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Abstract

We consider the parallel complexity of submodular function minimization (SFM).
We provide a pair of methods which obtain two new query versus depth trade-
offs a submodular function defined on subsets of n elements that has integer
values between −M and M . The first method has depth 2 and query complexity
nO(M) and the second method has depth Õ(n1/3M2/3) and query complexity
O(poly(n,M)). Despite a line of work on improved parallel lower bounds for
SFM, prior to our work the only known algorithms for parallel SFM either followed
from more general methods for sequential SFM or highly-parallel minimization of
convex ℓ2-Lipschitz functions. Interestingly, to obtain our second result we provide
the first highly-parallel algorithm for minimizing ℓ∞-Lipschitz function over the
hypercube which obtains near-optimal depth for obtaining constant accuracy.

1 Introduction

A function f : 2[n] → Z is submodular if it has the diminishing marginal return property that
f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T ) for all elements i ∈ [n] and subsets S ⊆ T ⊆ [n] \ {i},
i.e., the function value increase of adding i to a set S is at least that of adding i to a superset T that
does not contain i. Submodular functions are used to model a range of problems arising machine
learning [KG05, KNTB09, KC10], operations research [FG88, QS95], and economics [Top98]. The
submodular function minimization (SFM) problem consists of finding the subset S with the smallest
f(S), given evaluation oracle access to the submodular function f , using as few queries as possible.
SFM has numerous applications. For example, in natural language processing SFM has played a key
role in speech analysis where [LB11, JB11] modeled the task of optimally selecting terse, yet diverse,
training data out of a large speech dataset as a SFM problem; in computer vision, the task of energy
minimization was reduced to SFM [BVZ01, KKT08, KT10, JBS13, KBJ+15].

Seminal work of [GLS81] established that SFM can be solved with a polynomial number of queries
and in polynomial time. In the decades since, there has been extensive research characterizing
the query and computational complexity of SFM. When f is integer valued with values between
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−M and M , the state-of-the-art query complexities are Õ(nM2)4 due to [CLSW17] and [ALS20],
Õ(n2 logM) and Õ(n3), both due to [LSW15] (the latter query complexity being improved by a
factor of log2 n in [Jia21]), and O(n2 log n) (with an exponential runtime) due to [Jia22]. The largest
query complexity lower bound is Ω(n log n) for deterministic algorithms due to [CGJS22].

The algorithms underlying the above results are highly sequential. State-of-the-art SFM algorithms
use at least a linear number of rounds of queries to the evaluation oracle (Õ(nM2) rounds in [ALS20]
and O(n log n) rounds in [Jia22]). Although there is a trivial 1-round algorithm that queries all 2n
input of f in parallel, all known polynomial time SFM algorithms use Ω(n) rounds.

With the prevalence of parallel computation in practice and applications of SFM to problems involving
massive data sets, recently there has been an increasing number of works which study the parallel
complexity of SFM, i.e., the smallest number of rounds a SFM algorithm must take. Starting with
[BS20], significant progress has been made in proving lower bounds on the parallel complexity of
SFM. It is now known that any SFM algorithm making polynomially many queries needs Ω̃(n1/3)

rounds when M = Θ(n) [CCK21] and Ω̃(n) rounds when M = Θ(nn) [CGJS22].

In contrast to the significant progress on lower bounds, less progress has been made on designing
SFM algorithms with small parallel complexity. This is due in part to the established lower bounds;
as noted above, if we desire range-independent parallel complexity bounds, i.e., independent of the
range M , then it is impossible to obtain an O(n1−ε)-round SFM algorithm, for any constant ε > 0.
The central question motivating this paper is what non-trivial parallel speedups for SFM are possible
if we allow methods with a range-dependent parallel complexity.

Is it possible to obtain query-efficient o(n)-round M -dependent algorithms for SFM?
In this paper we provide positive answers to the above question. Our first result is an algorithm
that runs in Õ(n1/3M2/3) rounds with query complexity Õ(n2M2). To achieve this result, we
first provide a generic reduction from parallel SFM to parallel convex optimization (a well studied
problem discussed below). While naively this approach yields a sublinear bound of Õ(n2/3M2/3)
rounds, we show how to further improve these convex optimization methods in our setting.

Our second result is a simple 2-round SFM algorithm (Algorithm 1) with query complexity nO(M).
For constant M , the parallel complexity of 2 is optimal among the class of query-efficient algorithms
that query the minimizer [CLSW17]. It is instructive to contrast our second result to the lower bound
in [CCK21], where it is proved that when M = n, any algorithm with query complexity nM1−δ

for
any constant δ > 0 must proceed in nΩ(δ) rounds.

Highly Parallel Convex Optimization. Motivated by applications to distributed and large scale
optimization [BPC+11, GR18], the question of highly parallel convex optimization has received
significant attention in the last decade. Formally, the task is to find an (approximate) minimizer of a
convex function this is Lipschitz in some norm, using as few rounds of O(poly(n)) parallel queries
to a subgradient oracle as possible. Over the past few years, there has been progress on both upper
[DBW12, SBB+18, BJL+19] and lower bounds [Nem94, BS18, DG19] for this problem.

This line of work is particularly relevant as SFM reduces to minimizing the Lovász extension (see
Fact 2.4) [Lov83] over [0, 1]n, which is convex and O(M)-Lipschitz in ℓ∞ (see Definition 2.1). In
Section 2.1 we provide a straightforward reduction from this problem to unconstrained minimization
of a O(L)-Lipschitz function in ℓ∞ where the minimizer has ℓ∞ norm O(1). Consequently, improved
parallel ℓ∞-Lipschitz convex optimization algorithms can imply improved parallel SFM algorithms.

Many prior algorithms for highly parallel convex optimization focused on convex functions that are ℓ2-
Lipschitz and some were written only for unconstrained optimization problems. Naively using these
algorithms for ℓ∞ yields parallel complexities of Õ(n3/4/ε) [DBW12] and Õ(n2/3/ε2/3) [BJL+19,
CJJ+23]5 for convex functions that are ℓ∞-Lipschitz.

