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Abstract
Zero-shot coordination in cooperative artificial
intelligence (AI) remains a significant challenge,
which means effectively coordinating with a wide
range of unseen partners. Previous algorithms
have attempted to address this challenge by op-
timizing fixed objectives within a population to
improve strategy or behaviour diversity. How-
ever, these approaches can result in a loss of
learning and an inability to cooperate with cer-
tain strategies within the population, known as
cooperative incompatibility. To address this is-
sue, we propose the Cooperative Open-ended
LEarning (COLE) framework, which constructs
open-ended objectives in cooperative games with
two players from the perspective of graph theory
to assess and identify the cooperative ability of
each strategy. We further specify the framework
and propose a practical algorithm that leverages
knowledge from game theory and graph theory.
Furthermore, an analysis of the learning process
of the algorithm shows that it can efficiently over-
come cooperative incompatibility. The experi-
mental results in the Overcooked game environ-
ment demonstrate that our method outperforms
current state-of-the-art methods when coordinat-
ing with different-level partners. Our demo is
available at https://sites.google.com/
view/cole-2023/.

1. Introduction
Zero-shot coordination (ZSC) is a major challenge of co-
operative AI to train agents that have the ability to coor-
dinate with a wide range of unseen partners (Legg & Hut-
ter, 2007; Hu et al., 2020). The traditional method of self-
play (SP) (Tesauro, 1994) involves iterative improvement of
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strategies by playing against oneself. While SP can converge
to an equilibrium of the game (Fudenberg et al., 1998), the
strategies often form specific behaviours and conventions to
achieve higher payoffs (Hu et al., 2020). As a result, a fully
converged SP strategy may not be adaptable to coordinating
with unseen strategies (Lerer & Peysakhovich, 2018; Hu
et al., 2020).

To overcome the limitations of SP, most ZSC methods focus
on promoting strategic or behavioural diversity by intro-
ducing population-based training (PBT) to improve strate-
gies’ adaptive ability (Carroll et al., 2019; Canaan et al.,
2022; Zhao et al., 2021; Lupu et al., 2021). PBT aims to
improve cooperative outcomes with other strategies in the
population to promote zero-shot coordination with unseen
strategies. This is achieved by maintaining a set of strate-
gies to break the conventions of SP (Tesauro, 1994) and
optimizing the rewards for each pair in the population. Most
state-of-the-art (SOTA) methods attempt to pre-train a di-
verse population (Strouse et al., 2021; Lupu et al., 2021) or
introduce hand-crafted methods (Canaan et al., 2022; Zhao
et al., 2021), which are used to master cooperative games
by optimizing fixed objectives within the population. These
methods have shown to be efficacious in addressing intricate
cooperative tasks such as Overcooked (Carroll et al., 2019)
and Hanabi (Bard et al., 2020).

However, when optimizing a fixed population-level objec-
tive, such as expected rewards within population (Strouse
et al., 2021; Lupu et al., 2021; Zhao et al., 2021) , the co-
ordination ability of strategies within the population may
not be improved. Specifically, while overall performance
may improve, the coordination ability within the popula-
tion may not be promoted in a simultaneous manner. This
phenomenon, which we term “cooperative incompatibility”,
highlights the importance of considering the trade-offs be-
tween overall performance and coordination ability when
attempting to optimize a fixed population-level objective.

In addressing the problem of cooperative incompatibility,
we reformulate cooperative tasks as Graphic-Form Games
(GFGs). In GFGs, strategies are characterized as nodes,
with the weight of the edges between nodes representing
the mean cooperative payoffs of the two associated strate-
gies. Additionally, by utilizing sub-graphs of GFGs referred
to as preference Graphic-Form Games (P-GFGs), we are
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able to further profile each node’s maximum cooperative
payoff within the graph, enabling us to evaluate cooperative
incompatibility and identify strategies that fail to collabo-
rate. Furthermore, we propose the Cooperative Open-ended
LEarning (COLE) framework, which iteratively generates
a new strategy that approximates the best response to the
empirical gamescapes of P-GFGs. We have proved that the
COLE framework can converge to the optimal strategy with
a Q-sublinear rate when using in-degree centrality as the
preference evaluation metric.

To propose COLE framework to address the phenomenon
of cooperative incompatibility, we implement a practical
algorithm COLESV by combining the Shapley Value solu-
tion (Shapley, 1971) with our GFG. COLESV comprises a
simulator, a solver, and a trainer, designed to master coopera-
tive tasks with two players specifically. The solver, utilizing
the development of the intuitive solution concept Shapley
value, evaluates the adaptive ability of strategies and cal-
culates the cooperative incompatibility distribution. The
trainer aims to approximate the best responses to the cooper-
ative incompatibility distribution mixture in the most recent
population. To evaluate the performance of the COLESV, we
conducted experiments in Overcooked, a two-player cooper-
ative task environment (Carroll et al., 2019). We evaluated
the adaptive ability of COLESV by testing its performance
against different level partners - middle-level and expert un-
seen partners. The middle-level partner is a commonly used
behavior cloning model (Carroll et al., 2019), and the expert
partners are strategies of current methods, i.e., SP, PBT, FCP,
and MEP, and our proposed COLESV. The results of the
experiments showed that COLESV outperforms the recent
SOTA methods in both evaluation protocols. Additionally,
through the analysis of GFGs and P-GFGs, the learning
process of COLESV revealed that the framework efficiently
overcomes cooperative incompatibility. The contributions
in this paper can be summarized as follows.

• We introduce the concept of Graphic-Form Games
(GFGs) and Preference Graphic-Form Games (P-
GFGs) to intuitively reformulate cooperative tasks,
which allows for a more efficient evaluation and identi-
fication of cooperative incompatibility during learning.

• We develop the concept of graphic-form gamescapes
to help understand the objective and present the COLE
framework to iteratively approximate the best re-
sponses preferred by most others.

• We prove that the algorithm will converge to the op-
timal strategy, and the convergence rate will be Q-
sublinear when using in-degree preference centrality.
Empirical experiments in the game Overcooked verify
the proposed algorithm’s effectiveness compared to
SOTA methods.

