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Abstract

Reinforcement Learning (RL) has proven to be
an effective post-training strategy for enhancing
reasoning in vision–language models (VLMs).
Group Relative Policy Optimization (GRPO) is a
recent prominent method that encourages mod-
els to generate complete reasoning traces be-
fore answering, leading to increased token usage
and computational cost. Inspired by the human-
like thinking process—where people skip reason-
ing for easy questions but think carefully when
needed—we explore how to enable VLMs to first
decide when reasoning is necessary. To realize
this, we propose TON, a two-stage training strat-
egy: (i) a supervised fine-tuning (SFT) stage with
a simple yet effective “thought dropout” oper-
ation, where reasoning traces are randomly re-
placed with empty thoughts. This introduces a
think-or-not format that serves as a cold start for
selective reasoning; (ii) a GRPO stage that en-
ables the model to freely explore when to think
or not, while maximizing task-aware outcome re-
wards. Experimental results show that TON can
reduce the completion length by up to 90% com-
pared to vanilla GRPO, without sacrificing perfor-
mance or even improving it. Further evaluations
across diverse vision-language tasks—covering a
range of reasoning difficulties under both 3B and
7B models—consistently reveal that the model
progressively learns to bypass unnecessary rea-
soning steps as training advances. These findings
shed light on the path toward human-like reason-
ing patterns in reinforcement learning approaches.

1. Introduction
“To think or not to think, that is the question."

Reinforcement learning (RL) has recently emerged as a
dominant post-supervised fine-tuning (SFT) strategy in
vision-language models (VLMs) (1; 2; 3; 4). Methods
like GRPO (5) have shown promising results in enhanc-
ing reasoning capabilities through KL-divergence losses
based on rule-driven rewards. However, these approaches
often lead to unnecessarily long and redundant reasoning
processes due to their reliance on full-length generative
trajectories (6; 7; 8). To address this inefficiency, some
works attempt to shorten reasoning chains with rule-based
reward penalties (9; 10; 11) during the pre-training phase
or introduce external control mechanisms, such as in very
recent Qwen3 (12). Nonetheless, a more natural and scal-
able solution is to enable the model to decide when to
think—mirroring how humans modulate cognitive effort
in response to task difficulty.

In this work, we begin by presenting empirical evidence that
thinking is not always necessary. In AITZ (13), we observe
that 51% of questions can be answered correctly even when
the entire reasoning trace is omitted, resulting in signifi-
cant savings in thought tokens. This finding underscores
the potential of selective reasoning strategies to improve
efficiency without sacrificing accuracy. Secondly, by ex-
ploring a simple prompting strategy — allowing the model
to skip reasoning steps for easier queries — we observe
that even math-enhanced VLMs struggle to adaptively omit
redundant thought generation. Instead, they tend to default
to a conservative approach, producing full reasoning traces
regardless of task difficulty. This suggests that the ability to
“think or not” is not solely determined by reasoning capacity,
but should instead be treated as a distinct skill—one that
should be explicitly activated through format-following in
supervised fine-tuning (SFT) stage.
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Q: As shown in the figure, AB // CD, and EF intersects AB and 
CD at points E, F, angle 1 = 50.0, then the degree of angle 2 is ()

Q: As shown in the figure, triangle ABC is the inscribed triangle 
of circle O, angle OAB = 35.0, then the degree of angle ACB is ()

<think>Since AB is parallel to CD, we 
can use the property that 
corresponding angles formed by a 
transversal with two parallel lines are 
equal. Therefore, angle 1 is equal to 
angle AFE because … Therefore, 
angle 2 = 180 - 50 = 130 degrees. 
</think>
✅<answer>130</answer>

<think>\n\n</think>
✅<answer>130</answer>

GRPO
Thinking

155 tokens

TON
Non-Think.
15 tokens

<think> In the given figure, triangle ABC 
is inscribed in a circle with center O…, 
we conclude that angle ACB = angle 
AOB = 90°. </think> 
❌<answer>90°</answer>

<think> In the given problem, we have 
triangle ABC inscribed in circle O with 
center O…Since angle ACB is half of 
angle AOB, angle ACB = 1/2 * 110° = 
55°. </think>
✅<answer>55°</answer>

GRPO
Thinking

283 tokens

TON
Thinking

261 tokens
Easy Hard

Figure 1: Illustrating the “think or not think” trade-off. Left: For simple queries, explicit reasoning is unnecessary—models like
GRPO that always "think" incur redundant computation. Right: For more complex geometric problems, step-by-step reasoning is essential
to arrive at the correct answer. Our proposed TON framework learns to adaptively invoke reasoning only when needed—skipping it for
easy cases while engaging in deeper inference for harder tasks.

Motivated by the above observations, we introduce TON
(i.e., Think-or-Not), a two-stage training framework fea-
turing a simple yet effective “thought dropout” approach.
This method explicitly replace reasoning traces with mini-
mal “\n\n” delimiter and employs SFT to train the model
that reasoning can be skipped—thereby enabling the pos-
sibility of bypassing reasoning. A subsequent GRPO
stage further refines this selective-reasoning policy via self-
exploration, rewarding answers without introducing extra
regularization. As illustrated in Figure 1, vanilla GRPO
consistently generates reasoning sequences regardless of
task difficulty. In contrast, our method, TON, adaptively
allocates reasoning based on the complexity of the task. For
simple tasks (left), TON can bypass unnecessary reasoning
and directly provide the answer, reducing 90% token usage.
For more hard problems (right), it still engages in detailed,
step-by-step reasoning to arrive at the correct solution.

Built on top of TON, we using the Qwen-2.5-VL series
and conduct extensive evaluations across a range of vision-
language tasks—spanning counting (CLEVR (14), Super-
CLEVR (15)), mobile agent navigation (AITZ (13)), and
mathematical reasoning (GeoQA (16))—which collectively
cover a spectrum of reasoning levels and diverse task set-
tings. Overall, we find that TON achieves substantial re-
ductions in completion length without compromising
performance—cutting 87% of tokens on CLEVR and 65%
on GeoQA. Notably, on the multi-step navigation task AITZ,
TON reduces the average task-level output length from
3.6K to 0.9K tokens. Moreover, we observe that omit-
ting reasoning traces can even improve performance: on
GeoQA, TON outperforms the vanilla GRPO baseline by
up to 17% in accuracy, demonstrating a “free-lunch” effect
where shorter reasoning outperforms or matches longer tra-
jectories. Comprehensive ablation studies further reveal that
the skip-thought ratio increases progressively with re-
ward improvements during training, suggesting the model
learns to selectively bypass unnecessary reasoning steps in

an adaptive manner.

2. Related Works
Reinforcement Learning for Vision–Language Mod-
els. Most VLMs start with SFT on large collections
of instruction data to acquire broad foundational knowl-
edge (17; 18; 13; 19). To further improve performance,
recent work has adopted a post-training paradigm that lever-
ages human feedback (20; 21; 22). RL from human feed-
back (RLHF) fits a reward model on preference annotations
and refines the policy via Proximal Policy Optimization
(PPO) (23; 24; 21; 25). Direct Preference Optimization
(DPO) (26) streamlines this workflow by recasting policy
updates as a binary classification task, aligning model out-
puts distributions with human preferences without a reward
module. Beyond these methods, Group Relative Policy Op-
timization (GRPO) (5) blends offline and online learning: it
samples groups of thinking process, uses Answer verifica-
tion (such as Math verifier) as reward feedback, and com-
putes relative advantages within each group. By avoiding a
value function, GRPO provide an elegant solution by pro-
moting diverse reasoning paths and improved answer quality.
Despite a series of GRPO follow-up works (27; 28; 9), all
of these approaches assume that every question demands a
full thinking—leading to lengthy decoding. In contrast, our
work focuses on “when to think” instead of “how to think”:
we introduce a selective reasoning policy that learns to skip
unnecessary “think” phases, boosting inference efficiency
without sacrificing accuracy.

