by
us. Section 3 reviews the Neyman—Rubin model briefly with basic notations introduced. The
development of the StaDISC methodology (overviewed below) is carried out in Sections 4 to 6
with the final subgroups reported in Section 6.3. Results for the complementary analyses of the
found subgroups with the APPROVe study are presented in Section 7. We conclude in Section 8
with a recap of our results and a discussion of the relevance of our discoveries in medicine, and
we discuss several directions for future work with StaDISC. Most of the figures and tables are
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deferred to the appendix. Moreover, in accordance with the PCS framework's requirement for
clear and careful documentation, we provide our code, data cleaning and statistical analyses in
the form of Jupyter notebooks on GitHub (https://github.com/Yu-Group/stadisc).

1.3.2 Overview of StaDISC

First of all, a given dataset (deemed approximately i.i.d.) is divided into a holdout test set
Stest and a training set Stran (per outcome). For hyperparameter tuning, we use four-fold
cross-validation with the training data Stran.® For any set of training folds, we refer to the
leftout fold as the corresponding validation fold. The test set is used only once at the final
step of checking the significance of the interpretable subgroups found by our methodology. See
Section 2.3 for more details on data splitting and Section 4.1 for the fitting of CATE estimators.
With this set-up at hand, StaDISC can be summarised in three steps: a predictive reality check
in Section 4 based on calibration, stability-driven ranking and aggregation of CATE estima-
tors in Section 5 and finally the CellSearch procedure for finding interpretable subgroups
in Section 6. In Section 4, we introduce a novel calibration-based pseudo-R? score for CATE
estimators denoted by RZ, which involves placing individuals (in both training and validation
folds) into equally sized bins based on their predicted CATE value, with quantiles of the pre-
dicted CATE distribution on the training folds as thresholds for the CATE estimators. Using
such a binning and the RZ-scores, we show that 18 popular CATE estimators generalise poorly
for the VIGOR data on the validation folds of the training data. However, we find that certain
quantile-based bins (referred to as quantile-based top subgroups) do generalise well in the sense
of having significantly stronger subgroup CATE on both training and validation folds. This pro-
vides the starting point of the next step. In Section 5, we use the #-statistics of the treatment
effect over the quantile-based top subgroups and its stability over seven different appropri-
ate data perturbations to rank, screen and finally average the screened CATE estimators (the
ensemble CATE estimator). Section 6 details the last step of StaDISC, where we introduce the
CellSearch procedure to find a stable and interpretable representation of the quantile-based
top subgroup of the ensemble from the previous step, and then we check its performance on the
holdout test set (which was used only for final testing).

As a final overview remark, we note that we use poor performance and good/bad gener-
alisation in a slightly loose sense throughout the paper. We only use the holdout test set at
the final stage, for verifying the CATE estimates of discovered subgroups. Nonetheless, we
use the phrase poor generalisation to refer to worse-than-expected-performance, where the
performance metric varies across results, on the validation folds.

2 Dataset from the VIGOR Study

In this paper, we are interested in finding subgroups of patients who benefit from the
treatment in the dataset from the Vioxx Gastrointestinal Outcomes Research (VIGOR) study
(Bombardier et al., 2000). In the process of seeking such subgroups, we develop the new
StaDISC methodology. In this section, we provide an overview of this study and the dataset,
and we also explain our data pre-processing and feature engineering.

2.1 VIGOR Study History and Description

The VIGOR study was a randomised head-to-head trial comparing two drugs used to alle-
viate pain and inflammation for patients with rheumatoid arthritis: a ‘new’ cyclooxygenase-2
(COX-2) inhibitor drug rofecoxib (Vioxx) recently approved and developed by Merck, and
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naproxen, a standard nonsteroidal anti-inflammatory drug (NSAID) already in routine clinical
use for many years. NSAIDs, although effective for treating pain and inflammation, cause seri-
ous gastrointestinal (GI) side effects in a small proportion of patients with frequent use. The
rationale for the development of COX-2 inhibitors, such as Vioxx, was reduced GI toxicity as
compared with traditional NSAIDs. Previously conducted short-term clinical studies were sup-
portive of this hypothesis, although concerns about potential cardiovascular toxicity associated
with Vioxx had also been raised.

2.1.1 Aim of the study

The VIGOR study was designed to provide more conclusive evidence of the superior GI
safety of Vioxx. The study was conducted in the years 1999-2000 by Merck with the primary
hypothesis that its drug Vioxx would have fewer GI side effects than naproxen for the treatment
of theumatoid arthritis. The study population comprised 8076 patients ‘with rheumatoid arthri-
tis who were at least 50 years old (or at least 40 years old and receiving long-term glucocorticoid
therapy) and who were expected to require NSAIDs for at least one year’. This population was
known to be at relatively high risk of GI side effects with NSAIDs.” The patients in the con-
trol arm were assigned the drug naproxen, while the patients in the active treatment arm were
assigned Vioxx.

2.1.2 Details and findings of the study

Patients were followed up for a median time of 9 months, and the primary end point was time
to first occurrence of a confirmed clinical upper GI event defined as ‘gastroduodenal perfora-
tion or obstruction, upper gastrointestinal bleeding, and symptomatic gastroduodenal ulcers’.
The original study report (Bombardier et al., 2000) performed a survival analysis using a Cox
proportional hazard model and estimated the relative risk for patients in the treatment arm
compared with those in the control arm to be 0.5, with a confidence interval of 0.3 to 0.6.%

The study authors also conducted a subgroup analysis for the GI events, analysing subgroups
defined by gender, age, nationality, steroids, PUB (perforations, ulcers and bleeding) history
(prior history of GI events) and presence of Helicobacter pylori antibodies. The rationale was
that certain patients were known to be at increased risk of GI events, and they wanted to see
if the benefit of Vioxx extended to these high-risk patients. The conclusion from the subgroup
analysis was that the risk ratio for every subgroup remained significant, while differences of the
ratios between subgroups were not significant.

However, VIGOR demonstrated that Vioxx was associated with an increased risk of throm-
botic cardiovascular events (henceforth referred to as CVT events), an aspect that was not
emphasised in the original report of the study (Bombardier ef al., 2000). The study authors sug-
gested that apparent association of Vioxx with CVT events was actually the result of naproxen
preventing CVT events. However, placebo-controlled studies confirmed that Vioxx did indeed
cause CVT events, and this ultimately led to the withdrawal of Vioxx from the market. We refer
the reader to the articles (Krumholz et al., 2007; Ross et al., 2009) for more context on the
VIGOR study and its consequences thereafter.

2.1.3 Goal of our investigation into the VIGOR study

In this work, we perform analysis for both the GI and CVT events. While the GI event was an
infrequent event (experienced by around 2% patients) in the study, the less common CVT event
(around 0.6% were reported to have a confirmed CVT event) was considered to be more signif-
icant medically. As the earlier works already established that Vioxx led to an overall decrease
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in the GI risk but an increase in the cardio risk on the overall population of the study, an impor-
tant by-product of this work is finding clinically relevant and interpretable subgroups of interest
for which Vioxx provided a significant decrease in the risk for the GI event but did not increase
the risk for the CVT event. Interpretability of the subgroup, as well as the transparency of the
search procedure, is important from a clinical view point, as the doctors can then better justify
their choice to favour prescribing the drug for patients in the discovered subgroup.

We present detailed results for both the GI and CVT events throughout this paper, while
occasionally deferring some details to the Appendix. To perform our analysis, we created a
dataset with the two outcomes—GI and CVT events—as discussed above, a treatment indicator
and 16 binary features. The data processing necessary to create this dataset is the topic of the
next section.

2.2 Feature Selection and Engineering

The VIGOR study collected an extensive range of patient data, including demographic
details, prior medical history, and the timing and details of adverse events during the clinical
experiment. From this, we extracted 16 clinically relevant binary features, which we report in
Table 1 together with covariate balance details. Also, see Figure 1 for a visual comparison. We
now describe some of the decisions we took with respect to feature engineering, as well as the
meaning of the selected features.

The medical history risk factors and drug use information were all already binary and were
selected by the VIGOR study designers as being medically relevant. For instance, it is known

Table 1. Overview of the baseline covariates in the control and treatment arm of the VIGOR study.

Covariate (ABBRYV) Control no. (%) Treatment no. (%)
Overall population 4029 (49.9) 4047 (50.1)
Demographics
Whether gender is male (MALE = 1) 814 (20.2) 824 (20.4)
Whether race is white (WHITE = 1) 2752 (68.3) 2764 (68.3)
Whether country is US (US = 1) 1750 (43.4) 1748 (43.2)
Whether adjusted age™ >65 (ELDERLY = 1) 1172 (29.1) 1136 (28.1)
Whether body mass index >30 (OBESE = 1) 1060 (26.3) 1106 (27.3)
Lifestyle
Whether patient smokes >1 cig./day (SMOKE = 1) 1879 (46.6) 1919 (47.4)
Whether patient has >1 alcoholic drinks/week (DRINK = 1) 1045 (25.9) 1053 (26.0)
Prior medical history
Of GI PUB events (PPH = 1) 317 (7.9) 313 (7.7)
Of hypertension (HYPGRP = 1) 1168 (29.0) 1217 (30.1)
Of hypercholesterolemia (CHLGRP = 1) 293 (7.3) 343 (8.5)
Of diabetes (DBTGRP = 1) 254 (6.3) 240 (5.9)
Of atherosclerotic cardiovascular disease (ASCGRP = 1) 216 (5.4) 238 (5.9)
Indicating use of aspirin under FDA guidelines (ASPFDA = 1) 151 (3.7) 170 (4.2)
Prior usage of drugs
Whether used glucocorticoids/steroids (PSTRDS = 1) 2253 (55.9) 2244 (55.4)
Whether used naproxen (PNAPRXN = 1) 747 (18.5) 759 (18.8)
Whether used NSAIDs (PNASIDS = 1) 3341 (82.9) 3344 (82.6)
Outcomes
Whether GI event occurred (GI = 1) 121 (3.0) 56 (1.4)
Whether CVT event occurred (CVT = 1) 18 (0.4) 41 (1.0)

T Adjusted age denotes age multiplied by the ratio of the life expectancy in the USA to that in the individual's
country of residence.
PUB stands for perforations, ulcers and bleeding.
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Checking Covariate Balance in the VIGOR Dataset

Control Treated
PNSAIDS - 82.9 a— = PNSAIDS - 82.6
80
WHITE - 68.3 ° ° WHITE - 68.3
PSTRDS - 55.9 PSTRDS - 55.4
60 SMOKE - 46.6+ " SMOKE - 47.4
US - 43.4 ./ US -43.2

\ PGRP - 30.1

&  HYPGRP -29 ELDERLY - 28.1
£  OBESE-263 OBESE - 27.3
° 40 DRINK - 25.9 / DRINK - 26
. MALE-202 /MALE -204
PNAPRXN - 18) CAPRXN - 18.8
PPH-7.9 CHLGRP - 8.5

20 CHLGRP - 7 PPH-7.7
DBTGRP - 6.3 BTGRP - 5.9
ASCGRP - 5.4 ASCGRP - 5.9
ASPFDA - 3.7 ASPFDA - 4.2

Gl-3 = Gl-14

CVT - 0.4 @ - <CVT -1

Figure 1. A visual illustration showing the covariate balance and the outcome imbalance (GI and CVT) between the control
and treatment population for the VIGOR study. The abbreviations are detailed in Table 1, and the number next to the abbre-
viation (ABBRV) denotes the % of the study size taking value 1 for that ABBRV in the respective arm. Note that the study size
was 8076 total patients, and treatment and control arms comprise 4029 (49.9%) and 4047 (50.1%) individuals, respectively.
[Colour figure can be viewed at wileyonlinelibrary.com/

that use of glucocorticoids predisposes patients to GI events in the context of concomitant
NSAID administration (Herndndez-Diaz & Rodriguez, 2001). One feature that deserves spe-
cial interest is ASPFDA. This was an indicator for patients in the study who ‘met the criteria
of the Food and Drug Administration (FDA) for the use of aspirin for secondary cardiovascu-
lar prophylaxis but were not taking low-dose aspirin therapy’ (Bombardier et al., 2000) and
was thought to be an especially strong risk factor for cardiovascular events. Patients who were
actually undergoing aspirin therapy were excluded from the study.

On the other hand, some of the demographic and lifestyle risk factors required some engi-
neering. The goal of the feature engineering was to simplify the data using prior information,
s0 as to avoid overfitting and to simplify downstream data analysis. While the study collected
more precise data on the patient's country of residence and their race, in both cases, a single
level (‘US’ and ‘white’ respectively) contained a large fraction of the data, and we used these
to binarise the two features. We also applied a similar logic to the smoking and alcohol lifestyle
risk factors. We used height and weight information to calculate the body mass index for every
patient, and then we used a threshold value of 30 to obtain an indicator for obesity.” Finally, we
calculated the adjusted age for every patient (by multiplying their numerical age by the ratio of
the life expectancy in the USA to that in their country of residence), and then we used a thresh-
old value of 65 to define an indicator for being elderly. Finally, there was no direct indicator for
patients with a prior history of GI event, so we made use of the medical history files to impute
this. See Appendix C1 for more details.

