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Abstract

Large Language Models (LLMs) have shown001
promising performance in text-to-SQL, which002
involves translating natural language questions003
into SQL queries. However, current text-to-004
SQL LLMs are computationally expensive and005
challenging to deploy in real-world applica-006
tions, highlighting the importance of compress-007
ing them. To achieve this goal, knowledge dis-008
tillation (KD) is a common approach, which009
aims to distill the larger teacher model into010
a smaller student model. While numerous011
KD methods for autoregressive LLMs have012
emerged recently, it is still under-explored013
whether they work well in complex text-to-SQL014
scenarios. To this end, we conduct a series of015
analyses and reveal that these KD methods gen-016
erally fall short in balancing performance and017
efficiency. In response to this problem, we pro-018
pose to improve the KD with Imperfect Data,019
namely KID, which effectively boosts the per-020
formance without introducing much training021
budget. The core of KID is to efficiently mit-022
igate the training-inference mismatch by sim-023
ulating the cascading effect 1 of inference in024
the imperfect training data. Extensive experi-025
ments on 5 text-to-SQL benchmarks show that,026
KID can not only achieve consistent and signifi-027
cant performance gains (up to +5.83% average028
score) across all model types and sizes, but also029
effectively improve the training efficiency.030

1 Introduction031

Text-to-SQL, which aims to translate a user’s nat-032

ural language question into an executable and ac-033

curate SQL query, is a transformative application034

of large language models (LLMs) (Katsogiannis-035

Meimarakis and Koutrika, 2023; Li et al., 2024a;036

Pourreza and Rafiei, 2024). However, with the037

scaling of model size, the inference and deploy-038

ment of LLM-based text-to-SQL systems become039

1The error at the early step will affect the future predictions
during the autoregressive inference (Agarwal et al., 2024).
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Figure 1: Comparisons of different KD methods for
distilling the student model (QWen1.5-0.5B) from the
teacher (QWen1.5-4B). The x-axis denotes the training
latency relative to the SFT baseline, while the y-axis
denotes the average performance of students on several
popular text-to-SQL benchmarks. The evaluation details
are in §4. We see that our method achieves the best
trade-off between performance and efficiency.

more computationally expensive and memory in- 040

tensive, hindering the development of real-world 041

industrial applications that require low inference 042

latency (Sun et al., 2023b). Hence, it is crucial and 043

green to compress these text-to-SQL LLMs and 044

accelerate the inference, while not losing much per- 045

formance (Schwartz et al., 2020; Zhu et al., 2023). 046

A common model compression approach is 047

knowledge distillation (KD), which involves com- 048

pressing a large teacher model by distilling its 049

knowledge into a small student model (Hinton et al., 050

2015; Kim and Rush, 2016). Recently, numer- 051

ous KD methods for autoregressive LLMs have 052

emerged (Gu et al., 2023; Agarwal et al., 2024; Xu 053

et al., 2024), but most of them focus on the gen- 054

eral instruction-tuning scenarios. Different from 055

the general tasks that allow for flexible and di- 056

verse outputs, text-to-SQL is more challenging, as 057

it requires the LLMs to precisely output the ta- 058

ble/column name. Even a minor error in the SQL 059

query could lead to the wrong result. Unfortunately, 060
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it is still under-explored whether these KD methods061

