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ABSTRACT

Offline reinforcement learning (RL) methodologies enforce constraints on the pol-
icy to adhere closely to the behavior policy, thereby stabilizing value learning
and mitigating the selection of out-of-distribution (OOD) actions during test time.
Conventional approaches apply identical constraints for both value learning and
test time inference. However, our findings indicate that the constraints suitable
for value estimation may in fact be excessively restrictive for action selection dur-
ing test time. To address this issue, we propose a Mildly Constrained Evalua-
tion Policy (MCEP) for test time inference with a more constrained target policy
for value estimation. Since the target policy has been adopted in various prior
approaches, MCEP can be seamlessly integrated with them as a plug-in. We in-
stantiate MCEP based on TD3BC (Fujimoto & Gu, 2021), AWAC (Nair et al.,
2020) and DQL (Wang et al., 2023) algorithms. The empirical results on D4RL
MuJoCo locomotion and high-dimensional humanoid tasks show that the MCEP
brought significant performance improvement on classic offline RL methods and
can further improve SOTA methods. The codes are open-sourced at link.

1 INTRODUCTION

Offline reinforcement learning (RL) extracts a policy from data that is pre-collected by unknown
policies. This setting does not require interactions with the environment thus it is well-suited for
tasks where the interaction is costly or risky. Recently, it has been applied to Natural Language
Processing (Snell et al., 2022), e-commerce (Degirmenci & Jones) and real-world robotics (Kalash-
nikov et al., 2021; Rafailov et al., 2021; Kumar et al., 2022; Shah et al., 2022) etc. Compared to
the standard online setting where the policy gets improved via trial and error, learning with a static
offline dataset raises novel challenges. One challenge is the distributional shift between the training
data and the data encountered during deployment. To attain stable evaluation performance under the
distributional shift, the policy is expected to stay close to the behavior policy. Another challenge
is the ”extrapolation error” (Fujimoto et al., 2019; Kumar et al., 2019) that indicates value estimate
error on unseen state-action pairs or Out-Of-Distribution (OOD) actions. Worsely, this error can be
amplified with bootstrapping and cause instability of the training, which is also known as deadly-
triad (Van Hasselt et al., 2018). Majorities of model-free approaches tackle these challenges by
either constraining the policy to adhere closely to the behavior policy (Wu et al., 2019; Kumar et al.,
2019; Fujimoto & Gu, 2021) or regularising the Q to pessimistic estimation for OOD actions (Kumar
et al., 2020; Lyu et al., 2022). In this work, we focus on policy constraints methods.

Policy constraints methods minimize the disparity between the policy distribution and the behavior
distribution. It is found that policy constraints introduce a tradeoff between stabilizing value esti-
mates and attaining better performance. While previous approaches focus on developing various
constraints for the learning policy to address this tradeoff, the tradeoff itself is not well understood.
Current solutions have confirmed that an excessively constrained policy enables stable value esti-
mate but degrades the evaluation performance (Kumar et al., 2019; Singh et al., 2022; Yu et al.,
2023). Nevertheless, it is not clear to what extent this constraint fails to stabilize value learning
and to what extent this constraint leads to a performant evaluation policy. It is essential to investi-
gate these questions as their answers indicate how well a solution can be found under the tradeoff.
However, the investigation into the latter question is impeded by the existing tradeoff, as it requires
tuning the constraint without influencing the value learning. To achieve this investigation, we cir-
cumvent the tradeoff and seek solutions for this investigation through the critic. For actor-critic
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methods, (Czarnecki et al., 2019) has shed light on the potential of distilling a student policy that
improves over the teacher using the teacher’s critic. Inspired by this work, we propose to derive an
extra evaluation policy from the critic. The evaluation policy does not join the policy evaluation step
thus tunning its constraint does not influence value learning. The actor from the actor-critic is now
called target policy as it is used only to stabilize the value estimation.

Based on the proposed framework, we empirically investigate the constraint strengths for 1) stabi-
lizing value learning and 2) better evaluation performance. The results find that a milder constraint
improves the evaluation performance but may fall beyond the constraint space of stable value es-
timation. This finding indicates that the optimal evaluation performance may not be found under
the tradeoff, especially when stable value learning is the priority. Consequently, we propose a novel
approach of using a Mildly Constrained Evaluation Policy (MCEP) derived from the critic to avoid
solving the above-mentioned tradeoff and to achieve better evaluation performance.

As the target policy is commonly used in previous approaches, our MCEP can be integrated with
them seamlessly. In this paper, we first validate the finding of (Czarnecki et al., 2019) in the offline
setting by a toy maze experiment, where a constrained policy results in bad evaluation performance
but its off-policy Q estimation indicates an optimal policy. After that, our experiments on D4RL (Fu
et al., 2020) MoJoCo locomotion tasks showed that in most tasks, milder constraint achieves better
evaluation performance while more restrictive constraint stabilizes the value estimate. Finally, we
instantiated MCEP on TD3BC, AWAC and DQL algorithms. The empirical results of these instances
on MuJoCo locomotion and high-dimensional humanoid tasks find that the MCEP brought signifi-
cant performance improvement as it allows milder constraints without harming the value learning.

