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Abstract

Explainable AI (XAI) methods such as SHAP can help discover unfairness
in black-box models. If the XAI method reveals a significant impact from a
“protected attribute” (e.g., gender, race) on the model output, the model is
considered unfair. However, adversarial models can subvert the detection of XAI
methods. Previous approaches to constructing such an adversarial model require
access to underlying data distribution. We propose a simple rule that does not
require access to the underlying data or data distribution. It can adapt any
scoring function to fool XAI methods, such as SHAP. Our work calls for more
attention to scoring functions besides classifiers in XAI research and reveals the
limitations of XAI methods for explaining behaviors of scoring functions.

1 Introduction

Explainable AI (XAI) methods are increasingly used to detect unfairness in black-box machine
learning models [2, 3]. For example, suppose the XAI method detects that “protected attributes”
such as gender or race significantly contribute to a model’s prediction. In that case, it may
indicate that the model is unfair. Existing work shows adversarial classifiers can be constructed
via scaffolding [9], which can fool explanations generated by LIME [8] and SHAP [7]. Specifically,
LIME and SHAP cannot detect that the classifier is making decisions heavily influenced by the
“protected attribute”. However, a scaffolding procedure assumes we have access to the underlying
dataset, which can be used to train an additional classification model. Such an assumption might
not hold good in real-world scenarios where data accessibility is restricted.
In this work, we focus on scoring functions that assign probability or scores to data items, where
the scores can either be used to assign items to different groups (in the case of a classifier) or
put them in a particular order (in the case of an algorithmic ranker). Scoring functions represent
a more fine-grained model output than the model predictions themselves. We can turn a scoring
function into a classifier by setting thresholds on the score output (e.g., if the score is above a
threshold, it belongs to class A, otherwise class B.). Also, when the input of the scoring function
is a group of items rather than a single item, the resulting score vector can be used to generate a
ranking (indicating the relative preference for the items). Hence, the scoring function can also be
considered an intermediate component of an “algorithmic ranker” [12].
Many works have discussed the ways to judge the fairness of a classifiers [4, 5] or rankers [13, 6].
For example, if a classifier disproportionately puts more male loan applicants to approve than
female applicants, we may consider such a classifier unfair to female applicants. However, there
is a hidden scoring function in this example, which may be the scoring function that assigns
the credit score to an applicant. If the scoring function is designed to give higher scores to
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male candidates than to females, the female group is already disadvantaged. In this work, we
experimented with using traditional XAI method (e.g., SHAP) to detect such unfair behaviors
of the scoring function. We attempt to construct scoring functions that give higher scores to a
certain group (e.g., male) than another group (e.g., female). In contrast to previous work [9], our
adversarial construction does not require access to the underlying input data. We take inspiration
from the previous work [10] using a rank-mixing approach in measuring the fairness of ranked
outcomes. Let us take an example of a group of male and female candidates applying for bank
loans. A scoring function may be applied to the male and female subgroups to create rankings
of acceptance rate within each subgroup. To merge two rankings, a biased mixer will flip an
unfair coin that favors male group to put the top-1 male or female candidate at the top-1 of the
combined ranking. If the female top-1 is not chosen for the top-1 position, she will face the male
top-2 and continue the mixing process. Until the candidates from one group are all positioned in
the merged ranking, the remaining candidates from the other group will be appended at the end.
In this work, we focus not on the ranking but the scores, which represent the direct output
of a scoring function. To make the score output favorable towards a group, we proposed a
simple “bias decision-maker” that re-assigns the scores for the items. In other words, our “bias
decision-maker” can be applied to the output of the biased mixer described above. We prove
that a scoring function with biased decision-maker can fool SHAP into thinking: the protected
attribute has minimal impact on the prediction of the scoring function.

