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ABSTRACT

Automatic Music Transcription (AMT), inferring musical notes from raw audio, is
a challenging task at the core of music understanding. Unlike Automatic Speech
Recognition (ASR), which typically focuses on the words of a single speaker,
AMT often requires transcribing multiple instruments simultaneously, all while
preserving fine-scale pitch and timing information. Further, many AMT datasets
are “low-resource”, as even expert musicians find music transcription difficult and
time-consuming. Thus, prior work has focused on task-specific architectures, tai-
lored to the individual instruments of each task. In this work, motivated by the
promising results of sequence-to-sequence transfer learning for low-resource Nat-
ural Language Processing (NLP), we demonstrate that a general-purpose Trans-
former model can perform multi-task AMT, jointly transcribing arbitrary com-
binations of musical instruments across several transcription datasets. We show
this unified training framework achieves high-quality transcription results across
a range of datasets, dramatically improving performance for low-resource instru-
ments (such as guitar), while preserving strong performance for abundant instru-
ments (such as piano). Finally, by expanding the scope of AMT, we expose the
need for more consistent evaluation metrics and better dataset alignment, and pro-
vide a strong baseline for this new direction of multi-task AMT.1

1 INTRODUCTION

Recorded music often contains multiple instruments playing together; these multiple “tracks” of a
song make music transcription challenging for both algorithms and human experts. A transcriber
must pick each note out of the audio mixture, estimate its pitch and timing, and identify the instru-
ment on which the note was performed. An AMT system should be capable of transcribing multiple
instruments at once (Multitrack) for a diverse range of styles and combinations of musical instru-
ments (Multi-Task). Despite the importance of Multi-Task Multitrack Music Transcription (MT3),
several barriers have prevented researchers from addressing it. First, no model has yet proven capa-
ble of transcribing arbitrary combinations of instruments across a variety of datasets. Second, even
if such models existed, no unified collection of AMT datasets has been gathered that spans a variety
of AMT tasks. Finally, even within current AMT datasets, evaluation is inconsistent, with different
research efforts using different metrics and test splits for each dataset.

Compounding this challenge, many music datasets are relatively small in comparison to the datasets
used to train large-scale sequence models in other domains such as NLP or ASR. Existing open-
source music transcription datasets contain between one and a few hundred hours of audio (see Ta-
ble 1), while standard ASR datasets LibriSpeech (Panayotov et al., 2015) and CommonVoice (Ardila
et al., 2020) contain 1k and 9k+ hours of audio, respectively. LibriSpeech alone contains more hours
of audio than all of the AMT datasets we use in this paper, combined. Taken as a whole, AMT fits
the general description of a “low-resource” task, where data is scarce.

In this work, we provide a strong empirical contribution to the field by overcoming each of these
barriers and enabling Multi-Task Multitrack Music Transcription (MT3). Our contributions include:
∗Paul G. Allen School of Computer Science & Engineering. Work performed as a Google Research intern.
†Interactive Audio Lab, Northwestern University. Work performed as a Google Student Researcher.
1We encourage reviewers to view more extensive transcription results, including audio examples, at

https://storage.googleapis.com/mt3/index.html.
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Figure 1: MT3 is capable of transcribing an arbitrary number of instruments from raw audio spec-
trograms. Shown here are real 4-second audio clips, pianorolls reconstructed from the model’s
tokenized output, and the corresponding instrument labels (additional Slakh2100 instruments omit-
ted due to space). Note that in some cases, multiple notes predicted from a monophonic instrument
(such as clarinet or French horn) reflects an ensemble containing multiple players of that instrument.

Unified framework for training: We define a tokenization scheme with a compact and flexible vo-
cabulary to convert between model output tokens and multitrack MIDI files, enabling a sequence-to-
sequence approach inspired by Raffel et al. (2019) and Xue et al. (2020) that supports datasets with
different combinations of instruments. This allows us to simultaneously leverage several datasets
which were previously only used in isolation due to differences in instrumentation.

Benchmark collection of diverse datasets: We assemble six multitrack AMT datasets, spanning a
variety of dataset sizes, styles, and instrumentations. Together they form the largest known collection
publicly available for multi-task AMT training.

Consistent evaluation: We define standard test set splits and apply a consistent set of note-based
metrics across all six datasets. We also introduce a new instrument-sensitive transcription metric to
jointly evaluate note and instrument accuracy.

SOTA Baseline: Training an off-the-shelf T5 architecture with our framework, we realize strong
baseline models that achieve SOTA transcription performance on each individual multitrack dataset,
outperforming prior dataset-specific transcription models as well as professional-quality DSP-based
transcription software. Our model, which we refer to as MT3, demonstrates very high instrument
labeling accuracy across all six datasets, even when many instruments are simultaneously present,
and is robust to the grouping of instruments.

Improving low-resource AMT: By training a single model across a mixture of all six datasets,
we find that MT3 performance dramatically improves for low-resource datasets over the baseline
models (up to 260% relative gain), while preserving strong performance on high-resource datasets.

2 RELATED WORK

2.1 TRANSFORMERS FOR SEQUENCE MODELING

The Transformer architecture, originally proposed in Vaswani et al. (2017), has recently demon-
strated strong performance across many sequence modeling tasks in several domains. For example,
T5 (Raffel et al., 2019) demonstrated that many language tasks previously addressed with separate
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models could be addressed using a single text-to-text encoder-decoder Transformer model. Extend-
ing this approach, mT5 (Xue et al., 2020) used a single Transformer to model multiple languages,
demonstrating that a unified architecture could also serve as a general multilingual model, lever-
aging high-resource language datasets to improve model performance on lower-resource datasets.
Other prominent examples of Transformer-based architectures for sequence modeling include BERT
(Devlin et al., 2018) and the GPT family of models, most prominently GPT-3 (Brown et al., 2020).

Transformers have also been applied to some audio modeling tasks. For example, Transformer-
based models have been used for audio classification (Gong et al., 2021; Verma & Berger, 2021),
captioning (Mei et al., 2021), compression (Dieleman et al., 2021), speech recognition (Gulati et al.,
2020), speaker separation (Subakan et al., 2021), and enhancement (Koizumi et al., 2021). Trans-
formers have also been used for generative audio models (Dhariwal et al., 2020; Verma & Chafe,
2021), which in turn have enabled further tasks in music understanding (Castellon et al., 2021).

