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ABSTRACT

Long COVID is a general term of Post-Acute Sequelae of COVID-19. Patients
with Long COVID can endure long-lasting symptoms including fatigue, headache,
dyspnea and anosmia, facing increased risk of death. Identifying the cohorts with
severe long-term complications in COVID-19 could benefit the treatment plan-
ning and resource arrangement. However, due to the heterogeneous phenotypes
and various duration of symptoms presented in patients with Long COVID, it
is difficult to predict their outcomes from their longitudinal data. In this study,
we proposed a spatiotemporal attention mechanism to weigh feature importance
jointly from the temporal dimension and feature space of longitudinal medical
data. Considering that medical examinations can have interchangeable orders in
adjacent time points, we restricted the learning of short-term dependency with a
Local-LSTM and the learning of long-term dependency with the joint spatiotem-
poral attention. We also compared the proposed method with several state-of-the-
art methods and a method in clinical practice. The methods are evaluated on a
hard-to-acquire clinical dataset of patients with Long COVID. Experimental re-
sults show the Local-LSTM with joint spatiotemporal attention achieved superior
performance in mortality prediction comparing to related methods. By analyz-
ing the critical time points identified by the joint spatiotemporal attention, we
identified time-specific prognostic biomarkers for life-threatening Long COVID.
The proposed method provides a clinical tool for the severity assessment of Long
COVID.

1 INTRODUCTION

SARS-CoV-2 is a novel coronavirus previously unknown. The infection of SARS-CoV-2 can cause
coronavirus disease (COVID-19) with clinical syndromes including coughing, headache, fever, etc.
Among the patients infected by SARS-CoV-2, a significant number of them have sustained post-
infection sequelae, which is known as Long COVID. The patients with Long COVID can present
long-lasting COVID-19 syndromes for at least two months after the acute infection (Soriano et al.,
2021). The Long COVID symptoms such as fatigue, dyspnea, and memory problems could relapse,
keep ongoing, or emerge in the following months and even years, which could endanger their lives
(Blomberg et al., 2021). Although the World Health Organization (WHO) has updated the ICD-10
code to characterize Long COVID, currently there are few tools for quantitative assessment of the
severity of the disease (Pfaff et al., 2022a). Identifying the Long COVID patients with high risk of
death has great potential in providing in-time medical interventions.

The progression of Long COVID has been predicted from several data modalities in previous stud-
ies. For example, Acute Physiology and Chronic Health Evaluation II (Apache II) is used to predict
hospital mortality for patients with COVID-19 based on physiologic variables, age, and previous
health conditions (Zou et al., 2020). More recently, studies (Sneller et al., 2022; Pfaff et al., 2022b)
show the prognostic power of electronic health record in predicting the outcome of patients with
Long COVID. The predictions in these studies are based on the patients’ statuses at the first ad-
mission, overlooking the longitudinal information in the patients’ follow-up visits. For patients with
Long COVID, the data collected from the first visit only describes the patients’ condition at the onset
of the disease, containing limited information about disease progression. By incorporating longitu-
dinal electronic health record data, the past trajectory about the disease could inform the outcome
prediction. In addition to electronic health record, medical imaging data are also shown predictive
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for COVID-19 patients in the intensive care units (Cheng et al., 2022). Effective integration of the
longitudinal electronic health record and medical imaging data could further enhance the outcome
prediction.

Deep learning has led to many promising applications for longitudinal modeling of medical data
(Morin et al., 2021). In a Covid-19 study, CT images at different time points were first registered,
segmented and then subtracted as residual values for consolidation and recovery assessment (Kim
et al., 2021). A generative adversarial network (GAN) was proposed to synthesize the colorful fun-
dus photograph to facilitate the longitudinal prediction of advanced age-related macular degenera-
tion (AMD) (Ganjdanesh et al., 2022). These two methods accept input with only two time points.
To model medical data containing more than two time points and even in various length, recursive
neural network (RNN) such as long-short-term-memory (LSTM) network (Lipton et al., 2015; Wang
et al., 2019a) and gated recursive unit (GRU) network (Choi et al., 2016) have been applied. RNN
is well-equipped with learning the short-term dependency (e.g., ordered/sequential patterns) in a se-
quence. Example applications include outcome predictions in diseases such as Alzheimer’s disease
(Nguyen et al., 2020), AMD (Altay et al., 2021) etc.