2 Background and Methodology

Based on the notation from Slack et al. ([9]), SHAP and LIME are designed to generate
explanations that: (1) approximate the behavior of the black-box model accurately within the
vicinity of an input data point x, and (2) achieve lower complexity and are human interpretable.
Generating an explanation is to find the q that satisfies:

arg minq∈QL(f, q, πx) + Ω(q) (1)

where the loss function L is defined as:

L(f, q, πx) =
∑

x′∈X′

[f(x′)− q(x′)]2πx(x′) (2)

f is the black-box model to be explained, q ∈ Q where Q is the class of linear models. Ω(q)
measures the complexity of the linear model (i.e., the number of non-zero weights). πx(x′) is
the proximity measures between input data x and x′. X ′ is the set of x′ that describes the
neighborhood of x. SHAP is built upon Shapley values that are grounded on cooperative game
theory to find the unique model q that satisfies several desired characteristics (more details in
[7]). The intuition is that we consider the expected model output as the total “payout” for each
“game” (generating model outputs) played by a coalition of “players” (a subset of attributes),
and distribute the payout to an individual “player” (attribute). Each attribute’s contribution is
the average of all the “payout” from the “game” they participated in.
There are different ways of defining “payout” for scoring function [11]. We use the kernel SHAP
from the official SHAP python package as our choice of explainer since it is a widely used
implementation.
Prior work [9] on adversarial attacking XAI methods such as LIME and SHAP reveal the
vulnerability of post hoc explanation methods. In this work, we attempt to propose a simple rule
of adversarial construction for scoring function that does not rely on the ground truth data, data
distribution, or training a model to distinguish ground truth data from perturbed data.
We first describe our adversary, who can modify the model before hand over to the auditors.
Both the auditors and the adversary treat the model as a black-box. The adversary only knows
what the protected attributes (e.g., race, gender) existed in the data and add a rule to modify
the output of the model based on the values of protected attribute to give advantage for certain
group. The auditors have access to all the attributes including protected attributes and use SHAP
to discover model unfairness of the model. However, the auditors does not know the model
was modified by the adversary. The intuition of the adversary method is to strategically swap
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scores of the output from a scoring function to give an unfair advantage to certain privileged
groups. We define a simple weighted sum scoring function f as our fair model. For a given
data that have attributes χ = [x1, x2, · · · , xm, xp]. We assume the xp is a column vector of the
protected attribute. The rest are columns of scoring attributes. A function that does not include
the protected attribute is

f(χ) : s = β1x1 + β2x2 + · · ·+ βmxm (3)
We assume the attributes in the scoring function is not correlated with protected attributes, so
such scoring function is our fair model. We define that if the scoring function is unfair if it
include the protected attribute. A simple unfair scoring function may be

g(χ) : sunfair = f(χ) + βpxp (4)

Note that in our definition, the weight βp is non-zero. We demonstrated in our experiment
section that SHAP can detect xp’s impact on the function output, s. To design an unfair scoring
function g(·) that can bypass SHAP’s detection, we let xp to influence the vector s during a
post-process operation which resulted in a sunfair,

Algorithm 1 The adversarial scoring function g (based on gender as the protected attribute)
Input: Sample of dataset X, protected attribute vector p, scoring function f (a higher score
outcome is superior)
Output: Unfair score vector s
1: s← f(X)
2: id← the indices of s ▷ start of the swapping function hswap

3: [id, p, s]← Sort([id, p, s]) by s in descending order
4: N ← length of vector s
5: for i = 0 to N − 2 do
6: if p[i] is female and p[i + 1] is male then
7: swap(p[i], p[i + 1])
8: swap(id[i], id[i + 1])
9: end if

10: end for
11: s← Sort([id, s]) by id
12: return s

This algorithm1 describes a biased decision-maker, Biasmale>female. Whenever the biased
decision-maker see a female candidate is scored higher than a male candidate (i.e., a female is
ranked one position higher than a male), the biased decision-maker swaps the two candidates’
scores (and consequently their rank positions are swapped), giving male candidates an unfair
advantage. In this work, we consider swapping scores to give advantage for historically privileged
group as “stealing”. We obtain the adversarial scoring function g(χ) = hswap(f(χ\xp), xp). An
XAI method that can explain f can also be used to explain g, since both function g and f take a
sample of χ as input, and output a score vector.
Variations of the unfair scoring function. Such a biased decision-maker can be formulated
beyond the two-class gender scenario to race, age, or combining multiple protected attributes
into the if-condition (line 6 of the Algorithm1). It can also be formulated with more complicated
rules for “stealing” the score (add at the beginning within the if-condition), such as “stealing” is
only successful half the time , “stealing” only happens a maximum amount of times, or “stealing”
is more active in the high-score region and less active in the low-score region. Note that f(·)
can be generalized to non-linear functions or black-box machine-learning models. The swapping
operation (line 2 to line 11 in Algorithm1) within g does not require prior knowledge on data or
the data distribution. The only information needed is the unique values in the protected attribute
to construct the if-condition. Our method is both data distribution agnostic and model agnostic.
Edge cases of the unfair scoring function. The swapping operation hswap within g may be
triggered zero or many times. With the example of Biasmale>female, if all male’s scores are
larger than female’s, no swapping is performed. If the data only come from female or male
group, no swapping is also performed. In a different case, if there is only one female in the data
who scored highest (i.e., at the top-1 rank position) among other male candidates, the female
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Figure 1: The workflow of fooling SHAP. The scoring process is to reveal that function g
successfully alters the score outcome of function f to give higher scores to candidates’ with
“Research” experience; The explaining process is to reveal that SHAP cannot detect that function
g is using the attribute “Research” to generate the score outcome and consider the behavior of
functions f and g the same. Combining the two observations, function g fooled SHAP.