2. Related Works
Zero-shot coordination. The goal of zero-shot coordi-
nation (ZSC) is to train a strategy that can coordinate
effectively with unseen partners (Hu et al., 2020). Self-
play (Tesauro, 1994; Carroll et al., 2019) is a traditional
method of training a cooperative strategy, which involves it-
erative improvement of strategies by playing against oneself,
but develops conventions between players and does not co-
operate with other unseen strategies (Lerer & Peysakhovich,
2018; Hu et al., 2020). Other-play (Hu et al., 2020) is pro-
posed to break such conventions by adding permutations
to one of the strategies. However, this approach may be re-
duced to self-play if the game or environment does not have
symmetries or has unknown symmetries. Another approach
is population-based training (PBT) (Jaderberg et al., 2017;
Carroll et al., 2019), which trains strategies by interacting
with each other in a population. However, PBT does not ex-
plicitly maintain diversity and thus fails to coordinate with
unseen partners(Strouse et al., 2021).

Recent research has focused on training robust strategies that
use diverse populations of strategies (Strouse et al., 2021;
Lupu et al., 2021; Zhao et al., 2021) to achieve the goal of
ZSC. Fictitious co-play (FCP) (Strouse et al., 2021) obtains
a population of periodically saved checkpoints during self-
play training with different seeds and then trains the best
response to the pre-trained population. TrajeDi (Lupu et al.,
2021) also maintains a pre-trained self-play population but
encourages distinct behavior among the strategies. The max-
imum entropy population (MEP) (Zhao et al., 2021) method
proposes population entropy rewards to enhance diversity
during pre-training. It employs prioritized sampling to select
challenging-to-collaborate partners to improve generaliza-
tion to previously unseen policies. Furthermore, methods
such as MAZE (Xue et al., 2022) and CG-MAS (Mahajan
et al., 2022) have been proposed to improve generalization
ability through coevolution and combinatorial generaliza-
tion. In this paper, we propose a COLE framework that
could dynamically identify strategies that fail to coordinate
due to cooperative incompatibility and continually poses
and optimizes objectives to overcome this challenge and
improve adaptive capabilities.

Open-ended learning. Another related area of research is
open-ended learning, which aims to continually discover
and approach objectives (Srivastava et al., 2012; Team et al.,
2021; Meier & Mujika, 2022). In MARL, most open-ended
learning methods focus on zero-sum games, primarily pos-
ing adaptive objectives to expand the frontiers of strate-
gies (Lanctot et al., 2017; Balduzzi et al., 2019; McAleer
et al., 2020; Yang et al., 2021; Liu et al., 2021; McAleer
et al., 2022). In the specific context of ZSC, the MAZE
method (Xue et al., 2022) utilizes open-ended learning by
maintaining two populations of strategies and partners and
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(a) (b)

Figure 1. The Game Graph, (sub-) preference graph and corresponding preference centrality matrix. The (sub-) preference graphs are
for all four iterations in the training process, and the corresponding preference in-degree centrality matrix is based on them. As can be
observed in the G′

3 and G′
4, the newly updated strategies fail to be preferred by others and have centrality values of 1, despite an increase

in the mean of rewards with all others. In (b), we illustrate an ideal learning process in which a newly generated strategy can achieve
higher outcomes with all previous strategies.

training them collaboratively throughout multiple genera-
tions. In each generation, MAZE pairs strategies and part-
ners from the two populations and updates them together
by optimizing a weighted sum of rewards and diversity.
This method co-evolves the two populations of strategies
and partners based on naive evaluations such as best or
worst performance with strategies in partners. Our proposed
method, COLE framework, combines GFGs and P-GFGs
in open-ended learning to evaluate and identify the coopera-
tive ability of strategies to solve cooperative incompatibility
efficiently with theoretical guarantee.

3. Preliminaries
Normal-form Game. A two-player normal-form game
is defined as a tuple (N,A,w), where N = {1, 2} is a set
of two players, indexed by i, A = A1 × A2 is the joint
action space, and w = (w1, w2) with wi : A → R is a
reward function for the player i. In a two-player common
payoff game, two-player rewards are the same, meaning
w1(a1, a2) = w2(a1, a2) for a1, a2 ∈ A.

Empirical Game-theoretic Analysis (EGTA), Empirical
Game and Empirical Gamescape. EGTA is the study of
finding meta-strategies based on experience with prior strate-
gies (Walsh et al., 2002; Tuyls et al., 2018). An empirical
game is built by discovering strategies and meta-reasoning
about exploring the strategy space (Lanctot et al., 2017).
Furthermore, empirical gamescapes (EGS) are introduced
to represent strategies in functional form games geomet-
rically (Balduzzi et al., 2019). Given a population N of
n strategies, the empirical gamescapes is often defined as
G := {convex mixture of rows ofM}, whereM is the em-
pirical payoff table recording the expected outcomes for
each joint strategy.

Cooperative Theoretic Concepts. We consider a set of
players N = {1, . . . , n}, where a coalition is denoted as a

subset of players N , symbolized by C ⊆ N . The player
set N is also known as the grand coalition. A characteristic
function game, denoted by G, consists of a pair (N, v),
where N = {1, . . . , n} represents a finite, non-empty set
of agents, and v : 2N → R is the characteristic function.
This function assigns a real number v(C) to each coalition
C ⊆ N , with the number v(C) typically considered as the
coalition’s value.

Shapley Value (Shapley, 1971) is one of the important so-
lution concepts for characteristic function games (Chalki-
adakis et al., 2011; Peleg & Sudhölter, 2007). The Shapley
Value aims to distribute fairly the collective value, like the
rewards and cost of the team across individuals by each
player’s contribution. Taking into account a coalition game
(N , v) with a strategy set N and characteristic function v,
the Shapley Value of a player i ∈ N could be obtained by

SV (i) =
1

n!

∑
π∈ΠN

v(Pπ
i ∪ {i})− v(Pπ

i ), (1)

where π is one of the one-to-one permutation mappings
from N to itself in the permutation set Π and π(i) is the
position of player i ∈ N in permutation π. Pπ

i = {j ∈
N|π(j) < π(i)} is the set of all predecessors of i in π.

