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ABSTRACT

Community-driven Text-to-SQL evaluation platforms play a pivotal role in tracking
the state of the art of Text-to-SQL performance. The reliability of the evaluation
process is critical for driving progress in the field. Current evaluation methods are
largely test-based, which involves comparing the execution results of a generated
SQL query and a human-labeled ground-truth on a static test database. Such an
evaluation is optimistic, as two queries can coincidentally produce the same output
on the test database while actually being different. In this work, we propose a new
alternative evaluation pipeline, called SPOTIT, where a formal bounded equivalence
verification engine actively searches for a database that differentiates the generated
and ground-truth SQL queries. We develop techniques to extend existing verifiers
to support a richer SQL subset relevant to Text-to-SQL. A performance evaluation
of ten Text-to-SQL methods on the high-profile BIRD dataset suggests that test-
based methods can often overlook differences between the generated query and the
ground-truth. Further analysis of the verification results reveals a more complex
picture of the current Text-to-SQL evaluation.

1 INTRODUCTION

Text-to-SQL is one of the fundamental building blocks for designing natural language (NL) interfaces
that enable users to access and analyze structured data sources. Translating human questions into
executable database queries bridges the gap between non-technical users and complex data systems.
This functionality underpins modern chatbots and smart assistants across a wide range of industrial
applications, such as observability platforms for monitoring system health (BitsAI, 2025; Splunk,
2025), critical business processes (Amazon, 2025), and healthcare (Amazon Web Services, 2024).

Due to its practical relevance for commercial products, Text-to-SQL has recently attracted significant
attention, leading to the development of a wide range of solutions (Shi et al., 2024). New Text-to-SQL
frameworks are announced regularly, and thanks to community-driven evaluation platforms such
as BIRD (Li et al., 2024) and Spider (Lei et al., 2024), their performance can be benchmarked and
compared in near real time. Given the pivotal role these platforms play in tracking the state of the art,
the reliability of their evaluation processes is crucial for driving progress in the field.

In this paper, we take a close look at the evaluation process for the accuracy of Text-to-SQL methods.
Currently, the process usually involves checking whether the SQL queries generated by a method
produce results equivalent to those of the gold SQLs (i.e., human-written ground-truth SQLs), under
a pre-defined notion of equivalence. Most state-of-the-art evaluation frameworks (Li et al., 2024; Lei
et al., 2024) perform this equivalence check through testing: executing both queries on a static test
database and comparing the results. If the results match, the generated SQL is labeled as correct.
Although widely used in practice, the testing-based approach has clear limitations. Because the
check is performed on a single database, two different SQL queries may appear equivalent by chance,
purely due to the specific data contained in that database. This raises an important question: when
the test-based approach marks a generated SQL as correct, how often does it truly produce the same
results as the gold SQL in general? The next broader question is: to what extent can the current
evaluation process accurately measure the performance of Text-to-SQL methods?

We investigate these questions by exploring an alternative correctness evaluation methodology.
Instead of relying on test databases to assess equivalence, we propose to actively search for databases
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that can differentiate the generated SQL from the gold SQL. The search-based evaluation naturally
provides stronger correctness guarantees and enables a more rigorous measurement of accuracy.
Since providing complete equivalence guarantee is in general undecidable, we perform SMT-based
bounded verification (He et al., 2024), which searches for differentiating databases with specified
sizes. We develop a new Text-to-SQL evaluation workflow, SPOTIT, on top of those verification
techniques. We significantly extend these techniques to support a new set of SQL operators over
strings and dates which are commonly used for Text-to-SQL benchmarks.

Experiments on ten state-of-the-art Text-to-SQL methods on the popular BIRD dataset (Li et al.,
2024) suggest that the reported accuracy of these methods drops by 11.3%–14.2% when switching
from the official test-based evaluation to SPOTIT. The varying levels of decrease in absolute precision
also lead to substantial changes in the order of ranking of the Text-to-SQL methods. Moreover,
SPOTIT produces minimal differentiating databases, which enables us to pinpoint the sources of
inconsistencies between the generated and gold SQLs. Analysis of these databases uncovers several
shortcomings of the current Text-to-SQL evaluation process. Most surprisingly, we find that when
the predicted SQL disagrees with the ground truth, it is often the gold SQL that is incorrect.