Attention enables the deep learning models to learn the correlation among multiple time points (or
features) even in a long distance (i.e., long-term dependency). For example, a temporal attention
mechanism was proposed to unravel the temporal importance of the history of measurements in
making predictions with RNN (Lee et al., 2019). This attention mechanism assigns feature impor-
tance based on previous longitudinal measurements, giving same importance for features collected
at the same measurement time. In another word, features at the same time point receive the same
weights. In other studies, a self-attention is integrated with the LSTM to extract both local and
global representations from the feature space. Example applications include the modeling of se-
quential chest X-rays (Cheng et al., 2022) and longitudinal clinical data (Nitski et al., 2021). In
these two applications, the self-attention mechanisms provide static feature importance, ignoring the
temporal changes of feature importance. In some chronic diseases such as Long COVID, however,
some syndromes that happen at the early stage could indicate worsening conditions in the future
(Bocchino et al., 2022). A video-based attention that first organizes features with spatial attention
then combines them using temporal attention shows promising result for person identification (Li
et al., 2018). Customizing the weights of features jointly for different features at different time
points could further leverage the prognostic information contained in the data.

In this study, we proposed a deep learning-based, joint spatiotemporal attention mechanism to enable
the Long COVID mortality prediction from longitudinal electronic health records. The proposed
attention assigns feature importance by jointly considering the time and features from a global per-
spective. The joint spatiotemporal attention can be plugged into many deep learning models such
as LSTM and GRU. This enables a deep neural network to effectively capture both short-term and
long-term dependencies within the multi-modal time series. We evaluated our method on a clinical
trial dataset composed of patients hospitalized due to severe COVID-19 pneumonia. The patients’
electronic health records (EHR) are collected at their initial admission and during their multiple
follow-up visits. The proposed methods were also compared with state-of-the-art deep learning
methods and a clinical method.

Our contributions can be summarized as following: 1). We integrated multiple data modalities for
Long COVID mortality prediction. 2). We proposed a joint spatiotemporal attention mechanism
for deep learning-based longitudinal prediction models. 3). With the proposed model, we identified
critical time points and feature patterns that are key for understanding the life-threatening Long
COVID.

2 METHODS

2.1 PROBLEM FORMULATION

Consider a sequence of longitudinal data {xi|x1, x2, · · · , xT }, where T is the length of the sequence
and xi denotes the data at the ith time point. Here xi can be a vector, a matrix or a tensor depending
on the data type of the application. The longitudinal prediction is to predict y, a clinical outcome
such as the overall survival or progression-free survival based on the information from the longitu-
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dinal data. In the case of mortality prediction of Long COVID from longitudinal medical data, it is
formulated as a sequence-to-one problem.

2.2 JOINT SPATIOTEMPORAL ATTENTION

The sequence-to-one problem for Long COVID mortality prediction is challenging in that there
are various syndromes/features at different time points. And the syndromes/features at early time
points might be correlated with those at later time points. An accurate prognostic model is expected
to account for both feature-wise information and temporal information. When applying attention
mechanisms to longitudinal analysis, previous works either maintain time-dependent feature impor-
tance that ignores feature diversity (Lee et al., 2019) or provide spatial feature importance that is
static over time (Nitski et al., 2021). These assumptions may not hold as different features could
have varying importance as time progresses. For example, for patients previously hospitalized due
to COVID-19 pneumonia, a study shows the fibrotic-like abnormalities are common in three months
but mostly will disappear after one year (Bocchino et al., 2022). And consolidations disappeared in
six months. In this scenario, the feature importance of fibrosis should not only change over time but
also differ from that of consolidation.

To jointly weigh feature importance over the time axis and the feature space, we proposed a spa-
tiotemporal attention mechanism as shown in Figure 1. Specifically, when transforming the input
features into key-, query- and value-space, instead of using 1-dimensional linear layers that are com-
monly used in machine translation (Sankaran et al., 2016), we adopted 2-dimensional convolutional
layers that are commonly used in computer vision domain (Wang et al., 2018). The proposed at-
tention mechanism computes keys, queries and values with 1x1 convolutional filters to calculate the
alignment score as feature importance. The benefit of using 1x1 convolutional filters for attention
calculation is the joint weighting of feature importance from two dimensions including the time di-
mension and the feature dimension. We term the convolutional self-attention that moves both along
the time axis and across the feature space as the joint spatiotemporal attention. As shown in Equation
1, the hidden features are adjusted by attention with a weighting factor γ.

