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Abstract
Classification models are typically trained to001
be as generalizable as possible. Invariance to002
the specific user is considered desirable since003
models are shared across multitudes of users.004
However, these models are often unable to005
produce personalized responses for individual006
users, based on their data. Contrary to007
widely-used personalization techniques based008
on few-shot and meta learning, we propose009
UserIdentifier, a novel scheme for training a010
single shared model for all users. Our approach011
produces personalized responses by prepending012
a fixed, user-specific non-trainable string (called013
“user identifier”) to each user’s input text. Un-014
like prior work, this method doesn’t need any015
additional model parameters, any extra rounds016
of personal few-shot learning or any change017
made to the vocabulary. We empirically study018
different types of user identifiers (numeric,019
alphanumeric and also randomly generated)020
and demonstrate that, surprisingly, randomly021
generated user identifiers outperform the prefix-022
tuning based state-of-the-art approach by up to023
13%, on a suite of sentiment analysis datasets.024

1 Introduction025

Personalization arises in applications where differ-026

ent clients need models specifically customized to027

their environment and profiles (Yang and Eisenstein,028

2017; Mazaré et al., 2018; Flek, 2020). This029

need for customization stems from the inherent030

heterogeneity existing in the data and the labels,031

especially when the task is classification (Kulkarni032

et al., 2020; Wang et al., 2018). Fig. 1 shows an033

example of the sentence “That is just great!”. This034

sentence could carry a positive sentiment, a neutral035

apathetic sentiment, or even a completely negative036

sentiment. A non-personalized model cannot037

correctly predict the label for different users.038

Most techniques for personalization generally039

involve two phases: first, a shared, global model is040

built between all users, and then, it is personalized041

for each client using their data (Kulkarni et al., 2020;042

Activation
Text

𝑝!"#$ ℎ! ℎ% ℎ& ℎ' ℎ(

Activation 𝑝!)**

Text That is just great !

ℎ! ℎ% ℎ& ℎ' ℎ(

That is just great !

Activation
Text

Activation
Text

anka Sau That is just great!

ℎ! ℎ% ℎ& ℎ' ℎ( ℎ+ ℎ,

Beh Key That is just great!

ℎ! ℎ% ℎ& ℎ' ℎ( ℎ+ ℎ,

Prefix Tuning
O
urs

(U
serIdentifier)

User (𝑢) Input (𝑥)

Random user identifier

Random user identifier

Figure 1: An overview of the proposed method,
UserIdentifier, compared to its prefix-tuning counterpart.
pkat1 , pbee1 denote the trainable prefix vector for users
kat and bee, in the prefix tuning method (Zhong et al.,
2021). UserIdentifier, on the other hand, does not have
trainable user-specific parameters and uses static text
(“anka Sau” and “Beh KY”), randomly generated
and assigned user identifier (UID) strings to condition
a shared model, for each user.

Schneider and Vlachos, 2019; Lee et al., 2021). In 043

such cases, each user has either an entirely separate 044

model, or additional personal parameters, causing 045

significant overheads, both in terms of storage of 046

the large models, and the computation complexity 047

of training separate models for each user. User- 048

Adapter (Zhong et al., 2021), the state-of-the-art 049

in sentiment analysis personalization, takes a prefix- 050

tuning based approach (Li and Liang, 2021) to 051

address this problem, as shown in Fig. 1. In the first 052

phase, a global model is trained in a user-agnostic 053

way on a large dataset. In the second phase, each 054

user u is assigned their own prefix vector, pu1 , which 055

is trained separately for them, on their own data. If 056

there areN users, there would beN separate rounds 057

of training, producingN vectors. During this prefix- 058

tuning phase, the underlying transformer-based clas- 059

sification model is frozen and shared between users, 060

and the final N vectors are stored for inference. 061
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To alleviate these training and storage costs and062