The dataset was fairly complete [as is the case for most randomised controlled trials (RCTs)],
with only a single patient missing an entry for each lifestyle risk factor (we filled in this with
a 1), while 35 patients were missing entries for either height or weight, leading to a miss-
ing entry for the obesity indicator (we filled this in with a 0). Furthermore, the features also
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have weak pairwise correlations except for the fact that the subgroup with ASPFDA = 1 (321
patients) is a subset of that with ASCGRP = 1 (454 patients).

2.3 Data Splitting

As a known best practice included in the PCS framework, for each outcome, we cre-
ated a holdout test set comprising 20% of the individuals, which we did not touch in our
further investigations until the very last stage of our analysis, that is, when we wanted to
verify our results. Because of the rarity of events for both outcomes, we stratified the split
by both the treatment and the outcome simultaneously; such a stratification ensures that the
outcome remains balanced across the test-train splits. Let ¥ denote the binary outcome of
interest (GI or CVT event) and T denote the treatment indicator. Then such a stratifica-
tion (implemented as model selection.train test split function in the sklearn
library (Pedregosa et al., 2011)) is done by first categorising the study subjects in four cate-
gories{{T' =0,Y =0} {T=1,Y =0} ,{T =0,Y =1}and {T =1,Y = 1}}—once with
Y denoting the GI event and once with ¥ denoting the CVT event. Then we select a randomly
sampled (without replacement) 20% of the subjects from each category together as the test set
Stest, With the remaining subjects form the training set StraIN.

Also, keeping in mind the rarity of the signals, we do not create an additional validation
set, and instead we use the training data via a stratified four-fold cross-validation, where the
folds are split uniformly at random, again stratified jointly according to 7" and YY . For such a
split, each fold has around 35 GI events and 11 CVT events among the 1615 patients. We note
that for a given outcome (say GI event), we use the same four-fold CV split—referred to as
the original split and denoted as cv_orig—for tuning the hyperparameters for all the CATE
estimators via cross-validation. We also use two additional stratified four-fold cross-validation
(random) splits in several results throughout the paper, and we denote them by {cv_0, cv_1}.
No hyperparameter tuning is done on these additional splits, and we simply use the tuned
parameters from the cv_orig split for fitting the estimators on different sets of training folds
of these additional splits. Note that for any four-fold CV split, there are four possible pairs
of training-validation folds, denoted generically by Str and Sy, respectively. Mathematically,
given disjoint folds from one four-fold CV split, namely, {Sf};zl of the training data Stran
such that Stralny = U?lef, the four pairs of training-validation folds are be denoted by

{(Str = Strav\S§. Svr = S§). T = 1,2,3,4}.

3 Review on Neyman—Rubin Model and Notation

Throughout this paper, we assume the standard set-up for a completely randomised exper-
iment under the Neyman—Rubin counterfactual framework. We assume that we observe a
population of size N, in which the treatment variable 7 is completely randomised. For each
individual i, there are two potential outcomes: Y; (0) when the individual i is assigned to the
control arm 7; = 0, and Y; (1) when they are assigned to the treatment arm, 7; = 1. The indi-
vidual treatment effect for individual i is defined as the difference of the two potential outcomes
7; = Y;(1) — Y;(0). But this quantity is unobservable because for each individual we only
observe one outcome corresponding to the arm that they are assigned to, that is, Y; obs = Yi (T3),
which we denote by Y; for brevity. For each individual i, we also observe a vector of covari-
ates X; € X. As is conventional with other research into heterogeneous treatment effects, we
perform inference by assuming that the samples are drawn i.i.d. from an infinite population.'®
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We now define the various quantities of interest studied throughout this paper. Let G be a
measurable subset of the feature space X. The average treatment effect (ATE), CATE, and the
subgroup CATE are respectively defined as follows:

ATE : targ := E[Y(1)] = E[Y(0)], (la)
CATE: t(x):=E[Y(1) X =x]—-E[Y(0) X = x], forany x € X, (1b)
subgroup CATE : 7g := E[t(X) X € G], for measurable subset G C X, (1c)

where the expectation is taken with respect to the i.i.d. drawn from the infinite population.

At a high level, the goal of this work is to provide a systematic framework to find subgroups
G C X, which (i) include non-trivial fraction of the observed data, (ii) are relevant and inter-
pretable relevant for the domain problem at hand and (iii) most importantly have significant
subgroup CATE; that is, 7 has significantly larger magnitude than targ.

3.1 Neyman Difference-in-Means Estimates for Finite Samples

We will often use the classical Neyman difference-in-means estimator to provide plug-in
estimates for the ATE and subgroup CATE values. Formally, we denote the two study arms by
the following:

Treatment armT := {i € [n] : T; = 1} andControlarm C:={i € [n]: T; =0}. (2a)
Throughout this paper, we will abuse notation: for any group G C X, we will use the same

symbol to refer the subpopulation of individuals that belong to it. This allows us to denote the
restriction of the two arms of the study to the subgroup, as follows:

TNG:=TN{ieln]:X;eGandCNG:=CN{i €[n]: X; €G}. (2b)
For a finite set A, let |.A| denote the number of elements in the set. With this notation at hand,

the plug-in estimators for the average treatment effect targ and the subgroup average treatment
effect 7g are given by

n 1 1
e = Y Yi() == > ¥;(0),  and (3a)
Tl i €l
1 1
Ig= —— (1) — —— Y (0). 3b
tq |T“G|i§c i(1) |C“Gligc i(0) (3b)

For randomised experiments, both estimates Targ and g are unbiased (Splawa-Neyman
et al., 1990), and standard error estimates are available for it (Imbens & Rubin, 2015). On the
other hand, the precision of 7 degrades as the size of the subgroup shrinks. For the same rea-
son, a direct difference-in-means estimator for CATE (1b) is almost never feasible, as for most
values of x € X (e.g., when X is continuous, or combinatorially very large), there might not
exist any sample with covariate equal to x.
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4 Calibration as a Prediction (Reality) Check for CATE Estimators

Following the predictability principle of the PCS framework, any statistical model must pass
a test of out-of-sample prediction accuracy before we should have any trust in it. This principle
is in line with the ethos of the scientific method, which correlates the strength of a hypothesis
with the rigour of prior attempts to falsify it (Popper, 1959). As discussed in Section 1.1, how-
ever, no such test currently exists for CATE models. The missing potential outcomes mean that
we do not have a plug-in estimate for any risk function that measures the discrepany between
the true CATE and the estimate CATE functions. Furthermore, unlike R? and area under the
receiver operating characteristic curve scores, the proxy loss functions proposed for model
choice (see Section 1.1 and the references therein) do not have interpretable scales.

To mitigate this problem, we develop a prediction accuracy check that can be applied to any
CATE estimator. This check makes use of the ideas from the calibration literature (Dawid, 1982;
DeGroot & Fienberg, 1983; Guo et al., 2017), and while passing the check is not a sufficient
condition for a CATE estimator to have good performance, it is at least a necessary one. Even
though our StaDISC approach is motivated by and grounded in the analysis of CATE estimators
fitted to the VIGOR study data, we believe it is a general methodology useful for other causal
inference problems.

The rest of this section is organised as follows. We discuss the 18 CATE estimators used
in our analysis of the VIGOR data in Section 4.1. We then introduce the calibration-based
scores for prediction checks in Section 4.2, and we apply it to the CATE estimators trained with
VIGOR data in Section 4.3. Finally, in Section 4.4, we show how despite the poor performance
on the overall data the CATE estimators have good generalisation locally, thereby setting the
stage for identifying subgroups with subgroup CATE significantly larger than ATE in Section 5.

4.1 CATE Estimators Applied on the VIGOR Dataset

We now describe the 18 CATE estimators used in this work, 14 of which follow meta-learner
strategies. Descriptions of the meta-learner strategies can be found in Kiinzel et al. (2019) and
Nie & Wager (2017). Here, we simply list our choices of base learners for each meta-learner.
The base learners are all drawn from a pool comprising lasso, logistic regression, RF, and
gradient-boosted trees (GB). In our statistical analyses, we used implementations of the former
three algorithms from the scikit-1learn package (Pedregosaetal.,2011) and the XGBoost
implementation of the latter (Tian ef al., 2014). Furthermore, for code cleanliness, we made use
of the meta-learner interface provided by the causalml package (Chen et al., 2020). In addi-
tional to estimators based on meta-learners, we also considered two versions each of causal tree
(Athey & Imbens, 2016) and causal forest (Wager & Athey, 2018). The versions differ in terms
of their hyperparameter choices. We used causalml's implementation of the former. For the
latter, we were not able to find a well-documented python implementation of the algorithm, so
we built one around causalml's causal tree implementation.

1. S-learners (two estimators): We used RF and GB as the base learners, denoted by s_rf and
s_xgb, respectively.

2. T-learners (four estimators): We used lasso, logistic regression, RF and GB as base learners.
These are denoted as t _lasso,t logistic,t rfandt xgb.

3. X-learners (four estimators): We used lasso, logistic regression, RF and GB as base learners
for the first stage and lasso as the only base learner for the second stage. These are denoted
asx_lasso,x logistic,x rf and x_ xgb.
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4. R-learners (four estimators): In the case of randomised experiments, the R-learner requires
a choice of base learner for the conditional expectation of the response with the treatment
variable partialed out, and a choice of base learner for the treatment effect. We use four
such pairs, each member of which was chosen uniformly at random from the base learners
(with logistic regression excluded due to its similarity to lasso). Doing this, we got {lasso,
lasso}, {lasso, GB}, {RF, lassso} and {RF, RF}. These are denoted as r lassolasso,
r lassoxgb,r rflassoandr rfrf.

5. Causal tree and causal forest (four estimators): We used two versions each of the
causal tree and causal forest algorithms, which we have denoted as causal tree 1,
causal tree 2, causal forest 1 and causal forest 2. Each pair of esti-
mators differs in their hyperparameter choices. Spemﬁcally, causal tree 1 and
causal forest 1 both use a minimum of 50 samples per leaf node, whereas
causal tree 2 and causal forest 2 bothuse a minimum of 200 samples per leaf
node. All other hyperparameter choices are standard and can be found in our documentation
on GitHub.

Here, we briefly justify our choice of the 18 CATE estimators listed above. First, we chose
our pool of base learners because they are representative of the most popular supervised learn-
ing algorithms in use today, with neural networks omitted because of the poor signal and
small size of the dataset. The T-learner framework is perhaps the simplest way of fitting a
CATE model and has been used and studied by many different authors. Using lasso as the base
learners was proposed and analysed by Bloniarz et al. (2016) and Imai & Ratkovic (2013).
Meanwhile, Foster et al. (2011) proposed using RF as the base learner. The X-learner (Kiinzel
et al., 2019) and R-learner (Nie & Wager, 2017) frameworks have both been used by many
recent works. The former has demonstrated favourable performance over other estimators in
data challenges organised by the Atlantic Causal Inference Conference, while the latter has
optimality guarantees under some assumptions and has been further supported by some follow-
up work (Schuler et al., 2018). We included two S-learner estimators for completion, because
all four meta-learner frameworks are supported by the causalml package. The causal tree
(Athey & Imbens, 2016) and causal forest (Wager & Athey, 2018) estimators have similarly
been used in much recent work, with the latter attaining the status of being a benchmark of sorts
for CATE estimation methods in many simulations.

All CATE estimators based on meta-learners had the hyperparameters of their component
base learners tuned via four-fold CV using cv_orig. A common hyperparameter grid was
used for each base learner type, with details deferred to our documentation on GitHub.

4.2 A calibration-based score for CATE estimators

To develop a reality check scheme for CATE estimators, we now build on the literature of
calibration of probability scores.

A binary classifier is said to be well-calibrated if the class probabilities that it predicts for
each sample point are close to the true class probabilities. This property is desirable in many
situations, such as weather forecasting, where we would like it to rain on close to 40% of the
days on which a 40% chance of rain is forecast. Unfortunately, machine learning models are
often not naturally calibrated, with neural networks in particular being overconfident in their
estimated class probabilities (Guo et al., 2017). Furthermore, because class probabilities are
unobserved, we cannot directly train a model to predict these values using supervised learning.
While researchers have proposed various solutions to this problem, the common theme is to
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bin the observations by their predicted class probabilities and then to use the observed class
distribution over the bin to obtain plug-in estimates of the true class probabilities.

The concept of calibration has a long history (Dawid, 1982; DeGroot & Fienberg, 1983),
and it has also been referred to as validity (Miller, 1962) or reliability (Murphy, 1973).
Starting for evaluation of weather forecasts in the 1950s (Brier, 1950), calibration has been
widely used as a generic scheme to compare several forecasters (DeGroot & Fienberg, 1983).
Related ideas have been used to calibrate a wide range of methods, including Bayesian models
(Dawid, 1982), support vector machines, boosted trees, RFs (Niculescu-Mizil & Caruana, 2005;
Naeini et al., 2015) and more recently deep neural networks (Guo et al., 2017).

