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Abstract

Classification models are typically trained to
be as generalizable as possible. Invariance to
the specific user is considered desirable since
models are shared across multitudes of users.
However, these models are often unable to
produce personalized responses for individual
users, based on their data. Contrary to
widely-used personalization techniques based
on few-shot and meta learning, we propose
Userldentifier, a novel scheme for training a
single shared model for all users. Our approach
produces personalized responses by prepending
afixed, user-specific non-trainable string (called
“user identifier”’) to each user’s input text. Un-
like prior work, this method doesn’t need any
additional model parameters, any extra rounds
of personal few-shot learning or any change
made to the vocabulary. We empirically study
different types of user identifiers (numeric,
alphanumeric and also randomly generated)
and demonstrate that, surprisingly, randomly
generated user identifiers outperform the prefix-
tuning based state-of-the-art approach by up to
13%, on a suite of sentiment analysis datasets.

1 Introduction

Personalization arises in applications where differ-
ent clients need models specifically customized to
their environment and profiles (Yang and Eisenstein,
2017; Mazaré et al., 2018; Flek, 2020). This
need for customization stems from the inherent
heterogeneity existing in the data and the labels,
especially when the task is classification (Kulkarni
et al., 2020; Wang et al., 2018). Fig. 1 shows an
example of the sentence “That is just great!”. This
sentence could carry a positive sentiment, a neutral
apathetic sentiment, or even a completely negative
sentiment. A non-personalized model cannot
correctly predict the label for different users.

Most techniques for personalization generally
involve two phases: first, a shared, global model is
built between all users, and then, it is personalized
for each client using their data (Kulkarni et al., 2020;
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Figure 1: An overview of the proposed method,

Userldentifier, compared to its prefix-tuning counterpart.

phat, phee denote the trainable prefix vector for users

kat and bee, in the prefix tuning method (Zhong et al.,
2021). Userldentifier, on the other hand, does not have
trainable user-specific parameters and uses static text
(“anka Sau” and “Beh KY”), randomly generated
and assigned user identifier (UID) strings to condition
a shared model, for each user.

Schneider and Vlachos, 2019; Lee et al., 2021). In
such cases, each user has either an entirely separate
model, or additional personal parameters, causing
significant overheads, both in terms of storage of
the large models, and the computation complexity
of training separate models for each user. User-
Adapter (Zhong et al., 2021), the state-of-the-art
in sentiment analysis personalization, takes a prefix-
tuning based approach (Li and Liang, 2021) to
address this problem, as shown in Fig. 1. In the first
phase, a global model is trained in a user-agnostic
way on a large dataset. In the second phase, each
user u is assigned their own prefix vector, p}, which
is trained separately for them, on their own data. If
there are IV users, there would be N separate rounds
of training, producing N vectors. During this prefix-
tuning phase, the underlying transformer-based clas-
sification model is frozen and shared between users,
and the final IV vectors are stored for inference.



To alleviate these training and storage costs and
also improve overall performance, we propose
training a single, shared personalized model,
which can capture user-specific knowledge by
conditioning on a unique, user-specific sequence
of tokens from the classifier’s vocabulary. We
name this sequence “user identifier”, and dub the
underlying method of adding user identifiers to the
input Userldentifier. This is shown in Fig. 1, where
we add the randomly generated, and non-trainable
user identifiers “anka Sau” and “Beh KY” to
each user’s sample, and then train the transformer
classifier model, on these augmented samples. The
user identifiers just use the underlying model’s
vocabulary and embeddings, and do not add any
tokens nor any user embeddings to the model. They
are also static over time, and unique to each user,
which means the user “bee” inf Fig. 1 will have
“Beh KY” appended to all their samples, and no
other user has this identifier. This is similar to the
prompting of models like GPT-3 (Brown et al.,
2020), however, here the prompt is fixed and used
as data augmentation during training, and the model
is not generative. As such, we only do training once,
and have one set of shared parameters for all users.