also improve overall performance, we propose063

training a single, shared personalized model,064

which can capture user-specific knowledge by065

conditioning on a unique, user-specific sequence066

of tokens from the classifier’s vocabulary. We067

name this sequence “user identifier”, and dub the068

underlying method of adding user identifiers to the069

input UserIdentifier. This is shown in Fig. 1, where070

we add the randomly generated, and non-trainable071

user identifiers “anka Sau” and “Beh KY” to072

each user’s sample, and then train the transformer073

classifier model, on these augmented samples. The074

user identifiers just use the underlying model’s075

vocabulary and embeddings, and do not add any076

tokens nor any user embeddings to the model. They077

are also static over time, and unique to each user,078

which means the user “bee” inf Fig. 1 will have079

“Beh KY” appended to all their samples, and no080

other user has this identifier. This is similar to the081

prompting of models like GPT-3 (Brown et al.,082

2020), however, here the prompt is fixed and used083

as data augmentation during training, and the model084

is not generative. As such, we only do training once,085

and have one set of shared parameters for all users.086

We experiment with different types of strings087

for user identifiers, such as real usernames from088

the dataset, consecutive numbers, random digits,089

random non-alphanumeric tokens and random090

tokens (all types) and observe that, surprisingly,091

random identifiers, sampled from all possible092

tokens in the vocabulary perform best, providing093

1.5%−13% classification accuracy improvement094

on average, over the prefix-tuning based method095

UserAdapter (Zhong et al., 2021). We also study096

different lengths of identifiers. We report our097

results on three different sentiment analysis datasets098

(Sentiment 140, IMDB, and Yelp). We also show099

that UserIdentifier is effective in a federated learning100

setup (Appendix A.1), which is a real-world dis-101

tributed learning scenario in which personalization102

is needed (Kulkarni et al., 2020).103

2 UserIdentifier104

2.1 Method105

UserIdentifier is a data augmentation method which106

consists of adding a sequence of user-specific tokens107

(user identifier, uid, drawn from the tokenizer’s108

vocabulary) to each sample, x, to provide user-109

related cues to the model and help it learn individual110

behaviour and preferences, all in one shared model.111

Table 1: Dataset specifications
Dataset # Users # Samples # Classes

IMDB 1,012 137,710 10
Yelp 4,460 428,369 5
Sent140 1,100 56,557 2
Sent140 (skewed) 473 23,155 2

Figure 1 shows how this augmentation works. Each 112

utterance is prepended by the user identifier to 113

create the augmented sample [uid;x], and then used 114

as input to the model, for the training stage. There 115

is no restriction on what the make-up or the length 116

of the user identifier sequence can be, as long as it 117

is not longer than the maximum sequence length 118

the model can input. However, in practice, since the 119

sequence length is shared with the textual content 120

of the user’s input, it is better that the identifier 121

sequence is not too long, so as to not loose the data. 122

We study different types of identifiers and ablate 123

them in Sections 3.3 and 4.2. 124

2.2 Parameterization and Learning 125

For parameterizations of the user identifiers, we 126

use parameter tying, where the user identifiers use 127

the same set of parameters for their embeddings as 128

the rest of the user’s input text. The learning phase 129

is the same as conventional classifier fine-tuning, 130

with parameters θ of the transformer model being 131

trained to minimize the cross-entropy loss for the 132

classification: 133

LCE(x,uid,y;θ)=−logPr(y|[uid;x];θ) (1) 134

x denotes the input utterance, uid denotes the 135

user identifier for the user to whom utterance x 136

belongs, and y is the class label for x. 137

3 Experimental Setup 138

3.1 Tasks, Datasets, and Models 139

We evaluate the proposed method on the task of 140

sentiment analysis. Table 1 shows a summary of 141

the datasets used in our experiments. We use the 142

IMDB (Diao et al., 2014) and Yelp (Tang et al., 143

2015) datasets for comparison with the UserAdapter 144

method (Zhong et al., 2021) and for the ablation 145

studies. Each user’s data is split into train, test, and 146

validation sets, with 0.8, 0.1, 0.1 ratios. For compar- 147

ison purposes, we are using a subset of the available 148

users, i.e. those with fewer than 50 samples, as done 149

by Zhong et al. in support of few-shot learning, for 150

reporting test accuracy. As such, we report test accu- 151

racy on a test set of 229 users for the IMDB task, and 152

on a set of 1,213 users for the Yelp task. We use the 153

RoBERTa-base model for this set of experiments. 154
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Table 2: Comparison of sentiment classification accuracy of UserIdentifier, with the baselines of Section 3.2. Num.,
Def. and Rand. refer to the different types of user identifiers introduced in Section 3.3.

Dataset Conventional UserAdapter
Trainable User Emb. UserIdentifier

Num. Def. Rand. All Num. Def. Rand. All

R
oB

E
R

Ta IMDB 45.1 46.2 45.5 – 48.9 50.1 – 52.5
Yelp 68.3 70.2 68.3 – 70.6 69.5 – 71.3

B
E

R
T Sent140 84.7 – 84.7 86.3 86.5 84.9 87.1 87.1

Sent140 (Skewed) 86.3 – 87.2 89.3 90.0 87.5 90.3 90.4

Table 3: Effect of the length (in terms of #tokens
and type (Section 3.3) of user identifier sequence) on
classification accuracy.