2 RELATED WORK

Policy constraints method (or behavior-regularized policy method) (Wu et al., 2019; Kumar et al.,
2019; Siegel et al., 2020; Fujimoto & Gu, 2021) forces the policy distribution to stay close to the be-
havior distribution. Different discrepancy measurements such as KL divergence (Jaques et al., 2019;
Wu et al., 2019), reverse KL divergence Cai et al. (2022) and Maximum Mean Discrepancy (Kumar
et al., 2019) are applied in previous approaches. (Fujimoto & Gu, 2021) simply adds a behavior-
cloning (BC) term to the online RL method Twin Delayed DDPG (TD3) (Fujimoto et al., 2018) and
obtains competitive performances in the offline setting. While the above-mentioned methods calcu-
late the divergence from the data, (Wu et al., 2022) estimates the density of the behavior distribution
using VAE, and thus the divergence can be directly calculated. Except for explicit policy constraints,
implicit constraints are achieved by different approaches. E.g. (Zhou et al., 2021) ensures the out-
put actions stay in support of the data distribution by using a pre-trained conditional VAE (CVAE)
decoder that maps latent actions to the behavior distribution. In all previous approaches, the con-
straints are applied to the learning policy that is queried during policy evaluation (value learning) and
is evaluated in the environment during deployment. Our approach does not count on this learning
policy for the deployment, instead, it is used as a target policy only for the value learning.

While it is well-known that a policy constraint can be efficient to reduce extrapolation errors, its
drawback is not well-studied yet. (Kumar et al., 2019) reveals a tradeoff between reducing errors in
the Q estimate and reducing the suboptimality bias that degrades the evaluation policy. A constraint
is designed to create a policy space that ensures the resulting policy is under the support of the be-
havior distribution for mitigating bootstrapping error. (Singh et al., 2022) discussed the inefficiency
of policy constraints on heteroskedastic dataset where the behavior varies across the state space in a
highly non-uniform manner, as the constraint is state-agnostic. A reweighting method is proposed to
achieve a state-aware distributional constraint to overcome this problem. Our work studies essential
questions about the tradeoff (Kumar et al., 2019) and overcomes this overly restrictive constraint
problem (Singh et al., 2022) by using an extra evaluation policy.

There are methods that extract an evaluation policy from a learned Q estimate. One-step RL (Brand-
fonbrener et al., 2021) first estimates the behavior policy and its Q estimate, which is later used
for extracting the evaluation policy. Although its simplicity, one-step RL is found to perform badly
in long-horizon problems due to a lack of iterative dynamic programming (Kostrikov et al., 2022).
(Kostrikov et al., 2022) proposed Implicity Q learning (IQL) that avoids query of OOD actions
by learning an upper expectile of the state value distribution. No explicit target policy is mod-
eled during their Q learning. With the learned Q estimate, an evaluation policy is extracted using
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Figure 1: Left: diagram depicts policy trajectories for target policy π̃ and MCEP πe. Right: policy
evaluation steps to update Qπ̃ and policy improvement steps to update π̃ and πe.

advantage-weighted regression (Wang et al., 2018; Peng et al., 2019). Our approach has a similar
form of extracting an evaluation policy from a learned Q estimate. However, one-step RL aims to
avoid distribution shift and iterative error exploitation during iterative dynamic programming. IQL
avoids error exploitation by eliminating OOD action queries and abandoning policy improvement
(i.e. the policy is not trained against the Q estimate). Our work instead tries to address the error
exploitation problem and evaluation performance by using policies of different constraint strengths.

3 BACKGROUND

We model the environment as a Markov Decision Process (MDP) ⟨S,A,R, T, p0(s), γ, ⟩, where
S is the state space, A is the action space, R is the reward function, T (s′|s, a) is the transition
probability, p0(s) is initial state distribution and γ is a discount factor. In the offline setting, a static
dataset Dβ = {(s, a, r, s′)} is pre-collected by a behavior policy πβ . The goal is to learn a policy
πϕ(s) with the dataset D that maximizes the discounted cumulated rewards in the MDP:

ϕ∗ = argmax
ϕ

Es0∼p0(·),at∼πϕ(st),st+1∼T (·|st,at)[

∞∑
t=0

γtR(st, at)] (1)

Next, we introduce the general policy constraint method, where the policy πϕ and an off-policy Q
estimate Qθ are updated by iteratively taking policy improvement steps and policy evaluation steps,
respectively. The policy evaluation step minimizes the Bellman error:

LQ(θ) = Est,at∼D,at+1∼πϕ(st+1)

[(
Qθ(st, at)− (r + γQθ′(st, at+1))

)2]
. (2)

where the θ′ is the parameter for a delayed-updated target Q network. The Q value for the next
state is calculated with actions at+1 from the learning policy that is updated through the policy
improvement step:

Lπ(ϕ) = Es∼D,a∼πϕ(s)[−Qθ(s, a) + wC(πβ , πϕ)], (3)

where C is a constraint measuring the discrepancy between the policy distribution πϕ and the be-
havior distribution πβ . The w ∈ (0,∞] is a weighting factor. Different kinds of constraints were
used such as Maximum Mean Discrepancy (MMD), KL divergence, and reverse KL divergence.

4 METHOD

In this section, we first introduce the generic algorithm that can be integrated with any policy con-
straints method. Next, we introduce three examples based on offline RL methods TD3BC, AWAC
and DQL. With a mildly constrained evaluation policy, we name these three instances as TD3BC-
MCEP, AWAC-MCEP and DQL-MCEP.
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4.1 OFFLINE RL WITH MILDLY CONSTRAINED EVALUATION POLICY

The proposed method is designed to overcome the tradeoff between stable value learning and a per-
formant evaluation policy. In previous constrained policy methods, a restrictive policy constraint is
applied to obtain stable value learning. We retain this benefit but use this policy (actor) π̃ψ as a target
policy only to obtain stable value learning. To achieve better evaluation performance, we introduce
an MCEP πeϕ that is updated by taking policy improvement steps with the criticQπ̃ψ . Different from
π̃ψ , πeϕ does not participate in the policy evaluation procedure. Therefore, a mild policy constraint
can be applied, which helps πeϕ go further away from the behavior distribution without influencing
the stability of value learning. We demonstrate the policy spaces and policy trajectories for π̃ψ and
πeϕ in the l.h.s. diagram of Figure 1, where πeϕ is updated in the wider policy space using Qπ̃ψ .