Thinking in Language Models. From early Chain-of-
Thought (29; 30; 31) prompting to recent reasoning-
intensive reinforcement learning approaches (5; 22; 32; 33),
reasoning has emerged as a core dimension in the de-
velopment of language models. Most existing work em-
phasizes how to enhance reasoning capabilities, often re-
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sulting in increasingly lengthy and complex thought pro-
cesses (7; 34; 10) while relatively few studies address
the efficiency of reasoning. For instance, (35) proposes
a long2short strategy to compress decoding length, (36)
encourages models to output “I don’t know” to terminate
unproductive reasoning, and (37) introduces a token-budget-
aware reasoning policy. While these approaches offer
promising insights into controlling reasoning length, we
argue for a more foundational perspective: rather than de-
ciding how to reason once the process has started, models
should first determine whether reasoning is necessary at
all. Simple questions may be answered directly without any
explicit reasoning, while complex questions may require
maintaining a full reasoning trajectory (8; 6; 9). In this work,
we explore the selective reasoning paradigm within VLMs
by introducing a simple yet effective method – thought-
dropout. We validate its effectiveness on tasks such as
Counting, Math, and further extend it to more practical
agentic settings.

3. Preliminary
Task Definition. We formalize the vision-language rea-
soning environment as a Markov Decision Process (MDP)
defined by a tuple (V,Q,S∗, π, r), covering a wide range
of vision-language tasks. Here, V denotes the visual context
(e.g., an image). Q is a language-based query or question
posed about the visual input. The model, governed by policy
π, takes the input pair (V,Q) and generates a predicted an-
swer S . The environment provides a scalar reward function
r(·) based on the model’s response O. A correct prediction,
e.g.,Omatches the ground truth answer S∗, yields a positive
reward, while an incorrect one yields zero. The objective in
this environment is to learn an adaptive policy πθ, parame-
terized by θ, that maximizes the expected reward, enabling
the model to reason selectively and efficiently across diverse
input settings.

Reward Function. The reward function r(·) can be ei-
ther model-based (23; 25) or rule-based, as recently demon-
strated in (5; 22), which is typically categorized into two
types: format rewards rf and outcome rewards ro. While
the outcome rewards are usually carefully designed based
on different tasks or requests in previous works (5; 1; 2; 9),
the format reward rf , is always shared in the same. Given
the response O, it should follow the required HTML tag
format <think>T <\think><answer>S<\answer>, where
T is the reasoning process (i.e., a thought) and S is the
predicted answer. This formulation requires the model to
think before deriving the answer and makes it easy to parse
both the reasoning process and the final outcome (e.g., via
regular expression).

52.1% 25.6%

14.5% 7.69%

w think
correct

wo think 
incorrect

w think
incorrect

wo think 
correct

Figure 2: Accuracy comparison of with v.s. without “thinking”
during SFT using Qwen-2.5-VL-3B on the AITZ task.

4. TON: Selective Reasoning via Policy
Optimization

Observation. In practice, humans do not require explicit
reasoning for all tasks—many can be completed intuitively.
Similarly, models can often produce correct answers to sim-
ple questions without explicit thinking. As illustrated in
figure 2, the percentages of correct and incorrect samples
under different setups with and without the thinking process
in inference (see Appendix A for overall performance). We
find that 52.1% of answers remained correct without “think,”
and 14.5% were even correct only without it—implying that
explicit thinking is not always necessary.

A straightforward idea is to prompt the model to decide
whether to “think” or not (we prompt the model to skip
thinking in the simple questions in Sec. 5.4). However, as
shown in our experiments (Figure 5d and Appendix G.7),
the model still tends to generate the full reasoning process
without any no-think try. This suggests that the ability to
decide whether to think is not solely governed by reason-
ing capability, but should instead be treated as a separate
skill—one that must be explicitly trained through format-
following during the supervised fine-tuning (SFT) stage.
These observations motivate us to activate this ability early
in the SFT stage and develop TON, which enables selective
reasoning by automatically switching between “think” and
“non-think” modes.

4.1. First SFT stage: Thought Dropout

In the initial stage, the model is typically fine-tuned on
“think-answer” formatted data, where the “think” contains
high-quality reasoning traces to serve as a cold start. To ex-
tend this predefined reasoning ability to selective reasoning,
we view “think” vs. “non-think” as part of the output format
itself by dropping the “think” component during training.

However, it is difficult to determine which samples should
be skipped, as different models exhibit varying reasoning
capabilities. Therefore, we begin with random dropout and
allow the model to learn to decide for itself during the sec-
ond RL stage (Sec.4.2). To this end, we propose “Thought
Dropout” that randomly injecting empty “thought” seg-
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q1
o1
o2
o3
o4
o5

q1
o1
o2
o3
o4
o5

Correct
Incorrect

Correct
Incorrect

Thought Answer

EmptyGRPO TON

diversity (𝒐𝟏, …,𝒐𝟓) ↑

Figure 3: Illustration of the responses from GRPO and TON. q1 is the question and {o1, · · · , o5} are the generated
responses containing thoughts T (circle) and answers S (triangle). TON can sample from the empty think T\n\n, thus
enhancing the response diversity over the vanilla GRPO.

ments, requiring only minor code changes:

Algorithm 1 Pseudo-code for thought_dropout

def thought_dropout(thought, dropout_prob):
if random.random() < dropout_prob:

thought = "\n\n"
return thought

This approach injects both the answer format and the skip-
thought format as prior knowledge before the second RL
stage.

Where do Thoughts come from? Given a policy operat-
ing in an environment (V,Q,S∗, π, r), a key challenge is
how to curate high-quality cold-start “thought” data without
relying on external models, such as closed-source APIs. A
naïve approach is to run multiple inference passes and retain
only successful cases based on answer matching—but we
find this to be less effective. To address the scarcity of high-
quality “thought” data, we instead adopt a reverse thinking
strategy: leveraging the base model π itself to self-generate
a rich corpus of thought sequences. Specifically, given the
visual context V , textual query Q, and ground-truth answer
S∗, we prompt the policy πθ to deduce the corresponding
intermediate thought as follows:

T ← πθ

(
V,Q,S∗

)
(1)

Specially, we generate intermediate thoughts with the fol-
lowing prompts:

Prompt for Reverse Thinking

Based on the following question and image, gener-
ate a thought process to explain how to derive the
answer from the inputs.
Image: {Image} Question: {Question} An-
swer: {Answer}
Do not output the answer, only generate the reason-
ing process. Formulate your outputs using concise
language.

In this way, we curate sufficient thought data without re-
lying on external models. These serve as our cold-start
training corpus, enabling us to apply the Thought Dropout
strategy during SFT to activate the model’s ability to bypass
thoughts.

4.2. Second RL stage: Group Relative Policy
Optimization

Although SFT teaches the skip-thought format, it still leaves
a central question unresolved: when should thoughts be
skipped or retained? Ideally, the model should learn to
explore this decision on its own. To this end, we adopt rein-
forcement learning via GRPO to enhance the model’s ability
to explore this decision as part of its reasoning process.