Centrality in Graph Theory. Node Centrality is a graph
theory concept that quantifies a node’s relative importance
or influence within a network. It is a measure of how cen-
tral a node is to the overall network structure, with higher
centrality values indicating greater importance. Degree Cen-
trality is one of the simplest centrality concepts, based on
the number of edges connected to a node (Freeman, 1978).
In directed graphs, it can be further divided into in-degree
(number of incoming edges) and out-degree (number of
outgoing edges) Centrality.

PageRank (Page et al., 1999) is a centrality measure used
to rank web pages in search engine results by estimating
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the relative importance of each page in a hyperlink net-
work. PageRank(WPG) (Xing & Ghorbani, 2004) is an
extension of the original PageRank algorithm that consid-
ers edge weights in addition to the basic structure of the
network. This modification allows the algorithm to handle
networks where the strength of connections between nodes
varies, such as in citation networks or social networks where
the influence of nodes may differ. The formula of WPG is
given as follows:

σ(u) = (1− d) + d
∑

v∈B(u)

σ(v)
Iu∑

p∈R(v) Ip

Ou∑
p∈R(v) Op

,

(2)
where d is the damping factor set to 0.85, B(u) is the set of
nodes that point to u, R(v) denotes the nodes to which v is
linked, and I,O are the degrees of inward and outward of
the node, respectively.

4. Cooperative Open-Ended Learning
In this section, we first introduce graphic-form games to
intuitively reformulate cooperative games, then create an
open-ended learning framework to solve cooperative incom-
patibility and further improve zero-shot adaptive ability.

4.1. Graphic-Form Games (GFGs)

It is important to evaluate cooperative incompatibility and
identify those failed-to-collaborate strategies to conquer
cooperative incompatibility. Therefore, we propose graphic-
form games (GFGs) to reformulate normal-form cooperative
games from the perspective of game theory and graph theory,
which is the natural development of empirical games (Bal-
duzzi et al., 2019). The definition of GFG is given below.

Definition 4.1 (Graphic-Form Game). Given a set of pa-
rameterized strategies N = {1, 2, · · · , n}, a two-player
graphic-form game (GFG) is a tuple G = (N ,E,w), which
could be represented as a directed weighted graph. N ,E,w
are the set of nodes, edges, and weights, respectively. Given
an edge (i, j), w(i, j) represents the expected results of i
playing with j. The graphic representation of GFG is called
a game graph.

The payoff matrix of G is denoted asM, whereM(i, j) =
w(i, j),∀i, j ∈ N . Our goal is to improve the upper bound
of other strategies’ outcomes in the cooperation within the
population, which implies that the strategy should be pre-
ferred over other strategies.

Moreover, we propose preference graphic-form games (P-
GFGs) as an efficient tool to analyze the current learning
state, which can profile the degree of preference for each
node in GFGs. Specifically, P-GFG is a subgraph of GFG,
where each node only retains the out-edge with maximum
weight among all out-edges except for its self-loop.

Definition 4.2 (Preference Graphic-Form Game). Given
a graphic-form game (N ,E,w), the Preference Graphic-
Form Game (P-GFG) could be defined as G′ = {N ,E′,w},
where E′ = {(i, j)| argmaxj w(i, j),∀j ∈ {N\i},∀i ∈
N} is the set of edges. The graphic representation of P-GFG
is called a preference graph.

To deeply investigate the learning process, we further intro-
duce the sub-preference graphs based on P-GFGs, which
aim to reformulate previous learning states and analyze the
learning behavior of the algorithm. Suppose that there is a
set of sequentially generated strategiesNn = {1, 2, · · · , n},
where the index also represents the number of iterations for
simplicity. For each previous iteration i < n, the sub-
preference game form graph is denoted as {Ni,E

′
i,wi},

where Ni = {1, 2, · · · , i} is the set of strategies in iteration
i, and E′

i, and wi are the corresponding edges and weights.

The semantics of the preference graph is that a strategy
or node i prefers to play with the tailed node to achieve
the highest results. In other words, the more in-edges one
node has, the more cooperative ability this node can achieve.
Ideally, if one strategy can adapt well to all others, all the
other strategies in the preference graph will point to this
strategy. To evaluate the adaptive ability of each node, the
centrality concept is introduced into the preference graph to
evaluate how a node is preferred.

Definition 4.3 (Preference Centrality). Given a P-GFG
{N , E′,w}, preference centrality of i ∈ N is defined as,

η(i) = 1− norm(di),

where di is a graph centrality metric to evaluate how the
node is preferred, and norm(·) : R→ [0, 1] is a normaliza-
tion function.

Note that the d is a kind of centrality that could evaluate
how much a node is preferred. A typical example of d is
the centrality of degrees, which calculates how many edges
point to the node.

Fig. 1 is an example of a common payoff game, showing
the game graph, (sub-)preference graphs, and the preference
centrality matrix for four sequentially generated strategies.
Note that in the corresponding sub-preference graphs, the
updated strategies fail to improve the outcome of others after
the second iteration, and the preference centrality matrix
also shows the same results. The example shows an existing
cooperative incompatibility that presents as the value of η is
kept at 1 in the matrix, meaning no nodes want to collaborate
with the updated strategies. Ideally, all the other strategies
should prefer latest strategy (Fig. 1 (b)) which means the
monotonic improvement of cooperative ability.

Moreover, the analysis of the MEP algorithm, as shown in
Fig. 2, discloses a cooperative incompatibility in the learning
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Figure 2. The payoff matrix of each strategy during training and
the corresponding preference centrality matrix of the MEP algo-
rithm in the Overcooked. The darker the color in the payoff matrix,
the higher the rewards. The darker the color in the preference
centrality matrix, the lower the centrality value, and the more other
strategies prefer it.

process in Overcooked environment (Carroll et al., 2019).
In the preference indegree centrality matrix, a strategy is
preferred by more strategies if its color is darker. In the
learning process of MEP, although the mean rewards are
always improving (as shown in the upper-right of Fig. 2),
serious cooperative incompatibility problems occur after a
period of training, where more strategies prefer to play with
some previous strategies with a darker color rather than new
strategies to obtain higher rewards.