work well for text-to-SQL LLMs.062

To this end, we conduct preliminary experiments063

by applying 5 representative KD methods to distill064

the QWen-family LLMs (Bai et al., 2023) on the065

popular text-to-SQL benchmark, i.e., Spider (Yu066

et al., 2018). We find that the performance gains067

of these KD methods mainly rely on the model-068

generated data, which is effective but hard to ob-069

tain. Specifically, although the model-generated070

data can alleviate the training-inference mismatch071

(i.e., difference between teacher-forcing training072

and autoregressive inference (Pang and He, 2020))073

and achieves remarkable performance, it requires074

the student model to autoregressively generate in075

an online fashion, leading to unbearable training076

latency. As illustrated in Figure 1, GKD (Agarwal077

et al., 2024) training with model-generated data078

performs well but greatly suffers from training in-079

efficiency. Thus, there raises a question: whether080

we can mitigate the training-inference mismatch081

more efficiently?082

Motivated by this, we propose a simple-yet-083

effective approach to improve KD, namely KID,084

and achieve a better trade-off between performance085

and efficiency. The core of KID is to force the086

student to rewrite the ground-truth training data087

into imperfect one, and then learn how to calibrate088

these imperfect data. Intuitively, by introducing089

some errors in the imperfect data, we can simulate090

the cascading effect of inference during training091

processes, thus mitigating the training-inference092

mismatch. More specifically, instead of autoregres-093

sively generating the on-policy data, the generation094

processes of imperfect data only require one-pass095

forward, which is more efficient and affordable.096

Moreover, by doing so, we can also encourage the097

student to learn how to calibrate these imperfect098

tokens and further improve the KD performance.099

We evaluate KID on a variety of popular text-100

to-SQL benchmarks, including BIRD (Li et al.,101

2024b), Spider (Yu et al., 2018) and its variants,102

upon 3 types of autoregressive LLMs: QWen (Bai103

et al., 2023), CodeGen (Nijkamp et al., 2022) and104

LLaMA (Touvron et al., 2023). Results show that105

KID can not only achieve a better trade-off between106

performance and efficiency, but also bring consis-107

tent and significant improvements (up to +5.83%108

average score) among all model types and sizes.109

Moreover, compared to the standard KD, KID can110

effectively improve the robustness of students.111

Contributions. Our main contributions are: 112

• We reveal that current KD methods for text-to- 113

SQL LLMs generally fall short in balancing 114

performance and efficiency. 115

• We propose a simple-yet-effective approach 116

(KID) to effectively improve KD performance 117

without introducing much training budget. 118

• Extensive experiments show that KID outper- 119

forms the standard KD by a large margin and 120

effectively improves the student’s robustness. 121

2 Preliminary 122

2.1 Task Formulation 123

Text-to-SQL aims to convert a natural language 124

question Q into a SQL query Y , which is exe- 125

cutable and can accurately retrieve relevant data 126

from a database D. The database D usually con- 127

tains the schema (i.e., tables and columns) and 128

metadata, containing column types/values, primary 129

keys, foreign key relations and etc (Zhong et al., 130

2017). Specifically, given an LLM M and a prompt 131

template P , we enforce the M to autoregressively 132

generate an output sequence Y conditioned on the 133

P(Q,D), which can be formulated as: 134

Yt ∼ PM(Yt | P(Q,D),Y<t), (1) 135

where PM(Yt | P(Q,D),Y<t) is the probability 136

for the next token, and Yt is the t-th token of Y . 137

2.2 Knowledge Distillation of LLMs 138

Knowledge Distillation (KD) aims to compress a 139

large teacher model Mp by distilling its knowledge 140

into a small student model Mθ
q parameterized by θ. 141

Given a divergence function F and a training set G, 142

we can train the student model as follows: 143

θ∗ := argminE(x,y)∼G [F(Mq∥Mθ
q)(y|x)], (2) 144

where (x, y) is the task-specific input- 145

output pair2 of G, and F(Mq∥Mθ
q)(y|x) = 146

1
|y|

∑|y|
t=1F

(
p( · |x, y<t)∥qθ( · |x, y<t)

)
is the 147

divergence between the teacher and student 148

distributions, denoted as p and qθ, respectively. 149

The choices of training set G and divergence 150

function F give rise to different possible KD 151

algorithms, e.g., Forward KD (FKD) (Hinton 152

et al., 2015), Reverse KD (RKD) (Gu et al., 2023), 153

2For text-to-SQL task in §2.1, x refers to the input question
P(Q,D) and y refers to the output SQL query Y .
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Method Divergence Training Dataset

Data type: Fixed dataset
FKD FKL Ground-truth data
RKD RKL Ground-truth data

Data type: Model-generated dataset
f-distill TVD Data generated by Mp and Mθ

q

ImitKD FKL Ground-truth+data generated by Mθ
q

GKD FKL/RKL/JSD On-policy data generated by Mθ
q

KID RKL Imperfect ground-truth data

Table 1: Summary of various KD algorithms in terms
of training data and divergence. Notably, Mp and
Mθ

q denote the teacher and student models, respectively.

f-distill (Wen et al., 2023), ImitKD (Lin et al.,154

2020) and GKD (Agarwal et al., 2024). The155

summary of these representative KD algorithms is156

shown in Table 1.157

The common divergences for KD contain the158

Forward Kullback-Leibler (FKL) (Van Erven and159

Harremos, 2014), Reverse KL (RKL) (Malinin160

and Gales, 2019), Jensen–Shannon divergence161

(JSD) (Fuglede and Topsoe, 2004) and total vari-162

ation distance (TVD) (Verdú, 2014). The de-163

tails of these divergences can be found in Ap-164

pendix A.3. On the other hand, G may consist165

of input-output pairs in the original training set (de-166

noted as ground-truth dataset), or sequences gen-167

erated from teacher Mp or student Mθ
q (denoted168

as model-generated dataset). For the data gener-169

ated by Mp, we feed the input into the Mp and170

obtain the teacher’s output beforehand and keep171

them fixed during training. Conversely, for the data172

generated by Mθ
q , since the student is continuously173

updated, we obtain the student’s output in an online174

fashion. Such online generated data is also called175

“on-policy data” by Agarwal et al. (2024).176

2.3 Empirical Analyses177

As mentioned in §1, it is under-explored whether178

the aforementioned KD algorithms work well for179

text-to-SQL LLMs. Hence, we conduct prelimi-180

nary experiments to investigate it in this part.181

Setting. We conduct experiments by first fine-182

tuning larger LLMs on the original training dataset183

as teachers. Then, we use different KD methods184

to distill a smaller student with the teacher’s guid-185

ance. Here, we use the QWen1.5-0.5B (Bai et al.,186

2023) as the student and use the other QWen-family187

models (i.e., QWen1.5-1.8B/-4B/-7B) as teachers.188

Spider (Yu et al., 2018) is used as training data, and189

the models are evaluated on the development set.190

Method Divergence 1.8B 4B 7B

Training data: Fixed dataset
FKD FKL 57.3 57.4 57.3
RKD RKL 62.7 60.1 61.5

Training data: Model-generated dataset
f-distill TVD 57.6 58.6 59.6
ImitKD FKL 58.3 59.5 59.1
GKD-FKL FKL 61.1 62.1 60.7
GKD-RKL RKL 62.9 63.8 64.3
GKD-JSD JSD 62.8 62.7 64.3

Table 2: Preliminary experimental results (%) of
various KD methods. We report the execution accuracy
of QWen1.5-0.5B distilling from QWen1.5-{1.8B, 4B,
7B} on the Spider benchmark. Best results are in bold.
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Figure 2: Comparisons of training latency between
various KD methods. The x-axis denotes the teacher
models, and the y-axis denotes the training latency rel-
ative to the SFT baseline. For ease of illustration, we
only report the results of RKL divergence for GKD.