Seq. Len. Rand. Dig Rand. Non. Rand. All

IM
D

B

5 48.8 51.3 52.2
10 47.4 51.7 52.5
20 47.1 50.2 51.1
50 46.5 48.7 50.8
200 33.3 32.8 40.1

Y
el

p

5 68.6 69.3 70.8
10 68.7 69.6 71.3
20 68.4 68.6 71.0
50 67.8 69.0 70.6
200 63.2 60.2 65.1

In addition to IMDB and Yelp, we also report155

the performance of the proposed method on the156

Sentiment140 dataset (Go et al.; Caldas et al., 2018),157

which is a set of Tweets collected from Twitter and158

labeled positive or negative based on the emojis159

in each Tweet. For this dataset, unlike with IMDB160

and Yelp, we report test accuracies on all users. We161

use the methodology provided by Li et al. (2019)162

to preprocess and partition this dataset. We create163

a second version of this dataset, and mark it as164

“skewed”. For this skewed data, the users have165

been selected such that their sentiments are mostly166

skewed, i.e. we only include users with 80% or167

more positive or negative Tweets. We do this to168

create a setup where data is more heterogeneously169

distributed. We use BERT-base-uncased for170

evaluations on the Sentiment140 dataset.171

3.2 Baselines172

Conventional Training. Our first baseline173

is conventional finetuning of the pre-trained174

transformer model on the full dataset, without any175

user-level personalization.176

UserAdapter. The second baseline, which is177

the most closely related to our work, is User-178

Adapter (Zhong et al., 2021) . In UserAdapter, a179

per-user embedding is learned through few-shot180

learning and stored. These personal vectors are181

prepended to the users’ data to create personal 182

responses. This work proposes prefix-tuning (Li 183

and Liang, 2021) on a user-level. Unlike our 184

method, UserAdapter consists of two phases, as 185

discussed in the introduction. 186

Trainable User Embeddings. UserIdentifier uses 187

the same set of parameters (BERT embeddings) 188

for embedding both the sample content, and the 189

user identifiers. In other words, the text and user 190

embedding parameters are tied. To untie these 191

parameters, we introduce a third baseline, with 192

trainable user embeddings. In this setup, while 193

the tokens used for the user identifier are still 194

drawn from the pre-trained model’s tokenizer 195

vocabulary, we’re creating and training a separate 196

set of parameters for the user embedding, instead 197

of using the pre-trained model’s embedding. 198

3.3 Types of User Identifiers 199

In our experiments, we investigate five scenarios 200

(types of sequences) for the user identifiers. The 201

length of the user identifier sequences can vary in 202

terms of number of tokens (L) for the last three of 203

these scenarios. Below is a list of all the types of 204

identifiers in detail. 205

Default (Def.): This scenario uses the real user id 206

(e.g., username) of that user, when provided by the 207

dataset and if they are not private. We only have this 208

option available for the Sentiment140 dataset. 209

Consecutive Numbers (Num.): We assign each 210

user a unique number, from 1 to N , representing 211

each user (up to N users). 212

Random sequence of digits (Rand. Dig.): In this 213

scenario, L independent and identically distributed 214

(i.i.d) samples from the set of digits (0 to 9) are 215

drawn, creating a sequence of lengthL for each user. 216

Random sequence of tokens with non- 217

alphanumeric characters (Rand. Non.): L 218

i.i.d samples are drawn from a subset of tokens 219

(with size 400) that contain non-alphanumeric 220

characters, e.g., the token Ã"". The motivation for 221

this scenario is that such user identifiers might be 222
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easier for the model to distinguish from the text (if223