We experiment with different types of strings
for user identifiers, such as real usernames from
the dataset, consecutive numbers, random digits,
random non-alphanumeric tokens and random
tokens (all types) and observe that, surprisingly,
random identifiers, sampled from all possible
tokens in the vocabulary perform best, providing
1.5% — 13% classification accuracy improvement
on average, over the prefix-tuning based method
UserAdapter (Zhong et al., 2021). We also study
different lengths of identifiers. We report our
results on three different sentiment analysis datasets
(Sentiment 140, IMDB, and Yelp). We also show
that Userldentifier is effective in a federated learning
setup (Appendix A.1), which is a real-world dis-
tributed learning scenario in which personalization
is needed (Kulkarni et al., 2020).

2 Userldentifier
2.1 Method

Userldentifier is a data augmentation method which
consists of adding a sequence of user-specific tokens
(user identifier, u;4, drawn from the tokenizer’s
vocabulary) to each sample, z, to provide user-
related cues to the model and help it learn individual
behaviour and preferences, all in one shared model.

Table 1: Dataset specifications

Dataset #Users  # Samples # Classes
IMDB 1,012 137,710 10
Yelp 4,460 428,369 5
Sent140 1,100 56,557 2
Sent140 (skewed) 473 23,155 2

Figure 1 shows how this augmentation works. Each
utterance is prepended by the user identifier to
create the augmented sample [u;4;x], and then used
as input to the model, for the training stage. There
is no restriction on what the make-up or the length
of the user identifier sequence can be, as long as it
is not longer than the maximum sequence length
the model can input. However, in practice, since the
sequence length is shared with the textual content
of the user’s input, it is better that the identifier
sequence is not too long, so as to not loose the data.
We study different types of identifiers and ablate
them in Sections 3.3 and 4.2.

2.2 Parameterization and Learning

For parameterizations of the user identifiers, we
use parameter tying, where the user identifiers use
the same set of parameters for their embeddings as
the rest of the user’s input text. The learning phase
is the same as conventional classifier fine-tuning,
with parameters 6 of the transformer model being
trained to minimize the cross-entropy loss for the
classification:

Lcg(w,uiq,y;0) = —logPr(y|[uiq;z];0) (1)

x denotes the input utterance, u;d denotes the
user identifier for the user to whom utterance x
belongs, and y is the class label for x.

3 Experimental Setup

3.1 Tasks, Datasets, and Models

We evaluate the proposed method on the task of
sentiment analysis. Table 1 shows a summary of
the datasets used in our experiments. We use the
IMDB (Diao et al., 2014) and Yelp (Tang et al.,
2015) datasets for comparison with the UserAdapter
method (Zhong et al., 2021) and for the ablation
studies. Each user’s data is split into train, test, and
validation sets, with 0.8, 0.1, 0.1 ratios. For compar-
ison purposes, we are using a subset of the available
users, i.e. those with fewer than 50 samples, as done
by Zhong et al. in support of few-shot learning, for
reporting test accuracy. As such, we report test accu-
racy on a test set of 229 users for the IMDB task, and
on a set of 1,213 users for the Yelp task. We use the
RoBERTa-base model for this set of experiments.



Table 2: Comparison of sentiment classification accuracy of Userldentifier, with the baselines of Section 3.2. Num.,
Def. and Rand. refer to the different types of user identifiers introduced in Section 3.3.

Dataset Conventional UserAdapter Trainable User Emb. Userldentifier
Num. Def. Rand. All Num. Def. Rand. All
g IMDB 45.1 46.2 45.5 - 48.9 50.1 - 52.5
§ Yelp 68.3 70.2 68.3 - 70.6 69.5 - 71.3
E Sent140 84.7 - 84.7  86.3 86.5 84.9 87.1 87.1
= Sent140 (Skewed) 86.3 - 87.2  89.3 90.0 87.5 90.3 90.4

Table 3: Effect of the length (in terms of #tokens
and type (Section 3.3) of user identifier sequence) on
classification accuracy.