We follow (Li et al., 2024a) and use the “Execution 191

Accuracy” as metric to quantify the model output. 192

Findings. The contrastive results are listed in Ta- 193

ble 2, from which we empirically find that: 194

Reverse KL is more suitable for distilling the 195

text-to-SQL LLMs. We first analyze the impact 196

of different divergence functions, and find that RKL 197

generally outperforms the other divergences, e.g., 198

FKD (57.4%) v.s. RKD (60.1%) and GKD-FKL 199

(62.1%) v.s. GKD-RKL (63.8%). This is similar to 200

the statements of prior studies (Gu et al., 2023; Wu 201

et al., 2024), as they argue that Reverse KL shows 202

mode-seeking behaviors, i.e., it does not force the 203

student to fit all teacher’s distributions, but assigns 204

high probabilities to teacher’s large modes and ig- 205

nores the small ones. In the context of text-to-SQL, 206

the output tokens (e.g., table/column name and 207

value) are usually precise and low-diversity, and 208

enforcing the student to learn the high-probability 209

regions could lead to better performance. 210

Model-generated datasets perform better but 211

suffer from training inefficiency. By compar- 212
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Figure 3: Illustrations of different KD methods: (a) KD methods with ground-truth data, (b) KD methods with
model-generated data and (c) our KID method with imperfect data. Additionally, we show (d) the pipeline to obtain
the imperfect data, which contains three-stage processes: ❶ masking, ❷ predicting and ❸ rewriting.

ing the KD results between ground-truth datasets213

and model-generated datasets, we find that model-214

generated datasets perform better than the fixed215

ground-truth ones, especially the on-policy dataset216

generated by students (i.e., GKD). This is because217

that student-generated dataset can alleviate the218

training-inference mismatch, i.e., the discrepancy219

between teacher-forcing training and free-run in-220

ference. Despite its remarkable performance, it221

requires the student to autoregressively generate222

the output in an online manner, which will lead223

to unaffordable training latency. This can be em-224

pirically proven by the results in Figure 2, as the225

training latency of GKD is much higher than those226

trained on ground-truth datasets.227

3 Improving Knowledge Distillation with228

Imperfect Data229

Motivation and Overview. Based on the obser-230

vation in §2, we recognize that the key for improv-231

ing the performance KD is to alleviate the training-232

inference mismatch. However, the current KD233

methods relying on model-generated datasets usu-234

ally suffer from training inefficiency, i.e., they fail235

to balance the performance and efficiency. Thus,236

there raises a question: whether we can mitigate237

the training-inference mismatch more efficiently?238

Motivated by this, we propose to improve KD with239

imperfect data (KID), which effectively and effi-240

ciently boosts the performance by simulating the241

cascading effect of inference during training. The242

illustration of KID is shown in Figure 3.243

Intuition of KID. As stated by prior studies (Pang244

and He, 2020; Agarwal et al., 2024), the training-245

inference mismatch mainly comes from the cascad- 246

ing effect of inference. Specifically, during train- 247

ing, LLMs condition on ground-truth tokens. How- 248

ever, during inference, they condition on the model- 249

generated tokens, which might be wrong and affect 250

the future predictions. Intuitively, enforcing the 251

student to rewrite the ground-truth training data 252

into imperfect one, i.e., introducing some errors 253

during training, can simulate the cascading effect 254

of inference during and thus mitigate the training- 255

inference mismatch. Moreover, by encouraging the 256

student to learn how to calibrate these imperfect 257

tokens, KID can further improve the performance. 258

Pipeline to Obtain the Imperfect Data. The key 259

technique of KID is to rewrite the ground-truth data 260

into an imperfect one. Specifically, the generation 261

of imperfect data consists of three-stage processes: 262

❶ masking, ❷ predicting and ❸ rewriting. In 263

practice, we ❶ first sample α of tokens3 from the 264

ground-truth output y and mask them with a special 265

token (e.g., “<s>”). For sampling the tokens, we 266

design some strategies: 1) “Random”: randomly 267

sampling, 2) “Uniform”: uniformly sampling, 3) 268

“Hard”: sampling α of tokens with the lowest con- 269

fidence; 4) “Easy”: sampling α of tokens with the 270

highest confidence. More specifically, for 3) and 271

4), we feed the original sequence y into the student 272

for obtaining prediction probabilities qθi , and then 273

compute the entropy of qθi as the confidence4. 274

After masking the spans of y, we ❷ then gener- 275

3The analysis of sampling ratio α can be found in §4.3.
4Intuitively, the tokens with high entropy value are hard-to-

learn, as the model predict them with low confidence towards
the gold labels (Zhong et al., 2023).
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ate imperfect tokens to fill in the spans. Specifically,276