Given an image v ∈ V and text query q ∈ Q, GRPO samples
N candidate responses with variations {o1, o2, . . . , oN}
from the policy πθ and evaluates each response oi using
a reward function r(·), which measures the quality of the
candidate in the context of the given question. To determine
the relative quality of these responses, GRPO normalizes
the rewards by computing their mean and standard deviation
and subsequently derives the advantage as:

Ai =
r(oi)−mean{r(o1), r(o2), . . . , r(oN )}

std{r(o1), r(o2), . . . , r(oN )}
(2)

where Ai represents the advantage of the candidate response
oi relative to other sampled responses. GRPO encourages
the model to generate responses with higher advantages
within the group by updating the policy πθ using the follow-
ing objective:

JGRPO(θ) = E[{oi}Ni=1 ∼ πθold(v, q)]
1

N

N∑
i=1

{min[αi ·Ai, βi ·Ai]

− βDKL[πθ||πref ]
(3)

αi =
πθ(oi|v, q)
πθold(oi|v, q)

, βi = clip
(

πθ(oi|v, q)
πθold(oi|v, q)

, 1 + ϵ, 1− ϵ

)
.

(4)

How does TON impact GRPO? As illustrated in Fig. 3,
our TON allows the model to choose “empty-think” T\n\n
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during the inference step, thus resulting in a significant vari-
ation in the distribution between the non-think (oi ∼ T\n\n)
and think responses (oi ∼ T ) by TON compared to both
think ones (oi ∼ T ) generated by vanilla GRPO. Unlike
previous works like DAPO (27) emphasize on advantage
distribution Ai by dynamic sampling in the sparse reward
space, our TON shifts the focus to the latent distribution
space of responses (πθ(oi|v, q)), thus enhancing the diver-
sity of the terms α and β in Eq. 4.

How to design Rewards? To support GRPO training across
diverse settings, it is crucial to carefully examine reward
design choices. We consider two main types of matching:

(i) Discrete Matching. For tasks with deterministic, cate-
gorical or numerical outputs—e.g., classification, count-
ing, or math problems—we use a binary value reward
rd(s, g) = 1(s = g): if the predicted answer s matches
the ground-truth g, we assign rd = 1; otherwise, rd = 0.

(ii) Continous Matching. For tasks producing continuous
outputs—e.g., spatial coordinates in UI navigation or object
grounding—we allow a tolerance region. Given a predicted
point p = [x, y] and a ground-truth box b = [x1, y1, x2, y2],
we define:

rc(p,b) =

{
1, p lies inside b,

0, otherwise.

If only a ground-truth point p∗ is available, we use a distance
threshold θ:

rc(p,p
∗) =

{
1, ∥p− p∗∥2 ≤ θ,

0, otherwise.

In practice, we sum the applicable components to form an
outcome reward: ro = rd + rc. This simple yet flexible
scheme can cover classification, numeric reasoning, and
grounding. See Appendix B for details on adapting these re-
wards alongside the format reward to individual downstream
tasks.

5. Experiments
In this section, we conduct experiments on various bench-
marks to evaluate our approach. Mainly, we design the
experiments to study the following key questions:

Q1: Compared to vanilla GRPO, how does TON impact
performance and efficiency?

Q2: Is there a correlation between TON’s skipping behavior
and the strength of reasoning ability (e.g., different model
sizes or a single model under different iterations)?

Q3: Do we really need SFT with thought dropout? Can we
rely solely on prompt following if the base model is strong
enough?

Table 1: Summary of benchmark used in our evaluation.

Benchmark OOD Type Difficulty Answer Thought len.

CLEVR (14) Counting Easy Integrate 586
Super-CLEVR (15) ✓ Counting Easy Integrate –
GeoQA (16) Math Hard Number 1652
AITZ (13) GUI Agent Medium Action (x) 283
AITZ (OOD) ✓ GUI Agent Medium Action (x) 283

5.1. Benchmarks and Settings

To evaluate the effectiveness and generalization ability of
our approach on the below settings:

Benchmarks. We evaluate TON on three vision-language
benchmarks, including the general benchmark CLEVR (14)
(3D object counting), agent benchmark AITZ (13) (mobile
navigation), and the math benchmark GeoQA (16) (middle
school math questions) as illustrated in Table 1, spanning a
spectrum of reasoning levels from simple to complex. To
benchmark the model’s Out-of-Distribution (OOD) perfor-
mance, we also evaluate on Super-CLEVR (15) to supple-
ment the CLEVR. AITZ comprises four test domains: we
train on the {General} and test on the remaining OOD do-
mains: {Web shopping, Google apps, Install}. We remove
the choices in GeoQA and ask the model to generate the
answer, enhancing the reasoning complexity. AITZ includes
action thought annotations, which we utilize directly, while
applying our reverse thinking to generate thoughts for SFT
on CLEVR and GeoQA. More benchmark details refer to
Appendix E.

Training details. We conduct our experiments using Qwen-
2.5-VL-Instruct-3B/7B (38) as the base model. All experi-
ments are conducted utilizing 8 NVIDIA H20 GPUs. We
train 100 steps for both CLEVR and AITZ, and 300 epochs
for GeoQA, given its higher reasoning difficulty level. See
setup details in Appendix F. We leverage vLLM (39) to
accelerate GRPO training. We add the SFT stage before
GRPO as the baseline on the agent task with the same set-
ting as TON because we observe that directly applying
GRPO would cause the 0 coordinate reward during the train-
ing process, considering its complex output format. For
simplicity, we set the dropout probabilities to 50% and ex-
amine the impact of different dropout ratios selected from
{20%, 50%, 80%} in Sec 5.3.

For evaluation, we test all the datasets under the greedy
strategy. In CLEVR and GeoQA tasks, where answers are
numerical, we measure accuracy by comparing the predicted
number to the ground truth. In the AITZ task, where answers
are structured as JSON-formatted actions, we report step-
level and task-level metrics, including type accuracy (correct
action type) and exact accuracy (correct action type and click
coordinates) following (17).

5



Submission and Formatting Instructions for ICML 2025

Table 2: Performance comparison between TON and vanilla GRPO. Acc. is the accuracy on the test set. Time is the RL training time.
Length is the average competition length at the end of training.

Counting (CLEVR) Math (GeoQA)

Acc (↑) Time (↓) Len. (↓) Acc (↑) Time (↓) Len. (↓) Acc (↑) Time (↓) Len. (↓)
Qwen-2.5-VL-3B Qwen-2.5-VL-3B Qwen-2.5-VL-7B

Baseline 64.0 - 306 36 - 924 38 - 939
w. GRPO 93.5 1h 44m 227 37 2h 50m 272 44 3h 4m 1069
w. TON 98.5 57m 28 51 2h 4m 96 61 2h 34m 112

Gain +5.0 −47m −87% +14 −46m −65% +17 −29m −90%
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Figure 4: Training metrics comparison between TON and GRPO on GeoQA. (a) Training rewards, (b) Completion length over
training steps, (c) Ratio of non-think outputs to total samples at each step for TON, and (d) Average completion length of think outputs
across training.

5.2. Q1: Performance and Efficiency Comparison
between TON and GRPO

In Table 2, we present TON on the CLEVR and GeoQA
benchmarks under both 3B and 7B settings, with the per-
formance, time consumption, and the average completion
length at the RL stage. We find that TON effectively reduces
the average of the completion length by up to 90% while
achieving comparable even superior performance compared
to GRPO with a maximum of 17 Acc. gains. This imply
that skipping unnecessary reasoning can lead to better
performance. The reduction of the completion length de-
creases the decoding time when generating samples, thus
simultaneously shortening the training time. Figure 4a & 4b
show the reward and completion length curves where TON
remains the rewards on par with vanilla GRPO while the
completion length reduces significantly. Appendix G.2 &
G.1 shows the entire metrics during training.