candidate’s score will be swapped repeatedly and ends up at the bottom of the ranking with the
lowest score. But if we remove the line 7 in Algorithm1, the female candidate in such case will
only be swapped once. Hence, the more swapping (or “stealing”) happens, the more protected
attributes impact the model output, and the more unfair the scoring function g is.
Intuition behind the attack to fool SHAP. We describe the intuition behind the attack under a
special case of SHAP, i.e. linear SHAP. In such a case, we assume the input feature independence.
And SHAP values can be approximated directly from the model’s weight coefficients [7]. Since
our adversarial attack is constructed on a group of N input x. We use the matrix form of the
formulas. For fair scoring function:

f(X) =
∑

j

βjXj + 0 ·Xp (5)

The contribution matrix Φ given the function f and input X contains the vectors:
Φj(f, X) = βjXj − βjE[Xj ], Φp(f, X) = 0 (6)

Due to the additive constraint of SHAP values, instance-wise feature contributions add up to the
difference between the model output and the average model output,

Φp(f, X) = 0 = f(X)− E[f(X)]−
∑

j

Φj(f, X) (7)

We apply the swapping function hXp on the output vector of f(X) to obtain g(X). hXp(·) can
be omitted if all values in Xp is the same:

g(X) = hXp
(f(X)) = hXp

(
∑

j

βjXj) (8)

Since all the features are assumed independent, to obtain feature j’s contribution, we can set zero
for all other features in X including Xp but not Xj , In such condition, no swapping occurs (i.e.,
hXp

does not modify the output of f) since the values in Xp are all the same (zeros), and
function g is equivalent to function f , The feature j’s contribution vector Φj follows,

Φj(g, X) = Φj(f, X) (9)
Due to the same additive constraint of SHAP values, the SHAP value vector of the protected
attribute Xp(g, X) can be calculated as:

Φp(g, X) = g(X)− E[g(X)]−
∑

j

Φj(g, X) (10)

We can tell that E[g(X)] is the same as E[f(X)] since swapping the output of f does not alter
summary statistics such as mean or deviation. Subtracting equation 10 and equation 7, we get:

Φp(g, X) = g(X)− f(X) (11)
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If swapping occurs between f ’s output with index i and k that are close to each other in values,
meaning

|g(xi)− f(xi)| = |g(xk)− f(xk)| ≤ ϵ (12)

the ϕp(g, xi) may be negligible when ϵ is close to zero. And if no swapping occurs,
|g(xi)− f(xi)| = 0 (13)

The mean of absolute SHAP value for protected feature p is

(1/N)1T |Φp| ≤ ϵ (14)

If some of f ’s output remain the same after swapping, the bound will be strictly smaller than ϵ.
In general, it is possible that SHAP’s loss function 2 (replacing the f with g) may neglect a O(ϵ)
in order to obtain a linear additive explanation with lower complexity 1. Thus, we discover that
swapping scores can, in certain degree, fool the linear SHAP. However, whether such swapping
can fool the kernel SHAP is yet to be tested.