we feed the masked sequence into the student to277

generate predictions with a one-pass forward pro-278

cess. Finally, given the predicted imperfect tokens279

on the masking place, we ❸ rewrite the ground-280

truth y into the imperfect one ŷ.281

Training of KID. During training, given a mini-282

batch of input-output pairs (x, y), we first perform283

the above processes to obtain the imperfect data284

(x, ŷ). Then, we can train the student model with285

the teacher’s guidance. As shown in §2, Reverse286

KL is more suitable for text-to-SQL task, and we287

thus use it as the divergence function in our KID.288

Moreover, since our KID require sampling from a289

student, which may generate poor samples at the290

beginning of training and make the distilling more291

difficult, we follow prior works (Wen et al., 2023;292

Gu et al., 2023) and combine the KD loss in Eq. 2293

with an auxiliary maximum likelihood estimation294

(MLE) loss. Specifically, the MLE loss enforces295

the student to predict the ground-truth target se-296

quences y. Notably, for a fair comparison, we also297

add the auxiliary MLE loss into the baseline KD298

methods that rely on the ground-truth data.299

4 Experiments300

4.1 Setup301

Tasks and Datasets. We conduct our main ex-302

periments on two popular text-to-SQL benchmarks,303

i.e., Spider (Yu et al., 2018) and BIRD (Li et al.,304

2024b). For each task, models are trained with305

the original training set and evaluated on the devel-306

opment set, denoted as Spider-dev and BIRD-dev,307

respectively. Moreover, following prior studies (Li308

et al., 2023, 2024a), we also evaluate the mod-309

els trained with the Spider dataset on three more310

challenging robustness benchmarks, i.e., Spider-311

DK (Gan et al., 2021b), Spider-Realistic (Deng312

et al., 2021) and Spider-Syn (Gan et al., 2021a).313

For evaluation on Spider-family benchmarks, we314

utilize two widely-used metrics, i.e., “Execution315

Accuracy” (EX) (Yu et al., 2018) and “Test-Suite316

Accuracy” (TS) (Zhong et al., 2020). For BIRD,317

we simply use the EX as the evaluation metric. No-318

tably, BIRD offers external knowledge for guiding319

the generation of SQL queries. Considering that320

such external knowledge is usually unavailable in321

the real world, we follow Li et al. (2024a) and per-322

form the evaluation in two settings: without (“w/o323

EK”) and with (“w/ EK”) external knowledge. The324

details of all tasks are shown in Appendix A.1.325

Models. We evaluate KID on three types of LLMs 326

with various sizes: QWen1.5 (Bai et al., 2023) (stu- 327

dent: 0.5B, teachers: 1.8B, 4B, 7B), CodeGen (Ni- 328

jkamp et al., 2022) (student: 350M, teachers: 2B), 329

and LLaMA2 (student: TinyLLaMA-1.1B (Zhang 330

et al., 2024b)5, teachers: 7B (Touvron et al., 2023)). 331

All models are trained with a popular parameter- 332

efficient fine-tuning method, i.e., LoRA (Hu et al., 333

2021). The details of all training hyper-parameters 334

can be found in Appendix A.2. 335

Baselines. We consider 5 cutting-edge KD 336

baselines in our main experiment: Forward 337

KD (FKD) (Hinton et al., 2015), Reverse KD 338

(RKD) (Gu et al., 2023), f-distill (Wen et al., 2023), 339

ImitKD (Lin et al., 2020) and GKD6 (Agarwal 340

et al., 2024). For reference, we also report the 341

performance of teachers as the upper bound. We 342

use the codebase of Liu et al. (2023) to implement 343

these baselines and distill students. 344

4.2 Main Results 345

KID achieves a better trade-off between the KD 346

performance and efficiency. The main results 347

on QWen-family models are listed in Table 3. 348

As seen, most KD methods outperform the SFT 349

baseline, while introducing extra training budgets. 350

Training with the on-policy data, GKD achieves 351

much better performance than the other counter- 352

parts. However, the computational budget of GKD 353

is not affordable, as it leads to up to 13.9× training 354

latency against the SFT baseline. Conversely, our 355

KID can not only achieve comparable or even better 356

performance than GKD, but also effectively reduce 357

the training latency. These results can prove the 358

superiority of our method. 359

KID brings consistent and significant perfor- 360

mance gains among all model sizes and types. 361

In addition to QWen-family models, we also ap- 362

ply our method on CodeGen and LLaMA models, 363

and report the results in Table 4. Notably, due to 364

the space limitation, we only report the contrastive 365

results of two most relevant KD counterparts, i.e., 366

RKD and GKD. From the results of Table 3 and 4, it 367

can be found that our KID consistently outperforms 368

the other KD counterparts and brings significant 369

performance gains (up to +5.83% average score) 370

5Since there are no existing official LLaMA smaller than
7B, we use the other re-produced smaller TinyLLaMA-1.1B
from Zhang et al. (2024b) as the student.