Algorithm 1 MCEP Training

1: Hyperparameters: LR α, EMA η, w̃ and we

2: Initialize: θ, θ′, ψ, and ϕ
3: for i=1, 2, ..., N do
4: θ ← θ − αLQ(θ) (Equation 2)
5: θ′ ← (1− η)θ′ + ηθ
6: ψ ← ψ − αLπ̃(ψ; w̃) (Equation 3)
7: ϕ← ϕ− αLπe(ϕ;we) (Equation 3)

The overall algorithm is shown as pseudo-codes
(Alg. 1). At each step, the Qπ̃ψ , π̃ψ and πeϕ are
updated iteratively. A policy evaluation step up-
dates Qπ̃ψ by minimizing the TD error (line 4),
i.e. the deviation between the approximate Q
and its target value. Next, a policy improve-
ment step updates π̃ψ (line 6. These two steps
form the actor-critic algorithm. After that, πeϕ
is extracted from the Qπ̃ψ , by taking a pol-
icy improvement step with a policy constraint
that is likely milder than the constraint for π̃ψ
(line 7). Many approaches can be taken to ob-
tain a milder policy constraint. For example,
tuning down the weight factor we for the pol-
icy constraint term or replacing the constraint measurement with a less restrictive one. Note that
the constraint for πeϕ is necessary (the constraint term should not be dropped) as the Qπ̃ψ has large
approximate errors for state-action pairs that are far from the data distribution.

As the evaluation policy πeϕ is not involved in the actor-critic updates, one might want to update πeϕ
after the convergence of the Qπ̃ψ . An experiment to compare these design options can be found in
the Appendix Section A.5. Algorithm 1 that simultaneously updates two policies and these updates
(line 6 and 7) can be parallelized to achieve little extra training time based on the base algorithm.

4.2 THREE EXAMPLES: TD3BC-MCEP, AWAC-MCEP AND DQL-MCEP

TD3BC with MCEP TD3BC takes a minimalist modification on the online RL algorithm TD3. To
keep the learned policy to stay close to the behavior distribution, a behavior-cloning term is added to
the policy improvement objective. TD3 learns a deterministic policy therefore the behavior cloning
is achieved by directly regressing the data actions. For TD3BC-MCEP, the target policy π̃ψ has the
same policy improvement objective as TD3BC:

Lπ̃(ψ) = E(s,a)∼D[−λ̃Qθ(s, π̃ψ(s)) +
(
a− π̃ψ(s)

)2
], (4)

where the λ̃ = α̃
1
N

∑
si,ai

|Qθ(si,ai)|
is a normalizer for Q values with a hyper-parameter α̃: The Qθ

is updated with the policy evaluation step similar to Eq. 2 using π̃ψ . The MCEP πeϕ is updated by
policy improvement steps with theQπ̃ taking part in. The policy improvement objective function for
πeϕ is similar to Eq. 4 but with a higher-value αe for the Q-value normalizer λe. The final objective
for πeϕ is

Lπe(ϕ) = E(s,a)∼D[−λeQ(s, πeϕ(s)) +
(
a− πeϕ(s)

)2
]. (5)

AWAC with MCEP AWAC (Nair et al., 2020) is an advantage-weighted behavior cloning method.
As the target policy imitates the actions from the behavior distribution, it stays close to the behavior
distribution during learning. In AWAC-MCEP, the policy evaluation follows the Eq. 2 with the target
policy π̃ψ that updates with the following objective:

Lπ̃(ψ) = E(s,a)∼D

[
− exp

(
1

λ̃
A(s, a)

)
log π̃ψ(a|s)

]
, (6)
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(a) Toy maze MDP (b) V ∗, π∗ (c) Vπ̃, π̃ (d) Vπ̃, argmaxQπ̃

Figure 2: Evaluation of policy constraint method on a toy maze MDP 2a. In other figures, the color
of a grid represents the state value and arrows indicate the actions from the corresponding policy. 2b
shows the optimal value function and one optimal policy. 2c shows a constrained policy trained from
the above-mentioned offline data, with its value function calculated by Vπ = EaQ(s, π(a|s)). The
policy does not perform well in the low state-value area but its value function is close to the optimal
value function. 2d indicates that an optimal policy is recovered by deriving the greedy policy from
the off-policy Q estimate (the critic).

where the advantage A(s, a) = Qθ(s, a) − Qθ(s, π̃ψ(s)). This objective function solves an
advantage-weighted maximum likelihood. Note that the gradient will not be passed through the
advantage term. As this objective has no policy improvement term, we use the original policy
improvement with KL divergence as the policy constraint and construct the following policy im-
provement objective:

Lπe(ϕ) = Es,a∼D,â∼πe(·|s)[−A(s, â) + λeDKL

(
πβ(·|s)||πeϕ(·|s)

)
] (7)

= Es,a∼D,â∼πe(·|s)[−A(s, â)− λe log πeϕ(a|s)], (8)

where the weighting factor λe is a hyper-parameter. Although the Eq. 6 is derived by solving Eq. 8
in a parametric-policy space, the original problem (Eq. 8) is less restrictive even with λ̃ = λe as the
gradient back-propagates through the −A(s, πe(s)) term. This difference means that even with a
λe > λ̃, the policy constraint for πe could still be more relaxed than the policy constraint for π̃.

DQL with MCEP Diffusion Q-Learning (Wang et al., 2023) is one of the SOTA offline RL methods
that applied a highly expressive conditional diffusion model as the policy to handle multimodal
behavior distribution. Its policy improvement step is

Lπ̃(ψ) = Es∼D,a∼π̃[−λ̃Q(s, a) + C(πβ , π̃)], (9)

where C(πβ , π̃) is a behavior cloning term and λ̃ is the Q normalizer, similar to TD3BC. We next
introduce the policy improvement step for the evaluation policy. The policy improvement step for
the evaluation policy has the same manner as the target policy, except for using a different constraint
strength.