2.2 MUSIC TRANSCRIPTION

Historically, music transcription research has focused on transcribing recordings of solo piano (Po-
liner & Ellis, 2006; Böck & Schedl, 2012; Kelz et al., 2016). As a result, there are a large number
of transcription models whose success relies on hand-designed representations for piano transcrip-
tion. For instance, the Onsets & Frames model (Hawthorne et al., 2017) uses dedicated outputs for
detecting piano onsets and the note being played; Kelz et al. (2019) represents the entire ampli-
tude envelope of a piano note; and Kong et al. (2020) additionally models piano foot pedal events (a
piano-specific way of controlling a note’s sustain). Single-instrument transcription models have also
been developed for other instruments such as guitar (Xi et al., 2018) and drums (Cartwright & Bello,
2018; Callender et al., 2020), though these instruments have received less attention than piano.

Although not as widespread, some multi-instrument transcription systems have been developed. For
example, Manilow et al. (2020) presents the Cerberus model, which simultaneously performs source
separation and transcription for a fixed and predefined set of instruments. Lin et al. (2021) also
perform both separation and transcription, albeit based on an audio query input and with the addition
of synthesis. ReconVAT (Cheuk et al., 2021) uses an approach based on U-Net and unsupervised
learning techniques to perform transcription on low-resource datasets; however, the model does not
predict instrument labels, instead outputting a single pianoroll that combines all instruments into a
single “track”. A similar limitation applies to the early transcription system introduced alongside
the MusicNet dataset by Thickstun et al. (2016). Tanaka et al. (2020) uses a clustering approach to
separate transcribed instruments, but the model output does not include explicit instrument labels.
In contrast, our model outputs a stream of events representing notes from an arbitrary number of
instruments with each note explicitly assigned to an instrument; it learns to detect the presence (or
absence) of instruments directly from audio spectrograms (see Figure 1).

The work most closely related to ours is Hawthorne et al. (2021), which uses an encoder-decoder
Transformer architecture to transcribe solo piano recordings. Here, we extend their approach to
transcribe polyphonic music with an arbitrary number of instruments. We adhere to their philos-
ophy of using components as close to “off-the-shelf” as possible: spectrogram inputs, a standard
Transformer configuration from T5, and MIDI-like output events.

3 TRANSCRIPTION MODEL

At its core, music transcription can be posed as a sequence-to-sequence task, where the input is a
sequence of audio frames, and the output is a sequence of symbolic tokens representing the notes
being played. A key contribution of this work is to frame multi-instrument transcription, where
different source instruments are present in a single input audio stream, within this paradigm and
allow the model to learn which instruments are present in the source audio using Transformer model
paired with a novel vocabulary designed to support this general task.

3.1 TRANSFORMER ARCHITECTURE

A key contribution of our work is the use of a single generic architecture — Transformers via T5
(Raffel et al., 2019) — to address a variety of tasks previously tackled using complex, handcrafted,
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Figure 2: Tokenization/detokenization, as described in Section 3.2. MIDI data (left, represented
here as a multitrack “pianoroll”) can be tokenized into MIDI-like target tokens for training (right).
Output tokens using the same vocabulary can be deterministically decoded back into MIDI data.

dataset-specific architectures. The T5 architecture is an encoder-decoder Transformer model which
closely follows the original form in Vaswani et al. (2017).

In the T5 architecture, a sequence of inputs is mapped to a sequence of learned embeddings plus fixed
positional embeddings; we use absolute positional embeddings instead of the bucketed “relative”
embeddings used in Raffel et al. (2019) to ensure that all positions can be attended to with equal
resolution. The model uses a series of standard Transformer self-attention “blocks” in both the
encoder and decoder. In order to produce a sequence of output tokens, the model uses greedy
autoregressive decoding: an input sequence is fed in, the output token with the highest predicted
probability of occurring next is appended to the sequence, and the process is repeated until an end-
of-sequence (EOS) token is produced. We use the T5 “small” model, which contains approximately
60 million parameters. While much larger models are commonly used in language modeling tasks,
we found that increasing model size tended to exacerbate overfitting. Full details on the Transformer
architecture used in this work are given in Appendix A. Additionally, we make our code available
along with the release of this paper at https://github.com/magenta/mt3.

3.2 MODEL INPUTS AND OUTPUTS

As shown in Figure 1, MT3 uses log Mel spectrograms as inputs. For the outputs, we construct a
token vocabulary inspired by the MIDI specification, which we refer to as “MIDI-like” because it
contains a subset of the original MIDI2 specification (1996) (e.g. our vocabulary does not represent
“control change” MIDI events). This output is a modification of the vocabulary of Hawthorne et al.
(2021) with the following differences: (1) addition of instrument change tokens, which allow for
multiple instruments to be represented in a single event stream; (2) removal of velocity, as most of
our training datasets do not contain velocity annotations (and there is no standardized method for
coding velocity across datasets); (3) “ties” to better handle notes that span multiple segments. The
vocabulary, illustrated in Figure 2, consists of the following token types:

Instrument (128 values): Indicates which instrument the following messages should be directed to.
The specified instrument will be used for all subsequent events until the next Instrument event. The
choice of 128 distinct values is selected to match the original General MIDI specification, which
contains 128 “programs” used to designate specific instruments. We further discuss the challenges
of representing instruments using program numbers below.

Note (128 values): Represents a note-on or note-off event for one of the 128 MIDI pitches.

On/Off (2 values): Changes whether subsequent Note events are interpreted as note-on or note-off.

Time (205 values): Indicates the absolute time location of one or more events within a segment,
quantized to 10 ms intervals. This time applies to all subsequent events until the next Time event,
which allows for an arbitrary number of notes to occur at a given time point. Time events must occur

2MIDI (Musical Instrument Digital Interface) is an industry standard music technology protocol used to
represent musical data and allow communication between musical devices. (https://www.midi.org/)
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in chronological order. (The number of possible Time values depends on the Transformer’s input
sequence length, which is 2.048 seconds for all of our experiments.)

Drum (128 values): Represents a drum onset from one of 128 drum types in the General MIDI
standard. Drums are not a focus of this work, but we include them for completeness.

End Tie Section (1 value): Ends the “tie” section at the beginning of a segment (see below).

EOS (1 value): Used to indicate the end of a sequence.

A key contribution of this work is the demonstration that this highly general and flexible output
vocabulary can be used to learn a single transcription model that works well across different instru-
ments, datasets, and orchestrations, without manual tuning of the model or vocabulary. In contrast,
prior works have been limited to models which transcribe only a single instrument (Hawthorne et al.,
2021), contain separate transcription “heads” for a fixed set of instruments (Manilow et al., 2020),
or ignore the instrument dimension entirely and only transcribe the notes (Cheuk et al., 2021).