To summarize, our contributions include:
• SPOTIT, a new evaluation pipeline for Text-to-SQL powered by formal equivalence verification;
• novel SMT-encoding for a set of SQL operators over strings and dates, and proof of its correctness;
• practical strategies for the efficient deployment of SPOTIT;
• a large-scale evaluation of ten state-of-the-art Text-to-SQL methods on the BIRD dataset, which

reveals several potential shortcomings of current Text-to-SQL evaluation.

2 PRELIMINARIES

We provide background on Text-to-SQL and formal equivalence checking. Due to space limitation,
an overview of related work is present in App. A.

Text-to-SQL problem statement. Given a natural language query N and a database D with schema
S, the goal of Text-to-SQL is to map (N,D) to an SQL query Q, such that executing Q on D,
denoted Q(D), produces an output relation (table) that answers N .

Text-to-SQL evaluation. The main evaluation mechanism for a Text-to-SQL framework relies on a
gold SQL query produced by a human annotator. Hence, for each natural language query N over
a database, there exists a gold SQL query Q that represents the human-labelled ground truth of
translating N into SQL. Given a generated SQL P and the corresponding gold query Q, current
evaluation performs the following check:

EX-TEST(P,Q,Dtest) =

{
1, if ∀r. r ∈ P (Dtest) ↔ r ∈ Q(Dtest)

0, otherwise,
(1)

where Dtest is a test database provided by the benchmark set, and r denotes a row in the result table.
In words, EX-TEST compares whether the two tables, P (Dtest) and Q(Dtest), contain the same set
of rows. In order to more rigorously analyze the equivalence between P and Q, we use formal
verification to search for a differentiating database Dcex such that EX-TEST(P,Q,Dcex) = 0.

Bounded SQL equivalence checking. Given two SQL queries Q1 and Q2 over a schema S and
an upper bound K on the relation size, the problem of bounded equivalence checking is to decide
whether Q1 and Q2 are equivalent, denoted Q1 ≃S,K Q2, for all databases D conforming to S such
that each relation in D has at most K tuples. Formally,

Q1 ≃S,K Q2
def
= ∀D ∈ Instances(S). ∀R ∈ Relations(D). |R| ≤ K ⇒ Q1(D) = Q2(D),

where Instances(S) represents all database instances conforming to S, and Relations(D) represents
all relations in D. In general, the goal is either to prove the bounded equivalence holds, or to find a
counterexample database Dcex that disproves the equivalence. Compared with unbounded equivalence
checking, which is generally undecidable (Mohamed et al., 2024), bounded equivalence checking can
handle a more expressive SQL subset and is guaranteed to uncover small counterexamples (if they
exist). These features make bounded verification suitable for large-scale Text-to-SQL evaluation.

VERIEQL. VERIEQL (He et al., 2024) is a recently proposed bounded equivalence checker for
SQL queries and, to the best of our knowledge, supports the most expressive subset of SQL among
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N1: ”Which is the youngest patient with an abnormal
anti-ribonuclear protein level?
Please list his or her date of birth.”

/*Gold SQL Q*/:
SELECT T1.birthday
FROM patient AS T1
INNER JOIN laboratory AS T2
ON T1.ID = T2.ID
WHERE T2.rnp != ’-’ OR ’+-’
ORDER BY T1.birthday DESC LIMIT 1

/*Generated SQL P*/:
SELECT patient.birthday
FROM patient
INNER JOIN laboratory
ON patient.ID = laboratory.ID
WHERE NOT laboratory.rnp IN (’-’, ’+-’)
ORDER BY patient.birthday
DESC LIMIT 1

N2: ”How many male patients who underwent testing between
1995 and 1997 and were subsequently diagnosed with
Behcet disease did not stay in the hospital for treatment?”