LπE (ϕ) = Es∼D,a∼πE [−λEQ(s, a) + C(πβ , π
E)]. (10)

5 EXPERIMENTS

In this section, we set up 4 groups of experiments to illustrate: 1) the policy constraint might de-
grade the evaluation performance by forcing the policy to stay close to low-state-value transitions.
2) Milder policy constraints might achieve performance improvement but also make unstable Q es-
timate. 3) The evaluation policy allows milder policy constraints without influencing Q estimate
4) Our method brought significant performance improvement compared to the target policy on Mu-
JoCo locomotion and high-dimensional humanoid tasks. 4) 5) the MCEP generally gains a higher
estimated Q compared to the target policy. Additionally, we adopt 2 groups of ablation studies to
verify the benefit of an MCEP and to investigate the constraint strengths of MCEP.

Environments D4RL (Fu et al., 2020) is an offline RL benchmark consisting of many task sets. Our
experiments select 3 versions of MuJoCo locomotion (-v2) datasets: data collected by rolling out a
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Figure 4: The training process of TD3BC and AWAC. Left: TD3BC
on hopper-medium-v2. Middle: TD3BC on walker2d-medium-
replay-v2. Right: AWAC on hopper-medium-replay-v2.

Figure 5: α values in
TD3BC for value estimate
and test time inference in
MuJoCo locomotion tasks.

medium-performance policy (medium), the replay buffer during training a medium-performance pol-
icy (medium-replay), a 50%−50% mixture of the medium data and expert demonstrations (medium-
expert). To investigate more challenging high-dimensional tasks, we additionally collect 3 datasets
for Humanoid-v2 tasks following the same collecting approach of D4RL: humanoid-medium-v2,
humanoid-medium-replay-v2, humanoid-medium-expert-v2. The humanoid-v2 task has an observa-
tion space of 376 dimension and an action space of 17 dimension. This task is not widely used in
offline RL research. (Wang et al., 2020; Bhargava et al., 2023) considers this task but our data is
independent of theirs. Compared to (Bhargava et al., 2023), we do not consider pure expert data but
include the medium-replay to study the replay buffer. The statistics of humanoid datasets are listed
in Table 4.

5.1 TARGET POLICY THAT ENABLES SAFE Q ESTIMATE MIGHT BE OVERLY CONSTRAINED

To investigate the policy constraint under a highly suboptimal dataset, we set up a toy maze MDP
that is similar to the one used in (Kostrikov et al., 2022). The environment is depicted in Figure 2a,
where the lower left yellow grid is the starting point and the upper left green grid is the terminal
state that gives a reward of 10. Other grids give no reward. Dark blue indicates un-walkable areas.
The action space is defined as 4 direction movements (arrows) and staying where the agent is (filled
circles). There is a 25% probability that a random action is taken instead of the action from the
agent. For the dataset, 99 trajectories are collected by a uniformly random agent and 1 trajectory
is collected by an expert policy. Fig. 2b shows the optimal value function (colors) and one of the
optimal policies.

We trained a constrained policy using Eq. 2 and Eq. 8 in an actor-critic manner, where the actor
is constrained by a KL divergence with a weight factor of 1. Figure 2c shows the value function
and the policy. We observe that the learned value function is close to the optimal one in Figure 2b.
However, the policy does not make optimal actions in the lower left areas where the state values
are relatively low. As the policy improvement objective shows a trade-off between the Q and the
KL divergence, when the Q value is low, the KL divergence term will obtain higher priority. In
other words, in low-Q-value areas, the KL divergence takes the majority for the learning objective,
which makes the policy stay closer to the transitions in low-value areas. However, we find that
the corresponding value function indicates an optimal policy. In Figure 2d, we recover a greedy
policy underlying the learned critic that shows an optimal policy. This approach of utilizing the
value function of the imperfect teacher policy is originally suggested by Czarnecki et al. (2019). In
conclusion, the constraint might degrade the evaluation performance although the learned critic may
indicate a better policy. Although such a trade-off between the Q term and the KL divergence term
can be alleviated in previous work (Fujimoto & Gu, 2021) by normalizing the Q values, in the next
section, we will illustrate that the constraint required to obtain performant evaluation policy can still
cause unstable value estimate.
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Task Name BC 10%-BC CQL IQL TD3BC TD3BC-MCEP AWAC AWAC-MCEP EQL DQL DQL-MCEP
(ours) (ours) (ours)

halfcheetah-m 42.4±0.1 43.1±0.3 44.0 47.4±0.1 48.7±0.2 55.5±0.4 45.1±0 46.9±0 46.5±0.1 49.8±0.2 53.2±0.2
hopper-m 54.1±1.1 56.9±1.6 58.5 65±3.6 56.1±1.2 91.8±0.9 58.9±1.9 98.1±0.6 67±1.3 81.7±6.6 95.5±2.2
walker2d-m 71±1.7 73.3±2.5 72.5 80.4±1.7 85.2±0.9 88.8±0.5 79.6±1.5 81.4±1.6 81.8±1.1 85.5 ± 0.8 75.3±3.6
halfcheetah-m-r 37.8±1.1 39.9±0.8 45.5 43.2±0.8 44.8±0.3 50.6±0.2 43.3±0.1 44.9±0.1 43.1±0.5 47±0.2 47.8±0.1
hopper-m-r 22.5±3.0 72±2.1 95.0 74.2±5.3 55.2±10.8 100.9±0.4 64.8±6.2 101.1±0.2 87.9±19.1 100.6±0.2 100.9±0.3
walker2d-m-r 14.4±2.7 56.6±3.3 77.2 62.7±1.9 50.9±16.1 86.3±3.2 84.1±0.6 83.4±0.8 71.4±4.7 93.6±2.5 92.6±2.1
halfcheetah-m-e 62.3±1.5 93.5±0 91.6 91.2±1.0 87.1±1.4 71.5±3.7 77.6±2.6 69.5±3.8 89.4±1.6 95.7±0.4 93.4±0.8
hopper-m-e 52.5±1.4 108.9±0.0 105.4 110.2±0.3 91.7±10.5 80.1±12.7 52.4±8.7 84.3±16.4 97.3±3.3 102.1±3.0 107.7 ± 1.5
walker2d-m-e 107±1.1 111.1±0.5 108.8 111.1±0.5 110.4±0.5 111.7±0.3 109.5±0.2 110.1±0.2 109.8±0.0 109.5±0.1 109.7±0.0
Average 51.5 72.8 77.6 76.1 70.0 81.9 68.3 79.9 77.1 85 86.2