One limitation of sequence models applied to audio is that most audio sequences are too large to fit
in memory when modeling using a Transformer architecture, which requires O(n2) memory with
respect to sequence length for the self-attention blocks. In order to address these constraints, we
use the procedure described by Hawthorne et al. (2021): audio is split into smaller, non-overlapping
segments, with input spectrograms and event tokens extracted from each segment. The model pro-
cesses each segment independently. The same procedure is used for both training and inference;
however, at inference time we take the additional step of concatenating the decoded events from all
segments into a single sequence to reconstruct the full example.

One issue with transcribing cropped audio segments independently is that a note may span multiple
segments. While our basic approach is often able to handle such cases, we find that occasionally
the model will forget to “turn off” a note. To ameliorate this problem, we introduce a “tie” section
at the beginning of each segment where the model must declare which notes are already active;
that is, the model is trained to emit Program and Pitch tokens for already-active notes, followed by
the End Tie Section token, followed by the events of the segment. When concatenating segments
to reconstruct an entire transcribed example, we end any notes not explicitly declared in the tie
section. This allows the model to fail gracefully when it detects a note-on in one segment but not
the corresponding note-off in a subsequent segment.

3.3 MULTI-TASK MIXTURE

In addition to removing the cumbersome task of constructing specialized architectures and loss
functions for different instrumentations and datasets, our general output vocabulary also allows our
model to be trained on a mixture of several datasets simultaneously, similar to how multilingual
translation models such as mT5 are trained on several languages (Xue et al., 2020). This approach
not only simplifies model design and training, but also increases the amount and diversity of training
data available to the model. As noted previously, scarcity of training data has been a major challenge
for prior AMT modeling efforts. This mixture approach has not previously been demonstrated in the
music transcription literature; instead, prior works have often focused on training separate models
for individual datasets (i.e. Cheuk et al. (2021)). We note that “mixing” here refers to including data
from multiple datasets within a single training batch.

In order to balance model performance on low- and high-resource datasets, we use a temperature
sampling strategy for the mixing as follows: if dataset i has ni examples, we sample an example from
that dataset with probability (ni /

∑
j nj)

0.3, similar to mT5 (Xue et al., 2020). This has the effect
of increasing the frequency with which the model observes examples from low-resource datasets
during training, while observing examples from high-resource datasets with lower frequency.

4 EXPERIMENTS

We conduct a series of experiments to test our approach. In particular, we evaluate the overall
transcription quality of our model across six datasets including both high- and low-resource datasets,
evaluate the effect of instrument groupings, and use our results to identify labeling issues with certain
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Dataset Hrs. Audio Num. Songs Num. Instr. Instr. Per Song Align Low-Resource Synthetic Drums

Slakh2100 969 1405 35 4–48 Good X X
Cerberus4 543 1327 4 4 Good X X
MAESTROv3 199 1276 1 1 Good
MusicNet 34 330 11 1–8 Poor X
GuitarSet 3 360 1 1 Good X
URMP 1 44 14 2–5 Fair X

Table 1: Datasets used in this paper.

datasets. We also assess our models’ generalization to out-of-domain data with a series of leave-one-
dataset-out experiments and use our results to identify label quality issues in Section D.

4.1 DATASETS

Our experiments use six datasets of varying size, recording process, instrumentation, and genre. In
addition to demonstrating the flexibility of our approach, this also allows us to compare to a number
of different baseline models, each of which can only be fairly applied to specific datasets, and to
offer a single SOTA baseline across all datasets using MT3. The six datasets are described briefly
below; we provide further information about these datasets in Table 1 and Appendix B.

MAESTROv3: MAESTROv3 (Hawthorne et al., 2018) is collected from a virtual classical pi-
ano competition, where audio and detailed MIDI data are collected from performers playing on
Disklavier pianos that electronically capture the performance of each note in real time.

Slakh2100: Slakh2100 consists of audio generated by rendering MIDI files using professional-
grade, sample-based synthesis software. Its construction is detailed in Manilow et al. (2019). During
training, we use a form of data augmentation to combine together different subsets of the individual-
instrument mixes, which we describe in Appendix B.

Cerberus4: Cerberus4 is derived from the Slakh2100 dataset, obtained by mixing all combinations
of the four instruments (guitar, bass, drums, piano) in tracks where those instruments are active.
These are also the instruments used by the 4-instrument Cerberus model of Manilow et al. (2020).

GuitarSet: GuitarSet (Xi et al., 2018) is composed of live guitar performances of varied genre,
tempo, and style, recorded using a high-precision hexaphonic pickup that individually captures the
sound of each guitar string. MIDI labels for each track are derived from these recordings.

MusicNet: MusicNet (Thickstun et al., 2016) consists of freely-licensed classical music record-
ings from a variety of instruments and ensemble types paired with human-generated transcriptions
crowdsourced from expert human transcribers. Since labels are primarily aligned with dynamic time
warping, they are less accurate than other datasets.

URMP: The University of Rochester Multi-Modal Music Performance (URMP) Dataset (Li et al.,
2018) is composed of multi-instrument classical pieces with diverse instrumentation. The individual
instruments are recorded separately and mixed, and the aligned MIDI labels come from human
annotators who corrected f0 curves derived from the pYIN (Mauch & Dixon, 2014) algorithm.

We discuss the label alignment quality of MusicNet and URMP in Appendix D.2. In the phrasing of
the NLP literature, we will refer to GuitarSet, MusicNet, and URMP as “low-resource” datasets, as
they contain only 3, 34, and 1.3 hours of total audio, respectively. This makes these datasets chal-
lenging to learn from — particularly MusicNet and URMP, which contain many distinct instruments
with several instruments per track, as shown in Table 1.

4.2 EVALUATION

The metrics used to evaluate multi-instrument transcription models in the literature are inconsistent,
even when ignoring the multi-instrument vs. single-instrument distinction. For example, several
variants of “F1 score” can be computed using the standard library for music transcription evaluation
mir eval (Raffel et al., 2014), which differ based on whether note offsets (the time at which a
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note ends) should be considered in addition to pitch values and note onsets (the time at which a note
begins) in evaluating whether a prediction is correct.

To provide the fairest and most complete comparison to existing work, we evaluate models on each
dataset using three standard measures of transcription performance: Frame F1, Onset F1, and Onset-
Offset F1. We use the standard implementation of these metrics from the mir eval Python toolkit.
For each metric, mir eval uses bipartite graph matching to find the optimal pairing of reference
and estimated notes, then computes precision, recall, and F1 score using the following criteria:

Frame F1 score uses a binary measure of whether a pianoroll-like representation of the predictions
and targets match. Each second is divided into a fixed number of “frames” (we use 62.5 frames per
second), and a sequence of notes is represented as a binary matrix of size [frames× 128] indicating
the presence or absence of an active note at a given pitch and time.