Our first SFM result follows from an improved algorithm that we develop that finds ε-approximate
minimizers for convex ℓ∞-Lipschitz functions in Õ(n1/3/ε2/3) rounds. Interestingly, for constant
ε > 0, the dependence on n in this improved parallel complexity is optimal up to logarithmic

4Throughout, we use Õ(f(n)) to hide poly(log f(n), logn) factors.
5[BJL+19, CJJ+23] study the ℓ2 setting. To obtain the corresponding Õ(n2/3/ε2/3) result for ℓ∞, we

combine their result with Lemma 2.3 given in this paper.
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factors; [Nem94] proved a lower bound of Ω̃(n1/3 ln(1/ε)) on the round complexity of any algorithm
obtaining an ε-approximate minimizer over [0, 1]n for ℓ∞-Lipschitz convex functions. For constant
ε > 0, this lower bound also applies to unconstrained ℓ∞-optimization [DG19].

Paper Year Parallel Rounds
[ALS20] 2020 Õ(nM2)

[JLSW20] 2020 Õ(n logM)

[Jia22] 2021 Õ(n)

This paper 2023 Õ(n1/3M2/3)

Paper Year Parallel Rounds
Subgradient Descent 1960s O(n/ε2)

Cutting Plane 1965 Õ(n log(1/ε))

[BJL+19, CJJ+23]* 2019 Õ(n2/3/ε2/3)

This paper 2023 Õ(n1/3/ε2/3)

Table 1: State-of-the-art parallel complexity for SFM and ℓ∞-optimization. See Section 1.2 for references on
cutting plane methods. *The Õ(n2/3/ε2/3) result uses Lemma 2.3 from this paper.

Notation. We let [n] := {1, . . . , n} for any n ∈ Z>0. We let In denote the identity matrix in Rn×n.

1.1 Problems, Results, and Approach

Here we formally define the problems we consider, present our results, and discuss some of the key
insights of our approach. This section is organized as follows. We begin by presenting the parallel
computation model. Then, we introduce the parallel ℓp-Lipschitz convex optimization problem,
which is closely tied to parallel SFM. We present our improvement for the ℓ∞-Lipschitz setting and
offer a brief overview of our techniques in obtaining this result. Finally, we formally introduce the
SFM setup, along with the new results we obtain (Theorem 1.3 and Theorem 1.4).

Parallel Complexity Model. We consider the standard black-box query model for optimization,
where we are given a convex function f : D → R, with domain D ⊂ Rn, accessed through an
oracle. Parallel algorithms for minimizing f proceed in rounds, where in each round the algorithm
can submit a set of queries to the oracle in parallel. The parallel complexity of an algorithm is the
total number of rounds it uses and it captures how “sequential” the algorithm is. Additionally, we
consider the query complexity of an algorithm which is the total number of queries it makes.

Parallel ℓp-Lipschitz Convex Optimization. In Section 2 we consider the problem of minimizing a
convex function f : Rn → R given access to a subgradient oracle g : Rn → Rn, which when queried
with point x ∈ Rn returns a vector g(x) that is a subgradient, denote g(x) ∈ ∂(f(x)) where ∂(f(x))
is the set of all subgradients of f at x, i.e., v ∈ ∂f(x) if and only if f(y) ≥ f(x) + v⊤(y− x) for all
y ∈ Rn. Furthermore, we assume that f is L-Lipschitz with respect to a norm ∥·∥.
Definition 1.1 (L-Lipschitzness with respect to a given norm). We say that f : Rn → R is L-
Lipschitz with respect to ∥·∥ for norm ∥·∥ if |f(x) − f(y)| ≤ L ∥x− y∥ for all x, y ∈ Rn. If f is
O(1)-Lipschitz with respect to a norm ∥·∥, we say that f is ∥·∥-Lipschitz. When the norm is ∥·∥p we
alternatively say that f is L-Lipschitz in ℓp and that f is ℓp-Lipschitz respectively.

There is a broad line of work on studying the parallel complexity of ℓp-Lipschitz convex optimization
in which the goal is to efficiently compute an ε-approximate minimizer (i.e., a point y with f(y) ≤
infx f(x)) of a ℓp-Lipschitz convex function where the minimizer either has ℓp-norm O(1) or the
problem is constrained to the ℓp-norm ball of of radius O(1). The case when p = 2 is perhaps the
most well studied and our new result regarding ℓ∞-Lipschitz convex optimization builds upon a result
in [CJJ+23], Theorem 1, which considers this setting. The statement of our result is below:
Theorem 1.2 (Parallel Convex Optimization in ℓ∞). There is an algorithm that when given a
subgradient oracle for convex f : Rn → R that is 1-Lipschitz in ℓ∞ and has a minimizer x∗ with
∥x∗∥∞ ≤ 1 computes an ε-approximate minimizer of f in Õ(n1/3ε−2/3) rounds and Õ(nε−2)
queries.

In fact, we obtain a more general result that solves stochastic variants of parallel ℓ∞-optimization
(see Theorem 2.2) and Theorem 1.2 is an important corollary of this more general result.

Our parallel convex optimization algorithms build on machinery developed for highly-parallel algo-
rithms for minimizing convex functions that are ℓ2-Lipschitz. These methods consider a convolution
of f with a centered Gaussian with covariance ρ2In (also referred to as Gaussian smoothing), and
then apply optimization methods [CJJ+23, ACJ+21, BJL+19] to this smooth function. By leveraging
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the properties of this smoothing and the convergence rate of the associated optimization methods, they
obtain their parallel complexities. Since functions which are ℓ∞-Lipschitz are also ℓ2-Lipschitz, the
above algorithms also apply to ℓ∞-Lipschitz functions but they give us a suboptimal dependence of
n2/3 on the dimension. We improve the dependence on dimension by utilizing the ℓ∞-Lipschitzness
of our function to add more Gaussian smoothing. This allows us to obtain a n1/3 dependence on the
dimension, which is optimal up to polylogarithmic factors for constant ε [Nem94, DG19]. The key
observation is that convolving an ℓ∞-Lipschitz function with a Gaussian of covariance ρ2In changes
the function value by no more than O(ρ

√
log n) (see Lemma 2.6), whereas for ℓ2-Lipschitz functions

it could change the function value by O(ρ
√
n).