4.2.1 Binning via estimated CATE values

We now begin to define our calibration-based prediction accuracy measure for CATE esti-
mators. While our scores—to be defined below—are easy to interpret, defining them formally
requires a bit of notation, which we now describe.

Consider the training set Straiv and let S¢, f = 1,2, 3,4 denote its four-fold (random) CV
split. Fix a fold f and let St = Stramv\S5 denote the training folds used to fit the CATE
estimator M : X — R, and let Syr = S5 denote the left-out fold, which we also call as validation
fold, for the estimator M. Let m4 denote the g-th quantiles of the CATE estimator M on the
training folds of the data:

#{i € Str: M(x;) <c}

g = min {c ‘ >q,, foranyg € (0,1), 4)
|St|
where by convention we set my = —oo and mt; = oo. Then given a grid of g-values denoted
by {q1 < g2 < ... < qk-1}intheinterval (0, 1), we split the real line into K bins, as follows:
my < g, < Mg, < ... < Wgg_, < my.

We use this binning to induce a partition of X' into K quantile-based subgroups given by

G =G;M) = {x € XIM(x) € [mq_/,qul]} forj =0,1,... K—1. (5a)

Given a set of individuals S (say, training folds Str or validation fold Syr), let Mc,_ ;ns denote
the mean of the predicted CATE from the estimator M on the subgroups G; N S:

_ 1 .
Mg, ns = G, 08| > M(X;). where G; NS = {i € S|X; € G,}. (5b)
i€G;NS

Similarly, recall that 7g ;NS denotes the plug-in estimate for the subgroup CATE for the
subgroup G;

RS S DI ¢ pp——— AT NS

TNG; NS| iThG) s ICNG;NS| iechans
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4.2.2 Score definitions

With these definitions of the subgroups, we are now ready to define the calibration score:

|G Ns| .
Cal-Score(S; M) := ZT |MGj ns — TG, ns| » (6a)
i=1
where we use absolute difference (and not squared difference) since the scale of the quantities
{M(;_ NS> %G_ iﬂS} is pretty small for our dataset. Nonetheless, it is still hard to interpret the
absolute scale of Cal-Score(M), and hence, we normalise these scores by a baseline to define a
pseudo-R? score. More precisely, we consider a baseline calibration score Cal-Score(S; TATE)»
obtained by replacing the CATE estimator average Mg ,ns with that of the (constant) ATE
estimate Ta7g in Equation (6a):
G, ns
Cal-Score(S: xr) = ;% |are — o, s (6b)

j=
With Equations (6a) and (6b) in place, we define the RZ score as follows:

Cal-Score(S; M)
Cal-Score(S; Tate)

RE(S;M) =1 (6¢)

Just like the usual R*-score,!! the score RZ(S; M) can take any value between (— 0o, 1], and a
model can be deemed a good fit if this score is close to 1. We interpret the score as measuring,
conditioned on the partition of the feature space into bins, the degree to which the CATE esti-
mator explains the variability of the CATE with respect to the partition, in comparison with the
best constant model.

As different models induce different partitions, the scores are not necessarily comparable
across models. Furthermore, similar to how calibrated classification algorithms need not have
good prediction accuracy, it is possible for a CATE model to have a good RZ score and yet
have poor overall prediction accuracy for the CATE. Nonetheless, having R2-scores that are
reasonably close to 1 across a range of data perturbations is necessary albeit not sufficient for
the CATE model to have good prediction performance. Moreover, the variability of the score
between the choices S = Sty and S = Syr also provides a check on the overfitting of the CATE
estimator.

To conclude, the RZ provides two predictive checks for the CATE estimators. On the one
hand, when R2(Str; M) is much smaller than 1, we conclude that the estimator M has a poor
fit on the training data. On the other hand, a high value (close to 1) value for RZ(Str; M), and
a lower value (close to 0 or negative) for Ré (Svr; M) would necessarily indicate overfitting of
the estimator M.

4.3 Calibration-based Predictive Check on CATE Estimators for the VIGOR Study

We now compute the scores defined in the previous section for the 18 popular CATE
estimators when applied to the VIGOR dataset. We use the evenly spaced quantile grid
{0.2,0.4,0.6,0.8} and compute the RZ-scores using the K = 5 bins it induces. We also con-
sider a restricted RZ-score to measure the predictive performance of the estimators for the
bottom two bins for the GI event, and top two bins for the CVT event. To compute this restricted
RZ-score, we simply replace the sum over the index j € {1,2,...,5} in Equations (6a)
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and (6b) with j € {1, 2} for the Gl event and j € {4, 5} for the CVT event, and then we plug
this restricted sum in Equation (6c¢).

In the previous section, we described how, given a CATE estimator and a fixed fold f, we
obtain two (restricted) RZ-scores—one on the training folds Stran\Sf and one on the vali-
dation fold Ss. Repeating this over four-fold provides us with four pairs of such scores. And
iterating over M different types of CATE estimators yields M x 4 such pairs. Furthermore, if we
consider L different four-folds splits, we get M x 4 x L such pairs of scores.

We trained 18 different CATE estimators for both the outcomes, namely, the GI and CVT
events. However, after fitting, the following estimators learned a zero CATE function: R-learner
with XGBoost for the GI event, and S-learner with XGBoost, Causal Tree with a particular
choice of hyperparameters, and R-learner with XGBoost for the CVT event. Thus, going for-
ward, we report results for the remaining 17 CATE estimators for the GI event and 15 CATE
estimators for the CVT event. See Section 4.1 for more details on all the estimators. We now
first discuss the details of scores presented in various plots in Figure 2 and then discuss the
conclusions in a separate paragraph.

4.3.1 Details of Figure 2

In Figure 2(a), we provide a scatter plot of R (Str, M) (training score) and RZ(Svg, M)
(validation score) for five different estimators for each fold of original CV split cv_orig on
the VIGOR data both for GI and CVT events. These estimators are t_rf, s rf, x rf,
r rfrf and cf 1, which denote T, S, X and R-learners with RF as s base learners and (one
of the two) causal forest, respectively. In addition, in the two right figures in Figure 2(a), we
also provide the scatter plot of the corresponding restricted RZ-scores (see the first paragraph

R2(S; M) [SEYAN Restricted R2(S; M) R2(S; M) [ Restricted R2(S; M)
S 1.0 ModelM - - .
@ % trf s ('S s Kot . ."
1l 4 'Y +®
w 05 e P * Wi X,
7 x_rf R Rk e A
S 0.0 & rrfrf - 2l . T * Lok
S - *y . . P +
frd ol 7 % ad * ad . Rl
-_— ®
g 0.5 /,/’ x® //// *® ,/// ///’
_1.0-7 L. L. - L.
-1 0.5 0 0.5 1-1 0.5 0 0.5 1-1 0.5 0 0.5 1-1 0.5 0 0.5 1
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Figure 2. Plots with the calibration-based R%-scores (6¢) for various CATE estimators. (a) Scatter plot of R-scores on
the training and validation folds for five CATE estimators on the original four-fold split cv_orig on which hyperparameters
were tuned via cross-validation. Refer to the text for definition of restricted R%-scores. (b) Histogram of the R-scores on
the 12 training and validation folds, four each from the three different CV splits, namely, {cv_orig, cv_0,cv_1} for 17
CATE estimators for GI event and for 15 CATE estimators for CVT event. [Colour figure can be viewed at wileyonlinelibrary.com/
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of this section for its definition) on the training and validation folds for the five estimators and
both events.

Next, to check the stability of our conclusion, we compute these scores for all 17 CATE
estimators for the GI event and all 15 CATE estimators for the CVT event on all three random
CV splits {cv_orig,cv_0,cv_1}. That is, we obtain a total of 204 and 180 (training and
validation) pairs of RZ-scores, respectively, for the Gl and CVT events. In Figure 2(b), we plot
the histogram of these scores.

4.3.2 Conclusions from Figure 2

Inspecting the scatter plots in Figure 2(a), we see clear evidence of overfitting, as the val-
idation fold RZ-scores (computed as R (Syr, M) in equation (6¢)) are systematically much
smaller, and often negative, than those on the training folds (computed as RZ(Ste, M) in
equation (6¢)). Furthermore, there is substantial variability across different folds. For instance,
one dot corresponding to s rf for GI events was not even plotted because the validation fold
RZ score exceeded the lower y-limit of the plot. These findings are supported by the histograms
in Figure 2(b), which show that the mean of the validation fold R2-scores is in fact a negative
number for both GI and CVT events. While we presented histograms of the aggregated scores
over all the CATE estimators, the general behaviour was also true when looking at individual
CATE estimators. Next, we also note that the bottom two-restricted R%-score for the GI event
and top two restricted RZ-score have slightly better generalisation because the validation scores
are generally positive albeit with the caveat of larger variability across the training folds. (We
revisit this aspect in more detail in Section 4.4.)

The poor performance on average as well as the high variability of performance both leads
us to be sceptical of the conclusions from any CATE estimator on the VIGOR study data. Here,
we remark that the variability of the scores stems from both fluctuations in the trained model
and low signal-to-noise ratio in the validation fold (leading to Cal-Score deviating from its
expected value). We remind the reader that in total there are 177 GI events and 59 total CVT
events, and this fact implies that for each quantile-based subgroup, we should expect to see
around 7.1 and 2.3 GI and CVT events, respectively, in the validation fold, under the assump-
tion of no heterogeneity. The poor performance is hence entirely to be expected, and in fact
could be a general theme for RCTs, as they are often sufficiently powered for only computing
the ATE.

4.4 Extracting Data Conclusions that Can Be Relied Upon

While we conclude that we cannot trust the CATE models in their entirety, it remains to
be seen if we can isolate data conclusions from them that we can rely on. To this end, we
take a closer look the relative ordering of scores Mg_ ;ns (5b) and fg_ ;ns equation (5¢) across
the quantile-based subgroups {G j }3=1 considered in the previous section. Given the quantile-
based definition of the groups, it is natural to test whether we have

ﬁglms < MGan <...< MGSQS, (estimator CATEs) and (7a)

TGns < Tgyns < ... < Tgsns, (subgroup CATE estimates) (7b)

for a set of individuals S comprising either the training folds or the validation fold. In Figure 3,
we plot these estimates for two estimators x_rf and t_rf for the GI event in (a) and
the CVT event in (b) for one set of training and validation folds from the original split. In
each plot, the blue error bars denote the sample standard deviation estimate for the sample
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Figure 3. [nvestigating the monotonicty trend (equation (7)) for two CATE estimators x_xrf and s_xr£f on one set of three
training folds and one validation fold of the original four-fold split cv_oxrig, for (a) the GI event and (b) the CVT event.
Here ‘Model CATE' refers to the quantity Mg, ns, and Neyman CATE refers to the quantity Tg;ns. In our notation, for
training folds, S = Srr, and for validation fold, S = Syr. The error bars for Model CATE are the sample standard deviation
for the estimated CATE values from the model, for each subgroup. For the Neyman CATE, the error bar denotes the square
root of the estimated variance (11b). Note that the subgroups {G;} are defined by the CATE estimator via the training folds.
[Colour figure can be viewed at wileyonlinelibrary.com/

mean Mg ,ns computed from {M(X;),i € G, NS}, and the red error bars denote the stan-
dard error estimate for 7, nsy; given by Equation (11b). We observe that generally the model

. — 5 . .. .
CATE estimates {MGmS}jzl are monotonic for both events on both training folds and valida-

tion fold. However, the story with the plug-in subgroup CATE estimates {%G j”s}j'=1 is—not
unexpectedly—mixed. For the GI event, while these estimates are monotonic on the training
folds (S = Srg), they are not monotonic on the validation fold (S = Syg). For the rarer
CVT event, the estimates {%G ; ms}jzl are not even monotonic on the training folds. This non-
monotonic behaviour is far from unique to the two estimators presented here. Instead, the plots
are representative of what we observe for all other estimators as well, even when using alternate

data splits into training and validation folds.