Table 1: Normalized episode returns on D4RL benchmark. The results (except for CQL) are means
and standard errors from the last step of 5 runs using different random seeds. Performances that are
higher than corresponding baselines are underlined and task-wise best performances are bolded.

5.2 EVALUATION POLICY ALLOWS MILDER CONSTRAINTS

The previous experiment shows that a restrictive constraint might harm the test-time inference,
which motivates us to investigate milder policy constraints. Firstly, we relax the policy constraint
on TD3BC and AWAC by setting up different hyper-parameter values that control the strengths of
the policy constraints. For TD3BC, we set α = {1, 4, 10} ((Fujimoto & Gu, 2021) recommends
α = 2.5). For AWAC, we set λ = {1.0, 0.5, 0.3, 0.1} ((Nair et al., 2020) recommends λ = 1).
Finally, We visualize the evaluation performance and the learned Q estimates.

In Figure 4, the left two columns show the training of TD3BC in the hopper-medium-v2 and
walker2d-medium-replay-v2. In both domains, we found that using a milder constraint by tuning
the α from 1 to 4 improves the evaluation performance, which motivates us to expect better perfor-
mance with α = 10. See from the normalized return of α = 10, we do observe higher performances.
However, the training is unstable because of the divergence in value estimate and thus the policy per-
formance is also unsteady. This experiment indicates the tradeoff between the stable Q estimate and
the evaluation performance. The rightmost column shows the training of AWAC in hopper-medium-
replay-v2, we observe higher evaluation performance by relaxing the constraint (λ > 1). Although
the Q estimate keeps stable during the training in all λ values, higher λ still result in unstable policy
performance and causes the performance crash with λ = 0.1.

Concluding on all these examples, a milder constraint can potentially improve the performance but
may cause unstable Q estimates or unstable policy performances. As we find that relaxing the
constraint on current methods triggers unstable training, which hinders the investigation of milder
constraints on their policy performance. We instead systematically study the constraint strengths in
TD3BC and TD3BC with evaluation policy (TD3BC-EP).

We first tune the α for TD3BC to unveil the range for safe Q estimates. Then in TD3BC-EP, we tune
the αe for the evaluation policy with a fixed α̃ = 2.5 to see the policy performance under a stable
Q estimate. The α (αe) is tuned within {2.5, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. For each α
(αe), we deploy 5 training with different random seeds. In Figure 5, we visualize two constraint
ranges for MuJoCo locomotion tasks. The blue area shows α values where the constraint strength
enables a stable Q estimate for all seeds. The edge of blue area shows the lowest α value that
causes Q value explosion. The orange area shows the range of αe where the learned evaluation
policy outperforms the target policy. Its edge (the orange line) shows the lowest αe values where the
evaluation policy performance is worse than the target policy. For each task, the orange area has a
lower bound αe = 2.5 where the evaluation policy shows a similar performance to the target policy.

Note that α weighs the Q term and thus a larger α indicates a less restrictive constraint. Comparing
the blue area and the orange area, we observe that in 7 out of the 9 tasks (7 axis where the orange
range is not zero), the evaluation policy achieves better performance than the target policy. In 5
tasks (5 axis where the orange range is larger than the blue one), the evaluation policy allows milder
policy constraints which cause unsafe q estimate in TD3BC. In conclusion, evaluation policy allows
milder policy constraints for potentially better performance and does not influence the Q estimate.
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5.3 COMPARISON ON MUJOCO LOCOMOTION TASKS

D4RL MuJoCo Locomotion We compare the proposed method to behavior cloning, classic offline
RL baselines AWAC, TD3BC, CQL and IQL, along with SOTA offline RL methods Extreme Q-
Learning (EQL) (Garg et al., 2023) and DQL. For D4RL datasets, similar hyperparameters are used.
The baseline methods (TD3BC, AWAC and DQL) use the hyper-parameter recommended by their
papers. TD3BC uses α = 2.5 for its Q value normalizer, AWAC uses 1.0 for the advantage value
normalizer and DQL uses α = 1.0. In TD3BC-MCEP, the target policy uses α̃ = 2.5 and the
MCEP uses αe = 10. In AWAC-MCEP, the target policy has λ̃ = 1.0 and the MCEP has λe = 0.6.
In DQL-MCEP, α̃ = 1.0 for target policy and αe = 2.5 for evaluation policy. The full list of
hyper-parameters can be found in Table 2.

As is shown in Table 1, we observe that the evaluation policies with a mild constraint significantly
outperform their corresponding target policy. TD3BC-MCEP gains progress on all medium and
medium-replay datasets. Although the progress is superior, we observe a performance degradation
on the medium-expert datasets which indicates an overly relaxed constraint for the evaluation policy.
Nevertheless, the TD3BC-MCEP achieves much better general performance than the target policy.
In the AWAC-MCEP, we observe a consistent performance improvement over the target policy on
most tasks. Additionally, evaluation policies from both TD3BC-MCEP and AWAC-MCEP outper-
form the CQL, IQL and EQL while the target policies have relatively low performances. On the
SOTA method, DQL, the MCEP can still obtain further performance improvement.