Submodular Function Minimization. In SFM, we assume the submodular function f : 2[n] → Z
is given by an evaluation oracle, which when queried with S ⊆ [n], returns the value of f(S).
Throughout the paper, we assume that f(S) ∈ [−M,M ] for some M ∈ Z>0, and f(∅) = 0.
The assumption that f(∅) = 0 can be made without loss of generality by instead minimizing
f̃(S) := f(S)− f(∅); this transformation can be implemented with one query and moves the range
of f by at most ±M , turning any dependence on M in an algorithms’ complexity to 2M .

Note that this submodular function minimization setup is different from the setup of parallel convex
optimization, as f only defined on the vertices of the unit hypercube. Nonetheless, it is known
that there is a convex function fLov defined on [0, 1]n, known as the Lovasz Extension, such that
optimizing fLov suffices for optimizing f . Additionally, it is known how to compute a subgradient of
fLov at any point x in 1 round using at most n evaluation queries to f (as highlighted in Fact 2.4).

Now, we are ready to present our first result on parallel SFM. Later, in Section 2.1, we provide a
more general version of this theorem, Theorem 2.5, which gives improved parallel complexities for
approximately minimizing bounded, real-valued submodular functions.

Theorem 1.3 (Sublinear Parallel SFM). There is an algorithm that, when given an evaluation oracle
for submodular f : 2[n] → Z with f(∅) = 0 and |f(S)| ≤M for all S ⊆ [n], finds a minimizer of f
in Õ(n1/3M2/3) rounds and Õ(n2M2) queries.

As discussed, Theorem 1.3, is obtained by using and enhancing tools for optimizing Lipschitz convex
functions with a subgradient oracle. We in fact prove a more general result, namely that Õ(n1/3/ε2/3)

rounds and Õ(n2/ε2) queries are sufficient to find an εM -approximate minimizer (Theorem 2.5).
Since the function is integer valued, approximating the scaled Lovász extension to ε ≈ Θ(1/M)
gives the exact minimizer to the submodular function. Our proof of Theorem 2.5 follows from our
new result on ℓ∞-convex optimization (Theorem 1.2). By applying it to a scaled version of the
Lovász extension; it is known that if f is a submodular function with range Z ∩ [−M,+M ], then
the Lovász extension scaled by O(1/M) is a convex function which is ℓ∞-Lipschitz. However, it is
important to note that SFM is only equivalent to constrained minimization of the Lovász extension in
[0, 1]n, while Theorem 1.2 below is unconstrained (e.g. applies for minimizing over Rn). To apply
Theorem 1.2 in the context of SFM, we give a general reduction from constrained to unconstrained
optimization by adding a regularizer that restricts the minimizer of the regularized function to the
constrainted set (see Lemma 2.3). This reduction is a generic technique and might be of independent
utility.

Parallel SFM in Two Rounds. Our second SFM result is a simple combinatorial 2-round algorithm
which is efficient for functions of constant range.

Theorem 1.4 (Two-round Parallel SFM). There is an algorithm (Algorithm 1) that when given an
evaluation oracle for submodular f : 2[n] → Z with f(∅) = 0 and |f(S)| ≤M for all S ⊆ [n] finds
a minimizer of f in 2 rounds and O(nM+1) queries.

The algorithm proving Theorem 1.4 relies on two key observations. First, if S∗ is the minimizer of
maximum size, for every subset T ⊆ S∗ and i ∈ [n] with f(T ∪ {i}) ≤ f(T ), we have i ∈ S∗. In
other words, every element with a non-positive marginal at a subset T ⊆ S∗ is also contained in S∗.
This leads to the idea of augmenting a set T by the set T ′ = T ∪{i : f(T ∪{i}) ≤ f(T )}. Secondly,
every subgradient g ∈ ∂f(x) has at most M entries that are strictly positive. This ensures that there
exists an M -sparse subset T ⊆ S∗ with the property that f(T ∪ {i}) ≤ f(T ) forall i ∈ S∗\T .
Consequently, our algorithm proceeds by augmenting all M -sparse sets, as it is guaranteed that one
of these augmented sets is the maximal minimizer (see Section 3 for more details).
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1.2 Related Work

Parallel Convex Optimization. As mentioned in Section 1.1, there are a number of works study-
ing the parallel complexity of ℓp-Lipschitz convex optimization. Perhaps, the most well-studied
case is that of p = 2. In this case, the classic subgradient descent algorithm achieves a parallel
complexity of O(ε−2)-rounds and the standard cutting-plane methods achieve a parallel complexity
of O(n log(1/ε))-rounds. [DBW12, BJL+19, CJJ+23] improved upon this rate, achieving parallel
complexities of Õ(n1/4ε−1) [DBW12] and Õ(n1/3ϵ−2/3) [BJL+19, CJJ+23] respectively. The
implications of these results for the p = ∞ case, which is the object of study in our paper, were
discussed earlier and we are unaware of works on alternative upper bounds for p =∞.

In terms of lower bounds, the p = ∞ case was studied in the prescient paper of [Nem94] which
obtains a Ω̃(n1/3 ln(1/ε)) lower bound for minimizing ℓ∞-Lipschitz functions over the ℓ∞-ball
(see also [DG19]). When ε is a constant, our upper bound matches this lower bound, though our
dependence on ε is polynomial instead of logarithmic. For the p = 2 case, [Nem94, BS18] proved
a tight lower bound of Ω(1/ε2) on the parallel complexity when 1/ε2 ≤ Õ(n1/3), i.e., the parallel
complexity of subgradient descent is optimal up to Õ(n1/3) rounds of queries. This was later
improved by [BJL+19], which showed that subgradient descent is optimal up to Õ(n1/2) rounds.
[DG19] considered the general p case (and other non-Euclidean settings) and proved a lower bound
of Ω(ε−p) lower bound on the parallel complexity for 2 ≤ p < ∞, Ω(ε−2) for 1 < p ≤ 2, and
Ω(ε−2/3) for p = 1. This paper also has lower bounds for smooth convex functions.