6As shown in Table 2, GKD with RKL divergence (i.e.,
GKD-RKL) performs best, and we thus only report the results
of GKD-RKL for GKD in the following content.
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Method Latency
Spider-dev BIRD-dev (EX%) Spider-DK Spider-Real Spider-Syn Score

EX% TS% w/o EK w/ EK EX% TS% EX% TS% EX% TS% Avg. ∆

Student: QWen1.5-0.5B
SFT 1.0× 57.8 56.4 16.36 30.51 44.8 46.5 50.6 47.6 44.2 43.7 43.85 *

Teacher: QWen1.5-1.8B
Teacher 1.5× 67.3 66.3 21.71 34.22 54.6 52.3 62.0 60.8 52.7 52.6 52.45 -
FKD 2.1× 57.3 56.5 16.82 28.68 43.7 41.7 50.2 48.0 43.7 43.3 42.99 -0.86
RKD 2.0× 62.7 61.5 16.10 31.81 50.8 49.2 51.2 49.6 48.7 48.3 46.99 +3.14
f-distill 6.0× 57.6 56.3 15.78 27.90 45.0 43.2 52.6 51.0 43.4 43.0 43.58 -0.27
ImitKD 5.9× 58.3 57.2 16.04 28.49 46.2 44.1 52.4 50.8 44.1 43.3 44.09 +0.24
GKD 10.9× 62.9 61.6 18.25 32.99 49.9 47.9 50.6 48.6 48.6 48.1 46.94 +3.09
KID (Ours) 2.0× 63.7 63.1 18.38 33.12 47.6 45.4 53.0 51.4 47.5 47.0 47.02 +3.17

Teacher: QWen1.5-4B
Teacher 3.0× 78.2 77.3 35.27 48.11 61.3 58.7 72.6 70.3 67.4 66.8 63.60 -
FKD 2.2× 57.4 56.5 18.32 29.34 47.1 45.6 50.6 48.6 42.4 41.8 43.77 -0.08
RKD 2.2× 60.1 59.1 17.01 31.75 45.8 43.6 49.6 47.4 46.1 45.6 44.61 +0.76
f-distill 6.3× 58.6 57.3 17.67 31.55 45.8 43.6 50.8 49.2 44.4 43.8 44.27 +0.42
ImitKD 6.3× 59.5 59.4 19.04 30.31 48.6 46.9 49.2 46.9 45.0 44.5 44.94 +1.09
GKD 12.7× 63.8 62.4 20.21 36.11 50.8 48.2 55.5 53.3 47.5 46.9 48.47 +4.62
KID (Ours) 2.3× 65.8 64.7 20.08 33.57 50.5 48.0 55.1 53.3 47.6 47.0 48.57 +4.72

Teacher: QWen1.5-7B
Teacher 3.3× 81.6 80.6 39.44 52.02 67.7 64.9 76.6 74.2 70.1 69.5 67.67 -
FKD 2.4× 57.3 56.4 17.14 31.03 46.4 44.9 50.6 49.0 41.0 40.5 43.43 -0.42
RKD 2.3× 61.5 60.2 16.10 31.81 48.4 46.5 51.0 49.2 46.7 46.0 45.74 +1.89
f-distill 7.2× 59.6 58.2 18.19 32.78 47.7 46.0 49.8 47.6 44.9 44.4 44.92 +1.07
ImitKD 7.2× 59.1 57.9 17.60 30.44 47.3 45.4 48.8 47.2 43.8 43.4 44.09 +0.24
GKD 13.9× 64.3 62.9 20.08 34.62 51.6 49.7 54.1 51.6 46.9 46.2 48.20 +4.35
KID (Ours) 2.3× 64.0 62.6 20.40 34.35 50.7 48.5 52.4 50.8 47.7 47.3 47.88 +4.03

Table 3: Evaluation of QWen-family models on several popular text-to-SQL benchmarks. Notably, “Latency”
means the average training latency relative to the SFT baseline. “Spider-Real” refers to the Spider-Realistic
benchmark. “Avg.” denotes the average performance among all benchmarks and “∆” denotes the performance gains
against the SFT baseline. Best performance in each group is emphasized in bold.

against the SFT baseline among all model sizes and371

types, indicating its universality.372

KID effectively improves the robustness of373

distilled models. Spider-DK, Spider-Syn, and374

Spider-Realistic are widely-used challenging375

benchmarks to investigate the robustness of text-to-376

SQL models. Contrastive results on these bench-377

marks show that our KID exhibits exceptional per-378

formance and effectively improves the robustness379

of distilled students. For example, when distilling380

CodeGen models, KID achieves gains of 2.7% on381

Spider-DK (43.7% to 46.4%) and 2.1% on Spider-382

Realistic (45.5% to 47.6%), comparing with the383

best counterpart.384

4.3 Analysis of KID385

We evaluate the impact of each component of our386

KID, including 1) masking strategies, 2) masking387

ratio α, and 3) rewriting approach for obtaining the388

imperfect data. Additionally, we 4) perform the389

in-depth analysis on the training efficiency of KID.390

+5.3

+5.1

CodeGen-350M TinyLLaMA-1.1B

Figure 4: Analysis of different masking strategies.
The y-axis denotes the EX performance on Spider-dev.
For reference, we also report the results of SFT.

Effect of different masking strategies. As men- 391

tioned in §3, we introduce several strategies to se- 392

lect the tokens for masking. Here, we conduct 393

experiments to analyze the impact of different 394

masking strategies. Results of CodeGen-350M 395

and TinyLLaMA-1.1B in Figure 4 show that: 1) 396

Our KID with various masking strategies consis- 397
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Method Latency
Spider-dev BIRD-dev (EX%) Spider-DK Spider-Real Spider-Syn Score

EX% TS% w/o EK w/ EK EX% TS% EX% TS% EX% TS% Avg. ∆

Student: CodeGen-350M, Teacher: CodeGen-2B .