Figure 6: The visualization of the training on three humanoid tasks.

Humanoid One of the ma-
jor challenges for offline
RL is the distributional
shift. In high-dimensional
environments, this chal-
lenge is exaggerated as the
collected data is relatively
limited. To evaluate the
proposed method on the
ability to handle these envi-
ronments, we compare the
TD3BC-MCEP with IQL,
CRR, TD3BC, BC and be-
havior policy. As seen in Figure 6, TD3BC-MCEP achieves higher returns in medium and medium-
expert, both are collected by rolling out the learned online policy. In medium-replay, the replay
buffer of the online training, TD3BC-MCEP also achieves superior performance and shows a faster
convergence rate than IQL. See Section A.2 for more details about this experiments.

5.4 ABLATION STUDY

In this section, we design 2 groups of ablation studies to investigate the effect of the extra evaluation
policy and its constraint strengths. Reported results are averaged on 5 random seeds.

Figure 7: Left: TD3BC with α = 2.5, α = 10 and TD3BC-
MCEP with α̃ = 2.5, αe = 10. Right: AWAC with λ =
1.0, λ = 0.5 and AWAC-MCEP with λ̃ = 1.0 and λe = 0.5.

Performance of the extra evalua-
tion policy. Now, we investigate the
performance of the introduced evalu-
ation policy πe. For TD3BC, we set
the parameter α = {2.5, 10.0}. A
large α indicates a milder constraint.
After that, we train TD3BC-MCEP
with α̃ = 2.5 and αe = 10.0. For
AWAC, we trained AWAC with the
λ = {1.0, 0.5} and AWAC-MCEP
with λ̃ = 1.0 and λe = 0.5.

The results are shown in Figure 7.
The scores for different datasets are
grouped for each domain. By com-
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paring TD3BC of different α values,
we found a milder constraint (α =
10.0) brought performance improvement in hopper tasks but degrades the performance in walker2d
tasks. The degradation is potentially caused by unstable value estimates (see experiment at sec-
tion 5.2). Finally, the evaluation policy (αE = 10.0) with a target policy of α̃ = 2.5 achieves
the best performance in all three tasks. In AWAC, a lower λ value brought policy improvement in
hopper tasks but degrades performances in half-cheetah and walker2d tasks. Finally, an evaluation
policy obtains the best performances in all tasks.

In conclusion, we observe consistent performance improvement brought by an extra MCEP that
circumvents the tradeoff brought by the constraint.

Figure 8: Left: TD3BC-EP with α = 1.0, α = 2.5 and
α = 10.0. Right: AWAC-EP with λ = 1.4, λ = 1.0 and
λ = 0.6.

Constraint strengths of the evalu-
ation policy. We set up two groups
of ablation experiments to investigate
the evaluation policy performance
under different constraint strengths.
For TD3BC-MCEP, we tune the con-
straint strength by setting the Q nor-
malizer hyper-parameter α. The tar-
get policy is fixed to α̃ = 2.5. We
pick three strengths for evaluation
policy αe = {1.0, 2.5, 10.0} to create
more restrictive, similar, and milder
constraints, respectively. For AWAC-
MCEP, the target policy has λ̃ =
1.0. However, it is not straightfor-
ward to create a similar constraint for
the evaluation policy as it has a different policy improvement objective. We set λe = {0.6, 1.0, 1.4}
to show how performance changes with different constraint strengths.

The performance improvements over the target policy are shown in Figure 8. For TD3BC-MCEP, a
more restrictive constraint (αe = 1.0) for the evaluation causes a significant performance drop. With
a similar constraint (α̃ = αe = 2.5), the performance is slightly improved in two domains. When
the evaluation policy has a milder constraint (αe = 10), significant performance improvements
are observed in all 3 domains. The right column presents the results of AWAC-MCEP. Generally,
the performance in hopper tasks keeps increasing with milder constraints (smaller λ) while the half-
cheetah and walker2d tasks show performances that are enhanced from λ = 1.4 to λ = 1 and similar
performances between λ = 1 and λ = 0.6. It is worth noting that the evaluation policy consistently
outperforms the target policy in halfcheetah and hopper domains. On the walker2d task, a strong
constraint (λ = 1.4) causes a performance degradation.

In conclusion, for both algorithms, we observe that on evaluation policy, a milder constraint obtains
higher performance than the target policy while a restrictive constraint may harm the performance.

5.5 ESTIMATED Q VALUES FOR THE LEARNED EVALUATION POLICIES

To compare the performance of the policies on the learning objective (maximizing the Q values),
we visualze Q differences between the policy action and the data action Q(s, π(s)) − Q(s, a) in
the training data (Figure 12, 13). We find that both the target policy and the MCEP have larger Q
estimations than the behavior actions. Additionally, MCEP generally has higher Q values than the
target policy, indicating that the MCEP is able to move further toward large Q values.

6 CONCLUSION

This work focuses on the policy constraints methods where the constraint addresses the tradeoff
between stable value estimate and evaluation performance. While to what extent the constraint
achieves the best results for each end of this tradeoff remains unknown, we first investigate the
constraint strength range for a stable value estimate and for evaluation performance. Our findings
indicate that test time inference requires milder constraints that can go beyond the range of stable
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value estimates. We propose to use an auxiliary mildly constrained evaluation policy to circumvent
the above-mentioned tradeoff and derive a performant evaluation policy. The empirical results on
3 policy constraints methods show that MCEP is general and can obtain significant performance
improvement. The evaluation on high-dimensional humanoid tasks verifies that the proposed method
is powerful to tackle distributional shifts.