Figure 1: Illustration of the joint spatiotemporal attention. The feature importance of a feature f at
a specific time point is calculated by considering each feature’s value at every time point fij .

f ′ = f + γ · a(f), (1)

where f denotes the hidden features extracted by a deep neural network, f ′ denotes the features’
adjusted value by the joint spatiotemporal attention a(·). Equation 2 shows the calculation of the
joint spatiotemporal attention.

a(f) =

H∑
i=1

T∑
j=1

softmax(q(fij) · k(f)) · v(f), (2)

where H and T represent the size of feature space and the number of time points, respectively; the
feature importance of a given feature f is determined by other features {fij |i = 1, 2, · · · , H; j =
1, 2, · · · , T}. Specifically, the feature importance is measured by calculating the alignment score
via the key k(), value v() and query q() operations that are implemented by 1× 1 convolution.

3



Under review as a conference paper at ICLR 2023

2.3 LSTM WITH JOINT SPATIOTEMPORAL ATTENTION

We first applied RNN with joint spatiotemporal attention to predict the mortality of patients with
Long COVID. To alleviate the vanishing gradient problem in standard RNN (Hochreiter, 1998), we
adopted the LSTM network. Figure 2 shows the structure of the LSTM network with joint spa-
tiotemporal attention. The LSTM network first extracts temporal dependency from the longitudinal
input data into a feature map. The size of the feature map is N × H , where H is the number of
features in the hidden state of one recurrent layer and N is the number of stacked recurrent layers.
In the stacked recurrent layers, one recurrent layer takes the latent features of previous recurrent
layer as input and outputs the processed signals to the next recurrent layer. In this way, the early
recurrent layers extract low-level (often short-term) dependency and the late recurrent layers extract
high-level (often long-term) dependency. We use joint spatiotemporal attention to learn the time-
dependent features’ correlation. The adjusted feature map is fed to the multi-layer perceptron for
outcome prediction. To evaluate the effectiveness the proposed method, we also compared it with a
standalone LSTM model and a LSTM model with temporal attention (Lee et al., 2019).

Figure 2: Model architecture of LSTM with joint spatiotemporal attention.

2.4 LOCAL-LSTM WITH JOINT SPATIOTEMPORAL ATTENTION

We integrated the joint spatiotemporal attention into a Local-LSTM for separate learning of short-
and long-term dependency. While attention is good at learning long-term dependencies, it lacks
the capability of modeling local/sequential structures in order (Vaswani et al., 2017), which usually
exist in short-term dependencies. Take the electronic health record for an example. Different from
an image or a sentence where the sequential ordering of elements has contextual meanings, the elec-
tronic health record within a few days does not follow strict orders (i.e., short-term randomness).
For instance, a patient could undergo the lab tests on the first day and medical imaging examination
on the next day or vice versa. The randomness of orders in short term makes the attention incapable
of encoding the short-term dependency in electronic health record. In contrast, LSTM can account
for the local randomness of ordering because signals stored in the memory cells can still propagate
even if the local order is changed. To disentangle the learning of short- and long-term dependency,
we restricted the learning of short-term/ordering dependency to a set of Local-LSTMs and the learn-
ing of long-term dependency to joint spatiotemporal attention. The Local-LSTM only learns the
sequential patterns within a window size and extracts the local patterns as hidden states.

As shown in Figure 3, the Local-LSTM sequentially processes longitudinal data in a sliding window
of a given length t. And each time point and its t − 1 neighbors are represented by a latent feature
vector of size H . For a sequence of length T , the shape of the sequence’s latent feature map would
be T ×H . After concatenating the hidden states from a batch of size B, the stacked hidden states
become a tensor of size B×T ×H . Then the joint spatiotemporal attention refines the hidden states
by mining the feature-wise and long-term dependencies and outputs adjusted hidden states. The
adjusted hidden states are fed to a multi-layer perceptron for mortality prediction. Our model differs
from the R-Transformer (Wang et al., 2019b) in that we applied joint spatiotemporal attention on
Local-LSTM while the previous work used only spatial attention on Local-RNN. Our work is also
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different from the transformer models in computer vision (Dosovitskiy et al., 2020) and natural
language understanding (Vaswani et al., 2017) where the temporal information are encoded with
the positional embeddings while we encode the temporal information with Local-LSTM. Due to the
short-term randomness of the sequences in EHR, we did not experiment with the methods based on
positional embeddings.