Seq. Len. Rand. Dig Rand. Non. Rand. All
5 48.8 51.3 52.2
m 10 47.4 51.7 52.5
g 20 47.1 50.2 51.1
— 50 46.5 48.7 50.8
200 333 32.8 40.1
5 68.6 69.3 70.8
o 10 68.7 69.6 71.3
E 20 68.4 68.6 71.0
50 67.8 69.0 70.6
200 63.2 60.2 65.1

In addition to IMDB and Yelp, we also report
the performance of the proposed method on the
Sentiment140 dataset (Go et al.; Caldas et al., 2018),
which is a set of Tweets collected from Twitter and
labeled positive or negative based on the emojis
in each Tweet. For this dataset, unlike with IMDB
and Yelp, we report test accuracies on all users. We
use the methodology provided by Li et al. (2019)
to preprocess and partition this dataset. We create
a second version of this dataset, and mark it as
“skewed”. For this skewed data, the users have
been selected such that their sentiments are mostly
skewed, i.e. we only include users with 80% or
more positive or negative Tweets. We do this to
create a setup where data is more heterogeneously
distributed. = We use BERT-base-uncased for
evaluations on the Sentiment140 dataset.

3.2 Baselines

Conventional Training. Our first baseline
is conventional finetuning of the pre-trained
transformer model on the full dataset, without any
user-level personalization.

UserAdapter. The second baseline, which is
the most closely related to our work, is User-
Adapter (Zhong et al., 2021) . In UserAdapter, a
per-user embedding is learned through few-shot
learning and stored. These personal vectors are

prepended to the users’ data to create personal
responses. This work proposes prefix-tuning (Li
and Liang, 2021) on a user-level. Unlike our
method, UserAdapter consists of two phases, as
discussed in the introduction.

Trainable User Embeddings. Userldentifier uses
the same set of parameters (BERT embeddings)
for embedding both the sample content, and the
user identifiers. In other words, the text and user
embedding parameters are tied. To untie these
parameters, we introduce a third baseline, with
trainable user embeddings. In this setup, while
the tokens used for the user identifier are still
drawn from the pre-trained model’s tokenizer
vocabulary, we’re creating and training a separate
set of parameters for the user embedding, instead
of using the pre-trained model’s embedding.

3.3 Types of User Identifiers

In our experiments, we investigate five scenarios
(types of sequences) for the user identifiers. The
length of the user identifier sequences can vary in
terms of number of tokens (L) for the last three of
these scenarios. Below is a list of all the types of
identifiers in detail.

Default (Def.): This scenario uses the real user id
(e.g., username) of that user, when provided by the
dataset and if they are not private. We only have this
option available for the Sentiment140 dataset.
Consecutive Numbers (Num.): We assign each
user a unique number, from 1 to N, representing
each user (up to N users).

Random sequence of digits (Rand. Dig.): In this
scenario, L independent and identically distributed
(i.i.d) samples from the set of digits (0 to 9) are
drawn, creating a sequence of length L for each user.
Random sequence of tokens with non-
alphanumeric characters (Rand. Non.): L
i.i.d samples are drawn from a subset of tokens
(with size 400) that contain non-alphanumeric
characters, e.g., the token A" ". The motivation for
this scenario is that such user identifiers might be



easier for the model to distinguish from the text (if
we make sure the textual content in the sample has
no overlapping tokens with the identifier).
Random sequence of all tokens (Rand. All): This
scenario draws L i.i.d samples from the set of all
available tokens in the tokenizer vocabulary.

4 Results

In this section, we benchmark the proposed Userl-
dentifier performance against the baselines. Then,
we ablate different scenarios for the user identifiers
with varying lengths. In our experiments we ob-
served that the models would converge faster if we
add the user identifier to both the beginning and then
end of the samples, so that is what is reported here.

4.1 Comparison with Baselines

A comparison of Userldentifier with the state-
of-the-art UserAdapter method, and the other
baselines is presented in Table 2. For the Num.
(consecutive numbers) and Def. (default username)
scenarios, as detailed in Section 4.2, the length of
the user identifier sequences depends solely on the
tokenization process. For the case of Rand. All
(randomly sampled from all vocabulary tokens),
however, it is shown that the sequence length of
10 tokens provides the best performance through
the ablation study, therefore the results are reported
for this length. Since the default usernames for
IMDB and Yelp datasets are not provided, the
corresponding results are not reported here.