SFT 1.0× 53.1 51.8 9.90 26.01 37.4 36.1 38.4 36.0 35.4 34.9 35.90 *
Teacher 3.7× 72.3 71.3 26.47 35.66 57.9 55.1 63.2 61.6 55.4 54.8 55.37 -
RKD 2.1× 55.1 54.4 10.50 27.18 43.6 40.0 43.1 40.7 37.6 36.8 38.90 +3.00
GKD 14.1× 56.6 54.9 11.44 27.57 43.7 40.4 45.5 43.1 40.1 39.3 40.26 +4.36
KID (Ours) 2.4× 58.4 56.8 10.52 27.57 46.4 44.1 47.6 44.5 41.1 40.3 41.73 +5.83

Student: TinyLLaMA-1.1B, Teacher: LLaMA2-7B .

SFT 1.0× 63.0 61.8 13.40 24.77 49.0 48.0 54.7 52.4 51.4 50.6 46.91 *
Teacher 2.6× 78.8 77.9 35.40 48.63 64.5 61.1 72.4 70.1 67.6 66.4 64.28 -
RKD 1.4× 66.0 64.6 15.45 31.75 48.4 46.9 55.7 54.1 52.9 52.2 48.80 +1.89
GKD 8.3× 64.8 63.2 16.62 33.44 52.1 49.9 54.1 51.0 53.0 51.8 49.00 +2.09
KID (Ours) 1.5× 68.1 66.8 18.97 32.53 52.9 51.8 59.8 57.7 55.0 54.5 51.81 +4.90

Table 4: Evaluation of CodeGen and LLaMA models on several text-to-SQL benchmarks. Due to the space
constraints, we only present the contrastive results of most relevant KD counterparts, i.e., RKD and GKD.
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Figure 5: Parameter analysis of masking ratio α.
We report the EX results of TinyLLaMA-1.1B and
CodeGen-350M on the Spider-dev.

tently outperforms the SFT baseline. 2) Perfor-398

mance of difficulty-driven strategies (i.e., “Easy”399

and “Hard”) is unstable, as paying too much atten-400

tion to the easy-to-learn/hard-to-learn tokens might401

affect the learning of the other tokens and thus402

leads to sub-optimal performance. 3) The “Ran-403

dom” strategy achieves consistently better perfor-404

mance. We conjecture that such a random masking405

strategy is closer to the errors that are prone to406

occur during inference, as a model might predict407

incorrect tokens at any inference step. Thus, we408

use the “Random” strategy as our default setting.409

Parameter analysis on α. The α used to con-410

trol the ratio of masking tokens is an important411

hyper-parameter. Here, we analyze its influence by412

evaluating the performance of KID with different413

α, spanning {0.1, 0.2, 0.3, 0.4, 0.5} on Spider-dev.414

Figure 5 illustrates the contrastive results. Com-415

Method CodeGen TinyLLaMA

SFT 53.1 63.0

Vanilla KID 55.1 66.0
-w/ Masking-only 55.8 (↑ 0.7) 66.5 (↑ 0.5)
-w/ Rewriting (Ours) 58.4 (↑ 3.3) 68.1 (↑ 2.1)

Table 5: Impact of rewriting approach of KID. No-
tably, “Vanilla KID” means that we do not train with the
imperfect data in our KID, “-w/ Masking-only” denotes
that we directly use the sequence with masking spans
as final imperfect data during the training of KID, and
“-w/ Rewriting (Ours)” refers to the full KID.

pared with the SFT baseline, our KID consistently 416

brings improvements across a certain range of α 417

(i.e., 0.1 to 0.3), basically indicating that the perfor- 418

mance of KID is not sensitive to α. 2) Too large α 419

values (e.g., 0.5) lead to performance degradation, 420

as too many rewriting tokens might distort the se- 421

quence meaning and are challenging for models to 422

calibrate. More specifically, the case of α = 0.2 423

performs best, and we use this setting as default. 424

Impact of rewriting approach. In the stage ❸ 425

of pipeline for obtaining the imperfect data, we 426

rewrite the ground-truth data with the predicted 427

imperfect tokens. To verify its effectiveness, we 428

compare it with a simple alternative, i.e., directly 429

using the sequence with masking spans (output of 430

stage ❶) as final imperfect data ŷ, denoted as “- 431

w/ masking-only”. Table 5 shows the contrastive 432

results (EX results on Spider-dev), in which we see 433

that 1) the alternative approach equipped with KID 434

outperforms the SFT, showing the superiority of 435

our KID, and importantly, 2) our rewriting approach 436
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Figure 6: Performance on Spider-dev of students
(QWen1.5-0.5B) trained with different KD methods
for the full training process. QWen1.5-1.8B is used as
the teacher. We see that KID achieves comparable per-
formance with most counterparts at 2K training steps.