/*Gold SQL Q*/:
SELECT COUNT(T1.id) FROM patient AS T1
INNER JOIN examination AS T2 ON T1.id = T2.id
WHERE T2.diagnosis = ’Behcet’ AND T1.sex = ’M’
AND STRFTIME(’%Y’, T2.examination_date)
BETWEEN ’1995’ AND ’1997’ AND T1.admission = ’-’;

/*Generated SQL P*/:
SELECT COUNT(DISTINCT patient.id)
FROM patient INNER JOIN examination
ON patient.id = examination.id
WHERE patient.sex = ’M’ AND
examination.examination_date
BETWEEN ’1995-01-01’ AND ’1997-12-31’
AND examination.diagnosis = ’Behcet’
AND patient.admission = ’-’;

Figure 1: Examples of cases where the generated SQL produces the same output as the gold SQL on
the BIRD’s official test database, but SPOTIT finds a database that differentiates the the queries. The
parts that explain the mismatch are highlighted. For N1, the gold SQL is incorrect. And for N2, both
SQL queries can be right depending on the interpretation of the NL question.

existing tools. It reduces the verification task to a satisfiability problem by encoding the symbolic
execution of the two SQL queries and the non-equivalence of the execution results as a satisfiability
modulo theories (SMT) formula (Barrett & Tinelli, 2018), which can be solved by an off-the-shelf
SMT solver (De Moura & Bjørner, 2008). The bounded equivalence property holds if and only
if the formula is unsatisfiable, which means it is not possible to find a database that result in
different execution results. Otherwise, a satisfying interpretation of the formula can be decoded to a
counterexample database. We significantly extend VERIEQL to support our verification use cases.

3 MOTIVATING EXAMPLES

Before we describe our new verification-based evaluation pipeline, we first discuss main sources of
mismatches between the gold SQL and the generated SQL in Text-to-SQL evaluation. There are three
main such sources: (1) NL query N is ambiguous, so both the gold and generated SQL queries are
justifiable interpretations; (2) N is unambiguous, but the gold SQL query is incorrect (gold SQLs are
created manually and thus prone to human errors); (3) N is unambiguous, the gold SQL query is
correct, but the generated SQL query is incorrect. Our framework focuses on checking equivalence
between the gold SQL and the generated SQL, treating the latter as the best-effort, semantically
correct formalization of N . We show that SPOTIT can successfully detect incorrect generated SQLs
that are overlooked by existing test-based evaluation. Perhaps more surprisingly, SPOTIT also allows
us to spot the first and second sources of mismatch. Fig. 1 shows two illustrative examples.

Example 3.1. Consider the query N1: ”Which is the youngest patient with an abnormal anti-
ribonuclear protein level? Please list his or her date of birth.” together with the gold and generated
SQL queries. On the development database that BIRD provides, both queries return “1989-08-28”.
However, SPOTIT found a database on which these two queries are not equivalent (Appendix D.1). In
fact, we observe that all ten frameworks that we tested generated SQLs that are not equivalent to the
gold query. Upon closer inspection, we find that the gold query is incorrect: its WHERE clause is
equivalent to T2.rnp != ’-’ OR FALSE, as a string literal like ’+-’ is interpreted as FALSE
in a boolean context, which is not the intended behavior.

Example 3.2. Consider another query N2: ”How many male patients who underwent testing between
1995 and 1997 and were subsequently diagnosed with Behcet disease did not stay in the hosiptal for
treatment?” together with the gold and generated SQL queries. These two queries both return “2” on
the BIRD test database. However, the two queries are clearly not equivalent (id is not a primary
key of the examination table therefore duplicates are allowed): the generated query counts all
examinations per patient, whereas the gold query counts only distinct patients. SPOTIT easily found a
database that differentiate the two queries (Appendix D.2). Note that depending on the interpretation
of the question, both SQL queries can be correct: the gold SQL can be reasonable if the goal is
to understand the hosptial workload, while the generated SQL can be reasonable if the goal is to
understand the number of unique patients. Hence, we conclude that N2 is ambiguous.
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Query Qr ::= Q | OrderBy(Q, E⃗, b)

Subquery Q ::= R |ΠL(Q) | σϕ(Q) | ρR(Q) |Q⊕Q | Distinct(Q) |Q⊗Q | GroupBy(Q, E⃗, L, ϕ) |With(Q⃗, R⃗, Q)
Attr List L ::= id(A) | ρa(A) | L,L

Attr A ::= Cast(ϕ) |E | G(E) |A ⋄ A
Pred ϕ ::= b | Null |A⊙ A | IsNull(E) | E⃗ ∈ v⃗ | E⃗ ∈ Q | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ

| PrefixOf(s, E) | SuffixOf(s, E) | Like(s, E) | Contain(s, E)