Multi-step Navigation and OOD Testing. In Table 3, we
evaluate TON’s performance on AITZ – multi-step mobile
navigation, we also assessed its generalization capabilities
on OOD test sets using a greedy decoding strategy. Table 3
summarizes the step-level type match accuracy and exact
match accuracy for both IID (general) and OOD (Google
Apps, web shopping, and install) domains on AITZ, with
detailed training visualization in Appendix G.3. Overall,
TON demonstrates comparable OOD generalization perfor-
mance to GRPO, while significantly reducing the task-level
output length from 3K to 0.9K (70% token saving). This

highlights the strong potential of TON to substantially
reduce completion length without compromising perfor-
mance. See Appendix G.4 for the OOD performance on
other benchmarks.

5.3. Q2: Skip Thought Ratio Analysis

Beyond the performance change and completion length re-
duction achieved by TON, we further investigated the evo-
lution of the skip ratio in ‘Thought dropout’ during the
training step. Figure 4c illustrates the percentage of skip
ratio in the generated samples at each step on GeoQA. We
observed an increasing trend in the skip ratio during the
training process with the increase in training reward. A
similar trend is observed across three benchmarks in Fig-
ure 19 in the Appendix G.6. This phenomenon suggests
that the model progressively internalizes the reasoning
process—learning to skip explicit thoughts while still
producing accurate answers. Moreover, Figure 4d illus-
trates the length of these outputs generated with ‘think’.
TON maintain comparable lengths to the vanilla GRPO,
indicating that the TON model can choose not to think but
remains diligent when deeper reasoning is necessary.

Thought dropout ratio ablation. We experiment with the
impact of different thought dropout ratios of 20%, 50%, and
80% during the SFT stage. Figure 5a & 5b in the Appendix
show the completion lengths and the skip ratio during the
training process on AITZ. Figure 5c in the Appendix shows
a close reward curve of these three variants. Refer more
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Table 3: Out-of-domain (OOD) performance comparison between our method TON and GRPO on the the AITZ – multi-step mobile
navigation. ‘Type’ is the action type accuracy and ‘Exact’ requires both the type and value to be correct exactly. ‘Avg.’ is the average
accuracy of all domains. ‘Task-level thought’s’ is the average output lengths on all OOD domains. Step-level accuracy is reported.

Think?
IID OOD Avg Task-level

General Google apps Web Install
type exact type exact type exact type exact type exact Thought’s len.

Qwen-2.5-VL-3B ✓ 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 2132
w. SFT ✗ 0.39 0.11 0.44 0.12 0.54 0.19 0.47 0.17 0.46 0.15 742
w. SFT ✓ 0.67 0.12 0.53 0.17 0.56 0.13 0.58 0.14 0.58 0.14 3572
w. GPRO ✓ 0.74 0.6 0.72 0.57 0.7 0.5 0.81 0.65 0.74 0.59 3664
w. TON Ours 0.74 0.6 0.74 0.56 0.72 0.5 0.78 0.64 0.75 0.59 922

Gain +0.0 +0.0 +0.02 -0.01 +0.02 +0.0 -0.03 -0.01 +0.01 +0.0 −2742
Qwen-2.5-VL-7B 0.28 0.14 0.26 0.1 0.33 0.13 0.39 0.16 0.31 0.13 3304

w. GRPO ✓ 0.64 0.22 0.73 0.32 0.6 0.15 0.62 0.23 0.65 0.23 3272
w. TON Ours 0.74 0.54 0.62 0.23 0.68 0.47 0.73 0.55 0.69 0.45 908

Gain +0.1 +0.32 -0.11 -0.09 +0.08 +0.32 +0.09 +0.32 +0.04 +0.22 −2364

metrics on Appendix G.5. Although the dropout ratios dif-
fer, TON consistently exhibits an increasing skip ratio as
training progresses. Notably, the 20% setting shows a rapid
increase in skip rate, while the higher 80% setting remains
relatively stable throughout training. This motivates us to
start with a lower dropout probability for further investiga-
tion. TON can then be dynamically optimized according to
reward signals—decreasing the dropout ratio when perfor-
mance is high and increasing it when performance drops.

5.4. Q3: Emprical Verfication of SFT Significance in
TON

In addition to incorporating the skip-think format during
the SFT stage as in TON, we explored a simpler alternative:
modifying the prompt to encourage the model to automati-
cally omit reasoning steps, enabling direct GRPO training
without the need for a separate SFT stage. The hybrid-
thought prompt is defined as follows:

Prompt for Hybrid Thinking

A conversation between User and Assistant. The
user asks a question, and the Assistant solves it.
The assistant evaluates whether the question is
simple enough to answer directly.
If simple, the output is formatted as
<think>\n\n<\think><answer>answer
here<\answer>.
If the question is difficult, the assistant needs to
first think then answering the question. The output
is formatted as <think> reasoning process here
<\think><answer> answer here <\answer>.
The assistant is encouraged to use
<think>\n\n<\think> while maintaining accu-
racy.

Figure 5d in the Appendix shows the completion length of
GRPO using the hybrid prompt, vanilla GRPO (with a full-
think prompt), and TON throughout the training process on
AITZ. Appendix G.7 presents similar trends across three
benchmarks, revealing only minor differences in completion
length between the hybrid prompt and vanilla GRPO. More-
over, we observe only 2 ‘skip’ cases in GeoQA and none
in AITZ among all samples generated by GRPO during
both training and inference. We attribute this to the model’s
tendency to play it safe by generating long and detailed
reasoning, consistent with its ingrained behavioral patterns
learned during pre-training or SFT. Since the model does not
produce skip-thought outputs, applying additional reward to
these outputs has no effect, resulting in a zero contribution
throughout training. These findings highlight the necessity
of our SFT stage with thought dropout (Sec. 4.1) to establish
the desired format-following behavior.

5.5. Qualitative Examples

Figure 6 in the Appendix compares GRPO and TON on the
AITZ benchmark for multi-step mobile navigation. While
GRPO generates verbose reasoning at every step, TON adap-
tively skips unnecessary thinking, reducing token usage by
60% without sacrificing task accuracy. This demonstrates
TON’s efficiency in handling real-world, long-horizon pro-
cedural agent tasks. Table 4 in the Appendix further illus-
trates TON’s ability to selectively activate reasoning. Unlike
GRPO, which consistently generates detailed thought traces,
TON omits reasoning for simple questions that can be an-
swered at a glance, while producing accurate and focused
reasoning for complex scenarios involving visual occlusion.

6. Conclusion
We present TON, a simple yet effective two-stage training
framework that enables vision-language models to learn
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when to reason—introducing selective reasoning as a con-
trollable and trainable behavior. By combining thought
dropout during supervised fine-tuning with reward-guided
refinement via GRPO, TON significantly reduces comple-
tion length (up to 90%) without sacrificing—and in some
cases improving—performance across diverse reasoning
tasks. Our findings challenge the assumption that full rea-
soning traces are always beneficial and pave the way for
more efficient, human-like reasoning strategies in both mul-
timodal intelligence and reinforcement learning.
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Figure 5: Further Analysis of TON on the AITZ benchmark. (a)(b)(c) is the average completion length, skip thought ratios, and the
reward under different dropout probabilities. (d) Prompting (hybrid) does not reduce the completion length, while TON using SFT can
effectively reduce it.