Onset F1 score considers a prediction to be correct if it has the same pitch and is within ±50 ms of
a reference onset. This metric ignores note offsets.

Onset-Offset F1 score is the strictest metric commonly used in the transcription literature. In ad-
dition to matching onsets and pitch as above, notes must also have matching offsets. The criterion
for matching offsets is that offsets must be within 0.2 · reference duration or 50 ms from each other,
whichever is greater: |offset diff| ≤ max(0.2 · reference duration, 50 ms) (Raffel et al., 2014).

While these three metrics are standard for music transcription models, they offer only a limited view
of the performance of a multi-instrument model, as none consider which instrument is predicted to
play which notes in a sequence. This is due to the facts that (1) most prior music transcription models
were limited to single-instrument transcription, and (2) even most multi-instrument transcription
models did not assign specific instruments to predicted notes; we also believe the lack of a true
multi-instrument metric has led to this gap in prior work. Thus, we also propose and evaluate our
models’ performance using a novel metric which we call multi-instrument F1.

Multi-instrument F1 adds to the Onset-Offset F1 score the additional requirement that the instru-
ment predicted to play a note must match the instrument of the reference note. This is a stricter
metric than the MV2H metric proposed in McLeod & Steedman (2018), as MV2H ignores off-
sets and also eliminates notes from ground-truth during evaluation of the instrument labels when
the pitch is not correctly detected; multi-instrument F1 is also more directly related to the existing
transcription metrics widely used in prior works.

Due to the limitations of previous models, it is often not possible to compute a multi-instrument F1
score for previous works; as a result, we only provide this metric for our model (shown in Table 3).

We also evaluate our models’ ability to transfer to unseen datasets by conducting “leave-one-dataset-
out” (LODO) training experiments. These results demonstrate the generality of our approach in
transferring to entirely new datasets, and are also useful in evaluating the impact of the various
datasets used on the final model performance.

Two of our datasets (Slakh2100, Cerberus4) contain drums. When evaluating our model, we match
reference and estimated drum hits using onset time and General MIDI drum type (as the concept of
a “drum offset” is not meaningful); a more rigorous evaluation methodology focused specifically on
drums can be found in Callender et al. (2020).

4.2.1 BASELINES

For each dataset, we compare to one or more baseline models. In addition to comparing to previous
works which developed machine learning models for multi-instrument transcription on one or more
of our datasets, we also compare our results to a professional-quality DSP software for polyphonic
pitch transcription, Melodyne3. Details on our usage of Melodyne are provided in Section C.

As a consequence of the dataset-specific training and architectures mentioned above, not all models
are appropriate for all datasets. As a result, we only provide results for baseline models on datasets
containing the instruments for which the original model was designed: for example, we evaluate
the Cerberus model (Manilow et al., 2020) only on the Cerberus4 dataset, which contains the four
instruments for which the model contains specific transcription heads, and GuitarSet, where we

3https://www.celemony.com/
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Model MAESTRO Cerberus4 GuitarSet MusicNet Slakh2100 URMP
Frame F1

Hawthorne et al. (2021) 0.66 – – – – –
Manilow et al. (2020) – 0.63 0.54 – – –
Cheuk et al. (2021) – – – 0.48 – –
Melodyne 0.41 0.39 0.62 0.13 0.47 0.30

MT3 (single dataset) 0.88 0.85 0.82 0.60 0.78 0.49
MT3 (mixture) 0.86 0.87 0.89 0.68 0.79 0.83

Onset F1
Hawthorne et al. (2021) 0.96 – – – – –
Manilow et al. (2020) – 0.67 0.16 – – –
Cheuk et al. (2021) – – – 0.29 – –
Melodyne 0.52 0.24 0.28 0.04 0.30 0.09

MT3 (single dataset) 0.96 0.89 0.83 0.39 0.76 0.40
MT3 (mixture) 0.95 0.92 0.90 0.50 0.76 0.77

Onset+Offset F1
Hawthorne et al. (2021) 0.84 – – – – –
Manilow et al. (2020) – 0.37 0.08 – – –
Cheuk et al. (2021) – – – 0.11 – –
Melodyne 0.06 0.07 0.13 0.01 0.10 0.04

MT3 (single dataset) 0.84 0.76 0.65 0.21 0.57 0.16
MT3 (mixture) 0.80 0.80 0.78 0.33 0.57 0.58
Mixture (∆%) -5.3 +5.2 +19.5 +54.0 +0.1 +263

Table 2: Transcription F1 scores for Frame, Onset, and Onset+Offset metrics defined in Section 4.2.
Across all metrics and all datasets, MT3 consistently outperforms the baseline systems we compare
against. Dataset mixing during training (“mixture”), specifically, shows a large performance increase
over single dataset training, especially for “low-resource” datasets like GuitarSet, MusicNet, and
URMP. Percent increase over single-dataset training for Onset+Offset F1 is shown in the last row.

only use the output of the model’s “guitar” head. (While Cerberus was not originally trained on
GuitarSet, Manilow et al. (2020) uses GuitarSet as an evaluation dataset; we compare to Cerberus
due to the lack of an alternative baseline for GuitarSet.) On MAESTRO and MusicNet, we compare
to Hawthorne et al. (2021) and Cheuk et al. (2021), which were trained on those respective datasets.

Wherever possible, we provide results from baseline models computed on the same test split used to
evaluate MT3. This may overestimate the performance of some baselines if tracks or track segments
in our validation/test sets may have been included in the training sets of the baseline models (due to
the lack of a consistent train/test/validation split for some of these datasets). In an effort to address
this issue for future work, we provide exact details to reproduce our train/test/validation splits in
Appendix B and give further details on the baselines used, including information on reproducing
our results, in Section C. For each model, we compute the reported metrics using pretrained models
provided by the original authors. The ability to provide evaluation results for a single model across
several datasets is an additional benefit of our approach and a contribution of the current work.