3 Experimental Results

We demonstrate that our construction of adversarial scoring function can fool SHAP using a real-
world data set on college admissions [1] with about 500 college applicants described by 7 different
attributes, such as GRE score, CGPA, TOEFL score, Letter of Recommendation rating, Statement
of Purpose rating, having Research Experience or not, and Rating of the University. We select
three scoring attributes (GRE, TOEFL, university rating) and one protected attribute (Research).
We consider that students from prestigious schools may have more opportunities to participate in
research, which may be unfair to students from under-funded schools. Hence, in this context,
Research is a protected attribute and should be excluded from scoring the candidates.
Experiment settings. We define three scoring functions (Figure 2): base function f , adversarial
unfair function g1, and simple unfair function g0 for sanity check. The experiments for generating
SHAP explanation for 100 candidates ran less than 10 seconds for f and g0, but ran for about 1
hour for g1. For the 100 candidates’ data, we tracked that g1 performed 59 score swaps based
on the result of f . We visualized the attribute’s importance using the bar plot and beeswarm
plot provided by SHAP Python package. For g1, we also test different variations, such as “flip a
coin” before committing a score swap, or checking if the score difference between two candidates
is smaller than a threshold before committing a score swap. The purpose of such variations are
to create more unstable behaviors of “stealing” to confuse SHAP.
Score outcome from different functions. We first need to show that the scoring outcomes
from f , g0, and g1 are different on the ground truth data. We use the parallel coordinates
plots (Figure 2(iv)) with scores from each function as the axes. Scores of 100 candidates are
sorted on the axes from the highest to lowest, and the connected lines across the axes indicate
the same candidate. The students who have or do not have Research experience are colored
yellow and green, respectively.
The green lines between axis f and g1 appear either parallel or downward, while the yellow
lines appear either parallel or upward. This is not a coincidence but a clear illustration of the
relationship between the score outcome between f and g1, that is the students without research
experience are given lower scores. The line pattern between axis g1 and g0 appears as expected
as well. It shows that even more green lines (i.e., students without research experience) are given
lower scores compared to the other group.
The reason is that the g0 is an unfair function that uses the attribute “Research” specifically in
the scoring function, but g1 only uses the “Research” in a stealth way. Such stealth usage of the
protected attribute (i.e., “Research”) is why g1 may fool SHAP but g0 cannot.
SHAP explanation result. After SHAP explains all three functions f , g1, and g0, the explanations
are visualized correspondingly. For function f , SHAP shows (Figure 2(i)), in bar plot, the University
Rating, GRE score, TOEFL score have the SHAP value of 0.24, 0.22, and 0.2, while Research
has 0 SHAP value. The beeswarm plot also shows that Research’s instance-wise SHAP cluttered
near 0 SHAP value at the x-axis, while other attribute’s SHAP value spread across both positive
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Figure 2: Experimental results show that SHAP explanation of adversarial scoring function g1
and the base scoring function f are similar. Hence g1 successfully fooled SHAP. g0 is also explained
as a sanity check to prove: if Research is specifically added into the scoring formula, SHAP can
detect that Research is the biggest contributor to score output; the slope plot shows that for
the ground truth data, g1 and g0’s score output give candidates with research experience (yellow
group) advantage compare to f ’s score output; the score swap histogram shows the score swaps
during SHAP explaining for g1 (note that no swaps happened for f or g0).

and negative range. The red and blue color indicates high and low attribute values, which means,
for all the attributes besides Research, the higher the attribute value, the higher the SHAP value.
Such explanation plots generated by SHAP are aligned with the definition of function f .
For function g1, SHAP shows (Figure 2(ii)), in bar plot, the exact same SHAP values. SHAP still
considers the Research has zero SHAP value, although there is a very short bar associated with
Research, which may be easily neglected. The SHAP beeswarm doesn’t reveal any sign of Research
being an important attribute either. Since the swapping function within g1 can be triggered
unknown time during the SHAP explaining. We tracked the times of swapping that happened
during each SHAP perturbation and summarized the results in a histogram (Figure 2(v)). The
histogram shows that the swapping happens significantly during the SHAP explaining and the
most commonly happened 275 times or 575 times within one perturbation. With that many times
of swapping, SHAP still failed to detect it. During our experiments, other more complicated
if-conditions for swapping do not appear more capable of fooling SHAP, because the original
swapping function already achieved zero SHAP value. Note that, in our experiments, more
complicated if-conditions do not increase the SHAP explaining time either.
We also used SHAP to explain the function g0 as a sanity check to demonstrate that if Research
is added into the scoring function specifically, SHAP will detect the importance of Research.
SHAP shows (Figure 2(iii)), in bar plot, the SHAP value for Research, University Rating, GRE
score, TOEFL score are 0.48, 0.24, 0.22, 0.2. Research is two times more important than the
second most important attribute. The SHAP beeswarm plot also shows that Research only
has two attribute values (0 and 1). And 0 is associated with a SHAP value of -0.6, and 1
is associated with 0.4. In conclusion, SHAP can successfully detect the base (f) and simple
unfair (g0) scoring function but is unable to detect the adversarial unfair scoring function (g1). If
AI model auditors rely on SHAP to detect unfair scoring functions, they will be misguided to
consider the adversarial scoring function (g1) as a fair scoring function. Additionally, the SHAP
bar plot of g1 attempted to show a short bar for Research to indicate its importance, while the
beeswarm plot is not helpful to show such importance at all. On the other hand, if AI model
auditors use the parallel coordinates plots to test the scoring function behavior, they may have a
better chance of discovering the unfair behavior.
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4 Discussion