could further improve the results by a large margin437

against the simple alternative, e.g., +3.3% gains on438

CodeGen-350M, indicating its effectiveness.439

Analysis of training efficiency. In Table 3, we440

show that our KID effectively reduces the training441

latency compared to those counterparts based on442

model-generated data. Here, to further verify the443

training efficiency of KID, we present the perfor-444

mance of students trained with various KD methods445

across different training steps. QWen1.5-0.5B and446

1.8B models are used as student and teacher, re-447

spectively. The results are illustrated in Figure 6.448

As seen, KID can achieve comparable or even better449

performance than most KD counterparts with much450

fewer training steps, i.e., effectively improving the451

training efficiency. We attribute it to the higher452

data efficiency, since the imperfect data is closer to453

inference scenarios and can help the student better454

adapt to downstream generation.455

5 Related Work456

LLM-based Text-to-SQL. Recently, autoregres-457

sive LLMs (OpenAI, 2023; Ouyang et al., 2022;458

Touvron et al., 2023; Anil et al., 2023; Zhao et al.,459

2023) have shown their superior performance by460

solving various NLP tasks in a generative manner.461

In the field of text-to-SQL, researchers are increas-462

ingly interested in leveraging the powerful capabili-463

ties of LLMs to create text-to-SQL systems, which464

can be classified into two groups: 1) prompt-based465

text-to-SQL and training-based text-to-SQL. The466

former involves designing some effective prompts467

to instruct the closed-source LLMs for better text- 468

to-SQL parsing (Pourreza and Rafiei, 2024; Sun 469

et al., 2023a; Chen et al., 2024; Dong et al., 2023). 470

On the other hand, the training-based methods aim 471

to improve the text-to-SQL performance of open- 472

source LLMs by tuning them on the supervised 473

input-output pairs (Sun et al., 2023a; Zhang et al., 474

2024a), or continuing pretraining the LLMs on the 475

related database-related data (Roziere et al., 2023; 476

Li et al., 2024a). While achieving remarkable per- 477

formance, the above methods usually suffer from 478

unbearable inference latency (Zhong et al., 2024; 479

Leviathan et al., 2023), hindering the applications 480

in real-world scenarios. 481

Knowledge Distillation for Autoregressive 482

LLMs. KD, as a common approach for com- 483

pressing LLMs, has attracted great attention re- 484

cently (Gu et al., 2023; Agarwal et al., 2024; Zhong 485

et al., 2024; Xu et al., 2024). In the context of 486

text-to-SQL, Sun et al. (2023b) is first to apply the 487

KD for distilling the text-to-SQL models, but they 488

mainly focus on the encoder-only (Devlin et al., 489

2019) and sequence-to-sequence models (Raffel 490

et al., 2020). It still under-explored whether these 491

methods work well for distilling the autoregressive 492

text-to-SQL LLMs. Hence, we attempt to explore 493

it and propose a more efficient KD method that is 494

more suitable for text-to-SQL LLMs. To the best 495

of our knowledge, we are one of the rare works that 496

focus on efficient LLM-based text-to-SQL systems, 497

and we hope our work can promote more related 498

research in this field. 499

6 Conclusion 500

In this paper, we reveal and address the limitations 501

of current KD methods in compressing the autore- 502

gressive text-to-SQL LLMs. Based on a series of 503

preliminary analyses, we find that these methods 504

fall short in balancing performance and training 505

efficiency. To this end, we propose a novel efficient 506

KD algorithm (KID), which utilizes a simple-yet- 507

effective strategy to simulate the inference scenar- 508

ios during training, with only a one-pass forward 509

process. By doing so, KID can mitigate the training- 510

inference mismatch in an efficient manner, and 511

achieve a better trade-off between performance and 512

efficiency. Experiments show that our approach 513

consistently and significantly improves distillation 514

performance across all model architectures, and 515

reduces the training latency by a large margin. 516
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Limitations517

Our work has several potential limitations. First,518

given the limited computational budget, we only519

validate our KID on up to 7B LLMs in the main ex-520

periments. It will be more convincing if scaling up521

to super-large model size (e.g., 70B) and applying522

KID to more cutting-edge model architectures. On523

the other hand, besides the distillation for the text-524

to-SQL task, we believe that our method has the525

great potential to expand to more scenarios, e.g.,526

distilling the general-purpose abilities of LLMs,527

which are not fully explored in this work.528

Ethics and Reproducibility Statements529

Ethics. We take ethical considerations very se-530

riously and strictly adhere to the ACL Ethics Pol-531

icy. This paper proposes an efficient knowledge532

distillation algorithm for text-to-SQL LLMs. It533

aims to compress the existing larger LLMs into534

smaller ones, instead of encouraging them to learn535

privacy knowledge that may cause the ethical prob-536

lem. Moreover, all training and evaluation datasets537

used in this paper are publicly available and have538

been widely adopted by researchers. Thus, we be-539

lieve that this research will not pose ethical issues.540

Reproducibility. In this paper, we discuss the541

detailed experimental setup and provide enough in-542

formation to re-product our results, such as statistic543

descriptions and training hyper-parameters. More544

importantly, we have provided our code in the545

supplementary materials to help reproduce the ex-546

perimental results of this paper.547
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A Appendix723