Figure 3: Model architecture of Local-LSTM with joint spatiotemporal attention. The model uses
Local-LSTM to encode the short-term dependency and joint spatiotemporal attention to encode the
long-term dependency.

2.5 THE CLINICAL MODEL

Apache II system is a clinical nomogram that has been widely used in clinical practice to quantify
the disease severity (Knaus et al., 1985). By measuring the initial values of 12 routine physiologic
measurements, age, and previous health status, Apache II gives a score between 0 to 71 where
higher scores indicate a higher risk of death. A previous study shows Apache II score is a significant
prognostic biomarker of hospital mortality for patients with COVID-19 (Zou et al., 2020). This
method is initially designed for patients admitted to ICU and does not account for longitudinal
changes. As a result, Apache II only models patients’ data at the admission to the hospital. We
applied this model on our study cohort and used the Apache II score to predict the patients’ mortality
and to interpret the joint spatiotemporal attention. We term this model as the clinical model.

3 EXPERIMENTS

3.1 COHORT AND DATASET

Initially a total of 396 hospitalized patients with severe COVID-19 pneumonia were identified for
this study. Patients enrolled in this study had been assigned to a clinical trial (anonymized for review
purpose). The exclusion criteria included: i) patients without chest X-ray available; ii) patients
whose contacts are lost in the follow-up visits; iii) patients with sparse data. Finally, 365 patients
were included for the subsequent analysis. Patient data include demographic information, medical
history, chest X-ray data that are collected at their initial admission to the hospital, and longitudinal
data such as laboratory test and vital signs that are collected during patients’ multiple visits to the
clinics. The average number of time points for each patient is 10 with a standard deviation of 4. The
patient survival statuses are collected at the 60th day after their initial admission to the hospital. We
used radiographic assessment of lung oedema (RALE) (Warren et al., 2018) to quantify the disease
severity reflected by the chest x-ray. Table 3 (in Appendix) shows the patient characteristics when
they are first admitted to the hospital.

Table 4 (in Appendix) shows the laboratory test variables and their values from an example patient
on day one. To reduce the sparse data issue, we selected prevalent variables with selection details in
Data Preprocessing section. The selected laboratory test variables include Fibrinogen, C Reactive
Protein, Prothrombin International Normalized Ratio, Prothrombin Time, Lactate Dehydrogenase,
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D-Dimer, Albumin, Ferritin, Alanine Aminotransferase, Aspartate Aminotransferase, Chloride, Pro-
tein, Alkaline Phosphatase, Bilirubin, Calcium, Creatinine, Glucose, Hematocrit, Hemoglobin,
Potassium, Platelets, Erythrocytes, Sodium, and Leukocytes.

3.2 DATA PREPROCESSING

Considering the sparsity of some variables, we first calculated the percentage of patients having
each variable. If a variable was tested by more than 95% of the cohort, we kept it for the follow-
ing analysis. For longitudinal data with missing values, we used forward-filling as the imputation
method; for non-longitudinal data, we used mean-filling. We selected important medical history
variables including hypertension, obesity, hyperlipidemia, and diabetes mellitus based on previous
studies (Pfaff et al., 2022a; Sneller et al., 2022). We calculated the score of radiographic assessment
of lung oedema (RALE) to characterize the disease severity from chest X-rays (Warren et al., 2018).
Measuring the degree of acute respiratory distress syndrome (ARDS), RALE has been widely used
to describe the chest radiographic findings in patients positive for COVID-19. For numeric vari-
ables, min-max normalization was employed to put each variable on the same scale of zero to one.
For binary variables, we represented them with zero or one. At each time point, we concatenated
the longitudinal data at that time point and the static/non-longitudinal data into a vector.