Limitations. Although the MCEP is able to obtain a better performance, it depends on stable value
estimation. Unstable value learning may crash both the target policy and the evaluation policy. While
the target policy may recover its performance by iterative policy improvement and policy evaluation,
we observe that the evaluation policy may fail to do so. Therefore, a restrictive constrained target
policy that stabilizes the value learning is essential for the proposed method.
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A APPENDIX

A.1 IMPLEMENTATIONS AND HYPER-PARAMETERS FOR D4RL TASKS

For CQL, we reported the results from the IQL paper (Kostrikov et al., 2022) to show CQL results
on ”-v2” tasks. For IQL, we use the official implementation (Kostrikov, 2022) to obtain a gen-
erally similar performance as the ones reported in their paper. Our implementations of TD3BC,
TD3BC-MCEP, AWAC, and AWAC-MCEP are based on (Kostrikov, 2022) framework. In all re-
implemented/implemented methods, clipped double Q-learning (Fujimoto et al., 2018) is used. In
TD3BC and TD3BC-MCEP, we keep the state normalization proposed in (Fujimoto & Gu, 2021)
but other algorithms do not use it. For EQL and DQL, we use their official implementation and
DQL-MCEP is also built upon the released codebase Wang et al., 2023.

The hyper-parameters used in the experiments are listed in Table 2.

batch size BC IQL AWAC AWAC-MCEP TD3BC TD3BC-MCEP
actor LR 1e-3 3e-4 3e-5 3e-5 3e-4 3e-4

actorˆe LR - 3e-5 - 3e-4
critic LR - 3e-4
V LR - 3e-4 -

actor/critic network (256, 256)
discount factor 0.99
soft update τ - 0.005

dropout 0.1 -
Policy TanhNormal Deterministic

MuJoCo Locomotion
τ for IQL - 0.7 -

λ/λ̃ - 1/λ = 3 1.0 -
λe - 0.6 -
α/α̃ - 2.5
αe - 10.0

Table 2: Hyper-parameters.
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A.2 DATA COLLECTION AND HYPERPARAMETERS TUNNING FOR HUMANOID TASKS

Hyperparameters. In this experiment, we select Top-10 Behavior cloning, TD3BC and IQL
as our baselines. For Top-10 Behavior cloning, only 10% data of highest returns are selected
for learning. For TD3BC, we searched the hyperparameter α = {0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0}.
For IQL, we searched the expectile hyperparameter τ = {0.6, 0.7, 0.8, 0.9} and the policy ex-
traction hyperparameter λ = {0.1, 1.0, 2.0, 3.0}. For CRR, we tune the advantage coefficiency
β = {0.1, 0.6, 0.8, 1.0, 1.2, 5.0}. For TD3BC-MCEP, we searched the α̃ = {0.1, 0.5, 1.0, 2.0, 3.0}
and αE = {3.0, 4.0, 5.0, 10.0}. The final selected hyperparameters are listed in Table 3. For CRR,
we implement the CRR exp version based on (Hoffman et al., 2020). This version is considered as it
outperforms other baselines in (Wang et al., 2020) in complex environments such as humanoid. We
also applied Critic Weighted Policy as well as an argmax version of it (CRR-argmax). These design
options result in CRR, CRR-CWP and CRR-Argmax variants. In Figure 6, we report the most per-
formant CRR variant for each task. Among all its variants, CRR-Argmax shows better performance
in both the medium and the medium-replay while CRR performs the best in the medium-expert task.

batch size BC IQL TD3BC TD3BC-MCEP
actor LR 1e-3 3e-4 3e-4 3e-4

actorˆe LR - - 3e-4
critic LR - 3e-4
V LR - 3e-4 -

actor/critic network (256, 256)
discount factor 0.99
soft update τ - 0.005

dropout 0.1 -
Policy TanhNormal Deterministic

Humanoid-medium-v2
τ for IQL - 0.6 -

λ/λ̃ - 1 -
α/α̃ - 1 0.5
αe - 3

Humanoid-medium-replay-v2
τ for IQL - 0.6 -

λ/λ̃ - 0.1 -
α/α̃ - 0.5 1.0
αe - 10

Humanoid-medium-expert-v2
τ for IQL - 0.6 -

λ/λ̃ - 0.1 -
α/α̃ - 2 0.5
αe - 3

Table 3: Hyper-parameters.

Humanoide Data Collection. In the table below, we provide details of the collected data.

Task # of trajectories # of samples Mean of Returns
Humanoid Medium 2488 1M 1972.8

Humanoid Medium Replay 3008 0.502M 830.2
Humanoid Medium Expert 3357 1.99M 2920.5

Table 4: Dataset statistics for humanoid offline data.

A.3 TASK SPECIFIC PARAMETERS FOR TD3BC AND TD3BC-MCEP

To investigate the optimal policy constraint strengths, we search this hyperparameter for TD3BC
and TD3BC-MCEP. Their optimal values and the corresponding performance improvement are vi-
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sualized in Figure 9. As we observed, in 7 of the 9 tasks, the optimal policies found by TD3-MCEP
outperform optimal policies found by TD3BC. In all medium tasks, though the optimal constraint
values are the same for TD3BC and TD3BC-MCEP, TD3BC-MCEP outperformance TD3BC. This
is benefitted by that relaxing the constraint of evaluation policy does not influence the value esti-
mate. For TD3BC, milder constraint might cause unstable value estimate during training. In all
medium-replay tasks, we found optimal constraints for TD3BC-MCEP are milder than TD3BC,
which verifies the requirements of milder constraints 5.2.