Figure 6: Comparison between GRPO and TON on Agent setting AITZ (13). TON adaptively skips unnecessary think steps during
multi-step mobile navigation, achieving greater decoding efficiency compared to GRPO while maintaining task accuracy (saving 60%
tokens in this case).
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Table 4: Illustration between Thinking and Non-Thinking modes from CLEVR (14). TON demonstrates selective activation of
reasoning—engaging thought only when needed—whereas GRPO generates reasoning traces for both cases indiscriminately. The full
outputs are in Table 11.

Counting examples from CLEVR (14)

Question (GT) How many items are there in the im-
age? <answer>3</answer>

How many items are there in the image?
<answer>8</answer>

GRPO’s outputs <think> The image shows three objects
...
1. Green Cylinder: Transparent (metal-
lic) 2. Teal Sphere: Transparent (metal-
lic)
</think>
<answer>3</answer>

<think> - I count six distinct objects in the
picture: a large green matte cylinder, a blue
matte cylinder, ...
- I also note the size and color variety of
each object as described by the visual cues.
</think>
<answer>10</answer>

TON’s outputs <think>\n\n</think>
<answer>3</answer>

<think> Okay, let’s check this out. The user
provided a image with ....
First, I need to count ...
1. "A small purple rubber sphere..."... 3. "A
small gray rubber cube..." Third.
...
Wait, that’s eight distinct entries... </think>
<answer> 8 </answer>

A. Motivation Experiments
Table 5 presents the performance of the agent VQA with and without the think source during the SFT stage, as well as with
and without the think format in the GRPO reward function. Using the think source results in higher performance but longer
output lengths, while excluding it leads to lower performance with shorter outputs.

Table 5: Qwen2.5-VL-3B on the agent dataset (Android-in-the-zoo) with/ without think before the answer by SFT and
vanilla GRPO. acc is the test accuracy and len is the output length of step-level.

SFT GRPO
acc len acc len

w think 0.67 181 0.74 88
wo think 0.39 29 0.58 29

B. Rewards for Downstream Tasks
General VQA: r = rf + rd, where rf is the format reward and rf = 1 if the response follows the think answer format,
otherwise 0, rd is the concrete reward that rd = 1 if the predicted answer is equal to the ground truth number.

Agent VQA: r = rf + rd + rc, where rf is the format reward and rf = 1 if the response follows the think answer
format, otherwise 0, rd is the concrete reward that rd = 1 if the predicted action type is equal to the ground truth action
type,e.g.,click, press_home, rc is the continues reward for the predicted coordinates when the action type is click. In
this paper, we use the normalized coordinates ranging from 0-1 and set θ = 0.14 following (18).
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Math VQA: r = rf + rd, where rf is the format reward and rf = 1 if the response follows the think answer format,
otherwise 0, rd is the concrete reward that rd = 1 if the predicted answer is equal to the ground truth number.

C. Limitations
Due to computational resources, our current work focuses on smaller-sized visual-language models like 3B and 7B, the
proposed method has not been evaluated on even larger models (e.g.,235B). We implement TON on the open-domain
VLMs; however, without access to the source code of proprietary VLMs like GPT-4o, the proposed method has not been
implemented on them.

D. Broader Impact
In this paper, we propose a simple yet effective method TON, to cooperate SFT and RL stages by thought dropout. We
improve the vanilla GRPO’s performance by sampling minor code changes to teach the model to reason during the RL
exploration stage selectively. This enables a deeper understanding of RL in VLMs, inspiring flexible injection of prior
knowledge into the SFT stage instead of manually creating rule-based rewards. For social impact, this work has a certain
impact on the RL research in the VLM and LLM.

E. Dataset
General VQA. The CLEVR dataset (14) is designed to generate complex multi-step questions based on synthetic images,
assessing a model’s true reasoning ability. It is a diagnostic dataset that includes 100,000 rendered images and approximately
one million automatically generated questions, of which 853,000 are unique. The dataset features challenging questions
involving counting, comparison, logical reasoning, and memory storage, while the images depict simple 3D shapes. In
contrast to the original CLEVR dataset, Super-CLEVR (15) introduces more complex visual components and offers better
control over the factors contributing to domain shift. For our experiments, we select a subset of 1,000 datasets that contain
only counting problems for training. We evaluate the model’s performance on test sets by selecting 200 samples from
CLEVR that were not seen in the training set, as well as 200 counting problems from the out-of-distribution Super-CLEVR
dataset.

Math VQA. GeoQA (16) is a large-scale geometric question answering dataset that contains 4,998 geometric problems
collected from real math exams in Chinese middle school. Each problem is accompanied by annotated programs illustrating
the solution process. While this dataset features multiple-choice questions, we increase the difficulty in this paper by
removing the answer choices and requiring the model to generate the answers directly. We select a subset of 1k problems
that involve computing angles and side lengths for training and test the model on this training set.

GUI Agent. AITZ (13) is a dataset designed for the graph user interface (GUI) navigation task derived from the large-scale
mobile benchmark Android-in-the-wild (AITW (40)). It features a unique annotation called chain-of-action thought (CoAT),
establishing a connection between perception—specifically, the understanding of screen layouts and UI elements—and
cognition, which involves action decision-making. The AITZ dataset includes 2,504 operational trajectories that encompass
18.6K real-world intentions. Additionally, it is categorized into five subsets based on application domains: General, Install,
GoogleApps, Single, and WebShopping. We train the model using the General domain with a dataset of randomly selected
1k examples and evaluate its performance on the corresponding test sets, as well as on other out-of-distribution domains.

F. Setup
We use Llamafactory (41) for the SFT stage with full parameters, and the training time is no longer than 15 minutes for
both Qwen2.5-VL-3B/7B models. We set θ = 0.14 following (18). We use vLLM (39) and the zero1_no_optimizer GRPO
settings to optimize further:

G. Experiments
G.1. TON on Math–GeoQA

Figure 7 & 8 illustrate the progression of various variables throughout the training process.
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Table 6: Training Parameters for the first SFT of TON

Parameter Value
cutoff_len 2048
per_device_train_batch_size 8
gradient_accumulation_steps 1
learning_rate 1.0e-5
lr_scheduler_type cosine
warmup_ratio 0.1
epoch 2

Table 7: Training Parameters for the second GRPO stage of TON in general/agent

Parameter Value
max_prompt_length 4096
max_completion_length 2048
per_device_train_batch_size 1
gradient_accumulation_steps 2
learning_rate 1e-6
lr_scheduler_type constant
bf16 true
β 0.04
gradient_checkpointing true
attn_implementation flash_attention_2
min_pixels 3136
max_pixels 501760
temperature 1.0
num_generations 8
step 100

Figure 7: TON and GRPO visualization during the training process on Qwen2.5-VL-3B on GeoQA.
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Table 8: Training Parameters for the second GRPO stage of TON in math

Parameter Value
max_prompt_length 4096
max_completion_length 2048
per_device_train_batch_size 1
gradient_accumulation_steps 2
learning_rate 1e-6
lr_scheduler_type constant
bf16 true
β 0.04
attn_implementation flash_attention_2
min_pixels 3136
max_pixels 501760
temperature 1.0
num_generations 4
step 300

Figure 8: TON and GRPO visualization during the training process on Qwen2.5-VL-7B on GeoQA.