4.4.1 Pairwise comparisons

To summarise this phenomenon, we do a pairwise comparison of successive quantile-based
subgroups and measure the frequency with which the ordering of their CATE values generalises
to the validation fold, and we summarise our results in Figure 4(a). More precisely, for a given
estimator M, we define the Boolean indicators:

Aj,j-H = ]I(‘E(;jnsVF < %Gj-i-]ﬁSVF) for j =1,2,3,4. (8a)

We then compute how often we have A; ;| = 1 over the 12 validation folds four each from
the three CV splits {cv_orig,cv_0,cv_1}, and we denote this value by A; ;4. Finally,
we provide a box plot of the distribution of the values {Z ji+1.J =12, 3,4} across all 17
CATE estimators for the GI event and 15 CATE estimators for the CVT event in Figure 4(a).
A value close to 1 suggests good generalisation, and conversely, a value close to 0 reflect poor
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Figure 4. FIGBox plots for pairwise comparisons of the subgroup CATE estimates for the five quantile-based sub-
groups based on the quantile grid {0.2,0.4,0.6,0.8}. The boxplots in (a) denote the distribution for the mean fraction

Aj j+1 (8a) (where the mean is computed over the 12 validation folds, four each from the three random CV splits
{cv_orig,cv_0,cv_1}) across various CATE estimators, for the GI event on the left, and CVT event on the right. In addi-
tion, we also show the boxplot of the distribution of the Boolean variables A| wmin (8b) for the GI event, and As max (8¢) in the
rightmost column of respective plot. In (b), we provide boxplots for the distribution of the mean value of Boolean indicators
{Bg (10) across all CATE estimators, for ¢ € {0.1,0.2, ..., 0.5} for the GI event, and ¢ € {0.9,0.8, ... ,0.5} for the GI
event, where the mean is computed over the and the distribution is plotted across all the CATE estimators. Refer to Table Al
for estimator-wise results. [Colour figure can be viewed at wileyonlinelibrary.com/

generalisation. On the one hand, we see that the pairwise ordering does not generalise well for
most pairs of successive quantile-based subgroups as the frequency of generalisation 4 j 11
concentrates around values < 0.5 for j = 2,3, 4 for the Gl event and j = 1,2, 3 for the CVT
event. On the other hand, we see that values of A, , for the GI event, and those of A4 5 for the
CVT event are pretty close to 1 (we present more precise numerical values in Table A1.) This
observation suggests that the ordering does generalise well for the subgroup with the strongest
negative treatment effect for the GI event and the strongest positive treatment effect for the
CVT event.

4.4.2 Investigating the quantile-based ‘top’ subgroups

We call the subgroups induced by G, for the GI event, and G5 for the CVT event, the
quantile-based top subgroup. Note that each subgroup is specific to a choice of estimator,
a choice of training-validation split, and a choice of quantile grid. To further analyse the
good generalisation of ordering for these top subgroups, we also compare them to the other
quantile-based subgroups via two Boolean variables, as follows:

for Gl event: Ay min := I(Tg,nsyy = Min TG, nsyr), and (8b)
J

for CVT event: As max := [(Tgsnsyy = MaX TG, Nsyr)- (8c)
j

We report the distribution of the frequency of generalisation Zl,min (mean computed over the
12 validation folds) across the 17 CATE estimators for the GI event, and ZS,max across the
15 CATE estimators for the CVT event as the rightmost entry of the corresponding figure in
Figure 4(a). The plots show that, on the validation fold, the quantile-based top subgroup has
the strongest treatment effect 90% of the time for the GI outcome, and about 80% of the time
for the CVT outcome.

Next, to better investigate the performance of quantile-based top subgroups, we compare
these top subgroups directly against their complement, reporting the results in Figure 4(b). In
this plot, we also vary the g-value threshold used to define the quantile-based top subgroup. In
particular, we consider groups of the form

Gy = {x € XM(x) € (—o0, mg]}, 9)
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where mg denotes the g-th quantile of the CATE estimator M on the training folds
[see Equation (4) for the mathematical expression]. Note that with this notation, G =
{x € AM(x) € (mg, oo} In simple words, the subgroup Gq is based on the quantile range
[0, q], and its complement subgroup Gq is based on the quantile range [q, 1]. Then we check
the ordering for between these subgroups via the following Boolean indicators:

oAl A € {0. , , ..,0.5} for GI event
By = H<qu”SVF = fﬁ&ﬂSw) for {3 ¢ {09 105} for CVT event. 10

’ 7

Note that the subgroup of interest is éq for the GI event and 6; for the CVT event. Moreover,
in this new notatlon the earlier subgroups (from Figure 4(a)) would be represented as G| =
Gy, and Gs = G0 g- We notice that the ordering (10) holds much more frequently (compared
with the pairwise ordering in Figure 4(a)). We also note from this figure that ¢ = 0.2 and
g = 0.8 provide the best generalisation performance for the GI and CVT events, respectively.

In summary, we have found that at least some of the CATE estimators yield quantile-based
top subgroups that have subgroup CATE that is demonstrably stronger than that of the rest of the
population. Thus, in the following sections, we use these quantile-based top subgroups, namely,
the subgroups {Gq, qa=20.1,0.2, ... ,0.5} for the GI event, and {Gc,q =0.9,0.8, ... ,0.5}
for the CVT event for further analysis.

5 Stability-driven Ranking and Aggregation of CATE Estimators

Based on the discussion at the end of the last section, we believe that we can use a sub-
collection of the CATE estimators to find subgroups with highly negative (in the case of the
GI outcome) or positive (in the case of the CVT outcome) subgroup CATE, in the form of
a quantile-based top subgroup. This observation brings us back to the question of estimator
screening and choice: We seek to define a more stringent predictive test, and furthermore, out
of all CATE estimators we considered, we would like to select those that are able to give us the
best subgroups. While the overall goal of StaDISC is to find subgroups that are both statistically
significant and interpretable, we focus in this part of paper on selecting estimators that yield the
most significant subgroups, and we only address interpretability in Section 6.

5.1 Comparing Estimators Using t-statistics

We compare different CATE estimators using the statistical significance of their quantile-
based top subgroup, measured via using standardised scores, namely, f-statistics. Given a
subgroup G, its corresponding #-statistic is given by

Tg = G tae (11a)

\/VAar [Tc — Tate | F]

Here, the term in the denominator is a plug-in estimate of a conditional variance, where
the conditioning is over a o-algebra F comprising knowledge of the group labels and treat-
ment labels for all individuals in the sample population. More precisely, the variance estimate
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is given by

c 2 2 A ¢
V;lr[fc_fATEm::(lG ﬂC|) '(Var[Y(O)IGﬂC] L Varl¥() | G mC])

C| IGNC]| IG¢ N C|
N IGENT\? (Var[Y(1) | GNT] +\far[y(1)|GCmT]
T IGNT| |G N T ’
(11b)

where for a given set A C S, the quantity Var [Y () | A] denotes the sample variance:

2
dolvio- ! YY) fort=0.1. (11c)

Var[Y (1) | A] = —
ieA |'A| jeA

|A] =1

We show in Appendix B1 that the estimator (11b) is an unbiased estimator of the conditional
variance of Tg — Tatg, and from the proof, it also easily follows that the estimator is consistent.
As such, under the null hypothesis that tg — targ = 0, the z-statistic yields an asymptotically
valid p-value.

In this paper, we deliberately choose not to use p-values to report the results, so as to avoid
their susceptibility to misinterpretation. For interested readers, however, we mention the map-
ping between p-values and #-statistics (T). The #-statistics presented throughout this work can be
associated with one-sided p-values. In particular, a negative z-statistic with magnitude 1.65, 1.96
and 2.33 can be mapped to a left one-sided p-value of 0.05, 0.025 and 0.01, respectively. The
same mapping exists between positive #-statistics and right one-sided p-values.

5.2 Defining Appropriate Perturbations

In order to guard against spurious and unreliable discoveries, the stability principle of the
PCS framework requires conclusions to be stable to reasonable or appropriate perturbations at
various stages of the data science life cycle. These include modelling and data perturbations
familiar to statisticians which are appropriate under the Neyman—Rubin model assumptions,
and also ‘judgement call’ perturbations where we reproduce or at least approximate the con-
clusions that would have been reached had various contingent choices been made differently.
Examples of these choices include those made during data cleaning and feature engineering.'?

As mentioned earlier in the paper, we have used a random CV split in order to fit and
analyse our CATE models for the VIGOR data. In line with our prior discussion, we do not
just evaluate each estimator based on the three CV splits {cv_orig,cv_0,cv_1}, but we
also perform concurrent analyses of the estimator fitted and validated using four-fold splits
of the data under four additional perturbations. Overall, we denote the set of all seven per-
turbations by {cv_orig, cv_0, cv_1, cv_time, elderly 60, overweight,
pert outcome}, where the three (random) CV splits {cv_orig,cv_0,cv_1} have already
been used multiple times in the previous results of our paper. For completeness and to put
them in context here, we revisit them while introducing the new perturbations {cv_time,
elderly 60, overweight, pert outcome} that we make use of in our subsequent
analysis of the VIGOR dataset. We remind the reader that for each perturbation, we perform
the same four-fold split for all the CATE estimators. Moreover, we continue to use the tuned
hyperparameters from cv_orig for all other perturbations.
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5.2.1 Sampling perturbations (cv_0, cv_I, cv_time)

The additional CV (random) splits {cv_0, cv_1}, used earlier and also in the sequel, help
to account for sampling variability and are pretty commonly used in statistics and machine
learning. Nonetheless, we also share Efron's concern that the use of random splits (Efron, 2020)
does not play well with possible covariate shift and may lead researchers to be overly optimistic
about conclusions that do not have external validity. To address this, we also split the training
data into four equally sized folds by binning based on enrolment time, denoted by {cv_time}.
This simulates possible variability in the sample population due to human choices (i.e. the date
of the RCT),"® and can also be seen more generally as making use of an a priori irrelevant
variable to create heterogeneous folds and thus penalise ephemeral predictors.

5.2.2 Feature engineering perturbations (elderly_60, overweight, pert_outcome)

We use alternative thresholds to create perturbed versions of the ELDERLY and OBESE
features. Instead of thresholding the adjusted age at 65, we create an ELDERLY_60 feature by
thresholding it at 60, and instead of thresholding body mass index at 30, we instead threshold
it at 25 to define the feature OVERWEIGHT. In this way, we create two perturbed datasets,
denoted by {elderly 60, overweight}. Finally, for both the GI and CVT outcomes,
the VIGOR study recorded for each patient both whether an event occurred, and also whether
the occurred event was confirmed (meaning that it met the stringent criteria of an independent
panel). In the original study, and thus far in our paper, we have used the confirmed events
as the response of interest, but we now make use of the unconfirmed events to create a new
response variable tracking all events. This increases the number of GI events from 177 to 190
and the number of CVT events from 59 to 84. Replacing the original responses with these one
creates a further perturbed dataset for each outcome, which we denote by {pert outcome}.
For the three perturbations {elderly 60, overweight, pert outcome}, we use the
original four-fold split cv_orig of the patients (albeit with the perturbed features or outcomes
in the data).

Performing our analyses on these perturbed datasets reveals to us what would have happened
had we, or the original study authors, made different contingent decisions in feature engineering
or problem formulation. Although models fit on these datasets no longer have exactly the same
meaning as those fit on the original data, we still expect the estimators that perform well on the
original data to also perform well on these perturbed datasets.

5.3 Ranking and Aggregation of CATE Estimators

In this section, we first rank the CATE estimators based on their performance across all data
perturbations elaborated in the previous section. And then we select the estimators that are
ranked in top 10 estimators across all the perturbations. Finally, we build a single ‘ensemble
CATE estimator’ by taking a simple average (equal weights) of all the selected CATE estima-
tors. Quantile-based top subgroups of the ensemble estimator form the starting point of finding
interpretable subgroups in Section 6. We now describe the details of our ranking procedure.

5.3.1 Mean t-statistic per data perturbation

For a CATE estimator M, for each data perturbation ® € {cv_orig, cv 0, cv 1,
cv_time, elderly 60, overweight, pert outcome}, we compute the mean -
statistic averaged across all quantiles across the corresponding four validation folds. In our
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notation, for the GI event, this mean #-statistic is given by

_ 1
Tal(D) = 55 D> Y Ta,nsy Where @ ={0.1,0.2, ..., 0.5}, F = {S;.f = 1.2,3.4}
q€Q SypeF
(12a)

where the quantile-based top subgroup éq was defined in Equation (9). Moreover, we remind
the reader that the quantiles that define the subgroup G4 (see equations (4) and (5a)) are com-
puted based on the CATE estimates from the fitted M on its training folds Str = Stramv\SvE.
On the other hand, the f-statistic on the right-hand side of Equation (12a) is computed on the

Table 2. Estimator-wise and perturbation-wise t-statistic Te(D) (12a) for the GI event in (a) and Tor(D) (12b)
for the CVT event in (b). In each column, the best (the lowest for GI event and highest for CVT event) t-statistic
is highlighted in bold. The order of the estimators in (a) and (b) is the same order as that in Figure 5(a) and (b),

respectively.