Submodular Function Minimization. We now expand on the history of SFM upper and lower
bounds for parallel and sequential algorithms touched upon earlier. Since the seminal work of
Edmonds in 1970 [Edm70], there has been extensive work [GLS81, GLS88, Sch00, IFF01, Iwa03,
FI00, Vyg03, Orl09, IO09, LSW15, CLSW17, ALS20, DVZ21, Jia21, Jia22] on developing query-
efficient algorithms for SFM. [GLS81, GLS88] gave the first polynomial time algorithms using
the ellipsoid method. The state-of-the-art SFM algorithms include a Õ(n2)-query exponential
time algorithm due to [Jia22], Õ(n3)-query polynomial time algorithms due to [Jia21, JLSZ23]; a
Õ(n2 logM)-query polynomial time algorithm due to [LSW15], and a Õ(nM2)-query polynomial
time algorithm due to [ALS20]. Despite these algorithmic improvements, limited progress has been
made on lower bounding the query complexity of SFM and the best known lower bound has been
Ω(n) for decades [Har08, CLSW17, GPRW20]. Very recently, [CGJS22] proved an Ω(n log n)-lower
bound for deterministic SFM algorithms.

All the algorithms above are highly sequential and proceed in at least n rounds. The question of
parallel complexity for SFM was first studied in [BS20] where an Ω(log n/ log log n)-lower bound
on the number of rounds required by any query-efficient SFM algorithm was given. The range M

in their construction is M = nΘ(n). Subsequently, [CCK21] proved a Ω̃(n1/3) lower bound on the
round-complexity and the range is M = n for their functions. Recently, [CGJS22] described a Ω̃(n)
lower bound with functions of range M = nΘ(n).

Cutting plane methods. Cutting plane methods are a class of optimization methods that minimize a
convex function by iteratively refining a convex set containing the minimizer. Since the center of
gravity method was developed independently in [Lev65, New65], there have been many developments
of faster cutting plane methods over the last six decades [Sho77, YN76, Kha80, KTE88, NN89, Vai89,
BV04, LSW15], with the state-of-the-art due to [JLSW20].

2 Minimizing ℓ∞-Lipschitz Functions and Submodular Functions

In this section we provide a new, improved parallel algorithm for convex optimization in ℓ∞ and show
how to use these algorithms to obtain an improved parallel algorithm for SFM. In much of this section,
we consider the following optimization problem which we term stochastic convex optimization in ℓ∞.
As we discussed, this problem generalizes parallel convex optimization in ℓ∞. The problem is more
general in terms of the norms it considers and how it allows for stochastic gradients; we consider it
as it could be useful more broadly and as it perhaps more tightly captures the performance of our
optimization algorithm.
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Definition 2.1 (Stochastic Convex Optimization in ℓ∞). In the stochastic convex optimization in
ℓ∞ problem we have a (stochastic) subgradient oracle g : Rn → Rn such that Eg(x) ∈ ∂f(x) and
E ∥g(x)∥22 ≤ σ2 for a convex function f : Rn → R that is L-Lipschitz in ℓ∞. Given the guarantee
that f has a minimizer x∗ ∈ Rn with ∥x∗∥2 ≤ R our goal is to compute an ε-approximate minimizer
of f , i.e., x ∈ Rn with f(x) ≤ f(x∗) + ε.

Note that in Definition 2.1, ℓ∞ appears only to determine the norm in which f is Lipschitz. However,
the bound on x∗ in ℓ2 that can be easily converted to one in terms of ℓ∞ by using that ∥x∗∥2 ≤√
n ∥x∗∥∞. Furthermore, a convex function f : Rn → R is L-Lipschitz in ℓ∞ if and only if ∥g∥1 ≤ L

for all g ∈ ∂(x) for x ∈ Rn. Since ∥g∥2 ≤ ∥g∥1 we see that this stochastic convex optimization
problem subsumes the (non-stochastic) problem of computing an ε-approximate minimizer to a
convex function that is L-Lipschitz in ℓ∞ given a (deterministic) subgradient oracle. We define this
more general problem as, interestingly, our algorithm tolerates this weaker stochastic oracle without
any loss (as we discussed).

Our main result regarding stochastic convex optimization in ℓ∞ is given in the following theorem.
Theorem 2.2 (Stochastic Convex Optimization in ℓ∞). There is an algorithm that solves the stochastic
convex optimization problem (Definition 2.1) in ℓ∞ (Definition 2.1) in Õ((LR/ε)2/3) rounds and
Õ((σR/ε)2) queries.

Due to the aforementioned connection between ℓ∞-Lipschitz continuity and bounds on the sub-
gradient, and the fact that ∥x∗∥∞ ≤ 1 implies ∥x∗∥2 ≤

√
n, Theorem 2.2 immediately yields a

Õ(n1/3ε−2/3)-round, Õ(nε−2)-query algorithm for the problem of minimizing a convex function
that is 1-Lipschitz in ℓ∞ and minimized at a point with ℓ∞-norm at most 1. As discussed in the
introduction, the parallel complexity of this algorithm is near-optimal for constant ε [Nem94].
Theorem 1.2 (Parallel Convex Optimization in ℓ∞). There is an algorithm that when given a
subgradient oracle for convex f : Rn → R that is 1-Lipschitz in ℓ∞ and has a minimizer x∗ with
∥x∗∥∞ ≤ 1 computes an ε-approximate minimizer of f in Õ(n1/3ε−2/3) rounds and Õ(nε−2)
queries.

In Section 2.1, we show how to use Theorem 2.2 to obtain our results for SFM. We then present the
ingredients in the proof of Theorem 2.2 (which we defer to Appendix A) in Section 2.2. As part of
our reduction from SFM to Stochastic Convex Optimization in ℓ∞ in Theorem 2.2, we provide a
general tool for reducing constrained to unconstrained minimization (Lemma 2.3); we use this lemma
to facilitate our results in both sections.

2.1 From Unconstrained Convex Optimization in ℓ∞ to SFM

Here we show how to use Theorem 1.2 to prove the following theorem regarding SFM.
Theorem 1.3 (Sublinear Parallel SFM). There is an algorithm that, when given an evaluation oracle
for submodular f : 2[n] → Z with f(∅) = 0 and |f(S)| ≤M for all S ⊆ [n], finds a minimizer of f
in Õ(n1/3M2/3) rounds and Õ(n2M2) queries.