3.3 IMPLEMENTATION DETAILS

We implemented the proposed networks using PyTorch framework (Paszke et al., 2017). Stochastic
gradient optimization (Ruder, 2016) was used for training. We tuned the hyperparameters on the
validation set. For Local-LSTM, in light of the number of time points available, we experimented
window sizes of from two to six. We performed five-fold cross validation. Based on the perfor-
mance on validation set, we set window size as six; for both the LSTM model and the Local-LSTM
model, the size of hidden features was set to 32. With the optimized hyperparameters, all models
are trained for 50 epochs with a batch size of two. We scheduled an annealed learning rate that
gradually decreased from 1e-3 to 1e-5. The model with the best performance on the validation set
was evaluated on the testing set.

3.4 EXPERIMENT SETTINGS

We first evaluated the prognostic values of different data modalities by incrementally incorporat-
ing them into a LSTM model. To evaluate the performance of joint spatiotemporal attention, we
compared LSTM with joint spatiotemporal attention and a previous work, i.e., LSTM with temporal
attention (Lee et al., 2019). The previous method has been used for survival prediction of cystic fi-
brosis disease. We adapted the previous method to model the mortality prediction of Long COVID.
To maintain the focus of spatiotemporal attention on long-term dependencies, we replaced LSTM
with Local-LSTM and formed the new model named Local-LSTM with spatiotemporal attention.
The performance for mortality prediction are evaluated using the area under the receiver operating
curve (AUC). We reported the average AUC after five-fold cross validation.

To interpret the proposed model’s mortality prediction, we first visualized the joint spatiotemporal
attention that represents the hidden features’ importance over time. Then we compared the critical
time points identified by joint spatiotemporal attention (i.e., time points with the most important
features) and the critical time points identified by the Apache II system (i.e., time points with the
highest increase of Apache II score). Then we performed Mann-Whitney U test to find the common
critical time points that are identified by both methods.

4 RESULTS

4.1 COMPARISON OF DIFFERENT INPUT COMBINATIONS

Table 1 shows the AUC when using LSTM model to combine differnt data modalities for mortal-
ity prediction of Long COVID. As shown in Table 1, when only using the laboratory test data (in
longitudinal format), the LSTM model achieves an AUC of 0.63 on the testing set. With the in-
corporation of vital signs (in longitudinal format), the LSTM model’s performance is increased to

6



Under review as a conference paper at ICLR 2023

Table 1: Prediction performance of Long COVID patients’ mortality using LSTM model with dif-
ferent data modalities.

Lab tests Vital signs Demographic Medical
history

Medical
images

AUC

X 0.63
X X 0.70
X X X 0.73
X X X X 0.75
X X X X X 0.76

Table 2: Prediction performance of Long COVID patients’ mortality using different models.
Model name AUC
Clinical model (Knaus et al., 1985) 0.61
LSTM 0.76
LSTM with temporal attention (Lee et al., 2019) 0.77
LSTM with joint spatiotemporal attention 0.80
Local-LSTM with joint spatiotemporal attention 0.87

0.70. These two results demonstrate the effectiveness of LSTM in modeling longitudinal data. Then
we incorporated the non-longitudinal data collected at the patients’ initial admission to the hospital.
The static data include demographic data, medical history data, and chest x-ray data (in the form of
RALE score). The addition of static data further increases the LSTM model’s AUC to 0.73, 0.75
and 0.76, respectively.

4.2 COMPARISON OF DIFFERENT MODELS

Table 2 shows the performance of models with different network architectures for mortality predic-
tion of Long COVID. The clinical model achieves an AUC of 0.61. We use the LSTM model with
a combination of all data modalities as the baseline model (AUC = 0.76). After adding temporal
attention, the LSTM model’s AUC is slightly increased from 0.76 to 0.77. After replacing the tem-
poral attention with the joint spatiotemporal attention, the LSTM model’s AUC is further increased
to 0.80. By replacing LSTM with Local-LSTM, the AUC is improved to 0.87.

4.3 IDENTIFYING KEY PROGNOSTIC BIOMARKERS FOR SEVERE LONG COVID

The feature maps adjusted by joint spatiotemporal attention contain non-linear interactions of multi-
ple variables. Explaining the attention with the hidden features is less straightforward than explain-
ing variables with physical meanings such as heart rate, temperature, etc. To fill the gap between
attention and clinically interpretable phenotypes, we used Apache II system as a bridge to explain
where the attention is looking at. Figure 4 shows the increase of Apache II score decomposed by
different physiologic variables of an example patient. Figure 5 shows the Local-LSTM’s joint spa-
tiotemporal attention on the feature maps of the same patient. As can be seen, a feature’s importance
varies from time point to time point and can be different among features at the same time point.