G.2. TON on Counting–CLEVR

Figure 9 illustrates the progression of various variables throughout the training process.

G.3. TON on Mobile Agent–AITZ

Figure 10 & 11 illustrate the progression of various variables throughout the training process.
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Figure 9: TON and GRPO visualization during the training process on Qwen2.5-VL-3B on CLEVR.

Figure 10: TON and GRPO visualization during the training process on Qwen2.5-VL-3B on AITZ.

G.4. OOD Performance of TON on General VQA

Table 9 compares the IID and OOD performance of TON and vanilla GRPO. TON demonstrates superior performance in
both IID and, particularly, OOD scenarios under easy reasoning tasks, helping to avoid overfitting to the training set of
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Figure 11: TON and GRPO visualization during the training process on Qwen2.5-VL-7B on AITZ.

vanilla GRPO.

Table 9: Qwen2.5-VL-3B on the IID domain CLEVR and OOD domain Super-CLEVR.

CLEVR Super-CLEVR
think acc acc

base 64 57.3
SFT ✓ 88.5 13.17

GRPO ✓ 93.5 51.9
TON ours 98.5 62.79
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G.5. Different Thought Dropout Probabilities

Figure 12 illustrates the progression of various variables throughout the training process under different dropout probabilities.

Figure 12: GRPO visualization during the training process on Qwen2.5-VL-3B on AITZ under dropout probabilities 20%,
50%, 80%.

G.6. Skip-thought Ratio on Different benchmarks

Figure 19 illustrates the skip-thought ratios under TON throughout the training process under different VQA benchmarks.
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(b) Agentic VQA
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(c) Math VQA

Figure 13: Skip Ratio of the output thinking during our TON training on three benchmarks.
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G.7. Prompt v.s. SFT on different benchmarks

Figure 14 & 15 & 16 illustrate the progression of various variables throughout the training process between injecting the
skip-thought during the prompt and the SFT stage.

Figure 14: hybrid prompt v.s. SFT visualization during the training process on Qwen2.5-VL-3B on clevr.
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Figure 15: hybrid prompt v.s. SFT visualization during the training process on Qwen2.5-VL-3B on AITZ.

Figure 16: hybrid prompt v.s. SFT visualization during the training process on Qwen2.5-VL-3B on GeoQA.
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G.8. Prompt for GUI Agent

AITZ System Prompt

You are an assistant trained to navigate the mobile phone. Given a task instruction, a screen observation, and an
action history sequence, output the next action and wait for the next observation.
Here is the action space:

• 1. ‘CLICK‘: Click on an element, value is not applicable and the position [x,y] is required.

• 2. ‘TYPE‘: Type a string into an element, value is a string to type and the position is not applicable.

• 3. ‘SCROLL UP‘: Scroll up for the screen.

• 4. ‘SCROLL DOWN‘: Scroll down for the screen.

• 5. ‘SCROLL LEFT‘: Scroll left for the screen.

• 6. ‘SCROLL RIGHT‘: Scroll right for the screen.

• 7. ‘PRESS BACK‘: Press for returning to the previous step, value and position are not applicable.

• 8. ‘PRESS HOME‘: Press for returning to the home screen, value and position are not applicable.

• 9. ‘PRESS ENTER‘: Press for submitting the input content, value and position are not applicable.

• 10. ‘STATUS TASK COMPLETE‘: Indicate the task is completed, value and position are not applicable.

Format the action as a dictionary with the following keys: {’action’: ’ACTION TYPE’, ’value’: ’element’, ’position’:
[x,y]}
If value or position is not applicable, set it as ‘None‘. Position represents the relative coordinates on the screenshot
and should be scaled to a range of 0-1.

Think Prompt

Please first thinks about the reasoning process in the mind and then provides the user with the action. The reasoning
process and answer are enclosed within <think> </think> and <action> </action> tags, respectively, i.e., <think>
reasoning process here </think><action> action here </action>

Overall Prompt

{AITZ System Prompt}
{Think Prompt}
Task: {Task}
<image>
Action history: {Action history}
**Next action:**

G.9. Comprehensive Comparison of Length, Rewards, and Skip Ratio Across Three Benchmarks

We present a comprehensive comparison of length, rewards, and skip ratio across three benchmarks. The results reveal a
consistent trend: TON reduces completion length and increases the skip ratio as rewards increase during training.
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(a) Counting-CLEVR (b) AITZ (c) GeoQA

Figure 17: Rewards of the output during our TON training on three benchmarks.

(a) Counting-CLEVR (b) AITZ (c) GeoQA

Figure 18: Completion length of the output during our TON training on three benchmarks.
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(b) AITZ
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(c) GeoQA

Figure 19: Skip ratio of the output thinking during our TON training on three benchmarks.

G.10. Reward for length rather than SFT

We give the reward rl = 1 for the model if it outputs <think>\n\n<\think>, and otherwise 0. We observe that the length
reward remains at 0 during the first 100 steps. The visualization of the entire training process is shown below, highlighting
our proposed thought dropout in the SFT stage.
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Figure 20: Length penalty rewards and completion length on AITZ datasets on Qwen2.5-VL-3B.

Figure 21: Length penalty rewards and completion length on AITZ datasets on Qwen2.5-VL-3B.

G.11. Visualization Examples

We give more cases to show the effectiveness and efficiency of our proposed TON.
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Q: As shown in the figure, triangle ABC is the inscribed triangle 
of circle O, angle OAB = 35.0, then the degree of angle ACB is ()
<think>
In the given problem, we have triangle ABC inscribed in circle O with center O. We are given that angle OAB = 35°. To 
find the measure of angle ACB, we can use the property of angles in a circle where an angle inscribed in a semicircle 
is a right angle (90°). However, since we are not directly dealing with a semicircle but rather a triangle, we need to 
consider the properties of angles subtended by the same arc. Since O is the center of the circle, OA and OB are radii 
of the circle, making triangle AOB an isosceles triangle with OA = OB. The angle at the center (angle AOB) is twice 
the angle at the circumference (angle ACB), because the angle at the center is twice the angle at the circumference 
when they subtend the same arc. Given that angle OAB = 35°, and knowing that OA = OB, angle OBA is also 35°. 
Therefore, angle AOB = 180° - 35° - 35° = 110°. Since angle ACB is half of angle AOB, angle ACB = 1/2 * 110° = 55°.
</think>

<answer>55°</answer>

Task: Set an alarm for 12pm

<answer>{'action': 'CLICK', 
'value': None, 'position': [0.51, 
0.7]}</answer>

Task: Install the Facebook 
app

<think>\n\n</think><answer>{'action': 
'TYPE', 'value': 'facebook app', 
'position': None}</answer>

<think>
The time set in the popup is currently wrong; 
it is at 12:00 AM. Possible actions are to click 
on the "PM" indicator and then adjust the 
minutes to "00" to set the correct alarm for 
12:00 PM, followed by clicking the "OK" 
button to confirm the new alarm time.
</think>

<think>
The user wants to install the Facebook app, but the 
current screen shows the Lyft app, which suggests 
an incorrect entry. Possible actions are to use the 
search bar at the top to type in "Facebook app" 
and then search for it, or stop and correct the 
search entry to "Facebook app" to proceed with the 
installation.
</think> 

Q: As shown in the figure, AB // CD, and EF intersects AB and CD 
at points E, F, angle 1 = 50.0, then the degree of angle 2 is ()
<think>Since AB is parallel to CD, we can use the property that corresponding angles formed by a transversal with two 
parallel lines are equal. Therefore, angle 1 is equal to angle AFE because they are corresponding angles. Given that 
angle 1 is 50 degrees, it follows that angle AFE is also 50 degrees. Now, since angle 2 is an exterior angle to triangle 
AEF, it is equal to the sum of the two opposite interior angles, which are angle AFE and angle 2 itself. However, since 
angle AFE is already 50 degrees, angle 2 must be 180 degrees minus 50 degrees to satisfy this condition. Therefore, 
angle 2 = 180 - 50 = 130 degrees.
</think>

<think>\n\n</think><answer>130</answer>

Figure 22: Examples of TON on math VQA and GUI agent VQA settings.
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Counting examples from CLEVR (14)

Question How many items are there in the im-
age?