It is shown that Userldentifier with randomly
generated identifiers outperforms all baselines,
in all tasks. Our intuition is that Userldentifier
outperforms UserAdapter because of collaborative
learning and personalization happening simulta-
neously, unlike in the case of UserAdapter where
personalization is performed separately for each
user. The performance of trainable user embeddings
appears inferior to that of Userldentifier, which could
be attributed to the parameter tying used in Userl-
dentifier. This parameter tying couples the learning
problems for both domains (user identifier and text)
and allows us to jointly learn from the full data, as
in (He et al., 2019). For the Sentiment140 dataset,
we can see that increasing the heterogeneity or skew
in the dataset boosts the benefits brought about by
Userldentifier. This shows that the proposed method
performs better in setups where personalization is
actually needed (Deng et al., 2020).

4.2 Ablation Studies

Table 3 shows our ablation study into the length and
the type of the user identifier sequence, for IMDB

and Yelp datasets. The most evident trend is that
performance significantly degrades in both datasets
when the length of the user identifier sequence
exceeds 20 tokens, holding for all identifier types.
This is because the length of the input text itself
is essentially decreased (the maximum sequence
length for ROBERTa is 512, and the textual content
of the sample is truncated to fit the user identifier
in), when increasing the length of the identifier.
This decreases the useful information which could
be used to infer sentiment, and in turn it has an
adverse effect on accuracy.

A rather surprising observation is that randomly
sampling from the tokenizer’s entire vocabulary
outperforms sampling only from digits or from the
non-alphanumeric tokens. This can be attributed
to the different sizes of the sampling spaces for
these three types, and the probability of overlap
in user identifier from user to user. For the random
digits (Rand. Dig.) the sample space size for each
token position is 10, the number of possible digits.
For the non-alphanumeric tokens, we have limited
them to 400, and for the token type all (Rand. All),
the possible sample space is 47,400. This means
that the probability of having token overlaps in
user identifiers is much much smaller in the last
scheme, than it is for the other two, or in other
words, the hamming distance between different
user identifiers is higher with this method. One
hypothesis that might explain the success of random
user identifiers: random user identifiers are similar
to random feature projections (Rahimi et al., 2007),
but, in contrast with learnable embeddings, they are
defined in terms of the pretrained models original
token embeddings. This may have a positive effect
on optimization during fine-tuning.

5 Conclusion

In this work, we present a novel approach for learn-
ing global models, producing personalized classifi-
cation responses. This method doesn’t require either
model extensions or specialized training algorithms.
Our proposed method, called Userldentifier, consists
of appending a fixed, non-trainable, unique identi-
fier (a user identifier) to each sample during training
and inference. As such, this added context helps the
model better distinguish different users and produce
personalized responses. We further study differ-
ent types of user identifiers and show that distinct
randomly distributed ones can outperform the state-
of-the-art in personalized sentiment analysis.



Ethical Considerations

Our proposed model is intended to be used for ad-
dressing the problem of personalization, by learning
one shared model for all users, and querying it using
a personal identifier. One potential measure that
needs to be taken for deployment of such technology
is to setup proper authentication tools, so that each
user can only query with their own identifier and
prevent users from breaching privacy by querying
other users’ models. However, this could be a
concern in other personalization setups too.
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A Appendix

A.1 Federated Learning as an Application

Federated learning is a form of distributed learning
where data never leaves each user’s device (Wang
et al., 2021; Konecny et al., 2018; Mireshghallah
et al., 2020). Instead, the user trains a model on
their device locally, and then shares the gradients
(model updates) with a centralized server, which
aggregates the gradients from different users and
sends the updated model back to all of them, for
further training. We target this setup since it is a
good candidate for personalization, given how a
conventionally trained global model often fails to
accommodate all users (Kulkarni et al., 2020; Man-
sour et al., 2020). Table 4 shows the performance
gain of applying Userldentifier, in a federated setup.
Userldentifier can be readily applied in federated
learning, by assigning identifiers to each user and
then asking them to append it to all their samples.
We have used the Rand. All type of user identifier
for this experiment, since we observed in previous
sections that it was the most effective. In general,
the baseline performance and the performance gain
the federated setup is slightly lower than centralized
learning, which is due to the distributed nature of FL,
and the fact that only average of multiple gradient
updates are shared with the server for aggregation.

Table 4: Performance of Userldentifier for sentiment
classification in a federated learning setup.

Dataset Conventional User Identifier
g IMDB 44.30 47.23
E Yelp 68.40 70.60
E Sent140 84.40 86.30
m

Sent140 (Skewed) 86.50 90.00