4.3 RESULTS

Our main results are shown in Table 2, which compares our models’ performance on the six datasets
described above. Our model achieves transcription performance exceeding the current state of the
art for each of the six datasets evaluated across all three standard transcription metrics (Frame,
Onset, and Onset + Offset F1), as shown in Table 2. This is particularly notable due to the fact,
mentioned above, that each baseline model was specifically designed (in terms of architecture and
loss function), trained, and tuned on the individual datasets listed. Additionally, our model is able
to significantly advance the state of the art on the three resource-limited datasets discussed above,
GuitarSet, MusicNet, and URMP. Table 2 also demonstrates a large gain in performance on the
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MIDI Grouping MAESTRO Cerberus4 GuitarSet MusicNet Slakh2100 URMP
Flat 0.81 0.74 0.78 0.33 0.48 0.62
MIDI Class 0.80 0.81 0.78 0.31 0.62 0.59
Full 0.82 0.76 0.78 0.34 0.55 0.50

Table 3: Multi-instrument F1 score for MT3 (mixture) trained and evaluated at different levels of
instrument granularity. The Flat grouping treats all non-drum instruments as a single instrument.
This resembles the setup of many prior “multi-instrument” transcription works which transcribe
notes played by all instruments, without respect to their source. The MIDI Class grouping maps
instruments to their MIDI class (Table 8). This creates groupings of eight program numbers each,
with general classes for piano, guitar, bass, strings, brass, etc. The Full grouping retains instruments’
program numbers as annotated in the source dataset. This requires the model to distinguish notes
played by e.g. violin, viola, cello, all of which are grouped in the “strings” MIDI Class.

resource-limited datasets when using the mixture formulation of our task, particularly for the multi-
instrument datasets MusicNet and URMP; the mixture performance leads to an Onset-Offset F1 gain
of 54% on MusicNet and 263% on URMP. Our model outperforms other baselines specifically opti-
mized for low-resource datasets, such as Cheuk et al. (2021), while also remaining competitive with
or outperforming models tuned for large single-instrument datasets, i.e. Hawthorne et al. (2021).

Instruments “in the wild” come in many different forms, and labeling exactly which sound sources
contain the same instrument is a necessary but nontrivial task. While the original General MIDI
1.0 specification (1996) provides a 1:1 mapping of program numbers to 128 instruments4 and a
coarser grouping of these instruments into “classes” of eight program numbers (Table 8), these map-
pings are necessarily reductive: not all instruments are represented in the original 128 instruments
mapped to program numbers (e.g. ukulele), and other instruments (piano, organ, guitar) include
multiple program numbers which may be desirable to treat as a single instrument for the purposes
of transcription (e.g. transcribing program numbers 32-39 as a single “bass” class). To explore the
effect of instrument label granularity, we train and evaluate models with three levels of instrument
groupings: Flat, MIDI Class, and Full, shown in Table 3. We evaluate models at these three grouping
levels according to the multi-instrument transcription metric defined in Section 4.2.

Table 3 demonstrates that our model makes few instrument label errors when it predicts onsets and
offsets correctly, even at the highest level of granularity (“Full”), as the multi-instrument F1 scores
are close to the onset-offset F1 scores in Table 2. We also provide an example transcription in Figure
3, which shows the distinct instrument tracks for an input from the Slakh2100 dataset. In addition to
our transcription results, we provide further experimental results in Appendix D. There, we assess
the ability of our approach to generalize to unseen datasets by conducting a set of leave-one-dataset-
out (LODO) experiments; we also provide evidence regarding the label quality of our datasets by
varying the onset and offset tolerance threshold used to compute F1 scores.

5 CONCLUSION AND FUTURE WORK

In this work we have shown that posing multi-instrument music transcription as a sequence-to-
sequence task and training a generic Transformer architecture simultaneously on a variety of
datasets advances the state of the art in multi-instrument transcription, most notably in the low-
resource scenario. We also introduced and applied a consistent evaluation method using note on-
set+offset+instrument F1 scores, using a standard instrument taxonomy.

Our work suggests several future research directions. As labeled data for multi-instrument tran-
scription with realistic audio is very expensive, transcription models may benefit from training on
unlabeled data, in a self- or semi-supervised fashion. There may also be value in a variety of data
augmentation strategies, e.g. mixing together unrelated examples to generate new training data.
Finally, high-quality AMT models such as ours present new frontiers for other musical modeling
tasks, such as generative music modeling (i.e. Dhariwal et al. (2020); Huang et al. (2018)); the tran-
scriptions from our model could be used as training data for a symbolic music generation model.

4https://en.wikipedia.org/wiki/General_MIDI#Program_change_events
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6 REPRODUCIBILITY STATEMENT

In conjunction with the release of this work, we will make our model code, along with the code we
used to replicate prior baseline models, available at https://github.com/magenta/mt3.

7 ETHICAL CONSIDERATIONS

One limitation of our system (and the baseline systems against which we compare) is that it is trained
on and applicable only to music from the “Western tradition”. The characteristic of Western music
most relevant to this work is that it is typically composed of discrete notes belonging to one of 12
pitch classes i.e. “C”, “C#”, “D”, etc. As such, music that does not have a well-defined mapping
onto these 12 pitch classes is outside the scope of this work. This excludes many non-Western
musical traditions such as Indian ragas and Arabic maqams, and Western genres like the blues that
rely on microtonality. These types of music would be better suited to alternate representations e.g.
single or multiple non-discretized pitch tracks. We note that such data should also be considered
“low-resource” given the low availability of transcription datasets representing such traditions, and
represent an important area for future work. See Holzapfel et al. (2019) for a user study on existing
AMT systems in this context), and Viraraghavan et al. (2020) for an approach to transcription in one
non-Western domain.
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Figure 3: 15-second excerpt of MT3 transcriptions from a mix from the Slakh2100 dataset. Black
lines indicate model input frames. Blue notes indicate “True Positive” notes with correct predicted
onset, offset, pitch, and instrument. In this segment, the model achieves an Onset-Offset F1 of
0.665. More extensive results from MT3 can be found on the companion website at https://
storage.googleapis.com/mt3/index.html.
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Model MLP Dim Num. Heads Num. Layers Embed. Dim. LR Params

T5 Small 1024 6 8 512 1e− 3 93.7M

Table 4: Details of model architecture used.

A MODEL AND TRAINING DETAILS

We use the T5 “small” model architecture described in Raffel et al. (2019), with the modifications
defined in the T5.1.1 recipe5. This is a standard Transformer architecture, and we use the imple-
mentation available in t5x6, which is built on FLAX (Heek et al., 2020) and JAX (Bradbury et al.,
2020).

All mixture models are trained for 1M steps using a fixed learning rate of 0.001. The dataset-specific
models are trained for 219 steps, as these models tended to converge much faster, particularly on the
smaller datasets. Due to computational constraints we also train the LODO models for 219 steps.

B DATASET DETAILS

This section describes the datasets used in the experiments throughout this work. Descriptive statis-
tics for each dataset are provided in Table 1. However, because not all datasets provide an of-
ficial train-test split, and because we perform preprocessing and filtering to extract suitable multi-
instrument transcription datasets from the unprocessed versions of some datasets, we provide further
details for reproducibility here.