Expr E ::= a | v |E ⋄ E | ITE(ϕ,E,E) | Case(ϕ⃗, E⃗, E) | SubStr(E1, E2, E3) | Concat(E1, E2)
| Strftime(κ,E) | JulianDay(E) | DateShift(E, i, δ) | ToInt(E) | ToDate(E) | ToStr(E)

Join Op⊗ ::= × | ▷◁ϕ | ▷◁ϕ | ▷◁ ϕ | ▷◁ ϕ

Collection Op⊕ ::= ∪ | ∩ | \ | ⊎ | ⊎ | −
Arith Op ⋄ ::= + | − | × | / |%

Logic Op⊙ ::= ≤ | < | = | ̸= | > | ≥

R ∈ Relation Names a ∈ Attribute Names v ∈ {Null} ∪ Integers ∪ Dates ∪ Strings b ∈ Bools i ∈ Integers
s ∈ Strings G ∈ {Count, Min, Max, Sum, Avg} κ ∈ {“%Y”, “%M”, “%d”} δ ∈ {“Year”, “Month”, “Day”}

Figure 2: Extended syntax of SQL Queries. New features are in bold.

Note that these examples were overlooked by existing test-based evaluations. On the other hand,
using SPOTIT, we found that undetected cases like those are quite common in the BIRD dataset.

4 METHODOLOGY

In this section, we introduce new SMT-encodings for a number of SQL operators over string and date
types that were not supported by existing bounded equivalence verification methods but frequently
appear in Text-to-SQL benchmarks. Then we present our verification-based evaluation pipeline
SPOTIT and discuss practical implementation strategies.

4.1 EQUIVALENCE CHECKING FOR SQL QUERIES

To understand our extension, let us first walk through Example 4.1 to understand how equivalence
checking can be encoded as an SMT formula in a verifier like VERIEQL (He et al., 2024).

Example 4.1. Consider a schema S = {R 7→ {id : int, dob :date}} and the following two queries:

Q1=SELECT id FROM R WHERE id>1 Q2=SELECT id FROM R WHERE id>2

We describe how to encode equivalence checking for a bound (K) of 1 as an SMT formula. First,
variables are introduced to represent the database and the execution results. This includes a symbolic
database D = {R 7→ [t1]}, where t1 = [x1, x2] is a tuple in R, and x1, x2 are integer variables. In
addition, tuples t2 = [x3] and t3 = [x4], are introduced to encode query results: Q1(D) = [t2] and
Q2(D) = [t3], where x3, x4 are both integer variables. Note that the number of tuples in R is equal
to the bound K. Also note that a date (x2) is represented as an integer, which is sufficient here but
not in general. We later introduce precise encoding of date to support richer operations.

We now describe the constraints over the variables. The first set of constraints ensures that t2 and t3
correctly capture the semantics of Q1 and Q2. In this case, t2 tuple is constrained by ΦQ1

= (x1 >
1 → (x3 = x1 ∧¬Del(t2)))∧ (x1 ≤ 1 → Del(t2)), where Del is an uninterpreted function denoting
the non-existence of a symbolic tuple. The formula ΦQ1

ensures that only interpretations satisfying
x > 1 can populate a concrete tuple; otherwise, Q1’s result is empty. Similarly, t3 is constrained by
ΦQ2 = (x1 > 2 → (x4 = x1 ∧ ¬Del(t3))) ∧ (x1 ≤ 2 → Del(t3)).

The second set of constraints encodes that Q1(D) and Q2(D) returns different results. In this case,
it is simply t2 ̸= t3. The full encoding is a conjunction of all constraints: ΦQ1

∧ ΦQ2
∧ (t2 ̸= t3),

whose satisfiability can be checked by an SMT solver. A satisfying interpretation to this conjunction
corresponds to a database instance that differentiates Q1 and Q2. For example, the queries are not
equivalent under the interpretation I = {x1 7→ 2}.

Extension in SQL encoding. Existing bounded SQL equivalence checker still lacks support for
several important features, including precise encoding of dates and strings, which are highly relevant
in Text-to-SQL applications. Furthermore, SQL supports computations across many different data
types with implicit type casting (e.g., 1 + “a” and date(“2000-01-01”) + “1”), which poses significant
challenges to establish precise semantics and encodings. To address these limitations and challenges,
we introduce techniques to support dates and strings, along with their manipulations, in the SQL
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equivalence checker VERIEQL. We also introduce type conversions across Null, integers, dates, and
strings for implicit type casting. For example, in the gold SQL for N2 (Fig. 1), the output of the
STRFTIME function is implicitly converted from a date to an integer.