A key ingredient of our proof is the following general, simple technical tool which allows one to
reduce constrained Lipschitz optimization over a ball in any norm to unconstrained minimization
with only a very mild increase in parameters.
Lemma 2.3. Let f : Rn → R be convex and L-Lipschitz with respect to norm ∥·∥ : Rn → R. For
any c, x ∈ Rn and r ∈ R let

f c,r
reg (x) := f(x) + 2L ·max{0, ∥x− c∥ − r} . (1)

Then f c,r
reg (x) is convex and 3L-Lipschitz with respect to ∥·∥. Additionally, for any y ∈ Rn for which

∥y − c∥ ≥ r, define yc,r := c+ r
∥y−c∥ (y − c). Then,

∥yc,r − c∥ = r and f c,r
reg (y

c,r) = f(yc,r) ≤ f c,r
reg (y)− L(∥y − c∥ − r) . (2)

Consequently, f c,r
reg (x) has an unconstrained minimizer xc,r

∗ and all such minimizers satisfy

∥xc,r
∗ − c∥ ≤ r and f c,r

reg (x
c,r
∗ ) = f(xc,r

∗ ) = min
x∈Rn|∥x−c∥≤r

f(x) . (3)
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Lemma 2.3 implies that minimizing f subject to a distance constraint ∥x− c∥ ≤ r reduces to
unconstrained minimization of f c,r

reg . More formally, to compute an ϵ-optimal solution to the con-
strained minimization problem, minx∈Rn : ∥x−c∥≤r f(x), it suffices to instead compute an ε-optimal
solution, xε, to the unconstrained minimization problem minx f

c,r
reg (x), and then output that point xε

if ∥xε − c∥ ≤ r and output xr,c
ε -otherwise. From (2), we get f(xr,c

ε ) ≤ f c,r
reg (xε) ≤ opt+ ε, where

opt := minx f
c,r
reg (x) = minx∈Rn|∥x−c∥≤r f(x) and the last equality follows from (3).

We remark that the 2L in the definition of f c,r
reg can be changed to L+ δ for any δ ≥ 0 with the only

effect of turning the L in (2) to δ and causing (3) to only hold for some minimizer (rather than all) if
δ = 0. The proof of Lemma 2.3 is deferred to Appendix A.

Next, we obtain Theorem 1.3 by applying Theorem 2.2 to the Lovász extension of the submodular
function f extended to an unconstrained minimization problem by Lemma 2.3.

Given a submodular function f defined over subsets of an n element universe, the Lovász extension
fLov : Rn → R is defined as follows: fLov(x) :=

∑
i∈[n] xπx(i)(f(Sπx,i) − f(Sπx,i−1)), where

πx : [n] → [n] is the permutation such that xπx(1) ≥ xπx(2) ≥ · · · ≥ xπx(n) (ties broken in an
arbitrary but consistent manner), and Sπx,j is the subset {πx(1), . . . , πx(j)}.
Next we give standard properties of the Lovász extension and use them to prove Theorem 1.3.

Fact 2.4 (e.g., [GLS88, JB11]). The following are true about the Lovász extension fLov:

1. fLov is convex with minx∈[0,1]n fLov(x) = minS⊆V f(S). Indeed, given any x ∈ [0, 1]n, in
n queries one can find a subset S with f(S) ≤ fLov(x).

2. Given any x ∈ Rn and corresponding permutation πx, the vector g ∈ Rn where
g(x)(π(i)) := f(Sπx,i) − f(Sπx,i−1) is a subgradient of fLov at x. Furthermore, g(x)
can be computed in 1 round of n queries to an evaluation oracle for f .

3. If f has range in [−M,+M ], then the ℓ1-norm of the subgradient is bounded, in particular,
∥g(x)∥1 ≤ 3M . Equivalently, fLov is 3M -Lipschitz with respect to the ℓ∞-norm.

As discussed in Section 1.1, to prove Theorem 1.3, it suffices to prove the following more general
result regarding approximately minimizing a submodular function.

Theorem 2.5 (ϵ-approximate minimizer for SFM). There is an algorithm that, when given an
evaluation oracle for submodular f : 2[n] → R with minimizer x∗, f(∅) = 0 and |f(S)| ≤M,∀S ⊆
[n], finds a set S with f(S) ≤ f(x∗) + ϵM in Õ(n1/3/ϵ2/3) rounds and a total of Õ(n2/ϵ2) queries.

Proof of Theorem 2.5. By Fact 2.4, SFM reduces to minimizing fLov over x ∈ [0, 1]n which is the
same set {x ∈ Rn : ∥x− c∥∞ ≤ 0.5} where c is the n-dimensional vector with all entries 0.5.
By Lemma 2.3, we can do so by applying Theorem 2.2 to the regularized version f c,0.5

reg of fLov
with respect to the ℓ∞-norm. This regularized function is guaranteed to have a minimizer x∗ with
∥x∗∥2 ≤

√
n which also minimizes fLov in [0, 1]n. The subgradient of this regularized function at

any point can be computed from the subgradient of fLov at the same point which takes n evaluation
oracle queries to the submodular function. Hence, we obtain an εM -approximate minimizer in
Õ(n1/3/ε2/3) rounds and with a total of Õ(n2/ε2) queries to the evaluation oracle of f .

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Set ϵ = 1
2M and apply Theorem 2.5 to obtain, in Õ(n1/3M2/3) rounds

and with a total of Õ(n2M2) queries to the evaluation oracle of f , a x ∈ [0, 1]n with fLov(x) ≤
minz∈[0,1]n fLov(z) +

1
2 . Then by property 1 in Fact 2.4, one can get a subset A ⊆ V with f(A) ≤

minS⊆V f(S)+ 1
2 . As f is assumed to be integer valued, A must be the minimizer of the submodular

function.

2.2 Parallel Stochastic Convex Optimization in ℓ∞

Here we present the key steps in proving Theorem 2.2 regarding our new parallel results for the
stochastic convex optimization problem in ℓ∞ (Definition 2.1). Throughout this subsection, in our
exposition, lemma statements, and proofs we assume that we are in the setting of Definition 2.1.
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To prove Theorem 2.2 we apply the approach of [CJJ+23] with two modifications. First, we consider
the convolution of f with a centered Gaussian density function with covariance ρ2In. However
we show that in our setting, it is possible to use a larger value of ρ without perturbing the function
value too much, due to the ℓ∞ geometry. Unfortunately, the minimizer of the convolved function
may move outside the box of radius R. Thus, the second modification we make is working with a
regularized function, freg, which is pointwise close to f , still L-Lipschitz in the ℓ∞ norm, and keeps
the minimizer in the ball or radius R even after applying the convolution with a Gaussian.