How many items are there in the image?

GRPO’s outputs <think>The image shows three objects:
a large green cylinder from 1919, a
large teal sphere, and a large golden
sphere. Both the teal and golden
spheres appear to be in a translucent
state, indicating that they are metallic.
The green cylinder is plain and opaque,
without any reflective properties. 1.
Green Cylinder: Transparent (metallic)
2. Teal Sphere: Transparent (metallic)
3. Golden Sphere: Transparent (metal-
lic) The question seems to ask for the
count of items, and considering that all
three objects are distinguishable from
each other as separate items in the im-
age, the count is three. </think>
<answer>3</answer>

<think> - I count six distinct objects in
the picture: a large green matte cylinder,
a blue matte cylinder, a large green reflec-
tive sphere, a large blue matte cube, a small
blue matte cube, a light blue rubber object, a
shiny silver cube, a large reflective blue ob-
ject, a silver or dark green reflective sphere,
a shiny purple metallic cylinder, and a blue
matte sphere. - I observe the reflective sur-
face properties of the objects around the
central large green sphere. - I also note the
size and color variety of each object as de-
scribed by the visual cues. </think>
<answer>10</answer>

TON’s outputs <think>\n\n</think>
<answer>3</answer>

<think>Okay, let’s check this out. The user
provided a image with several objects and
their properties. Each entry starts with "A"
followed by attributes like size, color, ma-
terial, shape, rotation, 3D coordinates, and
pixel coordinates.
First, I need to count how many items there
are. Let me list each entry one by one.
1. "A small purple rubber sphere..." That’s
the first item. 2. "A large yellow rubber
cube..." Second item. 3. "A small gray
rubber cube..." Third. 4. "A large green
rubber cylinder..." Fourth. 5. "A small blue
metal cube..." Fifth. 6. "A small green
metal sphere..." Sixth. 7. "A large brown
metal cube..." Seventh. 8. "A small green
rubber cylinder..." Eighth.
Wait, that’s eight distinct entries. Each one
has unique combinations of attributes. I
can’t see any duplicates. Each has different
values for color, size, material, rotation, or
coordinates, so they’re separate. So yes,
there are eight items in total. </think>
<answer> 8 </answer>

Table 10: Counting example from CLEVR (14). Although the question is simple, the two conditioned images differ
significantly in difficulty: the left image is clearly easier, while the right involves greater complexity due to object occlusion.
TON demonstrates selective activation of reasoning—engaging thought only when needed—whereas GRPO generates
reasoning traces for both cases indiscriminately.
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Figure 23: TON applied to the AITZ out-of-distribution domain: the task is to uninstall the messaging apps. TON performs
well without extensive reasoning.

Figure 24: TON applied to the AITZ out-of-distribution domain: the task is to uninstall the messaging apps. TON performs
well without extensive reasoning.
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Table 11: Counting example from SuperCLEVR (15). Although the question is out-of-distribution, the performance
of TON and vanilla GRPO differs significantly in their outputs. The output from vanilla GRPO is excessively lengthy
(over 500 tokens), focusing more on reasoning rather than providing a direct answer. In contrast, TON delivers a concise
response, effectively bypassing the lengthy reasoning process.

Counting examples from SuperCLEVR (15)

Question How many objects are either small
green wagons or buses?

How many other objects are there of the
same color as the matte car?

GRPO’s outputs "<think>\n Okay, let’s tackle this ques-
tion step by step. The user is ask-
ing how many objects are either s̈mall
green wagonsör b̈uses.̈ I need to check
each object in the image provided.\n
\nFirst, let’s parse the image. There
are six objects listed:\n\n1. A large
blue rubber scooter with specific co-
ordinates and rotation.\n2. A small yel-
low rubber car (wagon) with details.\n3.
A small brown rubber bicycle.\n4. A
large red rubber tandem bicycle.\n5.
A small gray metal dirt bike.\n6. A
large gray metal school bus.\n\nThe
question is about two categories: small
green wagons and buses. Let’s break
down each part.\n \n Starting with s̈mall
green wagons:̈ Looking at the list,
there’s a s̈mall yellow rubber carẅhich
is a wagon. The color here is yellow,
not green. So that doesn’t fit. Are there
any other small green wagons? The
other objects are all different colors and
types. The only green object mentioned
is the first one, but it’s a scooter, not a
wagon. So no small green wagons exist
in the scene.\n\nNext, b̈uses:̈ The sixth
object is a l̈arge gray metal school bus.̈
Since the question says "̈,

<think>\nOkay, let’s see. The question is
asking how many other objects are there
of the same color as the m̈atte car.̈ First,
I need to figure out which object is the
matte car.\n\nLooking at the image, each
object has a color mentioned. Let me check
each entry:\n\n1. A large yellow rubber
SUV...\n2. A small blue metal bicycle...\n3.
A large purple metal sedan...\n4. A large
brown metal cylinder...\n5. A large yel-
low metal school bus...\n6. A small yel-
low metal bicycle...\n7. A large purple
metal sedan...\n8. A small yellow rubber
dirt bike...\n9. A large yellow metal school
bus...\n10. A large purple metal articulated
train...\n\nWait, the matte car isn’t listed
here. All the colors mentioned are either
yellow, blue, purple, brown, or gray. The
matte material isn’t specified for any of
them. Hmm, maybe m̈atter̈efers to the ma-
terial being non-shiny, but in the given data,
all materials are either metal or rubber. So
perhaps the matte car is one of the rubber
ones. But the problem says m̈atte,̈ so maybe
it’s a mistake, or maybe the user intended
r̈ubberïnstead of m̈atte",

TON’s outputs <think>\n \n </think>
<answer>1</answer>

<think>\n\n</think>
<answer>3</answer>
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Q: As shown in the figure, AB parallel CD, straight line EF intersects AB at 
point E, intersects CD at point F, EG bisects angle BEF, and it intersects CD at 
point G, angle 1 = 50.0, then angle 2 is equal to ()

TON: 

<think>\n\n</think><answer>65</answer>

GRPO:

<think>\nTo solve for angle 2, we need to use the properties of parallel lines and angle bisectors.\n\n1. Since AB is 
parallel to CD, and EF is a transversal, angle BEF and angle BFG are supplementary angles because they form a 
linear pair.\n2. Given that angle 1 is 50 degrees, and since EG bisects angle BEF, angle BEG must be half of angle 
BEF.\n3. Therefore, angle BEG = 90 - 50 = 40 degrees.\n4. Since EG bisects angle BEF, angle BEG = angle FEG = 40 
degrees.\n5. Now, angle 2 is the same as angle FEG because they are corresponding angles formed by the 
transversal EF intersecting the parallel lines AB and CD.\n6. Therefore, angle 2 = 40 
degrees.\n\n</think>\n\n<answer>\n40\n</answer>