Perturbation ® cv_orig cv_0 cv_1 cv_time elderly 60 overweight pert_outcome
Estimator M T (D)

t_lasso —127 —-179 —1.52 —1.36 —1.36 —1.02 —1.24
x_rf —124 —1.84 —1.37 —1.58 —1.40 —1.22 —1.38
t_rf —125 —1.62 —1.39 —1.34 —1.34 —1.24 —1.43
x_xgb —1.16 —1.80 —1.44 —145 —1.31 —1.11 —1.10
x_lasso —123 —1.88 —1.49 —1.33 —1.28 —1.04 —1.15
x_logistic —131 —1.86 —1.39 —1.26 —1.31 —0.96 —1.06
r lassorf —126 —134 —136 —1.56 —1.63 —0.95 —0.96
t_logistic —-133 —1.72 —1.56 —1.14 —1.27 —1.17 —1.19
r rfrf —124 —145 —133 —1.51 —1.50 —1.00 —0.84
causal forest 2 —1.00 —132 —139 —1.23 —1.22 —0.94 —0.92
t_xgb —1.02 -173 —1.18 —1.31 —1.38 —1.01 —1.34
r lassolasso —-1.10 —-1.76 —1.25 —1.19 —1.19 —1.07 —0.76
causal forest 1 —097 —126 —1.25 —1.10 —1.07 —0.84 —1.32
s_xgb —095 —135 —1.57 —0.99 —1.02 —0.90 —0.99
causal tree 1 —0.67 —1.22 —098 —0.50 —0.66 —0.80 —0.46
causal_tree_2 —1.07 —0.87 —0.72 —0.96 —1.09 —0.88 —0.64
s_rf —0.78 —144 —081 —1.19 —1.33 —0.59 —1.12
(a) GI event

Perturbation © cv_orig cv_0 cv_1 cv_time elderly 60 overweight pert_outcome
Estimator M Tevr (D)

s_rf 0.96 1.29 117 1.42 1.29 1.05 1.26
t_lasso 1.06 1.16  0.99 1.02 1.10 1.07 1.14
t rf 1.10 1.19  0.90 1.25 1.24 1.18 1.45
x_xgb 1.01 1.15  0.89 1.03 1.08 1.04 1.11
t_logistic 1.10 1.16 1.03 1.17 1.17 0.93 1.02
x_logistic 0.97 1.11  0.87 0.94 1.14 0.92 1.01
x_rf 0.90 1.11  0.88 0.91 1.09 0.99 1.02
x_lasso 0.92 1.13  0.80 0.90 1.10 0.94 1.03
t_xgb 0.66 1.06  0.92 1.26 0.95 0.66 1.26
r rfrf 0.86 1.12 0.70 1.01 0.88 0.96 0.97
r lassorf 0.79 1.14  0.75 0.93 0.86 1.03 0.81
r lassolasso 0.81 1.01  0.65 0.61 1.01 0.84 0.98
causal_tree_2 0.67 088 0.84 —0.33 0.64 0.49 1.28
causal_ forest 1  0.93 1.14  0.96 0.74 0.58 0.64 0.71
causal forest_2  0.46 0.72  0.87 0.55 0.56 0.96 1.12
(b) CVT event -
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Estimator t-statistics across perturbations
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Figure 5. Box plots of the rank and value of mean t-statistic scores T (D) (12a) and Teyr(D) (12b), where the
distribution is over the seven data perturbations ® € {cv_orig , cv._0, cv_ 1, cv_time, elderly 60,
overweight, pert outcome}. Here, the rank for the mean t-statistic score is computed per perturbation ©, and all
CATE estimators are ranked the lowest to the highest for the GI event, and the highest to the lowest for the CVT event. The
estimator-wise and perturbation-wise numbers for both panels are reported in Table 2. [Colour figure can be viewed at
wileyonlinelibrary.com/

validation fold Syg. For the CVT event, the corresponding mean #-statistic is given by

— 1

Tevi(D) = 5 Y D Ty Where @ ={0.9.0.8, ... 0.5}, F = {S;.f = 1,2.3.4}.
a€Q SyreF

(12b)

We report the mean #-statistic T(D) for each CATE estimator and all seven data perturbations in
Table 2(a) for the GI event and Table 2(b) for the CVT event. We also provide a visual summary
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Subgroup Discovery with StaDISC S159

of the seven mean ¢-statistic for each estimator in the form of boxplot in Figure 5(a) for the GI
event and (b) for the CVT event.

5.3.2 Ranking the CATE estimators

Next, for each category ®, we rank the mean f-statistic from the lowest to the highest for
the GI event, and the highest to the lowest for the CVT event. In accordance with the stability
principle of the PCS framework, we screen for estimators that perform well across perturba-
tions and thereby select all estimators that rank in top 10 across all data perturbations . We
provide the visual illustration of these ranks also in Figure 5 for the two events. In fact, the
estimators in Figure 5 are sorted based on their worst rank across the perturbations. This cri-
terion selects (i) two T-learners and four X-learners {t lasso, x rf, t rf, x xgb,
x_lasso, x_logistic} for the GI event, and (ii) one S-learner, three T-learners and one
X-learner {s_rf, t lasso, t rf, x xgb, t logistic} for the CVT event. The
selected list can also be verified by a simple inspection of the rank plots from Figure 5.

5.3.3 Final step before interpreting

Keeping in mind the computational aspects of the next step (finding interpretable subgroups),
and to increase stability, we decided to build an ensemble CATE estimator by using a simple
average of the selected CATE estimators. Moreover, we also investigate the performance of the
quantile-based top subgroups for this ensemble, and we report the mean #-statistic across the
12 validation folds from {c¢v_orig,cv_0,cv_1} for Gq (9) for the GI event, and Gq for the
CVT event in Table 3. We report the standard deviation of the -statistic across these folds in
parentheses. In addition, we also report the mean percentage overlap computed pairwise across
the entire training set Strarn for the 12 ensemble estimators, four each from the three CV splits
{cv_orig,cv_0,cv_1}. We observe that for the GI event, the subgroups corresponding to
q € {0.2,0.3} have higher T, and for the CVT event, q € {0.9, 0.8} are the top two choices. The
trends for overlap are as expected: with the increase in size of the group, the overlap generally
increases and remains >70% across all choices. In the next section, we discuss our methodology
to find an interpretable representation of the quantile-based top subgroups using the ensemble
CATE estimator. As A2 final decision before that step, we choose the groups Gy, and Go 3 for
the GI event, and Go o for the CVT event, based on their high f-statistic. We also include the
group Go.g for the CVT event, keeping in mind the fact that the CVT event is very rare, and
thus the low signal in the subgroup G¢ , (having only 10% of the training data) may become a
bottleneck for any reasonable inference task.

TABLE 3. t-statistic for different quantile-based top subgroups of the ensemble CATE estimator. ‘Overlap’ col-
umn reports the average % pairwise overlap between the 12 quantile-based top subgroups on the entire training
data, namely, Gq N S7ramv for the GI event, and G N S7raiv for the CVT event. The 12 subgroups correspond to
Jour each to the three CV splits {cv_orig, cv_0, cv. 1}

Bottom quantile GI event Top quantile CVT event

based subgroup (~}q Taq Overlap (%)  based subgroup é; 6; Overlap (%)
q =209 1.28 (0.22) 77
g =0.1 —1.32(0.20) 73 q=0.28 1.03 (0.12) 75
q=0.2 —1.58 (0.19) 77 q=0.7 0.85(0.12) 77
Gq=03 —1.47 (0.16) 82 q=20.6 0.71 (0.09) 79
q=04 —1.02 (0.12) 83 G =0.5 0.57 (0.13) 82
q=205 —0.81(0.12) 87
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6 Finding Interpretable Subgroups

The next and final step of our investigation is to make our findings interpretable. Recall that
the end goal in investigating the heterogeneous treatment effects in the VIGOR study is to
inform treating physicians which subgroups of patients are likely to benefit from the reduced
risk of GI events, without simultaneously incurring an increased risk of CVT events. Physicians
may then favour prescribing the drug for patients in this subgroup. In situations involving high
stakes decision making such as this one, decision makers are usually not comfortable with
black-box decision rules but instead ideally require rules to be transparent and interpretable, so
as to align them with their own knowledge base and justify them to patients and regulators.

6.1 Interpreting Using ‘Cells’

In the work by Murdoch et al. (2019), one of us has argued that a key element of inter-
pretability is the notion of relevance. Interpretations need to provide ‘insight for a particular
audience into a chosen domain problem’. Because clinical decision rules usually take the form
of decision trees, a decision tree is the gold standard for our problem at hand. Each leaf of a
decision tree constitutes a subset of the feature space defined by constraining the values of the
features occurring along the root-to-leaf path. We call such a subset of a feature space a cell,'*
and propose to make our quantile-based top subgroups interpretable by approximating it with a
union of a few cells, which we call a cell cover."

Two remarks are in order. First, we find empirically that no single cell gives a good approx-
imation of quantile-based top subgroups, so we require the additional flexibility of a union of
multiple cells. Furthermore, reporting a union of cells is more flexible than reporting a deci-
sion tree, because it is not always possible to construct a tree with a given collection of cells
as its leaf nodes.'® Second, by focusing on cells, we recognise the importance of interactions,
or in other words, nonlinear dependence of treatment effect on the covariates. Chernozhukov
et al. (2018) proposed interpreting quantile-based top subgroups by estimating the differences
in the ‘observed characteristics’ between the quantile-based top subgroup and the subgroup that
is defined to be least affected by the treatment, but this only considers the marginal importance
of each feature.

6.2 Cell Search Methodology

In this section, we demonstrate a general framework for how to search for a cell cover that
contains most of the individuals in the quantile-based top subgroup but does not include too
many individuals from outside it.

6.2.1 Feature selection

We start by selecting up to 10 features from the original list of 16 features. This is both
to make the subsequent steps of cell search more computationally tractable and also to act as
a form of regularisation.!” To do this, we compute feature importance scores in two differ-
ent ways. (i) Following Chernozhukov et al.(2018), we make use of the difference between
the mean of the feature values over the quantile-based top subgroup and that over its comple-
ment. We refer to this score as the ‘Logistic’ feature importance score. (ii) We train a logistic
classifier to predict membership in the quantile-based top subgroup and make use of the coef-
ficients. In either case, we normalise so that the absolute values of the scores sum to one. We
refer to this score as the ‘difference’ feature importance score. We compute these two types of
scores for the ensemble CATE estimators' quantile-based top subgroups selected at the end of
Section 5.3, namely, Go > and Go 3 for the GI outcome, and G0 9 and G0 ¢ across the 12 random
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Figure 6. Mean feature importance scores for the quantile-based top subgroups from the ensemble CATE estimator. Best seen
in colour. We plot both the scores next to each other for each feature with the order (top, bottom) = (logistic, difference) but
separately for each outcome. The blue bars and red bars respectively denote the ‘logistic’ and ‘difference’ feature importance
scores described in the text. [Colour figure can be viewed at wileyonlinelibrary.com/

training-validation splits ({cv_orig, cv_0, cv_1}). For each outcome, we average the fea-
ture importance scores across the different splits as well as both choices of the quantile-based
top subgroups. The final results are shown in Figure 6.

Ranking the 16 features according to the two measures of feature importance, we select the
features that rank among the top eight under either measure. Note that we choose to make
use of both feature importance measures because they have different meanings: while the first
score measures the marginal importance of each feature, the second measures its conditional
importance. However, the choice of ‘top eight’ was also selected keeping in mind the fact that
the top features for the two measures have a high overlap, and we end up selecting nine and 10
features, respectively, for the GI and CVT events listed (alphabetically) below:

Gl event: CHLGRP, HYPGRP, PNAPRXN, PNSAIDS, PSTRDS, PPH, ELDERLY,
OBESE, WHITE

CVT event: ASCGRP, ASPFDA, CHLGRP, PPH, US, ELDERLY, MALE, OBESE,
SMOKE, WHITE

Readers may refer to Table 1 to remind themselves about the definitions of all the features.

6.2.2 lIterative procedure

We now describe the Cel1Search procedure for finding the cell cover for a quantile-based
top subgroup one cell at a time, with Figure 7 also providing a pictorial explanation. For clarity,
we introduce some notation, denoting the quantile-based top subgroup by Gop, and the cell
found at the i-th step by C;. For GI event, Gy, takes the form Gq, and for the CVT event, G
for suitable choices of q. As before, we will abuse notation, using these symbols to refer to the
subgroups and cells as subsets of the feature space, as well as the subpopulation of individuals
that belong to them. At the first step, we consider every possible cell C defined with m features
or less, where m is a user-specified tuning parameter, and we compute its ‘true positive’ (TP)
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(a) Cover found by CellSearch (b) Hlustration of one step of CellSearch

Figure 7. A simplified illustration of CellSearch methodology for finding a cell-based cover for a given (quantile-based)
subgroup. [Colour figure can be viewed at wileyonlinelibrary.com/

and ‘false positive’ (FP) values with respect to Gyqp, as follows:

TP(C, Giop) := |C N Giop

,and FP(C, Gp) == [C N GE, | .18 (13)

top

Moreover, let A(C, Gyp) := TP(C, Gyp) — FP(C, Gyop) denote the difference of these
values.'®

We rank the cells based on their difference score A(C, Gyop), but instead of simply picking
the cell to achieve the largest positive value Ap,x, we first create a candidate list of cells for
which A(C, Gyop) > max(0, Apax — 0.05 iGmp ), we remove from cells any that are sub-cells'”
of other cells on this list, and then we choose one of remaining cells uniformly at random. The
returns on adding this layer of complexity are to favour simpler, more interpretable cells and
also (by running the procedure multiple times) to discover if two or more cells have comparable
performance.