Fig. 2 presents our supported SQL grammar. Specifically, the query language introduces type
conversions among various data types (e.g., ToInt(E), ToDate(E), and ToString(E)), which allows
us to precisely establish the semantics of dates and strings and enhances the expressiveness of
our SQL subset. We also incorporate additional expressions and predicates for data and string
manipulations, such as date formatting Strftime(κ,E), Julian day JulianDay(E), string pattern
matching PrefixOf(s, E), SuffixOf(s, E), Like(s, E), and string truncation SubStr(E1, E2, E3). The
symbolic encoding for these extended expressions and predicates is formally presented in Appendix F.

As an example, we describe how to precisely encode a date variable, which is very common in
Text-to-SQL. For instance, the date of birth and the time of a transaction are naturally modeled with
the date type. Previously, date was encoded as a single integer variable (see Example 4.1). Although
this coarse representation still enables the encoding of certain date operations (e.g., comparison), it
does not necessarily support all date operations, such as date-formatting, which is used in the gold
SQL query for N2 in Fig. 1. As a date can be viewed as a triplet (year, month, day), we introduce
three integer variables y, m, and d, and constrain their values with the following formula Φ:

Φ = Φ1 ∧ Φ2 ∧ Φ3, where Φ1 = MIN YEAR ≤ y ≤ MAX YEAR, Φ2 = 1 ≤ m ≤ 12,
Φ3 = 1 ≤ d ∧ (∨c∈{1,3,5,7,8,10,12}m = c → d ≤ 31)
∧(m = 2 → d ≤ 28 + ite(leap(y), 1, 0)) ∧ (∨c∈{4,6,9,11}m = c → d ≤ 30)

The term leap(y) encodes the leap year condition: y%4 = 0 ∧ (y%100 ̸= 0 ∨ y%400 = 0).
Constraints Φ1, Φ2, and Φ3 restrict the possible values of the year, the month, and the day, respectively.
For example Φ1 specifies the valid range of the year, which is specific to the database engine.
For example, SQLite only accepts dates between “0000-01-01” and “9999-12-31”; in which case
MIN YEAR is 0 and MAX YEAR is 9999. This refined representation allows us to precisely encode
a rich set of date operations and analyze more SQL queries compared to the previous encoding.

Equivalence under set semantics. SQL equivalence checkers typically support equivalence under
bag semantics and list semantics. However, some Text-to-SQL evaluation platforms, such as BIRD (Li
et al., 2024), by default adopt equivalence under set semantics (see equation 1). This can be
expressed as an SMT constraint. Given two query results with symbolic tables R1 = [t1, . . . , tn] and
R2 = [r1, . . . , rm], the condition that R1 and R2 are equivalent under set semantics is as follows:

n∧
i=1

(
¬Del(ti) → ∨m

j=1(¬Del(rj) ∧ ti = rj)
)
∧

m∧
j=1

(¬Del(rj) → ∨n
i=1(¬Del(ti) ∧ rj = ti)) (2)

On a high level, equivalence is defined by mutual set containment: R1 = R2 iff R1 ⊆ R2 and
R2 ⊆ R1. But since some tuples might be deleted due to WHERE clauses, we restrict set containment
to non-deleted tuples, i.e., those satisfying ¬Del(t).

Correctness of the encodings. We now state the correctness of our symbolic encoding for the
extended expressions and predicates, as well as the equivalence under set semantics. Proof of these
theorems is in Appendix G. As we encode the symbolic execution of queries, to prove the correctness
of our approach, we need to show that our symbolic execution coincides with the concrete execution.
This involves showing that given an expression E, the satisfying interpretation of E’s symbolic
execution result is identical to the concrete execution result of E. Thm. 1 states that formally.
Theorem 1 (Correctness of expression encoding). Let D be a database over schema S , xs be a tuple
list, and E be an expression. Consider a symbolic database Γ over S , a list of symbolic tuples T , and
E’s symbolic encoding JEKS,Γ,T . For any satisfying interpretation I with I(Γ) = D ∧ I(T ) = xs,
evaluating the expression E over the database D and the tuple list xs yields the interpretation of E’s
symbolic encoding I(JEKS,Γ,T ), i.e., I(Γ) = D ∧ I(T ) = xs ⇒ JEKD,xs = I(JEKS,Γ,T ).