4.2. Cooperative Open-Ended Learning Framework

To tackle cooperative incompatibility by understanding the
objective, we develop empirical gamescapes (Balduzzi
et al., 2019) for GFGs, which geometrically represent strate-
gies in graphic-form games. Given a GFG {N ,E,w} and
corresponding payoff matrixM, the empirical gamescapse
(EGS) is defined as

Ḡ := {convex mixture of rows ofM} . (3)

However, learning directly with EGS to cooperate with
these well-collaborated strategies is inefficient in improving
adaptive ability. To conquer cooperative incompatibility,
the natural idea is to learn with the mixture of cooperative
incompatible distribution on the most recent population N .
Given a populationN , we present cooperative incompatible
solver to assess how strategies collaborate, especially with
those strategies that are difficult to collaborate with. The
solver derives the cooperative incompatible distribution ϕ,
where strategies that do not coordinate with others have
higher probabilities.

We also optimize the cooperative incompatible mixture over
the individual objective, which is the cumulative self-play
rewards to improve the adaptive ability with expert partners.
To simplify, we name it the individual and cooperative in-
compatible mixture (IPI mixture). We use an approximate
oracle to approach the best response over the IPI mixture.
Given strategy sn, the oracle returns a new strategy sn+1

: sn+1 = oracle(sn+1,J (sn, ϕ)), with η(sn+1) = 0 , if
possible. J is the objective function as follows,

J (sn, ϕ) = Ep∼ϕw(sn, p) + αw(sn, sn), (4)

where α is the balance hyperparameter. The objective con-
sists of the cooperative compatible objective and the in-
dividual objective. The cooperative compatible objective
aims to train the best response to those failed-to-collaborate
strategies, and the individual objective aims to improve the
adaptive ability with expert partners. We call the best re-
sponse the local best-preferred strategy in the population if
η(sn+1) = 0.

However, arriving at the local best-preferred strategy with
η(sn+1) = 0 is hard or even impossible. Therefore, we
seek to approximate the local best-preferred strategies by
relaxing the local best strategy to the strategy whose prefer-
ence centrality ranks top k. The approximate oracle could
be rewritten as

sn+1 = oracle(sn,J (sn, ϕ)), withR(η(sn+1)) > k,
(5)

whereR is the ranking function.

We extend the approximated oracle to open-ended learn-
ing and propose COLE framework (Fig. 3). The COLE
framework iteratively updates new strategies that approxi-
mate the local best-preferred strategies to the cooperative
incompatible mixture and the individual objective. The
simulator completes the payoff matrix with the newly gen-
erated strategy and others in the population. The solver
aims to derive the cooperative incompatible distribution of
the Game Graph builder and the cooperative-incompatible
solver. The trainer uses the oracle to approximate the local
best-preferred strategy to the cooperative incompatible mix-
ture and individual objective and outputs a newly generated
strategy added to the population for the next generation.

Although we relax the local best-preferred strategy to the
strategy in the top k centrality in the constraint, COLE
framework still converges to a local best-preferred strategy
with zero preference centrality. Formally, the local best-
preferred strategy convergence theorem is given as follows.

Theorem 4.4. Let s0 ∈ S be the initial strategy and
si = oracle(si−1) for i ∈ N. Under the assumption that
limn→∞ J (sn, ϕ) ≥ J (sn−1, ϕ) holds, we can say that
the sequence {si} for i ∈ N converges to a local optimal
strategy s∗, i.e., the local best-preferred strategy.

Proof. See Appendix B.

Besides, if we choose in-degree centrality as the preference
centrality function, the convergence rate of COLE frame-
work is Q-sublinear.
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Figure 3. An overview of one generation in COLE framework: The solver derives the cooperative incompatible distribution ϕ using a
cooperative incompatibility solver, which can be any algorithm that evaluates cooperative contribution. The trainer then approximates
the relaxed best response by optimizing individual and cooperative compatible objectives. The oracle’s training data is generated using
partners selected based on the cooperative incompatibility distribution and the agent’s strategy. Finally, the approximated strategy sn+1 is
added to the population, and the next generation begins.

Corollary 4.5. Let η : G′ → Rn be a function that maps a
P-GFG to its in-degree centrality, the convergence rate of
the sequence {si} is Q-sublinear concerning η.

Proof. See Appendix C.

5. Practical Algorithm
To address common-payoff games with two players, we
implemented COLESV, where SV refers to Shapley Value,
based on COLE framework that can overcome coopera-
tive incompatibility and improve zero-shot coordination
capabilities, focusing on the solver and trainer components.
As shown in Fig. 3, at each generation, COLESV inputs
a population N and generates an approximate local best-
preferred strategy added to N to expand the population.
The simulator calculates the payoff matrixM for the input
population N . Each elementM(i, j) for i, j ∈ N repre-
sents the cumulative rewards of the players i and j at both
starting positions. The solver evaluates and identifies failed-
to-collaborate strategies by calculating the incompatible
cooperative distribution. To effectively evaluate the cooper-
ative ability of each strategy with all others, we incorporate
weighted PageRank (WPG) (Xing & Ghorbani, 2004) from
graph theory into the Shapley Value to evaluate adaptability,
particularly with failed-to-collaborate strategies. The trainer
then approximates the local best-preferred strategy over the
recent population.

5.1. Solver: Graphic Shapley Value

To approximate the local best-preferred strategies over the
recent population and overcome cooperative incompatibility,
we need to calculate the cooperative incompatible distribu-
tion as the mixture. In this paper, we combine the Shapley
Value (Shapley, 1971) solution, an efficient single solution
concept for cooperative games to assign the obtained team
value across individuals, with our GFG to evaluate and

identify the strategies that did not cooperate. To apply the
Shapley Value, we define an additional characteristic func-
tion to evaluate the value of the coalition. Formally, given a
coalition C ⊆ N , we have the following:

v(C) = Ei∼C,j∼Cσ(i)σ(j)w(i, j), (6)

where σ is a mapping function that evaluates how badly a
node performs on its game graph. We use the characteristic
function to evaluate the coalition value of how it could
cooperate with those hard-to-collaborate strategies.