we make sure the textual content in the sample has224

no overlapping tokens with the identifier).225

Random sequence of all tokens (Rand. All): This226

scenario draws L i.i.d samples from the set of all227

available tokens in the tokenizer vocabulary.228

4 Results229

In this section, we benchmark the proposed UserI-230

dentifier performance against the baselines. Then,231

we ablate different scenarios for the user identifiers232

with varying lengths. In our experiments we ob-233

served that the models would converge faster if we234

add the user identifier to both the beginning and then235

end of the samples, so that is what is reported here.236

4.1 Comparison with Baselines237

A comparison of UserIdentifier with the state-238

of-the-art UserAdapter method, and the other239

baselines is presented in Table 2. For the Num.240

(consecutive numbers) and Def. (default username)241

scenarios, as detailed in Section 4.2, the length of242

the user identifier sequences depends solely on the243

tokenization process. For the case of Rand. All244

(randomly sampled from all vocabulary tokens),245

however, it is shown that the sequence length of246

10 tokens provides the best performance through247

the ablation study, therefore the results are reported248

for this length. Since the default usernames for249

IMDB and Yelp datasets are not provided, the250

corresponding results are not reported here.251

It is shown that UserIdentifier with randomly252

generated identifiers outperforms all baselines,253

in all tasks. Our intuition is that UserIdentifier254

outperforms UserAdapter because of collaborative255

learning and personalization happening simulta-256

neously, unlike in the case of UserAdapter where257

personalization is performed separately for each258

user. The performance of trainable user embeddings259

appears inferior to that of UserIdentifier, which could260

be attributed to the parameter tying used in UserI-261

dentifier. This parameter tying couples the learning262

problems for both domains (user identifier and text)263

and allows us to jointly learn from the full data, as264

in (He et al., 2019). For the Sentiment140 dataset,265

we can see that increasing the heterogeneity or skew266

in the dataset boosts the benefits brought about by267

UserIdentifier. This shows that the proposed method268

performs better in setups where personalization is269

actually needed (Deng et al., 2020).270

4.2 Ablation Studies271

Table 3 shows our ablation study into the length and272

the type of the user identifier sequence, for IMDB273

and Yelp datasets. The most evident trend is that 274

performance significantly degrades in both datasets 275

when the length of the user identifier sequence 276

exceeds 20 tokens, holding for all identifier types. 277

This is because the length of the input text itself 278

is essentially decreased (the maximum sequence 279

length for RoBERTa is 512, and the textual content 280

of the sample is truncated to fit the user identifier 281

in), when increasing the length of the identifier. 282

This decreases the useful information which could 283

be used to infer sentiment, and in turn it has an 284

adverse effect on accuracy. 285

A rather surprising observation is that randomly 286

sampling from the tokenizer’s entire vocabulary 287

outperforms sampling only from digits or from the 288

non-alphanumeric tokens. This can be attributed 289

to the different sizes of the sampling spaces for 290

these three types, and the probability of overlap 291

in user identifier from user to user. For the random 292

digits (Rand. Dig.) the sample space size for each 293

token position is 10, the number of possible digits. 294

For the non-alphanumeric tokens, we have limited 295

them to 400, and for the token type all (Rand. All), 296

the possible sample space is 47,400. This means 297

that the probability of having token overlaps in 298

user identifiers is much much smaller in the last 299

scheme, than it is for the other two, or in other 300

words, the hamming distance between different 301

user identifiers is higher with this method. One 302

hypothesis that might explain the success of random 303

user identifiers: random user identifiers are similar 304

to random feature projections (Rahimi et al., 2007), 305

but, in contrast with learnable embeddings, they are 306

defined in terms of the pretrained models original 307

token embeddings. This may have a positive effect 308

on optimization during fine-tuning. 309

5 Conclusion 310

In this work, we present a novel approach for learn- 311

ing global models, producing personalized classifi- 312

cation responses. This method doesn’t require either 313

model extensions or specialized training algorithms. 314

Our proposed method, called UserIdentifier, consists 315

of appending a fixed, non-trainable, unique identi- 316

fier (a user identifier) to each sample during training 317

and inference. As such, this added context helps the 318

model better distinguish different users and produce 319

personalized responses. We further study differ- 320

ent types of user identifiers and show that distinct 321

randomly distributed ones can outperform the state- 322

of-the-art in personalized sentiment analysis. 323
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Ethical Considerations324

Our proposed model is intended to be used for ad-325

dressing the problem of personalization, by learning326

one shared model for all users, and querying it using327

a personal identifier. One potential measure that328

needs to be taken for deployment of such technology329

is to setup proper authentication tools, so that each330

user can only query with their own identifier and331

prevent users from breaching privacy by querying332

other users’ models. However, this could be a333

concern in other personalization setups too.334
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A Appendix444

A.1 Federated Learning as an Application445

Federated learning is a form of distributed learning446

where data never leaves each user’s device (Wang447

et al., 2021; Konečnỳ et al., 2018; Mireshghallah448

et al., 2020). Instead, the user trains a model on449

their device locally, and then shares the gradients450

(model updates) with a centralized server, which451

aggregates the gradients from different users and452

sends the updated model back to all of them, for453

further training. We target this setup since it is a454

good candidate for personalization, given how a455

conventionally trained global model often fails to456

accommodate all users (Kulkarni et al., 2020; Man-457

sour et al., 2020). Table 4 shows the performance458

gain of applying UserIdentifier, in a federated setup.459

UserIdentifier can be readily applied in federated460

learning, by assigning identifiers to each user and461

then asking them to append it to all their samples.462

We have used the Rand. All type of user identifier463

for this experiment, since we observed in previous464

sections that it was the most effective. In general,465

the baseline performance and the performance gain466

the federated setup is slightly lower than centralized467

learning, which is due to the distributed nature of FL,468

and the fact that only average of multiple gradient469

updates are shared with the server for aggregation.470

Table 4: Performance of UserIdentifier for sentiment
classification in a federated learning setup.

Dataset Conventional User Identifier

R
oB

E
R

Ta IMDB 44.30 47.23
Yelp 68.40 70.60

B
E

R
T Sent140 84.40 86.30

Sent140 (Skewed) 86.50 90.00
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