We proposed a novel approach to construct an adversarial scoring function from any scoring
function that can fool the SHAP explainer into thinking attributes that significantly impact the
model output are not important. Our approach does not need to access the input data or data
distribution; hence is robust against data distribution shifting or data volume increasing. Our
work demonstrated simpler ways to construct adversarial scoring functions to fool XAI methods
such as SHAP, compared to prior work [9]. Additionally, our adversarial scoring function could be
more difficult to detect if constructed more stealthily. This can be achieved by adding additional
conditions prior to the swapping operation; for example, the two candidates’ score difference has
to be lower than a given threshold.
Our observations point to the fact that the swapping operation is triggered frequently but not
consistently when SHAP repeatedly generates sample data to test the function g. Additionally,
for the same input data, the outputted scores from the adversarial function g all occur in the
corresponding outcome from the baseline function f , but only may be rearranged. Since the
explanation time for g1 is significantly long (about 1 hour for 100 instances), SHAP might
attempt to find a consistent pattern between Research and the score outcome, yet still failed.
SHAP is “confused” about whether the protected attribute impacts the function output.
XAI research is currently focused on classifiers, and does not pay enough attention to XAI
methods for scoring functions. However, scoring functions are ubiquitous in AI systems, including
classifiers, algorithmic rankers, activation functions in neural networks, etc. Studying XAI
for scoring functions may lead to the less explored models, such as algorithmic rankers and
ranking-based decision-making systems in traditional applications (e.g., college rankings) or
AI-ranking (e.g., search engine output). Our work calls for XAI researchers and practitioners to
tread cautiously while conducting model auditing, and raise concerns about using the XAI method
as a means to confirm a model is fair. Since it is relatively low-cost (demonstrated in our case)
and simple to inject unfairness and give certain groups unfair advantage whenever a swapping
condition is met, such unfair behavior can even be hidden for a long time after model deployment
and only automatically triggered by certain critical if-conditions. And for our adversarial scoring
function, the unfair behavior will not be detected by SHAP or any other method, if only used in
scoring individual group (e.g., only male or female group), which raises the need for designing a
proper AI auditing process.

5 Conclusion

Our work demonstrated that the original swapping condition is powerful enough to fool SHAP. It
is still an open problem in XAI research to develop robust detection methods for more complicated
if-conditions. Currently, we only considered swapping between two nearby items. Still, it can be
easily generalized to swapping between nearby items for which the behaviors are not explored.
We have not yet explored the cascading impact of our unfair scoring function. In the real world,
it is common that a higher-scored candidate may receive additional advantages (e.g., getting
the job offer) which leads to advantages in future scoring (e.g., approval of bank loan). A small
"stealing" initially may result in huge future differences. Our work reveals the risk of over-reliance
on default explanation visualizations such as SHAP bar plot or beeswarm plot to understand
attribute importance. Alternative visualizations may be used to detect model behaviors, such
as multivariate visualizations, like a matrix of scatter plots, parallel coordinate plots, etc., for
scoring functions. Our work also opens up another way of explaining model unfair behaviors: one
group is stealing from another in a certain way. In the future, we will design XAI methods to
generate such an explanation. We will consider swapping scores to promote candidates from
non-privileged groups and investigate these fairness-preserving interventions in conjunction with
established metrics [14].
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