In each subsequent step of the algorithm, to find the next cell in the cell cover, we first
remove from the study population all individuals belonging to the cells already found, and then
we repeat the above process. More rigorously, suppose cells Cy, ... ,C;_; have already been
determined. The true-positive and false-positive scores are now defined by

TP(C, Giop; U, Cj) = |C N Gyop\ U, T
and FP(C, Gyop: U/, C)) := |C N G\ U C;

top

(14)

’

while An.x and the threshold are also modified accordingly. Finally, the procedure terminates
if Apax at any iteration is less than or equal to 0 or if the number of iterations has reached a
pre-specified threshold (default value 3).

6.2.3 Aggregating results over multiple runs

In accordance with the stability principle, we run CellSearch multiple times, and we
check whether the same cell cover is found. In our case, we ran it five times on each top quantile
subgroup arising from 12 random training-validation splits, for a total of 60 runs. While the
cell cover did not turn out to be stable, we found that certain cells or their sub-cells frequently
re-appeared within each run. We thus turn our focus to individual cells, and we aggregate the
results over the multiple runs, calling this procedure StabilizedCellSearch.

To describe how we aggregate the results, we first use 3 to denote the collection of all 60
runs, and for each run b € B, we let €, denote the cover returned by the procedure, while the

International Statistical Review (2020), 88, S1, S135-S178
© 2020 International Statistical Institute.

85UB017 SUOWIWOD 381D 8|aedl|dde au Aq peuienob a1e sspiie VO ‘8Sn JO S8|nJ J0) Akeld 181U /8|1 UO (SUONIPUD-pUR-SWRI W00 A3 | M ARIq 1 BUI|UO//SANY) SUONIPUOD PUB SWB | 8Y) 89S " [7202/60/22] U0 Ariqiaulluo A1 ‘sauelqi] AisieAiun 8na Ag gy2T Sul/TTTT OT/I0pAU0D A8 |im ARig i puljuo//sdny woiy pepeojumod ‘TS ‘0202 ‘€Z8STSLT



Subgroup Discovery with StaDISC S163

collection of all cells found is denoted € := UpcnCy. For each cell C € €, we define its
stability score as follows:

C/
Stab(C) = Z Z 1(C’ € € and C'is sub-cell of C) || ||

| | beBC’eC

(15)

This score measures how frequently cell C and its proper sub-cells are found across the
different runs, with each occurrence weighted by the relative size of the sub-cell.

Finally, we rank the cells according to their stability scores and output those for which the
score exceeds a user-defined threshold. In our case, we chose the threshold to be 1/3, which
results in finding three cells each for the GI and CVT outcomes. We discuss these cells in the
next section, while the full results obtained by running StabilizedCellSearch on the
VIGOR data with respect to both the GI and CVT outcomes are shown in Table A2.

6.3 Discussion of Cells Found and Performance on Test Set

In this section, we discuss the statistical significance of the cells found for both GI and CVT
outcomes. First, we list the top three cells found for each outcome, where detailed results for
top 20 cells (by Stab-scores) are reported in Table A2.

For the GI outcome, the top three stable cells are as follows:

(i) C;: patients with prior history of GI event denoted as {PPH = 1};
(i) C,: patients who (self) reported a prior (to the experiment) usage of steroids, and a history
of hypertension denoted as {PSTRDS = 1, HYPGRP = 1}; and
(iii) Cj: elderly patients who reported a prior usage of steroid drugs denoted as
{PSTRDS = 1, ELDERLY = 1}.

For the CVT outcome, they are as follows:

(1) Ci: patients for which use of aspirin has been indicated as per FDA guidelines
{ASPFDA = 11};

(11)Cz male elderly patients {MALE = 1, ELDERLY = 1}; and

(i1) Cs: patients who have reported prior hlstory {ASCGRP = 1}.

For further details on the features appearing above, please refer back to Section 2.2. In
Figure 8, we plot the overlap between these cells.

6.3.1 Conclusions from Figure §

As can be seen in Figure 8(a), there is little to moderate overlap among the cells C; and Cs,
which shows that they are meaningfully different. On the other hand, there is significant overlap
among the cells C,,Csin Figure 8(b). In particular, C, is a subset (but not a sub-cell) of Cs. The
reason we report both cells is because of the suspected multi-scale nature of treatment effect
variation for the CVT outcome, with C, found more often for q = 0.9, and C3 found more
often for ¢ = 0.8.

We now compute and report several quantities for each of these six cells, finally making use
of the holdout test dataset (20% of the study size) for the very first time. For cells C;, C, and
C3, as well as the union U? —1(C ; of these three cells, the results are reported in Table 4. Similar
results for the cells C;, (Cz, and (Cg and their union U3 _16 are reported in Table 5. We now
discuss the results from Tables 4 and 5 one by one.
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Figure 8. Overlap matrix for final discovered cells on the training data Strain. For (a), the data split is stratified on the
treatment indicator and the GI outcome, and that for (b) is stratified on the treatment indicator and the CVT outcome. For
instance, the number 82 for the entry corresponding to C, and C, in (a) represents that the two cells had 82 patients in
common on the training data. [Colour figure can be viewed at wileyonlinelibrary.com/

Table 4. Results for the final cells selected after StabilizedCellSearch for the GI event, namely, C, =
{PPH = 1}, C, = {PSTRDS = I, HYPGRP = 1} and C; = {PSTRDS = 1, ELDERLY = 1} from Section 6.3. We also
report the results for the other outcome, namely, CVT event, on the entire data (all 8076 patients). © In column Sy,;, we
report the mean t-statistics and standard deviation in parentheses, across the 12 different folds of the training data Stran
obtained from the three random CV splits {cv_orig, cv_0, cv_1}

#evts/size CATE Est. T¢ g (std) t-statistic T
Dataset S StrAIN Stest  Stral StEst Straiv Stest T Svar
cell C
GI event (Gl-stratified split)
PPH =1 36/501 8/129 —0.057 (0.023) —0.055(0.042) —1.89 —1.01 —0.99 (0.27)

PSTRDS = I, HYPGRP =1 39/1008 6/238  —0.050 (0.012) —0.037 (0.021) —3.17 —1.06 —1.57(0.22)
PSTRDS = I, ELDERLY =1 46/894  9/227  —0.051 (0.015) —0.063 (0.026) —2.74 —2.00 —1.38(0.17)

Union 79/1905  19/471  —0.038 (0.009) —0.047 (0.018) —3.15 —2.22 —1.59 (0.20)
All 142/6460 35/1616 —0.016 (0.004) —0.016 (0.007) - - -
CVT event (entire data)

PPH=1 2/630 —0.006 (0.004) —2.66

PSTRDS = 1, HYPGRP =1 11/1246 0.008 (0.005) 0.44

PSTRDS = 1, ELDERLY =1 16/1121 0.015 (0.007) 1.42

Union 21/2376 0.007 (0.004) 0.55

All 59/8076 0.006 (0.002) -

6.3.2 Results from Table 4

In the first three rows of Table 4, we examine the subgroup treatment effect for these cells
with respect to the GI outcome. In the second and third columns, we report two versions of
the Neyman estimate for the cell CATE Z¢ng, one computed on the training set Stran as well
as one computed on the test set Stgsr. Likewise, in the next two columns, we report the z-
statistic Tgns, one computed on the training set Stramn and on the test set Stggr. Finally, in
the last column with header TSya;, we report the mean (and standard deviation in parenthesis)
of the z-statistics T computed on the 12 different folds of Stran from the three random CV
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Table 5. Results for the final cells selected afier StabilizedCellSearch for the CVT event, namely, Cl =
{4sPFDA = 1}, C, = {MALE = 1, ELDERLY = 1} and C5 = {4SCGRP = I} from Section 6.3. We also report the
results for the other outcome, namely, GI event, on the entire data (all 8076 patients). ¥ In column Sy,;, we report the mean
t-statistics and standard deviation in parentheses, across the 12 different folds of the training data Str4y obtained four
each from the three random CV splits {cv_orig, cv_0, cv_1}.

#evts/size CATE Est. Tp g (std) t-statistic T ¢ g

Dataset S StrRAIN Stest StrRAIN Stest Straiv - Stest TSVAL
CellC

CVT Event (CVT-stratified split)
ASPFDA =1 13/263 5/58 0.062 (0.025) 0.103 (0.074) 2.28 1.38 1.09 (0.20)
MALE = 1, ELDERLY =1 12/383 0/111 0.040 (0.017) 0(0) 2.09 —1.16 0.85(0.24)
ASCGRP =1 15/376 6/78 0.044 (0.020)  0.047 (0.060) 2.05 0.74 1.04 (0.23)
Union 24/716 6/175 0.042 (0.013)  0.024 (0.028) 3.09 0.77 1.55(0.13)
All 47/6460 12/1616 0.006 (0.002) 0.005 (0.004) - - -

GI Event (entire data)
ASPFDA =1 6/321 —0.027 (0.016) —0.71
MALE = 1, ELDERLY =1 17/494 —0.045 (0.016) —1.85
ASCGRP =1 8/454 —0.028 (0.013) —0.96
Union 25/891 —0.040 (0.011) —2.27
All 177/8076 —0.016 (0.003) -

splits {cv_orig, cv_0,cv_1}. Overall, the test set results are promising, with test set CATE
estimates being much more negative than the estimated ATE and comparable with their training
set counterparts. While we do not report p-values because they can be easily misunderstood,
we note that the test set ¢-statistic values for the GI outcome are C3, and the union uizlc j,are
both significant at the 0.025 level for a one-sided z-test.

The starting point of our investigation of the VIGOR dataset was the hope to identify a
subgroup for which Vioxx simultaneously has a strong negative treatment effect for GI risk and
a low positive treatment effect for CVT risk. Consequently, in the last three rows of Table 4, we
report the treatment effect results for the cells {C; }i‘=1 and their union, with respect to the CVT
outcome. While C, and C; experience increased CVT risk, C; = {PPH = 1} in fact shows
reduced CVT risk, which makes it especially promising for further clinical investigation. We
note that for the CVT outcome, we report the CATE estimates and the #-statistic on the entire
data as this outcome had no role to play in the entire StaDISC pipeline with the GI outcome, and
hence the entire data can be treated as a ‘valid’ test set for estimating heterogeneous treatment
effect of Vioxx with the CVT outcome.

6.3.3 Results from Table 5

In Table 5, we report the analogous results for cells El , Ez, and @3, and their union U3<=16j,
first for the CVT outcome, and then the GI outcome. For these cells, the generalisation to the
holdout test set is weaker, with only C; and C; having test set CATE values that remain sub-
stantially positive. Furthermore, the test set #-statistic values are smaller. All these observations
are unsurprising given the rarity of the CVT outcome—in particular, only 12/1616 individuals
in the test set Stgst experienced an event. Nonetheless, the test set CVT-CATE estimates for
C, and C; support the view that the treatment effect is stronger on these subgroups, while the
GI-CATE estimates do not suggest that these subgroups benefit especially strongly from the
treatment with Vioxx.
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7 Complementary Analysis with the APPROVe Study

It is well documented that RCTs have problems with external validity (Juni et al., 2001;
Rothwell, 2005; Fortin et al., 2006; Krauss, 2018), which is defined by Rothwell to be ‘whether
the results can be reasonably applied to a definable group of patients in a particular clini-
cal setting in routine practice’ (Rothwell, 2005). This phenomenon arises primarily because
RCTs have carefully defined enrolment criteria, so conclusions in such studies may not apply
to patients who do not conform to these criteria. In more mathematical language, the ATE,
subgroup CATE and other estimands of interest are all defined in terms of expectations with
respect to a particular distribution of patients, a particular outcome and a particular treatment
and hence do not directly apply when any of these change. We refer the interested reader to the
excellent articles by Rothwell (2005, 2006) for a further discussion on these topics.

Despite its importance for clinical relevance, external validity has been relatively neglected
by researchers and institutions overseeing the conduct of RCTs (Rothwell, 2005; Krauss, 2018).
One way to argue for external validity is to attempt external validation, that is, to reproduce
the results obtained on one dataset on a different but related dataset. Recent voices that urge
the community to give external validation a higher priority across many domains (Debray
et al., 2015; Krauss, 2018; Norgeot ef al., 2020) are very much in accordance with Yu and
Kumbier's (2020) call to statisticians to broaden the scope of their concern from data modelling
to the entire data science life cycle as part of the PCS framework. This can be seen not only
as one more predictive and stability check under the PCS framework but also as a special case
of ‘transfer learning’ where the desiderata is the transferability of the conclusions or findings
from one dataset to other related datasets.

These reasons motivate the following complementary analysis of the APPROVe study (Baron
et al., 2008), another RCT investigating Vioxx. More precisely, we compute the subgroup
CATEs with respect to both the GI and CVT outcomes over this new dataset, and we show that
the qualitative conclusions obtained by applying StaDISC to the VIGOR study also generalise
to this dataset for four out of the six subgroups from Figure 8; the other two subgroups were too
small in size and did not have any GI events. We now start with a background on the APPROVe
study followed by a discussion of the results on subgroup CATEs.

7.1 Background for the APPROVe Study

In this section, we provide only a brief background for the APPROVe study and refer the
readers to the original paper (Baron ef al., 2008) for additional details.