Figure 9: Left: Optimal αE values for the evaluation policy of TD3BC-MCEP, with a fixed α = 2.5
for the target policy. Optimal α̃ values for TD3BC. Red areas indicate the α values for TD3BC
that raises Q-value explosion (in one or more training of a 5-seed training). Right: Performance
difference between the evaluation policy of TD3BC-MCEP and the actor of TD3BC, using the αE
(α) values shown in the left figure.

A.4 AN INVESTIGATION OF OTHER METHODS FOR INFERENCE-TIME POLICY IMPROVEMENT

The MCEP aims to improve the inference time performance without increasing the Bellman estimate
error. Previous works also propose to use the on-the-fly inference-time policy improvement methods.
For example, (Wang et al., 2020) proposes the Critic Weighted Policy (CWP), where the critic is used
to construct a categorical distribution for inference-time action selection. Another simple method
is selecting the action of the largest Q values, namely Argmax. In this section, we compare the
performance of TD3BC and TD3BC-MCEP under different test-time policy improvement methods.

The results are presented in Table 5 and 6. Both the Argmax and the CWP methods select an
action from an action set. We generate this action set by adding Gaussian noise to the outputs of
the deterministic policy. The std is the noise scale and N is the size of this action set. From the
results, we observe that CWP and Argmax help improve the performance of both the TD3BC and
TD3BC-MCEP. It is worth noting that, in medium task, the Argmax method improves the TD3BC
to the same level as TD3BC-MCEP. But in meidum-replay and medium-expert tasks, the improved
performances are still worse than the TD3BC-MCEP. On TD3BC-MCEP, applying Argmax and
CWP further improves policy performances.

In conclusion, the inference-time performance could be improved by utilizing the methods men-
tioned above but MCEP shows a more significant policy improvement and does not show conflict
with these on-the-fly methods.
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Table 5: TD3BC with inference-time policy improvement. The original policy has returns 2483.9,
965.4 and 3898.2 for medium, medium-replay and medium-expert, respectively.

Game Argmax CWP
N\std 0.01 0.02 0.05 0.1 0.01 0.02 0.05 0.1

medium
20 2462.4 2944.5 3098.9 3511.1 2441.4 2689.8 2755.4 3113.2
50 2564.2 2836.0 2956.6 3156.3 2159.8 2588.6 2462.1 2839.6

100 2857.0 2369.8 3122.0 3266.8 2607.6 2665.8 2722.5 2584.1

medium-replay
20 895.3 1042.3 1136.7 1524.1 973.9 931.9 932.2 1242.7
50 994.6 976.7 1160.2 1664.9 974.7 1030.3 1002.1 1171.1

100 971.7 1049.0 1232.2 1574.7 874.2 1023.5 973.0 1232.9

medium-expert
20 3861.7 4068.4 4131.0 4585.3 4181.1 4478.3 3904.0 3636.7
50 4460.6 4012.2 4612.9 4603.0 3987.0 4068.9 3995.1 4214.7

100 4130.8 4141.7 4158.3 4421.4 4145.3 3634.6 3933.9 3788.3

Table 6: TD3BC-MCEP with inference-time policy improvement. The original policy has returns
2962.8, 4115.6 and 4829.2 for medium, medium-replay and medium-expert, respectively.

Game Argmax CWP
N\std 0.01 0.02 0.05 0.1 0.01 0.02 0.05 0.1

medium
20 2368.2 2871.4 2924.1 3392.8 2670.5 2710.0 3146.5 2987.9
50 2822.1 3046.3 3283.9 3861.7 2612.9 2787.1 2718.9 2841.7

100 3405.1 2808.2 3264.5 3751.3 3003.3 2896.8 2748.9 2727.2

medium-replay
20 4277.3 4071.5 4092.7 4253.4 4033.1 4200.0 4254.4 4167.0
50 4225.5 4159.7 4028.4 4210.8 4135.5 4219.1 4375.7 4230.3

100 4190.3 3966.4 4138.4 4270.1 4328.5 4266.9 4275.7 4142.5

medium-expert
20 4752.8 4956.7 4880.3 4887.1 4736.4 4710.8 4748.7 4942.1
50 4930.7 5018.2 4614.2 4899.9 5053.4 5001.4 4808.8 4670.6

100 4616.8 4800.9 4700.9 4648.0 4588.1 4770.6 4934.3 4855.3

A.5 DESIGN OPTION OF EVALUATION POLICY UPDATE

As the evaluation policy is not involved in the actor-critic’s iterative update, one might want to update
the evaluation afterward, i.e., update the evaluation from the critic after the actor-critic converges,
namely afterward updates. While this is a valid design option, our method simultaneously updates
the target policy and the evaluation (simultaneous updates). In this manner, their updates can
be parallelized and no further time is required based on the actor-critic training. Figure 10 and
11 present the convergence for these two design options. From the results, we observe a faster
convergence of afterward updates in some tasks. However, there are also many tasks where the
afterward updates method converges after a million steps. For methods of slow training (e.g. DQL),
this afterward training time becomes significant.

A.6 FULL RESULTS FOR ESTIMATED Q VALUES OF THE LEARNED EVALUATION POLICIES

Figure 12 and Figure 13 show the visualization of the estimated Q values achieved by the target
policy and evaluation policy.
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Figure 10: The comparison of simultaneous updates and afterward updates for the evaluation for
TD3BC-MCEP. First row: halfcheetah. Second row hopper. Third row: walker2d.

Figure 11: The comparison of simultaneous updates and afterward updates for the evaluation for
AWAC-MCEP. First row: halfcheetah. Second row hopper. Third row: walker2d.
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(a) medium-expert (b) medium (c) medium-replay (d) random

Figure 12: TD3BC-MCEP. First row: halfcheetah. Second row hopper. Third row: walker2d.

(a) medium-expert (b) medium (c) medium-replay (d) random

Figure 13: AWAC-MCEP. First row: halfcheetah. Second row: hopper. Third row: walker2d.
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