Similarly, given a predicate ϕ, the satisfying interpretation of ϕ’s symbolic execution result is also
identical to the concrete execution result of ϕ. This is formally stated in Appendix G. Lastly, we state
the correctness of our encoding for equivalence under set semantics.
Theorem 2 (Equivalence under set semantics). Given two relations R1 = [t1, . . . , tn] and R2 =
[r1, . . . , rm], if formula (2) is valid, then R1 and R2 are equivalent under set semantics.
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Algorithm 1 Bounded equivalence checking
Require: Database schema S, gold SQL query Q, generated SQL

query P , time limit T , bound K
Ensure: A counterexample Dcex

1: function EQUIVCHECK(S, Q, P , T , K)
2: for k ∈ [1, K] do
3: res, Dcex ← CHECKBOUND(S, P,Q, k, T )
4: if res = EQUIVALENT then continue
5: ▷ Bounded equivalence under k
6: else if res = NON-EQUIVALENT then
7: ▷ Find a counterexample
8: ▷ Validate the counterexample on the backend DBMS
9: if ¬EX-TEST(P,Q,Dcex) then

10: return {Dcex}
11: else break ▷ Timeout, unsupported, undecidable queries
12: return ∅

Algorithm 2 SPOTIT +

Require: Database S, user query N , gold SQL query Q, Text-to-
SQL frameworksM, time limit T and bound K

Ensure: Counterexamples Dcexs
1: function SPOTIT+(S, N ,M, T , K)
2: Dcexs ← ∅
3: for m ∈ M do
4: P ← m(S, N) ▷ Generate SQL query P using m
5: Dcexs[m]← EQUIVCHECK(S, Q, P, T,K)

6: ▷ Performing cross-referencing counterexamples
7: D∗

cexs ← ∪m∈MDcexs[m]
8: for m ∈ M do
9: for D ∈ D∗

cexs \Dcexs[m] do
10: if ¬EX-TEST(P,Q,D) then
11: Dcexs[m]← Dcexs[m] ∪ {D}
12: return Dcexs

4.2 SPOTIT: A SEARCH-BASED TEXT-TO-SQL EVALUATION PIPELINE

Fig. 3 presents a high-level workflow of our approach that consists of three conceptual phases.

GENSQL P

QUERY NInputs:

GOLDSQL Q

k-bounded
equivalence
verification

21 3

Verified k ≤ K

P
?
= Q

on Dcex

Spurious CEX

True CEX

Text-to-SQL

Yes

Dcex No

No CEX

k++

Figure 3: Three main phases of SPOTIT.

1 Input phase. Given a NL question N and its corresponding gold SQL query Q, a Text-to-SQL
framework takes as input N and generates a SQL query P . Both Q and P are passed to phase 2 .

2 Verification phase. The goal is to find a counterexample database instance on which the queries
Q and P produce different outputs. For a given bound k ≤ K, we perform bounded equivalence
checking between Q and P . If the queries are proved equivalent, then we increase k by one for
the next verification check. Furthermore, we cannot find any counterexample under all bounds and
conclude that they are verified up to the bound k. On the other hand, if the queries are proved to be
non-equivalent under some bound, we proceed to phase 3 for a further validation of Dcex.

3 Validation phase. Given the queries Q and P and a counterexample Dcex returned by verification
algorithm, we must verify that this counterexample is non-spurious. There are two main reasons
spurious counterexamples can arise in the verification engine. Either because some operators are
over-approximated in the SMT encoding or the SQL query admits non-deterministic behaviors that
cannot be modeled. Therefore, we execute the queries on the counterexample database (e.g., in
SQLite) and check whether the results actually differ. Dcex is viewed valid if the results remain
different; otherwise, we report this spurious case to the developers.

Alg.1 implements the second and third phases. For a given bound k ≤ K, it first checks bounded
equivalence between Q and P (line 3). If the queries are proven to be non-equivalent (line 6) under
some bound, we validate that the counterexample database is indeed a true counterexample (line 9)
and return it if this is the case. If the queries are proven to be equivalent in line 3, then we increase k
by one for the next verification step. If the verifier cannot find any counterexample under all bounds,
Alg.1 returns an empty set. Finally, if the verifier times out on a bound k, or the query is unsupported
or undecidable, it also returns an empty set.