The Adenomatous Polyp Prevention on Vioxx (APPROVe) study was another randomised
trial sponsored by Merck, but unlike VIGOR, it was placebo controlled. Conducted in
2001-2004, it was designed to assess whether Vioxx could ‘reduce the risk of adenomatous
polyps in individuals with a recent history of these tumours’ (Baron et al., 2008). The study
population comprised 2587 patients who had colon adenomatous polyps removed during a
12-week period before being entered into the study and who had no known polyps remaining.
After it was discovered that Vioxx had significant cardiovascular toxicity, the study was
terminated 2 months early in September 2004, but all individuals were followed up for at least
a year afterwards off-treatment.

The data files of the APPROVe study followed a very similar format to that of the VIGOR
study albeit with two major differences: (i) GI event was not directly labelled in the dataset,
and (ii) the risk factor file was not available. As a result, outcomes related to the GI event, and
features (including but not limited to) ASPFDA, ASCGRP, HYPGRP and PSTRDS—which
were used to define the final subgroups obtained in the previous section—were not directly
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Table 6. Results for the subgroups found with StaDISC on VIGOR, for the APPROVe dataset.
Note that unlike VIGOR, the patients in the control arm for the APPROVe study were treated
with a placebo, which makes the quantitative results reported here not directly comparable
with those reported in Tables 4 and 5. Refer to the text for further discussion. The armwise
statistics of the features and outcomes for the APPROVe study are provided in Table 9.

cell C #evts/size CATE Est.?(cms (std) r-statistic T(Cms
GI Event with S = all data
PPH=1 6/184 0.066 (0.026) 2.012

PSTRDS = 1, HYPGRP =1 0/30 - -
PSTRDS = 1, ELDERLY =1 0/21 - -

All 33/2587 0.016 (0.004) -
CVT Event with S = all data
ASPFDA =1 13/151 0.107 (0.043) 2.128
MALE = 1, ELDERLY =1 30/416 0.069 (0.025) 2.251
ASCGRP =1 17/250 0.068 (0.031) 1.664
Union (of 3 cells above) 41/588 0.065 (0.021) 2.650
PPH =1 4/184 0.022 (0.022) 0.119
All 89/2587 0.020 (0.007) -

available for APPROVe. However, with the data available to us, we were able to impute the GI
outcome and the missing relevant features (used for the cells reported in Tables 4 and 5). The
data cleaning and imputation were done before looking at the final results. The details for this
data cleaning are provided in Appendix C1, and the distribution of the selected features and the
two outcomes is reported in Table B1 GI outcome, the top three. Once we have the features and
the outcomes, we compute the subgroup CATE (3b) and #-statistics (11a) and report the results
in Table 6.

7.2 Results with the APPROVe Study

Before presenting the quantitative results, we make a few remarks. In direct analogy with the
problems with external validity mentioned earlier, there are several ways in which the causal
estimands in APPROVe differ from those in VIGOR. First, the ‘control’ arm of both studies
was of entirely different nature: while VIGOR was a comparison between Vioxx and naproxen,
APPROVe compared Vioxx with a placebo. Second, the lengths of both studies were differ-
ent, which is important because our estimands are defined in terms of accumulated risk over
the duration of the study. Patients in VIGOR were followed up for a median time of 9 months,
whereas most patients in APPROVe were tracked for at least 4 years. Furthermore, while GI
events were adjudicated in VIGOR, this was not the case for APPROVe. Lastly, the study pop-
ulations are different. As elaborated earlier in Section 2, the VIGOR study comprised patients
who were diagnosed with rheumatoid arthritis. On the other hand, APPROVe comprised patients
with a recent history of colon polyps. Furthermore, unlike VIGOR, APPROVe excluded patients
likely needing regular NSAID treatment but allowed for concomitant low-dose aspirin therapy.

Table 6 describes the quantitative results for the final subgroups (from Section 6.3) for the
APPROVe study. For the reasons explained in the previous paragraph, we do not expect the
subgroup CATE estimands to be the same across the two studies. However, comparing
the results across Tables 4,5 and 6, it is reassuring that the subgroups we found for the VIGOR
study continue to be meaningful for APPROVe in illustrating the heterogeneity of treatment
effects. We now discuss the results first for the CVT outcome followed by those for the GI
outcome, as the interpretation of the results for the latter is a bit more subtle.
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7.2.1 Results for the CVT outcome

We note that the three subgroups {ASPFDA = 11}, {MALE = 1, ELDERLY = 1} and
{ASCGRP = 1} and the union of these three subgroups all had subgroup CATEs that were
much larger than the ATE, with #-statistics that were significant at the 0.05 level for a one-sided
z-test, even after accounting for multiple testing (refer to end of this section for further discus-
sions related to multiple testing.) Overall, these results provide evidence for the heterogeneous
treatment effects of Vioxx for the CVT outcomes over these subgroups, namely, that Vioxx
disproportionately increases the CVT event risk for these subgroups when compared with either
naproxen or a placebo. To be consistent with the earlier results in Table 4, we also computed
the subgroup CATE for {PPH = 1} for the CVT outcome and (like the VIGOR study) did not
find any evidence for a disproportionate increase in the risk for the CVT event compared with
the entire population.

Recall that the found increase in risk for VIGOR was relative to naproxen. This observation
alone may suggest a possibility that Vioxx was not the cause of the observed increase in CVT
events, and the positive ATE could have resulted owing to a protective effect of naproxen reduc-
ing them. Merck, the manufacturer of Vioxx, interpreted the CVT signal in VIGOR as being
a consequence of a hitherto unknown protective effect of naproxen, rather than a deleterious
consequence of Vioxx. The CVT signal in the APPROVe study associated with Vioxx relative
to placebo conclusively confirmed that Vioxx can have deleterious consequences. Moreover,
both VIGOR and APPROVe study suggest that Vioxx has significant heterogeneity in how it
increases the risk for CVT events for different subgroups.

7.2.2 Results for the GI outcome

As noted above, additional care is required to interpret the CATE results for the GI outcome.
Whereas naproxen was known to have GI toxicity and was shown in VIGOR to increase the risk
of GI events more than Vioxx, a placebo by definition does not have any toxicity. As such, our
finding that treatment with Vioxx had a positive estimated ATE (1.6%) with the GI outcome in
the APPROVe study does not contradict our earlier reporting of a negative ATE with respect
to the GI outcome (—1.6%) in the VIGOR study. In fact, this discovery is surprising insofar as
Vioxx was initially believed to have minimal if any, GI toxicity whatsoever (Laine et al., 1999).

We found the subgroup {PPH = 1} to have a large positive estimated subgroup CATE (6.6%)
resulting in a ¢-statistic score significant at the 0.025 level for a one-sided z-test (without cor-
recting for multiple testing.) As discussed above, this result does not contradict the negative
CATE value of —5.7% (or —5.5% for the test set) estimated for the VIGOR study (see Table 4).
We furthermore note that the GI event rates over both arms in VIGOR and the Vioxx arm
in APPROVe were all elevated compared with the entire population. The corresponding rates
for the placebo in the APPROVe study were fairly similar (0% for {PPH = 1} and 0.4% on
average.)

We summarise our finding across the two studies as follows. (i) VIGOR study: Vioxx, in com-
parison with naproxen, reduced the GI toxicity disproportionately for the subgroup {PPH = 1}
when compared with the average. (ii)) APPROVe study: Vioxx, in comparison with the placebo,
increases the GI toxicity disproportionately for the subgroup {PPH = 1} when compared with
the average. Nonetheless, the conclusion that the estimated subgroup CATE for {PPH = 1}
was significantly different than the estimated ATE is consistent across the two studies.

Finally, owing to the difference in the study population, two out of the three subgroups for
the GI event reported in Table 4, namely, {PSTRDS = 1, HYPGRP = 1} and {PSTRDS =1,
ELDERLY = 1}, were too small in size and had no GI events.?! Consequently, it does not make
sense to quantify the subgroup CATE for these subgroups.
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7.2.3 Multiple testing with FWER control

Given enough data points in the APPROVe study, we also perform corrected multiple hypoth-
esis testing using Holm—Bonferroni procedure controlling familywise error rate (FWER) at
level 0.05. Overall, we test five null hypotheses that the subgroup CATE is equal to the aver-
age treatment effect for the following cases: (i) C; = {PPH = 1} for the GI event, (ii)
C, = {ASPFDA = 1} , (iii) C, = {MALE = 1, ELDERLY = 1}, (iv) C; = {ASCGRP = 1}
and (v) the union U3} . C;—where the treatment effect in subgroups (ii)—(v) corresponds to the
CVT event. The #-statistics for these hypotheses (sorted by magnitude) as reported in Table 6
are 2.650, 2.251, 2.128, 2.012 and 1.664, and thereby the corresponding one-sided p-values
are 0.004, 0.012, 0.0167, 0.022 and 0.048. The corrected procedure for significance level 0.05
compares these sorted p-values with the cut-offs 0.01, 0.0125, 0.0167, 0.025 and 0.05. In doing
so, we find that all five hypotheses are rejected, and thus we conclude all the subgroups (i)—~(v)

have statistically significant heterogeneous treatment effect.??

8 Discussion

In this work, we have made three major contributions: (i) We have re-analysed a dataset from
the 1999-2000 VIGOR study, an RCT of 8076 patients, and found three clinically relevant sub-
groups each for the GI outcome (total size 29.4%), and the CVT outcome (total size 11.0%), for
which the treatment drug Vioxx has significantly large estimated treatment effect when com-
pared with that from the estimated ATE. We provided external evidence for the significance of
the heterogeneous treatment effects for four out of the six subgroups through a complementary
analysis of the 2001-2004 APPROVe study, another RCT of 2587 patients. (ii) Our work is an
illustration of how clinical trial data can be analysed to provide a basis for differential treatment
decisions in subgroups in order to optimise outcomes, and how the findings can be validated
with another study. We call this novel methodology StaDISC, and we develop it by building on
the PCS framework (Yu & Kumbier, 2020), the calibration literature and recent developments in
CATE estimation. (iii) Our work introduces the PCS framework to the causal inference commu-
nity and provides a template for a more informative understanding of heterogeneous treatment
effects.

An important point to note is that the notions of estimated treatment effects ATE, CATE
and subgroup CATE (defined in Equation (1)) used in this work and more broadly in CATE
estimation measure the difference in the adverse event risk in the treatment group with that in
the control group. However, when investigating the efficacy of medical interventions, medical
professionals are often more interested in relative risk, which measures the ratio of the two
risks. This alternate conception of treatment effect in terms of relative risk changes the meaning
of heterogeneity. For instance, the subgroup C; {PPH = 1} has a relative risk of 0.43 with
respect to GI events, which is barely any different than the population relative risk of 0.46. On
the other hand, because the baseline risk of individuals in this subgroup is far higher than that
of the rest of the population, the subgroup CATE is similarly inflated.

We do not attempt to debate which notion of heterogeneity is better since it is context depen-
dent. Nevertheless, given the popularity of relative risk in the medical literature, in our future
work, we plan to develop a formal framework for subgroup discovery with respect to rela-
tive risk by adapting generic CATE estimation methods and consequently extend StaDISC for
relative risk estimation.

There are several other extensions of StaDISC that remain interesting future directions.
First, StaDISC is currently motivated and defined for randomised experiments. We intend to
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formulate a statistical framework that would also make it applicable to observational stud-
ies. Second, the cell search step of StaDISC only works with binary features. One can
either propose to incorporate continuous features through either careful binary encoding using
quantile-thresholding or through amending the cell search procedure. Third, we have thus far
applied StaDISC to the GI and CVT outcomes in the VIGOR study one at a time and a joint
investigation with multiple outcomes, even more generally, is an interesting future direction.
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Notes

"With important extensions also by Cox (1958).

2Budget constraints would dictate that they be only sufficiently powered to detect the ATE.

3More importantly, investigating subgroups in this manner is particularly sensitive to human
failures. It opens the door to p-value hacking (Zettler, 2020), while Gelman has argued that even
when researchers try to be honest, they nonetheless have a hard time accounting for ‘researcher
degrees of freedom’ (Gelman & Loken, 2013).

“In fact, different methods and research groups sometimes reach different conclusions on the
same datasets; see the paper of Carvalho et al. (2019) and the references therein.

3In Professor Efron's timely and thought-provoking revisiting (Efron, 2020) of the Two Cul-
tures debate (Breiman, 2001), it is argued that contrasting philosophies on scientific truth is a
clear line that separates traditional regression methods from modern machine learning methods
(or pure prediction algorithms). While the former aims at an eternal scientific truth, the latter is
truth-agnostic and instead content to exploit contingent and ephemeral patterns.

®0Owing to the low signal in data, we decided not to split the data into training and validation
sets, and we instead use four-fold cross-validation on the training data.

"However, the study was conducted with a safety monitoring board: an independent com-
mittee whose purpose is to monitor the results of an ongoing trial to ensure the safety of trial
participants).