A.1 Details of Tasks and Datasets724

In this work, we conduct extensive experiments725

on several text-to-SQL benchmarks. Here, we in-726

troduce the descriptions of these datasets in detail.727

Firstly, we present the statistics of all used datasets728

in Table 6. Then, each task is described as:729

Spider. Spider (Yu et al., 2018) is a widely-used730

English text-to-SQL benchmark, comprising 8,659731

training samples and 1,034 development samples.732

The training set encompasses 7,000 manually anno-733

tated samples and 1,659 samples sourced from six734

previous text-to-SQL benchmarks. There are 200735

databases covering 138 diverse domains in Spider.736

Due to the submission constraints of the Spider737

leaderboard, we follow Li et al. (2024a) and do not738

evaluate our models on its test set, but alternatively739

on the publicly available development set.740

BIRD. BIRD (Li et al., 2024b) is a more chal-741

lenging text-to-SQL benchmark that examines the742

impact of extensive database contents on text-to-743

SQL parsing. BIRD contains over 12,751 unique744

question-SQL pairs and 95 big databases with a to-745

tal size of 33.4 GB. Each database contains around746

549K rows on average.747

Spider-DK. Spider-DK (Gan et al., 2021b) is748

a variant derived from the original Spider dataset.749

It modifies some samples of Spider by adding do-750

main knowledge that reflects real-world question751

paraphrases.752

Spider-Realistic. Spider-Realistic (Deng et al.,753

2021) is also a variant of Spider dataset. It modifies754

the NL questions in the complex subset of Spider to755

remove or paraphrase explicit mentions of column756

names, while keeping the SQL queries unchanged.757

Spider-Syn. Spider-Syn (Gan et al., 2021a) is a758

human-curated dataset based on the Spider. NL759

questions in Spider-Syn are modified from Spi-760

der, by replacing their schema-related words with761

manually selected synonyms that reflect real-world762

question para-phrases.763

A.2 Training Hyper-parameters.764

We train each model with a batch size of 16 and765

a peak learning rate of 2e-4. The training epochs766

are selected from {4, 8} for different models. We767

follow Li et al. (2024a) to construct the database768

prompt (an example of an input-output pair is illus-769

trated in Figure 7) and set the max length of input770

and output depending on different models. Due771

to the limited computational resources, we train772

Benchmark #Training #Development

Spider 8,659 1,034
BIRD 9,428 1,534
Spider-DK - 535
Spider-Realistic - 508
Spider-Syn - 1,034

Table 6: Statistic of all used text-to-SQL benchmarks.
Notably, “Spider-DK”, “Spider-Realistic” and “Spider-
Syn” are variants of the development of Spider.

Setting QWen1.5 CodeGen LLaMA2

Learning Rate 2e-4 2e-4 2e-4
Epoch 8 8 4
Batch Size 16 16 16
Max Input Length 1024 1024 2048
Max Output Length 128 128 256
LoRA_Rank 64 8 64
LoRA_Alpha 32 32 32

Table 7: Details of training hyper-parameters for
different LLMs. For each model, we use the same
settings among all benchmarks.

all models with a popular parameter-efficient fine- 773

tuning method, i.e., LoRA. Specifically, the alpha 774

of LoRA is set as 32 and the rank of LoRA is set as 775

64 or 8. We present the training hyper-parameters 776

in Table 7. All experiments are conducted on 8 777

NVIDIA H800 (80GB) GPUs. 778

A.3 Details of divergence functions for KD 779

Here, we introduce the commonly-used divergence 780

functions for KD. Let the probability distribution 781

of teacher and student be p and qθ, respectively. 782

For the training set G, the divergence functions can 783

be formulated as: 784

Kullback-Leibler (KL) divergence

FKL(p∥qθ) =
∑

(x,y)∈G

p(y|x) log p(y|x)
qθ(y|x)

. (3) 785

Note that the KL divergence is not symmetric, 786

i.e., FKL(p∥qθ) ̸= FKL(q
θ∥p). More specifically, 787

the FKL(p∥qθ) refers to the forward KL, while 788

FKL(q
θ∥p) refers to the reverse KL. 789

Jensen–Shannon (JS) divergence

FJS(p∥qθ) =
1

2
(FKL(p∥M) + FKL(q

θ∥M)),

(4) 790

where M = 1
2(p+ qθ). 791
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Database prompt:
table movie , columns = [ movie.mid ( int | primary key | comment : movie id | values : 101 , 
102 ) , movie.title ( text | values : Gone with the Wind , Star Wars ) , movie.year ( int | 
values : 1939 , 1977 ) , movie.director ( text | values : Victor Fleming , George Lucas ) ]
table reviewer , columns = [ reviewer.rid ( int | primary key | comment : reviewer id | values : 
201 , 202 ) , reviewer.name ( text | values : Sarah Martinez , Daniel Lewis ) ] 
table rating , columns = [ rating.rid ( int | comment : reviewer id | values : 201 , 202 ) , 
rating.mid ( int | comment : movie id | values : 101 ,106 ) , rating.stars ( int | comment : rating 
stars | values : 2 , 4 ) , rating.ratingdate ( date | values : 2011-01-22 , 2011-01-27 ) ]
foreign keys :
rating.rid = reviewer.rid
rating.mid = movie.mid
matched values :
reviewer.name ( Sarah Martinez )
Question:
What are the names of all directors whose movies have been reviewed by Sarah Martinez?

INPUT

OUTPUT

SELECT DISTINCT movie.director FROM rating JOIN movie ON rating.mid  =  movie.mid 
JOIN reviewer ON rating.rid  =  reviewer.rid WHERE reviewer.name  =  'Sarah Martinez'

Figure 7: A text-to-SQL sample in Spider’s training
set. We follow Li et al. (2024a) to construct the database
prompts. Note that this illustration is from the original
paper (Li et al., 2024a).

Total variation distance (TVD)

FTV D(p∥qθ) =
∑

(x,y)∈G

|p(y|x)− qθ(y|x)
2

|. (5)792
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