Based on the statistical testing of critical time points identified by the joint spatiotemporal attention
and Apache II system, we discovered the following patterns: 1) the features at the initial and final
time points tend to have higher importance than features at other time points, which correspond to
the disease onset and the most recent condition of the patient, respectively. The findings about initial
time points’ prognostic value align with a previous study showing that experiencing more than five
symptoms during the first week of illness is associated with Long COVID (Sudre et al., 2021); 2).
Significantly (p ≤ 0.05) correlated critical time points between joint spatiotemporal attention and
Apache II system include: i) when the respiratory rate is abnormal at the initial and 60-day time
points, and ii) when the heart rate and creatinine level are both abnormal at any time point. With
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the Apache II system as an interpreter, we identified these biomarkers and temporal patterns that the
Local-LSTM model focused its attention on.

Figure 4: Increase of Apache II score of an example patient at different time points. The physiologic
variables’ ticks on Time axis are slightly shifted for presentation purpose.

5 DISCUSSION

Figure 5: Visualization of joint spa-
tiotemporal attention in Local-LSTM
model for an example patient.

In this study, we proposed a joint spatiotemporal atten-
tion mechanism to enable the simultaneous learning of
feature importance across the temporal and feature space.
The integration of joint spatiotemporal attention into the
LSTM model and the Local-LSTM model demonstrated
the effectiveness of the proposed attention mechanism.
We further evaluated the LSTM model and the Local-
LSTM model by comparing with related methods. The
experiments on a real-world and hard-to-acquire clinical
dataset demonstrated the proposed models’ effectiveness
for mortality prediction of patients with Long COVID.

5.1 MODELING WITH LONGITUDINAL DATA

We proposed a joint spatiotemporal attention to assign dy-
namic feature importance both along the time axis and
across the feature space. Previous work either calcu-
lates the feature importance independent of time or calcu-
lates the temporal importance being unaware of the inter-
feature differences. In longitudinal modeling, we argue
that the same feature at different time points have var-
ied prognostic values and the feature importance should
vary according to both time and features. The proposed
joint spatiotemporal attention addresses this problem by
learning two-dimensional convolutional filters. Our ex-
perimental results show that the LSTM with joint spatiotemporal attention (AUC=0.80) outper-
formed LSTM with temporal attention (AUC=0.77) and LSTM without attention (AUC=0.76). This
demonstrates the effectiveness of the proposed attention mechanism.
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When comparing the clinical model, LSTM models with and without attention and Local-LSTM
model with attention, we can see that the Local-LSTM model achieves higher performance
(AUC=0.87) than the rest models. The regular LSTM model entangles the learning of the short-
term/ordering and long-term dependencies together. In contrast, the Local-LSTM model enables
the separate learning of short-term and long-term dependency in longitudinal data. The joint spa-
tiotemporal attention receives latent features processed by the Local-LSTM and can only learn the
remaining information about long-term dependency. Since attention is unable to model the sequen-
tial patterns in local structure, leaving the short-term/ordering dependency learning to LocalLSTM
avoided attention’s drawback. This enhanced the whole model (Local-LSTM with spatiotemporal
attention)’s capacity in pattern recognition of longitudinal data. The results suggest separate learning
of short-term/ordering and long-term dependency could improve the outcome prediction. In addi-
tion, the clinical model does not perform as good as the LSTM model or the Local-LSTM model
for many reasons. First of all, it may have to do with its linear addition of scores, which excluded
nonlinear interactions among variables. Secondly, some of the variables for Apache II score’s cal-
culation is not available in our dataset and could also limit Apache II system’s performance. In
addition, the clinical model is incapable of modeling longitudinal data.

5.2 CLINICAL IMPACT

Our study provides a comprehensive assessment of the prognostic values for Long COVID in mul-
tiple data modalities. Patients with Long COVID exhibit different phenotype. Identifying the prog-
nostic variables has great significance. Our study shows that the vital signs, laboratory tests, de-
mographics, medical history, and medical images all have their unique prognostic values for Long
COVID outcome prediction. Combining them all together achieved higher AUC for mortality pre-
diction than other combinations. Previous studies on Long COVID separately investigated the non-
imaging electronic medical records and medical imaging data. Our study reveals the slightly com-
plementary role of medical imaging to electronic health record in Long COVID mortality prediction.