8This estimate and the other estimates reported in this paper are based on an intention-to-treat
analysis. The study also performed per-protocol and sensitivity analyses and obtained similar
results.

https://www.cdc.gov/obesity/adult/defining.html, last accessed on 11 August 2020.

ONote that the standard variance estimates reported using this perspective can be taken as
conservative estimates of the finite-sample variances defined in Neyman's repeated sampling
framework (Ding et al., 2017).

"'While R?-score was originally introduced for linear regression, several similar measures
have been proposed for providing an interpretable scale to measure the model fit. The R? for
linear regression takes value in [0, 1] for training data and (— oo, 1] for test data. Close to 1
value suggests a good fit, and a smaller score implies a poor fit. Note that unlike the R* for
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linear regression, for CATE estimators, the pseudo-score RZ is not guaranteed to take value in
[0, 1] even on the training data, that is, R (Str; M) € (—oo, 1]. Nonetheless, in Figure 2, we
observe that for all the CATE estimators, this score lies in [0, 1] on the training folds, that is,
R&(Strs M) € [0, 1]

2This concern is similar to that expressed by Gelman in his influential paper on The Garden
of Forking Paths (Gelman & Loken, 2013).

BIn fact, such a time-based split would be even more relevant for studies based on RCTs
that are online in nature, meaning that during the trial, results from earlier stages of the trial are
used to guide whether the trial would be continued further or concluded.

4This term is motivated by the geometric interpretation of such subsets as subcubes of the
hypercube that comprises the entire feature space.

150ne may also think of this as a disjunction of conjunctions.

16For instance, leaf nodes will always involve the feature that splits the root node.

"The iterative RF (Basu et al., 2018) algorithm for finding higher-order interactions in
genomics data does soft feature selection for precisely these reasons.

18We are able to compute this efficiently using the FPGrowth algorithm (Han et al., 2000).

19We say that Cell A is a sub-cell of Cell B if it is contained in Cell A when both are though
as subsets of the feature space.

20 A user may wish to simply follow the greedy procedure.

2IIndeed, comparing Tables 1 and 9, we can attribute the discrepancy in these subgroups'
sizes between the two studies to the smaller population of patients (74/2587) with a history of
using glucocorticoids (PSTRDS = 1) in the APPROVe study versus that of the much larger
population of such patients (4479/8076) in the VIGOR study.

22Note that for the APPROVe study, we did not test for heterogeneity in the subgroups
{PSTRDS = 1, HYPGRP = 1}, and {PSTRDS = 1, ELDERLY = 1} owing to their small
size in this study. As the size of the subgroup can only be observed once we know the group
membership of the patients, our testing procedure and the associated discoveries can be con-
sidered as being conditional on observing the group membership, and treatment variable for
all the patients in the APPROVe study. In other words, the statistical significance is over the
randomness in the outcome, and the conditional randomness in the covariates given the group
membership indicators.
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Appendix A : Derivation of Variance Formula in 7-statistic

In this section, we derive a formula for the variance of Tg — Targ, thereby justifying the
formula for the plug-in estimator used in the definition of the z-statistic, which we repeat here
for convenience.

TG — TATE

vV VEW(%G — TATE)

Tg =

(A1)

We first group terms to get

1 1 1 1
Tc— 1 =——- Y; (1) — —— ;0] - | — Y;i(1) — — Y; (0
TG — TATE |GﬂT|,Z i (1) |GﬂC|_Z i(0) |T|Z i(1) |C|Z i(0)
1eGNT ieGNC i€T ieC
=a Y YilD+a Y YiO+p Y Yih)+po ) Yi(0),
ieGNT ieGNC i€GSNT ieG‘NC

where

1 1) ( 1 1) 1 1
= (o ) o=~ (e~ ) A=~ and fo =
(|GmT| T] Gncl ICl T] Cl

Next, observe that even after we condition on F, the collection of random variables
{Yi(1),Y;(0):1 <i < N} are fully independent, and furthermore, the terms within each sum
are identically distributed. Applying the linearity of variance thus gives us

Var [ — Tare | F] = @] [GN T|- Var [Y(1) | GNT] + & |G N C|-Var [Y(0) | GNC]

+ B3IGE NT|-Var[Y(1) | G° N'T] + B2|G° N C|-Var[Y(0) | G° N (],
where Var [Y(1) | G N T] denotes the variance of Y (1) when conditioned on X € G (recall our
abuse of notation described in Section 3) and 7" = 1, with the other terms defined similarly.
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Simplifying this formula leads to

2 2
Var [fg — fap | F] = (1_ IGﬂCI) Var[Y(0) | GNC] (1_ |GmT|) Var[Y(1) | GN T

C] IGNC] IT| IGNT
N (|GC n C|)2' Var [Y(0) | G N (] (|GC n T|)2. Var [Y(1) | GE NT]
Cl G NC] |T| |G NT|
(|G‘ N C|) (Var [Y(0)| GNC] Var[Y(0) | G° N C])
IC| IGNC]| IG° N C]|
N (|GC n T|) (Var[Y(l) |GNT]  Var[Y(l)| G° N T])
IGNT] IG° N T

Appendix B : Details on Data Cleaning with VIGOR and APPROVe

Here, we collect additional details deferred from the main paper. First, we provide the details
on how we identified the patients with prior history of GI event (PPH = 1) for the VIGOR
study. Although this subgroup was analysed in the original study, the data files we had did
not contain a membership indicator, nor were there specific constructions on how to construct
this subgroup. We applied a similar procedure to determine the patients with PPH = 1 for the
APPROVe study. Following that, we describe the steps we followed to impute the GI outcome
as well as the features { ASPFDA, ASCGRP, HYPGRP, PSTRDS} for the APPROVe study. We
also note that the other features, namely, MALE and ELDERLY, reported in Table 6, could be
readily identified from the demographics dataset for the APPROVe study, where the ELDERLY
feature uses normalised age as detailed in Section 2.2.

Table Al. Estimator-wise values of the mean scores Zj,j_,_l (8a) for j = 1,2,3,4 for both GI and CVT events,
Aj min (8b) for the GI event, and As yax (8¢) for the CVT event, where the mean was taken over the 12 validation folds,
four each from the three random CV splits {cv_orig,cv_0,cv_1}

Estimator M ZI,Z sz Z;A Z‘LS Zl,min Estimator M ZLZ sz 23‘4 24‘5 ZS‘maX
t_logistic 1.00 0.67 0.83 0.25 1.00 t_lasso 0.33 042 0.42 1.00 1.00
causal forest 2 1.00 0.50 0.83 0.17 1.00 x xgb 0.33 0.50 0.58 0.92 0.92
x_lasso 1.00 0.50 0.58 0.67 1.00 x logistic 0.50 0.50 0.42 0.92 0.92
x_rf 1.00 0.42 042 0.67 1.00 r_rfrf 0.25 042 050 0.92 0.83
t_lasso 1.00 0.42 0.50 0.58 092 s_rf 0.42 042 042 092 0.83
x logistic 1.00 033 0.50 0.75 092 x lasso 0.50 0.33 0.50 0.83 0.75
s_xgb 1.00 0.67 0.58 0.58 0.92 t_rf 0.33 0.25 0.67 0.83 0.75
r lassolasso 092 042 042 092 092 x rf 0.50 0.33 0.58 0.83 0.75
r rfrf 092 0.50 0.42 050 092 t_logistic 0.33 0.25 0.58 0.83 0.75
r lassorf 092 042 042 042 092 r lassorf 0.17 042 042 0.92 0.75
causal forest 1 092 0.67 0.75 050 0.83 causal forest 1 0.67 0.33 0.67 092 0.75
x_xgb 092 033 050 0.83 0.83 causal forest 2 050 0.08 0.33 0.92 0.75
t_xgb 092 042 0.67 0.17 083 r_lassolasso 0.17 0.75 0.50 0.75 0.67
t_rf 092 0.75 0.50 033 0.83 causal_tree_2 0.25 0.08 033 0.83 0.25
causal tree 2 092 0.75 025 042 0.75 t_xgb 0.08 0.08 0.25 0.75 0.08
s_rf 0.83 0.58 0.67 042 0.75
causal_tree 1 0.83 0.58 0.17 0.67 0.67
(a) GI event (b) CVT event

In each column, the maximum score is highlighted in bold. The estimators are listed in the order sorted by the value in
last column. Recall that each column was plotted earlier as a boxplot in Figure 4(a).
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B.1 Defining PPH for both studies

To identify patients with a history of GI events, we identified a list of medical terms
associated with such events, namely, gastroduodenal perforation, obstruction, ulcer or upper
GI bleeding, from the medical history file. (We used PREFTERM field for this part, as
PREFTERM was not available in the medical history file for the VIGOR dataset.) Using this
procedure, we identified 313 patients in the control arm and 317 patients in the treatment arm
who had a prior history of GI events (identified as PPH = 1). These number are off by 1 when
compared with the 314 and 316 patients reported with PPH = 1 for the control and treat-
ment arms, respectively, by Bombardier et al. in their paper on the VIGOR study (Bombardier
et al., 2000).

To identify the patients with PPH = 1 for the APPROVe study, we used the medical terms
identified above, with some adjustment for different spellings. Doing this gives us a subgroup
of 184 patients. For this dataset, we used the PREFTERM in the medical history file for identi-
fication (since PREFTERM uses standardised terminology). Note that the paper on APPROVe
study by Baron ef al. (2008) does not report any information about the PPH feature.

B.2 Defining GI outcome and other features for APPROVe study

On the VIGOR dataset, we identified all possible medical terms (PREFTERM field in the
adverse event file) that were relevant and possibly associated with GI events during the treat-
ment period. To be consistent with our procedure on VIGOR dataset, we excluded pre-treatment
events and included events that occurred during the treatment and post-study periods. A con-
firmed CVT event was a designated end point of the study, so these labels were directly provided
to us in the study's data files. Such a process, that is, using only a relevant list of medical terms
in the adverse event file, correctly identified 166 out of 177 patients with GI events. Despite
our best efforts, this procedure also falsely identified 12 out of the remaining 7899 patients who
did not have a confirmed GI event. Next, we found that 33 patients in APPROVe had recorded
adverse events with PREFTERM contained in the list of terms identified above (with some
adjustment of different spellings) during the treatment or the post-study periods. We declared
these 33 patients to have had a GI event. Because the APPROVe study did not aim to study GI

Table B1. Overview of the selected baseline covariates in the control and treatment arm of the APPROVe
study. The treatment arm was given Vioxx, while the control arm was given placebo. PUB stands for perfora-
tions, ulcers and bleeding. T Adjusted age denotes age multiplied by the ratio of the life expectancy in the USA
to that in the individual's country of residence.

Covariate (ABBRYV) Control no. (%) Treatment no. (%)
Overall population 1300 (50.3) 1287 (49.7)
Demographics

Whether gender is male (MALE = 1) 805 (61.9) 804 (62.4)

Whether adjusted age™ >65 (ELDERLY = 1) 338 (26.0) 329 (25.6)
Prior medical history

Of GI PUB events (PPH = 1) 93(7.2) 91 (7.1)

Of hypertension (HYPGRP = 1) 446 (34.3) 463 (36.0)

Of atherosclerotic cardiovascular disease (ASCGRP = 1) 121 (9.3) 129 (10.0)

indicating use of aspirin under FDA guidelines (ASPFDA = 1) 70 (5.4) 81 (6.3)
Prior usage of drugs

Whether used glucocorticoids/steroids (PSTRDS = 1) 40 (3.1) 34 (2.6)
Qutcomes

Whether GI event occurred (GI = 1) 6 (0.46) 27 (2.1)

Whether CVT event occurred (CVT = 1) 32(2.5) 57 (4.4)
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toxicity, the paper on the study by Baron et al. (2008) does not report any information about the
GI event as well as the risk factor features that we discuss next.

We followed a similar strategy to develop a mapping using the medical terms from the medi-
cal history file to the risk factor indicators for { ASPFDA, ASCGRP, HYPGRP} for the VIGOR
study. Doing so, we correctly identified (i) 320/321 patients with ASPFDA = 1 (indication of
aspirin usage by FDA due to their medical history), (ii) 453/454 patients with ASCGRP = 1
(history of atherosclerosis) and (iii) all 2385/2385 patients with HYPGRP = 1 (history of
hypertension). For all three features ({ASPFD, ASCGRP, HYPGRP}), we did not have any
false inclusion, that is, using just the selected list of medical terms did not incorrectly impute
a value of 1 for any patient. Finally, to identify the patients with prior usage of glucocorticoids
(PSTRDS = 1), we developed a mapping between the information from the concomitant ther-
apy file and the PSTRDS indicator from the risk factor file. Our mapping correctly identified
all 4479/4479 patients with PSTRDS = 1 but also falsely identified an additional 248 (out of
the remaining 3597) patients.

The mappings described above were then used to impute the GI outcome and relevant miss-
ing features in the APPROVe study, thereby allowing us to report the ‘transfer’ results for the
subgroups found by StaDISC on the VIGOR study (Tables 4 and 5) to the APPROVe study
(Table 6).
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