In the remainder of this subsection we first present the ingredients going into the proof of Theorem 2.2,
and then give a brief explanation for how they fit into the proof of Theorem 2.2, deferring the complete
proof to the appendix. We start with our bound on function perturbation after adding a Gaussian
with covariance ρ2In to an ℓ∞ Lipschitz function (Lemma 2.6). We then introduce the concept of
a ball optimization oracle, along with a result on how to implement it in low depth for the special
case of a function that is the result of Gaussian convolution (Proposition 2.8). Lastly, we present
the result which allows us to use a ball optimization oracle black-box to obtain the desired depth
(Proposition 2.9).

Now, we are ready to present the lemma which allows us to obtain a better dependence of depth on the
dimension n, compared to the naive n2/3 obtained by directly applying the ℓ2-Lipschitz optimization
result. We start with the definition of Gaussian convolution.

Gaussian Convolution. Let γρ := (2πρ)−n/2 exp(− 1
2ρ2 ∥x∥22) be the probability density function

of N (0, ρ2In). Given a function f : Rn → R, we define its convolution with a Gaussian of
covariance ρ2In by f̂ρ := f ∗ γρ, i.e.

f̂ρ(x) := Ey∼N (0,ρ2In)[f(x+ y)] =

∫
Rn

f(x− y)γρ(y)dy. (4)

Next, we present a lemma which allows us to obtain a better dependence on the dimension n in depth,
compared to the naive n2/3 obtained by directly applying the ℓ2-Lipschitz optimization result. This
lemma shows that we can perform more Gaussian smoothing (as compared to the ℓ2-setting) without
perturbing the function too much (as mentioned in Section 1.1).
Lemma 2.6 (Gaussian Convolution Distortion Bound for ℓ∞). Let f : Rn → R be L-Lipschitz with
respect to the ℓ∞-norm. Then for any point x ∈ Rn, we have |f̂ρ(x)− f(x)| ≤ Lρ ·

√
2 log n.

Proof. Note that |f̂ρ(x)− f(x)| ≤
∫
Rn |f(z)− f(x)|γρ(x− z)dz ≤ L

∫
Rn ∥x− z∥∞ γρ(x− z)dz

where the first inequality follows from the definition of f̂ρ and the second follows as f is L-Lipschitz
in ℓ∞-norm. The RHS is simply the expected ℓ∞-norm of a zero-mean random Gaussian vector with
covariance ρ2In, and this is Θ(ρ

√
log n) (e.g., [Ver18]). More precisely, we get

|f̂ρ(x)− f(x)| ≤ L · Ey∼N (0,ρ2In) ∥y∥∞ ≤ Lρ ·
√
2 log n.

As mentioned in Section 1.1, by contrast, convolving a function f that is L-Lipschitz in ℓ2 with a
Gaussian of covariance ρ2In could change the function value by O(ρ

√
n). Hence, the ℓ∞ geometry

allows us to add a larger amount of Gaussian smoothing without changing the function value by more
than ε, which in turn allows for better rates.

Ball Optimization. A subroutine that we use for minimizing f̂ρ is called a ball optimization oracle.
As suggested by [CJJ+20], the concept of ball optimization oracle is related to the notion of trust
regions, explored in several papers, such as [CGT00]. The particular ball optimization procedure we
employ takes a function F : Rn → R and a point x̄ ∈ Rn, which is an approximate solution to F in
a small ball of x̄. More formally, we work with the following definition:
Definition 2.7 (Ball Optimization Oracle [CJJ+23]). Let F : Rn → R be a convex function. Obo

is an (ϕ, λ, r)-ball optimization oracle for F if given any x̄ ∈ Rn, it returns an x ∈ Rn with the
property

E
[
F (x) +

λ

2
· ∥x− x̄∥22

]
≤ F (x⋆

loc) +
λ

2
∥x⋆

loc − x̄∥22 + ϕ ,

where x⋆
loc = argminx∈Bx̄(r)(F (x) + λ

2 ∥x− x̄∥22).
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From [CJJ+20] it is known is that for any Lipschitz convex function f , any stochastic subgradient
oracle g as above, and any ρ, if we set r = ρ, then efficient ball-optimization oracles exist. More
formally, we use the following proposition from [CJJ+23] which is in turn inspired from [ACJ+21].

Proposition 2.8 (Proposition 3, [CJJ+23]). Let f : Rn → R be convex and g : Rn → Rn be a
stochastic subgradient oracle satisfying E[g(x)] ∈ ∂f(x) and E ∥g(x)∥22 ≤ σ2 for all x ∈ Rn. Let
f̂ρ := f ∗ γρ, i.e.,

f̂ρ(x) := Ey∼N (0,ρ2In)[f(x− y)] =

∫
Rn

f(x− y)γρ(y)dy. (5)

Then there is a (ϕ, λ, ρ)-ball optimization oracle for f̂ρ which makes O( σ
2

ϕλ ) total queries to g in a
constant number of rounds.

Highly Parallel Optimization. As shown in [CJJ+23], the ball optimization oracle above can be
used for highly-parallel optimization as follows.

Proposition 2.9 (Proposition 2 in [CJJ+23]). Fix a function F : Rn → R which is L-Lipschitz with
respect to the ℓ2-norm and convex. Suppose R ≥ 0 is a parameter such that x⋆ ∈ argminx F (x)
satisfies ∥x⋆∥2 ≤ R. Let r ∈ (0, R] and ϵopt ∈ (0, LR] be two parameters. Define the following
quantities

κ :=
LR

ϵopt
, K :=

(
R

r

) 2
3

, and λ∗ :=
ϵoptK

2

R2
log2 κ. (6)

Then, there exists a universal constant C > 0 and an algorithm BallAccel which runs in CK log κ
iterations and produces a point x such that EF (x) ≤ F (x⋆) + ϵopt. Moreover,

1. Each iteration makes at most C log2(Rκ
r ) calls to (λr

2

C , λ, r)-ball optimization oracle with values
of λ ∈ [λ∗

C , CL
ϵopt

].