We take the inverse of WPG (Xing & Ghorbani, 2004) on
the game graph as the metric σ. WPG is proposed to assess
the popularity of a node in a complex network, as given in
Eq. 2. Therefore, the metric σ evaluates how unpopular a
node is and is equal to the inverse of the WPG value.

Then we calculate the Shapley Value of each node by taking
a characteristic function in equation 1, named the graphic
Shapley Value. We utilize the Monte Carlo permutation
sampling (Castro et al., 2009) to approximate the Shapley
Value, which can reduce the computation complexity from
exponential time to linear time. After inverting the probabil-
ities of the graphic Shapley Value, we get the cooperative
incompatible distribution ϕ, where strategies that fail to col-
laborate with others have higher probabilities. We provide
the Graphic Shapley Value algorithm in Appendix D.

5.2. Trainer: Approximating local best-preferred
Strategy

The trainer takes the cooperative incompatible distribution
ϕ as input and samples its teammates to learn to approach
the local best-preferred strategy on the IPI mixture.

Recall the oracle for sn : sn+1 = oracle(sn+1,J (sn, ϕ)),
withR(η(sn+1)) > k. COLESV aims to optimize the local
best-preferred strategy over the IPI mixture. The J (sn, ϕ)
is the joint objective that consists of individual and cooper-
ative compatible objectives. The individual objective aims
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Algorithm 1 COLESV Algorithm
1: Input:population N0, the sample times a, b of Ji,Jc,

hyperparameters α, k
2: for t = 1, 2, · · · , do
3: // Step 1: Completing the payoff matrix
4: Mn ← Simulator(Nt)
5: // Step 2: Solving the cooperative incompatibility

distribution
6: ϕ = Graphic Shapley Value(Nt) by Algorithm 2
7: // Step 3: Approximate the local best-preferred strat-

egy
8: J =

∑b
p∼ϕ ϕ(p)w(st, p) + α

∑a
w(st, st), where

st = Nt(t), ϕ is updated each time by Eq 8
9: st+1 = oracle(st,J ) withR(η(sn+1)) > k

10: // Step 4: Expand the population
11: Nt+1 = Nt ∪ {st+1}
12: end for

to improve the performance within itself and promote the
adaptive ability with expert partners, formulated as follows:
Ji(sn) = w(sn, sn), where sn is the strategy named ego
strategy that needs to optimize in generation n.

And the cooperative compatible objective aims to improve
cooperative outcomes with those failed-to-collaborate strate-
gies: Jc = Ep∼ϕw(sn, p), where the objective is the
expected rewards of sn with cooperative incompatible
distribution-supported partners. w estimates and records
the mean cumulative rewards of multiple trajectories and
starting positions. The expectation can be approximated as:

Jc =
b∑

p∼ϕ

ϕ(p)w(st, p), (7)

where b is the number of sampling times.

To balance exploitation and exploration as the learning con-
tinues, we present the Sampled Upper Confidence Bound
for Game Graph (SUCG) that combines the Upper Confi-
dence Bound (UCB) and GFG to control the sampling for
more strategies with higher probabilities or new strategies.
Additionally, we view the SUCG value as the probability
of sampling teammates instead of using the maximum item
in typical UCB algorithms. Specifically, in the game graph,
we keep the information on the times that a node has been
visited. Therefore, the probability of each node considers
both the Shapley Value and visiting times, denoted as p̂. The
SUCG for any node u in N could be calculated as follows:

ϕ̂(u) = ϕ(u) + c

√∑
i∈N N(i)

1 +N(u)
, (8)

where c is a hyperparameter that controls the degree of
exploration and N(i) is the visit times of node i. SUCG

Figure 4. The result of the combining objectives’ effectiveness
evaluation. Mean episode rewards over 400 timesteps trajectories
for COLESV s with different objective ratios 0:4, 1:3, 2:2, and 3:1,
paired with the unseen middle-level partner Hproxy . The gray bars
behind present the rewards of self-play.

could efficiently prevent COLESV from generating data with
a few fixed strategies that did not cooperate, which could
lead to a loss of adaptive ability.

We conclude the COLESV as Algorithm 1. Moreover, to
verify the influence of different ratios of two objectives, we
denote COLESV with different ratios as 0:4, 1:3, 2:2, and
3:1. Specifically, COLESV with a : b represents different
partner sampling ratios for the combining objective, where
a is the corresponding times to generate data using self-play
for the individual objective, and b is the number of sampling
times in Jc. For example, COLESV 1:3 represents that the
ego agent is trained by using self-play once and with part-
ners sampled from the cooperative incompatible distribution
three times to generate data and update objectives.

6. Experiments
6.1. Environment and Experimental Setting

In this paper, we conduct a series of experiments in the Over-
cooked environment (Carroll et al., 2019; Charakorn et al.,
2020; Knott et al., 2021). The details of the Overcooked
environment can be found in Appendix E. We construct
evaluations with different ratios between individual and co-
operative compatible objectives, such as 0:4, 1:3, 2:2, and
3:1. These studies demonstrate the effectiveness of optimiz-
ing both individual and cooperative incompatible goals. We
also compare our method with other methods, including self-
play (Tesauro, 1994; Carroll et al., 2019), PBT (Jaderberg
et al., 2017; Carroll et al., 2019), FCP (Strouse et al., 2021),
and MEP (Zhao et al., 2021), all of which use PPO (Schul-
man et al., 2017) as the RL algorithm. To thoroughly assess
the ZSC ability, we evaluated the algorithms with unseen
middle-level and expert partners. We use the human proxy
model Hproxy proposed by Carroll et al.(Carroll et al., 2019)
as middle-level partners and the models trained with base-
lines and COLESV as expert partners. The rewards’ mean is
recorded as the performance of each method in collaborat-
ing with expert teammates. In the case study, we analyze the
learning process of COLESV, which shows that our method
overcomes cooperative incompatibility. Furthermore, we

7
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Figure 5. Performance with middle-level partners. The perfor-
mance of COLESV with middle-level partners is presented in terms
of mean episode rewards over 400 timesteps trajectories for differ-
ent objective ratios of 0:4 and 1:3, when paired with the unseen
middle-level partner Hproxy . The results include the mean and
standard error over five different random seeds. The gray and
hashed bars indicate the rewards obtained when playing with them-
selves and the performance when starting positions are switched.

visualize the trajectories with different ratios and play with
expert teammates to analyze how the ratios affect the learned
strategies. Appendix F and Appendix G give details of the
implementation of COLESV and baselines.