Figure 25: Comparison between TON and vanilla GRPO in GeoQA

Q: As shown in the figure, AB ia tangent to circle O at point B, and the extended 
line of AO intersects circle O at point C. Connect BC, if angle A = 36.0, then 
angle C is equal to ()

TON: 

<think>\n\n</think><answer>27</answer>

GRPO:

<think>\nTo solve for the measure of angle C, we need to use properties of circles and tangents.\n\n1. **Identify 
the given information:**\n - AB is tangent to circle O at point B.\n - Angle A is 36 degrees.\n - We need to find 
the measure of angle C.\n\n2. **Use the property of the tangent:**\n - Since AB is tangent to the circle at point B, 
the radius OB is perpendicular to AB. Therefore, angle OBA is 90 degrees.\n\n3. **Determine angle OAB:**\n - In 
triangle OAB, the sum of the angles is 180 degrees.\n - So, angle OAB + angle A + angle OBA = 180 degrees.\n -
Substituting the known values: angle OAB + 36 degrees + 90 degrees = 180 degrees.\n - Simplifying, we get angle 
OAB = 54 degrees.\n\n4. **Identify angle COB:**\n - Since OC is a radius and OB is also a radius, triangle OBC is 
isosceles with OB = OC.\n - Therefore, angle OCB = angle OBC.\n\n5. **Determine angle COB:**\n - The central 
angle COB subtends the same arc as the inscribed angle CBA.\n - The measure of the central angle is twice the 
measure of the inscribed angle that subtends the same arc.\n - So, angle COB = 2 * angle CBA.\n\n6. **Relate 
angles in triangle OBC:**\n - In triangle OBC, the sum of the angles is 180 degrees.\n - So, angle OCB + angle 
OBC + angle COB = 180 degrees.\n - Since angle OCB = angle OBC, we can write: 2 * angle OCB + angle COB = 180 
degrees.\n - Substituting angle COB = 2 * angle CBA, we get: 2 * angle OCB + 2 * angle CBA = 180 degrees.\n -
Simplifying, we get: 2 * angle OCB + 2 * 36 degrees = 180 degrees.\n - This simplifies to: 2 * angle OCB + 72 
degrees = 180 degrees.\n - Solving for angle OCB, we get: 2 * angle OCB = 108 degrees.\n - Therefore, angle OCB 
= 54 degrees.\n\nSo, the measure of angle C is 54 degrees.\n</think>\n\n<answer>\n54\n</answer>

Figure 26: Comparison between TON and vanilla GRPO in GeoQA

28



Submission and Formatting Instructions for ICML 2025

Q: As shown in the figure, the diameter CD of circle O crosses the midpoint G of 
chord EF, angle DCF = 20.0, then angle EOD is equal to ()

TON: 

<think>\n\n</think><answer>40</answer>

GRPO:

<think>\nTo solve for the measure of angle EOD, we need to use properties of circles and angles.\n\n1. **Identify 
the given information:**\n - \\( CD \\) is the diameter of the circle.\n - \\( G \\) is the midpoint of the chord 
\\( EF \\).\n - \\( \\angle DCF = 20^\\circ \\).\n\n2. **Understand the implications of the midpoint:**\n - Since 
\\( G \\) is the midpoint of \\( EF \\), \\( CG \\) is perpendicular to \\( EF \\). This means that \\( \\angle CGE = 
90^\\circ \\).\n\n3. **Use the inscribed angle theorem:**\n - The angle subtended by an arc at the center of the 
circle is twice the angle subtended by the same arc at any point on the circumference.\n - Therefore, \\( \\angle 
EOD \\) (the central angle) is twice \\( \\angle ECF \\) (the inscribed angle).\n\n4. **Determine the measure of 
\\( \\angle ECF \\):**\n - Since \\( \\angle DCF = 20^\\circ \\) and \\( \\angle CGE = 90^\\circ \\), we can find 
\\( \\angle ECF \\) as follows:\n \\[\n \\angle ECF = 90^\\circ - 20^\\circ = 70^\\circ\n \\]\n\n5. 
**Calculate \\( \\angle EOD \\):**\n - Using the relationship between the central angle and the inscribed 
angle:\n \\[\n \\angle EOD = 2 \\times \\angle ECF = 2 \\times 70^\\circ = 140^\\circ\n \\]\n\nThus, the 
measure of angle \\( EOD \\) is \\( 140^\\circ \\).\n\n</think>\n<answer>\n140\n</answer>

Figure 27: Comparison between TON and vanilla GRPO in GeoQA
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Q: In the provided figure, the city government is making plans to construct an 
overpass with a height AB measuring 6.0. If angle ACB represents the angle 
between the slope AC of the overpass and the ground BC, and the sine of angle ACB 
is equal to 3.0/5.0, what is the length of slope AC?

TON: 

<think>The length of the slope AC can be calculated using the Pythagorean theorem. Given that the slope ratio is 
3:4, we can set up a right triangle where the height (AB) is 6.0 units and the base (BC) corresponds to the 
horizontal distance. Since the ratio is 3:4, we can use this to find the length of BC.

1. **Identify the ratio and relate it to the sides of the triangle:**

- Let the length of AB be \( h \) and the length of BC be \( d \).

- Given \( AB = 6.0 \) units, and the ratio is 3:4, we can express \( d \) in terms of \( h \):

\[

\frac{h}{d} = \frac{3}{4}

\]

Solving for \( d \):

\[

d = \frac{4}{3} \times 6.0 = 8.0 \text{ units}

\]

2. **Apply the Pythagorean theorem to find the hypotenuse \( AC \):**

\[

AC = \sqrt{AB^2 + BC^2}

\]

Substituting the known values:

\[

AC = \sqrt{6.0^2 + 8.0^2}

\]

Calculate the squares:

\[

6.0^2 = 36.0 \quad \text{and} \quad 8.0^2 = 64.0

\]

Add these values:

\[

AC = \sqrt{36.0 + 64.0} = \sqrt{100.0} = 10.0 \text{ units}

\]

Therefore, the length of the slope AC is 10.0 units.</think><answer>10</answer>

Figure 28: Comparison between TON and vanilla GRPO in GeoQA
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Q: In the provided figure, the city government is making plans to construct an 
overpass with a height AB measuring 6.0. If angle ACB represents the angle 
between the slope AC of the overpass and the ground BC, and the sine of angle ACB 
is equal to 3.0/5.0, what is the length of slope AC?

GRPO

<think>

To solve for the length of the slope AC, we can use the given information about the slope and the vertical 
height. The slope AC is in the ratio 3.0:4.0, and the vertical height AB is 6.0 units.

1. **Identify the components of the right triangle:**

- The vertical height (AB) is 6.0 units.

- The ratio of the horizontal length (BC) to the vertical length (AB) is 3.0:4.0, so we can denote BC as 
\( \frac{3}{4} \times AB \).

2. **Calculate BC:**

- \( BC = \frac{3}{4} \times 6.0 = 4.5 \) units.

3. **Use the Pythagorean theorem to find AC:**

- The Pythagorean theorem states \( AC^2 = AB^2 + BC^2 \).

- Substitute the known values: \( AC^2 = 6.0^2 + 4.5^2 \).

- \( AC^2 = 36.0 + 20.25 = 56.25 \).

- \( AC = \sqrt{56.25} = 7.5 \) units.

Therefore, the length of the slope AC is 7.5 units.

</think>

<answer>

7.5

</answer>

Figure 29: Comparison between TON and vanilla GRPO in GeoQA
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