B.1 MAESTROV3

The MAESTRO (MIDI and Audio Edited for Synchronous TRacks and Organization) v3 dataset7
(Hawthorne et al., 2018) contains 198.7 hours of piano performances captured via a Disklavier piano
equipped with a MIDI capture device which ensures fine alignment (≈3ms) between note labels and
audio waveforms. The MAESTRO dataset contains mostly classical music and only includes piano
performances (no other instruments).

MAESTRO includes a standard train/validation/test split, which ensures that the same composition
does not appear in multiple subsets. 962 performances are in the train set, 137 are in the validation
set, and 177 are in the test set. More detailed statistics on the MAESTRO dataset are available at
https://magenta.tensorflow.org/datasets/maestro.

B.2 SLAKH2100

The Lakh MIDI Dataset (Raffel, 2016) is a collection of 176,581 unique MIDI files scraped from
publicly-available sources on the Internet, spanning multiple genres. The Synthesized Lakh Dataset
(Slakh, or Slakh2100) (Manilow et al., 2019), is a dataset constructed by creating high-quality ren-
derings of 2100 files from Lakh MIDI using professional-quality virtual instruments. The 2100 files
selected all contain at least piano, bass, guitar, and drums, where each of these four instruments
plays at least 50 notes.

When training on Slakh2100, we choose 10 random subsets of at least 4 instruments from each of
the 2100 MIDI files as a form of data augmentation, expanding the number of training examples by
a factor of 10 (though individual stems will in general appear in more than one example).

We use the standard Slakh2100 train/validation/test splits for all experiments.

5https://github.com/google-research/text-to-text-transfer-transformer/
blob/main/released_checkpoints.md#t511

6https://goo.gle/t5x
7https://magenta.tensorflow.org/datasets/maestro
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B.3 CERBERUS4

We refer to as Cerberus4 another slice of the Slakh2100 dataset; in this case for each MIDI file we
extract all subsets of instruments containing (exactly) one of each of piano, guitar, bass, and drums.
This is intended to reflect the dataset construction in Manilow et al. (2020), but using entire tracks
instead of shorter segments and with no additional criteria on instrument “activity”.

Cerberus4 contains 1327 tracks representing 542.6 hours of audio. We use the Slakh2100
train/test/validation split to separate Cerberus4 tracks. The training set contains 960 tracks with
418.13 hours of audio, the test set contains 132 tracks with 46.1 hours of audio, and the validation
set contains 235 tracks with 78.4 hours of audio.

B.4 GUITARSET

GuitarSet8 is a dataset consisting of high-quality guitar recordings and time-aligned annotations.
GuitarSet contains 360 excerpts, which are the result of 6 guitarists each playing 30 lead sheets
(songs) in two versions (“comping” and “soloing”). Those 30 lead sheets are a combination of five
styles (Rock, Singer-Songwriter, Bossa Nova, Jazz, and Funk), three progressions (12 Bar Blues,
Autumn Leaves, and Pachelbel Canon), and two tempi (slow and fast). The original GuitarSet
annotations are provided in the JAMS format (Humphrey et al., 2014), which we convert to MIDI
for use with standard evaluation libraries.

There is no official train-test split for GuitarSet. We establish the following split: for every style,
we use the first two progressions for train and the final for validation. For convenience, we provide
the exact train/validation split for tracks as part of the open-source release for this paper. This split
produces 478 tracks for training, and 238 for validation.

B.5 MUSICNET

MusicNet9 (Thickstun et al., 2016) consists of 330 recordings of classical music with MIDI annota-
tions. The annotations were aligned to recordings via dynamic time warping, and were then verified
by trained musicians.

The standard train/test split for MusicNet Thickstun et al. (2016) only contains 10 test tracks and no
validation set. We perform our own random split of the dataset into train/validation/test sets, and we
provide the exact track IDs in each split in our open-source code release for this paper.

We discuss potential label quality issues with MusicNet in Appendix D.

B.6 URMP

The University of Rochester Multi-Modal Music Performance (URMP) dataset (Li et al., 2018)10

consists of audio, video, and MIDI annotation of multi-instrument musical pieces assembled from
coordinated but separately recorded performances of individual tracks. That is, each part of each
piece is recorded in isolation by an individual performer in coordination with the other performers
(to ensure complete isolation of audio). The resulting mix is produced by combining the individual
instrument tracks.

The dataset includes 11 duets, 12 trios, 14 quartets, and 7 quintets. In total, there are 14 different
instruments in the dataset, including strings (violin, viola, cello, double bass), woodwinds (flute,
oboe, clarinet, bassoon, soprano saxophone, tenor saxophone), and brass (trumpet, horn, trombone,
tuba).

The dataset also includes videos and sheet music, which are not used in this paper.

We use the following pieces for validation: 1, 2, 12, 13, 24, 25, 31, 38, 39. The remaining pieces are
used for training. This validation split reserves two duets; two trios; three quartets; and two quintets
for the validation set, ensuring a diverse instrumentation in the validation split.

8https://GuitarSet.weebly.com/
9https://homes.cs.washington.edu/˜thickstn/musicnet.html

10http://www2.ece.rochester.edu/projects/air/projects/URMP.html
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We discuss potential label quality issues with URMP in Appendix D.

C BASELINE DETAILS

Manilow et al. (2020): For this baseline, we used a model trained with the authors’ original code
for the Cerberus 4-instrument model (guitar, piano, bass, drums) on the slakh-redux dataset, which
omits duplicate tracks included in the original release of Slakh2100. We use the same procedure
for randomly cropping audio and filtering for active instruments described above and in the original
Cerberus paper (Manilow et al., 2020), using the public train/validation/test splits for Slakh.

Cheuk et al. (2021): We use the authors’ pretrained models and inference script provided at
https://github.com/KinWaiCheuk/ReconVAT. Due to resource limitations, following
correspondence with the authors, we divide the audio tracks from MusicNet into 20-second seg-
ments for inference, and conduct evaluation on these segments directly. We discard any segments
without any active notes in the ground-truth annotations, because the mir eval metrics are unde-
fined without any notes in the reference track.

Melodyne: Melodyne11 is a professional-quality audio software tool designed to provide note-based
analysis and editing of audio recordings. Melodyne contains multiple algorithms for polyphonic
pitch tracking, including algorithms for “polyphonic sustain” (designed for instruments with a slow
decay, such as strings) and “polyphonic decay” (designed for instruments with a fast decay. For
all results in this paper, we used Melodyne Studio version 5.1.1.003. The raw .wav files for each
dataset were imported into Melodyne, and the default pitch-tracking settings were used to transcribe
the audio (which allows Melodyne to automatically select the algorithm most suited to a given audio
file). Melodyne exports MIDI files directly, which were used for our downstream analysis.