6.2. Combining Objectives’ Effectiveness Evaluation

This section evaluated the effectiveness of different objec-
tive ratios, including 0:4, 1:3, 2:2, and 3:1 of two objec-
tives. We divided each training batch into four parts, the
ratio indicating the proportion of data generated by self-
play and data generated by playing with strategies from
the cooperative incompatible distribution. We omitted the
4:0 ratio as it would result in the framework degenerating
into self-play. Fig. 4 shows the mean rewards of episodes
over 400 timesteps of gameplay when paired with the un-
seen middle-level partner Hproxy (Carroll et al., 2019). We
found that COLESV with ratios 0:4 and 1:3 achieved better
performance than the other ratios. In particular, COLESV,
with a ratio of 1:3, outperformed the other methods in the
Cramped Room, Coordination Ring, and Counter Circuit
layouts. On the Forced Coordination layout, which is par-
ticularly challenging for cooperation due to the separated
regions, all four ratios performed similarly on average across
different starting positions. Interestingly, when paired with
the middle-level partner, COLESV with only the coopera-
tive compatible objective (ratio 0:4) performed better on the
Asymmetric Advantages and Forced Coordination layouts.
We discuss this phenomenon further in Section 6.3. The
effectiveness evaluations indicate that combining individual
and cooperatively compatible objectives is crucial to im-
proving performance with unseen partners. In general, we
choose the ratio of 1:3 as the best choice.

6.3. Evaluation with Different Levels of Partners

To thoroughly evaluate the zero-shot cooperative ability of
all methods, we adopted two sets of evaluation protocols.
The first protocol involves playing with a trained human

Table 1. Performance with expert partners. Mean episode rewards
over 1 min trajectories for baselines and COLESV with ratio 0:4,
1:3. Each column represents a different expert group, in which the
result is the mean reward for each model playing with all others.

LAYOUT RATIO
BASELINES

COLES
SP PBT FCP MEP

CRAMPED RM.
0:4 153.00 198.50 199.83 178.83 169.76

1:3 165.67 209.83 207.17 196.83 212.80

ASYMM.ADV.
0:4 108.17 164.83 175.50 179.83 182.80

1:3 108.17 161.50 172.17 179.83 178.80

COORD. RING
0:4 132.00 106.83 142.67 130.67 118.08

1:3 133.33 158.83 144.00 124.67 166.32

FORCED COORD.
0:4 58.33 61.33 50.50 79.33 46.40

1:3 61.50 70.33 62.33 38.00 86.40

COUNTER CIRC.
0:4 44.17 48.33 60.33 21.33 90.72

1:3 65.67 64.00 46.50 76.67 105.84

model Hproxy trained in behavior cloning.However, due to
the quality and quantity of human data used for behavior
cloning to train the human model is limited, the capabilities
of the human proxy model can only be classified as middle-
level. Therefore, we use an additional evaluation protocol
to coordinate with unseen expert partners. We selected the
best models of our reproduced baselines and COLESV 0:4
and 1:3 as expert partners.

Fig. 5 presents the performance of SP, PBT, MEP, and
COLESV with 0:4 and 1:3 when cooperating with middle-
level partners. We observed that different starting positions
on the left and right in asymmetric layouts resulted in signifi-
cant performance differences for the baselines. For example,
in the Asymmetric Advantages, the cumulative rewards of
all baselines in the left position were nearly one-third of
those in the right position. On the contrary, COLESV per-
formed well at the left and right positions.

As shown in Fig. 5, COLESV outperforms other methods in
all five layouts when paired with the middle-level partner-
human proxy model. Interestingly, COLESV 0:4 with only
the cooperatively compatible objective achieves better per-
formance than COLESV 1:3 on some layouts, such as Asym-
metric Advantages. However, the self-play rewards of
COLESV 0:4 are much lower than COLESV 1:3 and even
other baselines. Furthermore, the performance with unseen
experts of COLESV 0:4 as shown in Table 1, is sometimes
lower than the baselines. We visualize the trajectories in the
evaluation at the expert level and provide further analysis to
explain this situation in Appendix H.

Table 1 presents the outcomes of each method when co-
operating with expert partners. Each column in the table
represents different expert groups, including four baselines
and one COLESV with a ratio of 0:4 or 1:3. The last column,
labeled “COLEs,” represents the mean rewards of the corre-
sponding COLESV when working with other baselines. The
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Payoff matrix Preference centrality matrix

Figure 6. The learning process analysis of COLESV 1:3. The
darker-colored element on the left represents higher rewards, while
the darker-colored element on the right represents lower centrality.
The clustering of darker-colored areas around the diagonal on the
right indicates that the new strategy adopted in each generation
is preferred by most strategies, thus overcoming the cooperative
incompatibility.

table displays the mean cumulative rewards of each method
when working with all other models in the expert group.
The results indicate that COLESV 1:3 outperforms the base-
lines and COLESV 0:4, except in the layout of Asymmetric
Advantages. In the Asymmetric Advantages, COLESV 0:4
only achieved a four-point victory over COLESV 1:3, which
can be considered insignificant considering the margin of
error. In the other four layouts, the rewards obtained by
COLESV 1:3 while working with expert partners are signifi-
cantly higher than those of COLESV 4:0 and the baselines.

Our results suggest that COLESV 1:3 has a stronger adap-
tive ability with different levels of partners. Furthermore,
individual objectives are crucial in zero-shot coordination
with expert partners. In conclusion, COLESV 1:3 is more
robust and flexible in real-world scenarios when working
with partners of different levels.