2. For each j ∈ [⌈log2 K + C⌉], at most C2 · 2−jK log(Rκ
r ) iterations query a ( λr2

C2j ·
log−2(Rκ

r ), λ, r)-ball optimization oracle for some λ ∈ [λ∗
C , CL

ϵopt
].

While the proof of Theorem 2.2 is deferred to Appendix A, we provide some intuition for how to use
the stated components to obtain the result. A natural approach would be to apply Proposition 2.9 to
F := f̂ρ. However, to ensure that the minimizer of F has ℓ2-norm at most R, we will instead work
with F := f̂ c,R

regρ
as defined in Lemma 2.3. The idea is to invoke Lemma 2.3 and apply BallAccel on

the function F := f̂ c,R
regρ

with respect to ∥·∥2, c being the origin, and ρ :=
ϵopt

L
√
2 logn

. With this choice
of ρ, by Lemma 2.6, we know |F (x)− f c,R

reg (x)| ≤ ϵopt everywhere. Noting that F has a minimizer
x∗ with ∥x∗∥2 ≤ 3R, this enables us to apply Proposition 2.9 to F , obtaining the stated bounds on
the number of rounds and query complexity.

3 2-Round O(nM+1)-Query Algorithm for SFM

Here we present our 2-round, O(nM+1)-query algorithm for SFM. The algorithm AugmentingSets,
given in Algorithm 1, iterates over every M -sparse S ⊆ [n] (i.e. |S| ≤M ) (denoted F). For every
such S the algorithm then builds the augmented set A(S), consisted of the union of S and all elements
i that have non-positive marginal with respect to S, i.e., f(S ∪ {i}) ≤ f(S). The algorithm then
outputs the set A(S) that has the smallest value.

As we show below, computing all the A(S) for M -sparse sets S can be done in 1 round and O(nM+1)-
queries, and then computing an element of A(S) with the smallest value can be done in another
round and O(nM+1)-queries. The correctness of the algorithm is guaranteed by the fact that A(S),
for some |S| ≤M , is the maximal minimizer of f , and therefore the algorithm outputs a set with the
optimum value6.

Our main result of this section is the following theorem.

6Note, however, that the algorithm doesn’t necessarily output the maximal minimizer itself.
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Algorithm 1: Augmenting Sets Algorithm

Input: Submodular function f : 2[n] → Z and M ∈ Z>0 such that |f(S)| ≤M for all S ⊆ [n]
and f(∅) = 0

Output: Sout, a minimizer of function f
1 Function AugmentingSets(f,M):
2 F ← {S ⊂ [n] | |S| ≤M}
3 for S ∈ F do
4 A(S)← S ∪ {i /∈ S | f(S ∪ {i}) ≤ f(S)} // Compute the augmentation of S
5 end
6 return Sout ∈ argminS∈Ff(A(S))

Theorem 1.4 (Two-round Parallel SFM). There is an algorithm (Algorithm 1) that when given an
evaluation oracle for submodular f : 2[n] → Z with f(∅) = 0 and |f(S)| ≤M for all S ⊆ [n] finds
a minimizer of f in 2 rounds and O(nM+1) queries.

Proof. First, we bound the parallel and query complexity of the algorithm. Line 2 to Line 5 can be
implemented in 1 round as they simply evaluate f on all subsets of [n] of size ≤M + 1. Line 6 can
be implemented in 1 round by evaluating f(A(S)) for each S ∈ F in parallel. Consequently, the
algorithm is implementable in 2 rounds. To bound the query complexity, note that |F| ≤

∑M
k=0

(
n
k

)
=

O(nM ) and the algorithm only makes O(n) queries for each S ∈ F (O(n) in Line 4 and 1 in Line 6).
Consequently, the algorithm makes O(nM+1) total queries.

It only remains to show that the algorithm outputs a minimizer of f . We prove this by showing that for
some S ∈ F , its augmented set A(S) is the maximal minimizer of f , i.e., the union of all minimizers,
which is a minimizer itself by submodularity. This suffices as the algorithm outputs the A(S) for
S ∈ F of smallest value. Let S∗ be the maximal minimizer of f . We build a subset T ⊆ S∗ of size
|T | ≤M , which we call anchor, as follows. Start with T = ∅ and an arbitrary ordering of elements
of S∗. For each element i ∈ S∗ in this order, we add it to the current T if f(T ∪ {i}) > f(T ). Since
f only takes integer values, this means that whenever we add an element i to T , the value of f(T )
goes up by at least 1. At the end of the process we have f(T ) ≥ |T |. Since f(T ) ≤ M , it follows
that |T | ≤M and therefore T ∈ F .

We now claim that A(T ) = S∗. For any element i ∈ S∗ \ T , we didn’t add i to T because
f(Ti ∪ {i})− f(Ti) ≤ 0, where Ti ⊆ T is the value of T when element i is visited in the procedure
above. By submodularity, f(T ∪ {i}) − f(T ) ≤ f(Ti ∪ {i}) − f(Ti) ≤ 0. This implies that
S∗ ⊆ A(T ). Also note that for any j /∈ S∗, we have f(S∗ ∪ {j}) > f(S∗) by the maximality of S∗.
It again follows from submodularity and T ⊆ S∗ that f(T ∪ {j}) > f(T ), which implies j /∈ A(T ).
This proves A(T ) = S∗ and completes the proof of the theorem.

4 Conclusion

In this paper we designed two new parallel algorithms for minimizing submodular functions f :

2[n] → Z ∩ [−M,+M ] with round complexities Õ(n1/3M2/3) and 2, and query complexities
Õ(n2M2) and O(nM+1), respectively. These M -dependent sublinear dependence on n in the round
complexities stand in contrast to the Ω̃(n)-lower bound on the number of rounds required for SFM
when M = nΘ(n). On the way to the first result, we obtain a new efficient parallel algorithm for
ε-approximate minimization of ℓ∞-Lipschitz convex functions over [0, 1]n with round-complexity
Õ(n1/3ε−2/3). Given results of [Nem94, DG19] the dependence on n is optimal for constant ε.