Melodyne does not provide a programmatic interface. Due to the large amount of manual effort
required to perform large-scale transcription with Melodyne, for MAESTRO, Slakh10, Cerberus4,
and GuitarSet, our analysis of Melodyne is performed on a random subset of 30 tracks from the test
set for each of these datasets. For URMP and MusicNet we evaluate Melodyne on the entire test set.

Because Melodyne is a proprietary third-party software tool, we are not available to provide further
details on the exact algorithms used to transcribe audio.

D ADDITIONAL RESULTS

D.1 EVALUATING ZERO-SHOT GENERALIZATION WITH LEAVE-ONE-DATASET-OUT

In order to evaluate the generalizability of our proposed model, we evaluate our model on a chal-
lenging zero-shot generalization task. The procedure in these ‘leave-one-dataset-out’ (LODO) ex-
periments is as follows: Let the Dtr,i represent an individual transcription dataset (e.g. MAESTRO),
such that the full training set isDtr :=

⋃
iDtr,i For each datasetDj , we train an MT3 model using the

same mixture procedure described above, but with training set D̃tr = Dtr \ Dtr,j . Then, we evaluate
on each dataset Dtr,i ∈ Dtr.

Since Slakh2100 and Cerberus4 are generated using the same subset of track stems and the same
synthesis software, we jointly either include or exclude those datasets in our LODO experiments.

The results of this study are shown in Tables 5 and 6. Table 5 shows that our model is able to
achieve nontrivial note prediction performance for most datasets, attaining multi-instrument F1 and
onset-offset F1 scores which outperform the baseline models on each of the low-resource datasets
(GuitarSet, URMP). For all of the datasets, our model achieves LODO onset F1 scores between 0.14
and 0.78. For the much more challenging multi-instrument F1 score, our model’s performance on
the LODO task varies by dataset.

In general, these results show that our model can obtain non-trivial transcription performance even
for datasets it has never seen during training, despite large differences in the sonic qualities, compo-
sitional styles, and instrumentation of the zero-shot evaluation datasets. However, the LODO exper-
iments also point to the sensitivity of the model to the absence of particular datasets, highlighting

11https://www.celemony.com/en/melodyne/what-is-melodyne
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Evaluation Dataset
Left-Out Dataset MAESTRO Cerberus4 GuitarSet MusicNet Slakh2100 URMP

Frame F1
None 0.86 0.87 0.89 0.68 0.79 0.83
MAESTRO 0.60 0.86 0.89 0.69 0.75 0.82
Cerberus4 + Slakh2100 0.87 0.55 0.87 0.67 0.55 0.78
GuitarSet 0.86 0.86 0.58 0.71 0.76 0.82
MusicNet 0.86 0.86 0.89 0.53 0.76 0.79
URMP 0.86 0.86 0.89 0.71 0.76 0.76

Onset F1
None 0.95 0.92 0.90 0.50 0.76 0.77
MAESTRO 0.28 0.76 0.78 0.35 0.52 0.57
Cerberus4 + Slakh2100 0.82 0.21 0.75 0.30 0.14 0.49
GuitarSet 0.81 0.76 0.32 0.36 0.53 0.59
MusicNet 0.80 0.76 0.78 0.18 0.53 0.54
URMP 0.81 0.76 0.79 0.36 0.53 0.23

Onset+Offset+Program F1
None 0.80 0.80 0.78 0.33 0.57 0.58
MAESTRO 0.28 0.76 0.78 0.33 0.52 0.50
Cerberus4 + Slakh2100 0.82 0.07 0.75 0.29 0.02 0.42
GuitarSet 0.81 0.76 0.19 0.35 0.53 0.53
MusicNet 0.80 0.75 0.78 0.14 0.53 0.47
URMP 0.81 0.75 0.79 0.35 0.53 0.17

Table 5: Leave-one-dataset-out transcription scores.

Eval Dataset
Training MAESTRO Cerberus4 GuitarSet MusicNet Slakh2100 URMP

Frame F1
Full mixture 0.86 0.87 0.89 0.68 0.79 0.83
Zero-shot 0.60 0.55 0.58 0.53 0.55 0.76

Onset F1
Full mixture 0.95 0.92 0.90 0.50 0.76 0.77
Zero-shot 0.28 0.21 0.78 0.18 0.14 0.23

Onset+Offset+Program F1
Full mixture 0.80 0.80 0.78 0.33 0.57 0.58
Zero-shot 0.28 0.07 0.19 0.14 0.02 0.17

Table 6: Zero-shot transcription scores.

the resource-constrained nature of the available music transcription datasets even when combined.
For example, the Slakh2100 + Cerberus4 combination is the only dataset in our LODO experiments
that contains bass and synthesizer; without training on those datasets, the model is unable to learn
to identify these instruments.

D.2 ONSET-OFFSET THRESHOLD SENSITIVITY ANALYSIS

There are many reasons that one transcription dataset may be more difficult than another. In the
course of our experiments, we observed potential errors in labeling for some of our datasets, includ-
ing incorrect onset/offset times, particularly in MusicNet and URMP. The original MusicNet paper
estimated an error rate of around 4% Thickstun et al. (2016); the error rate of URMP annotations
has not been investigated, to our knowledge.
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Figure 4: Onset-Offset F1 performance of our model over varying thresholds for the Onset-Offset
F1 metric described in Section 4.2. The default threshold of 50 ms is indicated by a dashed line.

While a direct investigation of labeling errors is beyond the scope of this work, we present some
initial evidence regarding label timing errors in Figure 4. Here, we systematically increase the
tolerance t used for the Onset-Offset F1 metric (described in Section 4.2) over a grid of values for
t ∈ [10ms, 500ms], and compute the Onset-Offset F1 for MT3 using threshold t for both onset
and offset. Our results are consistent with the presence of label timing errors in both URMP and
MusicNet: As the threshold increases, performance on datasets with high-quality timing labels tends
to level off to a baseline value. However, performance on URMP and MusicNet continues to increase
as the threshold increases, which is suggestive of large timing errors beyond the standard 50 ms
threshold used to evaluate the performance of all models in the experiments in our work.

These results suggest that MusicNet and also potentially URMP may be affected by label timing is-
sues which could affect the learning, quality, and generalizability of models trained on these datasets
(particularly considering that the default threshold for a correct prediction is only 50 ms, small tim-
ing errors can significantly increase the difficulty of properly modeling a dataset with noisy timing
labels). While there is visible evidence of labeling errors12 in the MusicNet dataset upon inspection,
i.e. using the MusicNet inspector tool13, we are not aware of scholarly work which has formally
investigated this important issue to date. We encourage further investigation into labeling issues on
these datasets.