Our study reveals key prognostic biomarkers for the mortality prediction of Long COVID. The com-
parison of critical time points highlighted by joint spatiotemporal attention and by Apache II system
enabled us to identify three physiologic variables, i.e., respiratory rate, heart rate, and creatinine
level. The identification of these variables at specific time points is clinically meaningful. They
could not only help us better understand the progression of Long COVID but also serve as prognos-
tic biomarkers to monitor the condition of patients with Long COVID.

6 CONCLUSION

In conclusion, we proposed a joint spatiotemporal attention mechanism for Long COVID mortal-
ity prediction from longitudinal medical data. We integrated the proposed attention mechanism to
deep learning frameworks including a LSTM model and a Local-LSTM model. Our experiments
on the mortality prediction of patients with Long COVID show the effectiveness of the proposed
method. We also demonstrated the explainability of the joint spatiotemporal attention by identifying
three prognostic biomarkers including respiratory rate, heart rate, and creatinine level. In this post-
pandemic era, our method not only provided an in-time clinical tool for mortality prediction of Long
COVID but also advanced the medical knowledge about the disease progression of Long COVID.
Limitations & Future work The proposed joint spatiotemporal attention has a few limitations. It
requires the same set of features at each time point. Though we performed data imputation with
forward filling, it may still exclude some patients with sparse data. To accommodate the sparse data
issue, one way is to impute the missing data from patients with similar conditions, which needs un-
supervised learning in future work. In addition, to better represent imaging data, replacing the RALE
scores with CNN features merits further investigation. Finally, we plan to evaluate the method on
additional longitudinal prediction tasks and other diseases.
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A APPENDIX

Table 3: Characteristics of the cohort on admission to the hospital.
Characteristics Value

Total number of patients 365
Deceased after 60 days 65
Mean age, years 58±13
Sex
Male 217
Female 217
Mean body mass index, kg/m2 28±13
Medical history
Diabetes mellitus 69
Hyperlipidemia 70
Obesity 113
Hypertension 192
Vital signs
Systolic Blood Pressure, millimeters of mercury 124±17
Diastolic Blood Pressure, millimeters of mercury 72±10
Pulse Rate, beats per minute 76±16
Respiratory Rate, breaths per minute 23
Laboratory test See Table 4
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Table 4: Laboratory test variables of an example patient on day one.
Laboratory test variable name Value Units

Albumin 3.2 g/dL
Alkaline Phosphatase 80 U/L
Alanine Aminotransferase 26 U/L
Activated Partial Thromboplastin Time 36 sec
Aspartate Aminotransferase 21 U/L
Basophils 0.1 103/uL
Bilirubin 0.7 mg/dL
N-Terminal ProB-type Natriuretic Peptide 171.9 pg/mL
Blood Urea Nitrogen 15 mg/dL
Calcium 8.5 mg/dL
Chloride 100 mEq/L
Carbon Dioxide 28 mEq/L
Creatinine 0.6 mg/dL
C Reactive Protein 86.1 mg/L
D-Dimer 0.35 ug/mL FEU
Eosinophils 0 103/uL
Ferritin 1815 ng/mL
Fibrinogen 662 mg/dL
Glucose 66 mg/dL
Hematocrit 40.1 %
Hemoglobin 13.9 g/dL
Prothrombin International Normalized Ratio 1.3 RATIO
Potassium 3.6 mEq/L
Lactate Dehydrogenase 229 U/L
Lymphocytes 1.2 103/uL
Monocytes 0.6 103/uL
Neutrophils 6.5 103/uL
Phosphate 2.3 mg/dL
Platelets 314 103/uL
Protein 6.4 g/dL
Prothrombin Time 16 sec
Erythrocytes 4.43 106/uL
Soluble Interleukin 1 Receptor-Like 1 67700 pg/mL
Sodium 139 mEq/L
Troponin T 0.01 ng/mL
Unspecified Cells 0 103/uL
Urate 1.9 mg/dL
Leukocytes 8.3 103/uL
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