Two related open questions are whether one can obtain o(n)-round SFM algorithms with polyloga-
rithmic dependence on M , and whether one can obtain algorithms for ε-approximate minimization
of ℓ∞-Lipschitz convex functions over [0, 1]n in Õ(n1/3poly log(1/ε))-rounds, or can one prove
lower bounds ruling them out. Another related open question is whether one can perform SFM in
O(poly(M))-rounds with query complexity poly(n).
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A Supplement

In this supplement, we provide the complete proofs of Lemma 2.3 and Theorem 2.2.

Proof of Lemma 2.3. First we show that f c,r
reg (x) is convex and 3L-Lipschitz. Let h(x) :=

2L(∥x− c∥ − r). By triangle inequality and homogenity of norms, 2L(∥x− c∥ − r) is convex
and 2L-Lipschitz (with respect to ∥·∥). Further, it is straightforward to check that the maximum
of two convex, L-Lipschitz functions is convex and L-Lipschitz and that the sum of a L-Lipschitz
and 2L-Lipschitz function is convex and 3L-Lipschitz. Since f c,r

reg (x) = f(x) + max{0, h(x)} and
constant functions are convex and 0-Lipschitz the result follows.

Next, consider y ∈ Rn with ∥y − c∥ ≥ r. Since ∥·∥ is a norm we see that ∥yc,r − c∥ = r and
therefore f c,r

reg (y
c,r) = f(yc,r). Furthermore, ∥yc,r − y∥ = ∥y − c∥ − r and so,

f c,r
reg (y) = f(y) + 2L(∥y − c∥ − r) ≥ f(yc,r)− L ∥yc,r − y∥+ 2L(∥y − c∥ − r)

= f(yc,r) + L(∥y − c∥ − r) .

where the inequality follows since f is L-Lipschitz with respect to ∥·∥. This yields the desired result
as it implies that values of f c,r

reg are all larger than those of points where ∥x− c∥ ≤ r for which
f c,r
reg (x) = f(x). Further, since {x ∈ Rn| ∥x− c∥ ≤ r} is closed and f is Lipschitz, ther exists a

minimizer of minx∈Rn|∥x−c∥≤r f(x) and the result follows.

Proof of Theorem 2.2. We invoke Lemma 2.3 and apply BallAccel on the function F := f̂ c,R
regρ

as
defined in Lemma 2.3 with respect to ∥·∥2, c being the origin, and ρ :=

ϵopt
L
√
2 logn

. With this choice
of ρ, by Lemma 2.6, we know |F (x) − f c,R

reg (x)| ≤ ϵopt everywhere. For brevity, we remove the
superscript (c,R) from freg for the remainder of the proof.

We now claim that F has a minimizer x∗ with ∥x∗∥2 ≤ 3R. To see this, let y ∈ Rn be a point with
∥y∥2 > 3R and consider ỹ = y

∥y∥2
·R. Therefore,

F (y) ≥ freg(y)− ϵopt = f(y) + 2L · (∥y∥2 −R)− ϵopt ≥ freg(ỹ) + L · (∥y∥2 −R)− ϵopt

where the first inequality follows from pointwise approximation of F and freg, and the second follows
since f is also L-Lipschitz in the ∥·∥2 norm, and so freg(ỹ) = f(ỹ) ≤ f(y)+L · (∥y∥2 −R). Again
using the pointwise approximation of F and freg we get F (y) ≥ F (ỹ)− 2ϵopt +L · (∥y∥2−R), and
if ∥y∥2 > 3R using that ϵopt ∈ (0, LR] we get a contradiction to minimality of F (y).

Note that the stochastic subgradient g′ of freg is given by g′ = g + 2L · v for v ∈ ∂h(x) where
h(x) = max(0, ∥x∥2 −R). Note that ∥v∥22 ≤ 1, so the stochastic gradient g′ satisfies E∥g′(x)∥22 ≤
2σ2+8L2. It follows that by setting r = ρ, Proposition 2.8 implies that for any ϕ, λ > 0, there exists
a (ϕ, λ, ρ)-ball optimization oracle for F which makes O( σ

2

ϕλ ) total queries to g in O(1) parallel
rounds (as σ2 ≥ L2 by definition of L-Lipschitzness).

Next we apply ball acceleration in Proposition 2.9 to F . We have already argued above that the
minimizer x∗ of F satisfies ∥x∗∥2 ≤ 3R. We set the parameter r = ρ =

ϵopt
L
√
2 logn

and the R and L

multiplied by factor 3. Using these, the parameters of (6) in Proposition 2.9 become

κ =
LR

ϵopt
, K =

(
LR
√
2 log n

ϵopt

)2/3

, and λ⋆ =
ϵoptK

2

R2
· log2 κ.

Using Proposition 2.9 and Proposition 2.8, we get that the number of rounds of queries is (CK log κ) ·
(C log2(Rκ/ρ)) which is Õ((LR/ϵopt)

2/3).

Next, we bound the query complexity. Adding up the queries made by the ball-optimization oracle
calls made in all iterations per part 1 of Proposition 2.9 is

(CK log κ) ·
(
C log2(Rκ/ρ)

)
· σ2

λ2
⋆ρ

2
= Õ

(
Kσ2λ−2

⋆ ρ−2
)
.
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Adding up the queries made by the ball-optimization oracle calls made in all iterations per part 2
of Proposition 2.9 is∑

j∈[⌈log2 K+C⌉]

(
C22−jK log(Rκ/ρ)

)
· 2

jCσ2 log2(Rκ/ρ)

λ2
⋆ρ

2
which is also Õ

(
Kσ2λ−2

⋆ ρ−2
)
.

Substituting the values from above and ρ =
ϵopt

L
√
2 logn

, we get that the total query complexity is

Õ((σR/ϵopt)
2).

Finally note that Proposition 2.9 applied to F computes an ϵopt-approximate minimizer which is a
2ϵopt-approximate minimizer of freg. By setting ϵopt = ε/2, Lemma 2.3 implies that we can find an
ε-approximate minimizer x of f with ∥x∥2 ≤ R. This completes the proof of the theorem.
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