E MIDI CLASS GROUPINGS

Program numbers for the “MIDI Class” grouping results described in Table 3 match the original
MIDI classes from the original specification, where MIDI group for program p corresponds to
floor (p/8); we give a complete listing of the MIDI program number to MIDI class mappings in
Table 8. However, for the Cerberus4 and SLAKH2100 datasets, instruments are grouped by “class”,
which is a categorization of groups of patches used to synthesize those instruments. We construct a
mapping of SLAKH “class” to MIDI program numbers, given in Table 7. These program numbers
are applied to each “class” in the Cerberus4 and SLAKH2100 datasets as a simple lookup, and the
associated program numbers are used.

F OPEN-SOURCE IMAGE ATTRIBUTION

The instrument icons used in Figure 1 are used under the Creative Commons license via the Noun
Project. We gratefully acknowledge the following creators of these images:

12http://disq.us/p/236ypfr
13https://musicnet-inspector.github.io/
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Slakh2100 Class MT3 Instrument Token Number
Acoustic Piano 0
Electric Piano 4

Chromatic Percussion 8
Organ 16

Acoustic Guitar 24
Clean Electric Guitar 26

Distorted Electric Guitar 29
Acoustic Bass 32
Electric Bass 33

Violin 40
Viola 41
Cello 42

Contrabass 43
Orchestral Harp 46

Timpani 47
String Ensemble 48

Synth Strings 50
Choir and Voice 52
Orchestral Hit 55

Trumpet 56
Trombone 57

Tuba 58
French Horn 60
Brass Section 61

Soprano/Alto Sax 64
Tenor Sax 66

Baritone Sax 67
Oboe 68

English Horn 69
Bassoon 70
Clarinet 71

Pipe 73
Synth Lead 80
Synth Pad 88

Table 7: Mapping of Slakh2100 “classes” to MT3 Instrument Token numbers used for all experi-
ments using the Slakh2100 dataset (i.e., all columns labeled Slakh2100 in experiments throughout
this paper). Slakh2100 classes have slightly more granularity than the 16 MIDI Classes (see Table 8
and our MT3 Instrument tokens are designed to roughly correspond MIDI program numbers.
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MIDI Program Numbers Instruments
Piano

1-8 Acoustic Grand Piano, Bright Acoustic Piano, Electric Grand Piano,
Honky-tonk Piano, Electric Piano 1, Electric Piano 2, Harpsichord,
Clavinet

Chromatic Percussion
9-16 Celesta, Glockenspiel, Music Box, Vibraphone, Marimba, Xylophone,

Tubular Bells, Dulcimer
Organ

17-24 Drawbar Organ, Percussive Organ, Rock Organ, Church Organ, Reed
Organ, Accordion, Harmonica, Tango Accordion

Guitar
25-32 Acoustic Guitar (nylon), Acoustic Guitar (steel), Electric Guitar (jazz),

Electric Guitar (clean), Electric Guitar (muted), Electric Guitar (over-
driven), Electric Guitar (distortion), Electric Guitar (harmonics)

Bass
33-40 Acoustic Bass, Electric Bass (finger), Electric Bass (picked) , Fretless

Bass, Slap Bass 1, Slap Bass 2, Synth Bass 1, Synth Bass 2
Strings

41-48 Violin, Viola, Cello, Contrabass, Tremolo Strings, Pizzicato Strings, Or-
chestral Harp, Timpani

Ensemble
49-56 String Ensemble 1, String Ensemble 2, Synth Strings 1, Synth Strings 2,

Choir Aahs, Voice Oohs, Synth Voice or Solo Vox, Orchestra Hit
Brass

57-64 Trumpet, Trombone, Tuba, Muted Trumpet, French Horn, Brass Section,
Synth Brass 1, Synth Brass 2

Reed
65-72 Soprano Sax, Alto Sax, Tenor Sax, Baritone Sax, Oboe, English Horn,

Bassoon, Clarinet
Pipe

73-80 Piccolo, Flute, Recorder, Pan Flute, Blown bottle, Shakuhachi, Whistle,
Ocarina

Synth Lead
81-88 Lead 1 (square), Lead 2 (sawtooth), Lead 3 (calliope) , Lead 4 (chiff),

Lead 5 (charang), Lead 6 (space voice), Lead 7 (fifths), Lead 8 (bass and
lead)

Synth Pad
89-96 Pad 1 (new age or fantasia), Pad 2 (warm), Pad 3 (polysynth or poly, Pad

4 (choir), Pad 5 (bowed glass or bowed), Pad 6 (metallic), Pad 7 (halo),
Pad 8 (sweep)

Synth Effects
97-111 FX 1 (rain), FX 2 (soundtrack), FX 3 (crystal), FX 4 (atmosphere), FX

5 (brightness), FX 6 (goblins), FX 7 (echoes or echo drops), FX 8 (sci-fi
or star theme)

Other
105-112 Sitar, Banjo, Shamisen, Koto, Kalimba, Bag pipe, Fiddle, Shanai

Percussive
113-120 Tinkle Bell, Agogô, Steel Drums, Woodblock, Taiko Drum, Melodic

Tom or 808 Toms, Synth Drum, Reverse Cymbal
Sound Effects

121-128 Guitar Fret Noise, Breath Noise, Seashore, Bird Tweet, Telephone Ring,
Helicopter, Applause, Gunshot

Table 8: All instruments as defined by the MIDI specification Association (1996), grouped by MIDI
Class (rows with grey background), program numbers, and their associated instrument names.
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• Piano by Juan Pablo Bravo from the Noun Project.
• Guitar by varvarvarvarra from the Noun Project.
• Bass by Josue Calle from the Noun Project.
• Drum Set by Sumyati from the Noun Project.
• Oboe by Rank Sol from the Noun Project.
• Clarinet by Pham Thanh Lôc from the Noun Project.
• French Horn by Creative Stall from the Noun Project.
• Bassoon by Lars Meiertoberens from the Noun Project.
• Flute by Symbolon from the Noun Project.
• Violin by Benedikt Dietrich from the Noun Project.
• (Electric) Piano by b farias from the Noun Project.
• Viola by Vasily Gedzun from the Noun Project.
• Violin by Francesco Cesqo Stefanini from the Noun Project.
• Cello by Valter Bispo from the Noun Project.
• (String) bass by Soremba from the Noun Project.
• Acoustic guitar by farra nugraha from the Noun Project.
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