6.4. Effectively Conquer Cooperative Incompatibility

In our analysis of the learning process of COLESV 1:3 in
the Overcooked environment, as shown in Fig. 6, we ob-
serve that the method effectively overcomes the problem
of cooperative incompatibility. The figure on the left in
Fig. 6 shows the payoff matrix of 50 uniformly sampled
checkpoints during training, with the upper left corner rep-
resenting the starting point of training. Darker red elements
in the payoff matrix indicate higher rewards. The figure on
the right displays the centrality matrix of preferences, which
is calculated by analyzing the learning process. Unlike the
payoff matrix, the darker elements in the centrality matrix
indicate lower values, indicating that more strategies prefer
them in the population. As shown in the figure, the darker
areas cluster around the diagonal of the preference centrality
matrix, indicating that most of the others prefer the updated
strategy of each generation. Thus, we can conclude that
our proposed COLESV effectively overcomes the problem

of cooperative incompatibility.

7. Conclusion
In this paper, we propose graphic-form games and prefer-
ence graphic-form games to intuitively reformulate coop-
erative games, which can efficiently evaluate and identify
cooperative incompatibility. Furthermore, we develop em-
pirical gamescapes for GFG to understand the objectives
and present COLE framework to iteratively approximate the
best response preferred by most others over the most recent
population. Theoretically, we prove that COLE framework
converges to the optimal strategy preferred by all others.
Furthermore, if we choose the in-degree centrality as the
preference centrality function, the convergence rate would
be Q-sublinear. Empirically, our experiments on the Over-
cooked environment show that our algorithm COLESV out-
performed SOTA ones and that COLESV efficiently over-
came cooperative incompatibility.

Limitations and Future Work. Our practical algorithm,
COLESV, incorporates the Shapley Value as a tool and de-
velops the Graphic Shapley Value to scrutinize cooperative
incompatibility. Despite our use of Monte Carlo permuta-
tion sampling to mitigate computational complexity, this
remains a challenge. As such, future efforts should focus
on enhancing the efficiency of the Graphic Shapley Value
solver and investigating alternative solvers for evaluating
cooperative incompatibility. Besides, our framework is re-
stricted to two-player games. Therefore, future research
should also aim to extend the COLE framework and develop
corresponding algorithms for more complex multi-player
games.
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A. Reproducibility Statement
Our demo is provided in https://sites.google.com/view/cole-2023/.

Besides, more reproducibility information could be found in the appendix.

• The detailed pseudocode of the Graphic Shapley Value Solver is provided in Appendix D.
• In Appendix E, we introduce the details of the experimental environment - the Overcooked game.
• The implementation and hyperparameters used in experiments are in Appendix F.

B. Proofs of Theorem 4.4
Theorem 4.4. Let s0 ∈ S be the initial strategy and si = oracle(si−1) for i ∈ N. Under the assumption that
limn→∞ J (sn, ϕ) ≥ J (sn−1, ϕ) holds, we can say that the sequence {si} for i ∈ N converges to a local optimal strategy
s∗, i.e., the local best-preferred strategy.

Proof. According to the definition of the local best-preferred strategy, the local optimal strategy is the node with zero
preference centrality (η). Therefore, we need to prove that the value of η will converge to zero.

Let ηt denote the centrality value of the preference of the updated strategy st in generation t, where 0 ≤ η ≤ 1. We assume
that the algorithm makes some improvement in step t. With the assumption that not all optimization steps fail to improve,
we can deduce that

ηt = ηt−1 − ϵ, (9)

where ϵ is a positive value and 0 < ϵ ≤ ηt−1. By further simplifying the equation, we have

ηt = ηt−1 − ϵ, = ηt−1 − αt−1ηt−1, = βt−1ηt−1, (10)

where 0 < αt−1 ≤ 1 and βt−1 = 1− αt−1.

Assuming that the centrality value of the preference in the initial step is 0 ≤ η0 ≤ 1, we can recursively calculate the
following formula:

ηt = βt−1ηt−1, = βt−1βt−2ηt−2, = · · · , =

t−1∏
i=0

βi × η0. (11)

For any β ∈ β0, · · · , βt−1, we have β ≥ 0. In addition, we set ηt as a very small positive number if ηt = 0.

Therefore, by assuming that β is not always equal to zero, we can conclude that ηt will approach zero as outlined
in equation 11. Through this proof, we have established that if the assumption that limi→∞ J (si) ≥ J (si−1) holds, the
sequence si for i ∈ N converges to a local optimal strategy s∗, also known as the local best-preferred strategy.

C. Proof of Corollary 4.5
Corollary 4.5. Let η : G′ → Rn be a function that maps a P-GFG to its in-degree centrality, the convergence rate of the
sequence {si} is Q-sublinear concerning η.

Proof. In Theorem 4.4, we have proved that the strategies generated by the COLE framework will converge to the local
best-preferred strategy. When we use the in-degree centrality function as η, the preference centrality function can be
rewritten as:

η(i) = 1− Ii
n− 1

, (12)
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where Ii is the in-degree of node i and n is the size of the strategy set N . Therefore, we have

lim
t→∞

|ηt+1 − 0|
|ηt − 0|

= lim
t→∞

ηt+1

ηt

= lim
t→∞

1− kt+1

t

1− kt

t−1

= lim
t→∞

t− 1

t

t− kt+1

t− kt − 1

= lim
t→∞

t− kt+1

t− kt − 1

=1

(13)

Therefore, using the in-degree centrality, we can conclude that the COLE framework will converge to the local optimal
strategy at a Q-sublinear rate.

D. Graphic Shapley Value Solver Algorithm
Algorithm 2 gives the detailed steps of the graphic Shapley value solver in Section 5.2.

Algorithm 2 Graphic Shapley Value Solver Algorithm
1: Input:: population N , the number of Monte Carlo permutation sampling k, the size of negative population
2: Initialize ϕ = 0|C|
3: for (1, 2, · · · , k) do
4: π ←− Uniformly sample from ΠC , where ΠC is permutation set
5: for i ∈ N do
6: // Obtain predecessors of player i in sampled permutation π
7: Sπ(i)←− {j ∈ N|π(j) < π(i)}
8: // Update incompatibility weights
9: ϕi ←− ϕi +

1
k (v(Sπ(i) ∪ {i})− v(Sπ(i)))

10: end for
11: end for
12: ϕ←− ϕ/

∑
ϕ

13: ϕ←− (1− ϕ)/
∑

(1− ϕ)
14: Output:: ϕ

E. Overcooked Environment
In this paper, we conduct a series of experiments in the Overcooked environment (Carroll et al., 2019; Charakorn et al., 2020;
Knott et al., 2021), which is proposed for the coordination challenge, to verify the performance of COLESV. As a two-player
common payoff game, each player controls one chef in a kitchen to cook and serve soup, which results in a reward of 20 for
the team. We test our codes on five different layouts: Cramped Room, Asymmetric Advantages, Coordination Ring, Forced
Coordination, and Counter Circuit.

The Overcooked environment that we used has five layouts, including Cramped Room, Asymmetric Advantages,
Coordination Ring, Forced Coordination, and Counter Circuit. Screenshots of these layouts can be seen in Fig. 7.

The detailed introduction of five layouts is as follows.

(a) Cramped Room. The cramped room is a simple environment where two players are limited to a small room with only
one pot (black box with gray bottom) and one serving spot (light gray square). Therefore, players are expected to fully
utilize the pot and effectively deliver soup, even with basic coordination.

(b) Asymmetric Advantages. In this layout, two players are placed in two disconnected kitchens. As the name suggests,
the positions of onions, pots, and serving spots are asymmetric. In the left kitchen, onions are far from the pots, while
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(a) Cramped Room (b) Asymmetric Advantages (c) Coordination Ring (d) Forced Coordination (e) Counter Circuit

Figure 7. Overcooked environment layouts.

serving spots are near the middle area of the layout. However, in the right kitchen, onions are placed near the middle
area and the serving areas are far from the pots.

(c) Coordination Ring. This ring-like layout requires both players to keep moving to prevent blocking each other,
especially in the top-right and bottom-left corners where the onions and pots are located. For optimal cooperation, both
pots should be utilized.

(d) Forced Coordination. The Forced Coordination is another layout that separates the two agents. There are no pots or
serving spots on the left side, nor are there onions or pots on the right side. Therefore, two players must coordinate
with each other to complete the task. The left player is expected to prepare onions and plates while the right player
cooks and serves them.

(e) Counter Circuit. The Counter Circuit is another ring-like layout but larger in map size. In this layout, pots, onions,
plates, and serving spots are placed in four different directions. Limited by the narrow aisles, players are easily blocked.
Therefore, coordinating and performing the task is difficult in this environment. Players need to learn the advanced
technique of putting onions in the middle area to pass them to the other quickly, which can further improve performance.

F. Experimental Details of COLESV

This paper utilizes Proximal Policy Optimization (PPO) (Schulman et al., 2017) as the oracle algorithm for our strategy set
N , which consists of convolutional neural network parameterized strategies. Each network is composed of 3 convolution
layers with 25 filters and 3 fully-connected layers with 64 hidden neurons. To manage computational resources, we maintain
a population size of 50 strategies. In instances where the population exceeds this limit, we randomly select one of the earliest
10 strategies for removal.

We run and evaluate all our experiments on Linux servers, which include two types of nodes: 1) 1-GPU node with NVIDIA
GeForce 3090Ti 24G as GPU and AMD EPYC 7H12 64-Core Processor as CPU, 2) 2-GPUs node with GeForce RTX 3090
24G as GPU and AMD Ryzen Threadripper 3970X 32-Core Processor as CPU. On the Overcooked game environment, the
COLESV takes about one to two days on the 2-GPUs machine for one layout’s training.

The hyperparameter setup is similar to those in PBT and MEP, which are given as follows.

• The learning rate for each layout is 2e-3 , 1e-3 , 6e-4 , 8e-4 , and 8e-4.

• The gamma γ is 0.99.

• The lambda λ is 0.98.

• The PPO clipping factor is 0.05.

• The VF coefficient is 0.5.

• The maximum gradient norm is 0.1.

• The total training time steps for each PPO update is 48000, divided into 10 mini-batches.

• The total numbers of generations for each layout are 80, 60, 75, 70, and 70, respectively.

• For each generation, we update 10 times to approximate the best-preferred strategy.

• The α is 1.
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G. Implementations of Baselines
In this part, we will introduce the detailed implementations of baselines. We train and evaluate the self-play and PBT based
on the Human-Aware Reinforcement Learning repository (Carroll et al., 2019) 1 and used Proximal Policy Optimization
(PPO) (Schulman et al., 2017) as the RL algorithm. We implement FCP according to the FCP paper (Strouse et al., 2021) and
use PPO as the RL algorithm. The implementation is based on the Human-Aware Reinforcement Learning repository (the
same used in the self-paly and PBT). The MEP agent is trained with population size as 5, following the MEP paper (Zhao
et al., 2021) and used the original implementation2.

H. Trajectory Visualization
We visualize the trajectories produced by COLESV 1:3 and 0:4 with middle-level and expert partners in Overcooked at
https://sites.google.com/view/cole-2023/. Fig. 8 presents three screenshots of the COLESV 0:4 model
(blue player) that collaborates with one of the expert partners, the PBT model (green player). The case illustrates the
importance of the individual objective in zero-shot coordination with expert partners. Frame A is a screenshot taken at
53s when the two players start to impede each other. The PBT model has taken the plate and wants to load and serve the
dish. The blue player wants to take the plate but does not know how to change the objective to allow the green player to
load the dish. After blocking for about 11s, the blue player starts to move and lets the green player go to the pots (Frame
B). However, the process is not smooth and takes 7s to reach Frame C. This phenomenon does not occur in COLESV 1:3
coordination with expert partners, which shows that including individual objectives might improve the cooperative ability
with expert partners.

Frame A : time left 53s Frame B : time left 42s Frame C : time left 35s 

Figure 8. Trajectory snapshots of the COLESV 0:4 model (blue) with one of the expert partners - PBT model (green).

1https://github.com/HumanCompatibleAI/human_aware_rl/tree/neurips2019.
2The code of MEP original implementation: https://github.com/ruizhaogit/maximum_entropy_population_

based_training.
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