Cross-checking counter-examples. One observation we make is that as we progress through the
frameworks, we collect a set of counterexamples that separate the gold query from the generated
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queries. Hence, we realized that these counterexamples can be reused as checks across all frame-
works, as they might generalize across frameworks. Alg.2 implements this idea. First, it obtains
counterexample databases, if they exist, for all frameworks by calling Alg.1 (lines 3–5). Then, it
iterates over all frameworks again and tests equivalence between Q and P on these counterexample
databases (lines 7–11). Empirically, this improves the effectiveness of our approach.

5 EXPERIMENTAL EVALUATION

In this section, we investigate the effect of using SPOTIT as the evaluation methodology for Text-to-
SQL tasks. We are interested in the following questions:

• How much more SQL queries does our extension of VERIEQL support?
• Can SPOTIT provide more rigorous accuracy evaluation than test-based approaches?
• Can SPOTIT reveal shortcomings in existing Text-to-SQL evaluations?

Experimental Setup. We consider all 1,533 question-SQL pairs from the development set of
BIRD (Li et al., 2023b), a state-of-the-art dataset for evaluating Text-to-SQL methods. The questions
span 11 different databases from different professional domains, such as education, healthcare, and
sports. The official BIRD leaderboard 1 contains over 80 Text-to-SQL methods and are updated
frequently. Not all methods are open-source or have predictions publicly available. Therefore, we
reached out to the developers of top-performing Text-to-SQL frameworks on the BIRD leaderboard
and obtained the generated SQL queries for 10 of them, which constitutes a representative subset of
state-of-the-art Text-to-SQL methods. The methods are listed in Tab. 1.

Table 1: The Text-to-SQL methods we evaluated

Entry Acronym

Alpha-SQL + Qwen2.5-Coder-32B (Li et al., 2025a) ALPHA
CSC-SQL + Qwen2.5-Coder-7B (Sheng & Xu, 2025a) CSC-7B

CSC-SQL + XiYanSQL (Sheng & Xu, 2025a) CSC-32B
GenaSQL-1 (Dönder et al., 2025) GENA-1
GenaSQL-2 (Dönder et al., 2025) GENA-2

RSL-SQL + GPT-4o (Cao et al., 2024) RSL
OmniSQL-32B(Li et al., 2025b) OMNI-MAJ

GSR (anonymous authors) GSR
CHESSIR+CG+UT (Talaei et al., 2024a) CHESS

SLM-SQL + Qwen2.5-Coder-1.5B Sheng & Xu (2025c) SLM

We first evaluate the predictions of each method
using BIRD’s official test-based execution accu-
racy metric (EX-TEST), which, as described in
Eq. 1, compares the results of executing the gen-
erated and gold queries on a given test database.
For predictions that are deemed correct by EX-
TEST, we apply SPOTIT to perform a more rigor-
ous analysis. We implemented SPOTIT on top of
VERIEQL (He et al., 2024), which we extended
using the methods described in Sec. 4.1. To gen-
erate practically relevant counterexamples, we
also extend the verification condition to exclude degenerate counterexamples that result in empty for
one SQL and NULL for the other SQL.

We consider three variants of SPOTIT: (i) SPOTIT: Alg. 2 instantiated with the extended verification
engine but without cross-checking (lines 7–11); (ii) SPOTIT -: Alg. 2 instantiated with vanilla
VERIEQL and without cross-checking; (iii) SPOTIT+: Alg. 2 with cross-checking. We verify each
generated-gold SQL pair up to a bound (K) of 5. Each verifier call is given one physical core, 8GB
memory, and a CPU timeout of 600 seconds. In practice, a counterexample can typically be found
within seconds, as reported below. Experiments were performed on a cluster equipped with Dell
PowerEdge R6525 CPU servers featuring 2.6-GHz AMD CPU cores.

Performance of Verification Engine. We first evaluate the effect of our extensions to the original
VERIEQL engine (He et al., 2024) in terms of coverage, defined as the fraction of generated-gold-
SQL pairs that can be encoded into an SMT query. In addition, we measure the average runtime of
SPOTIT on questions where a valid differentiating database is found. The results are shown in Tab. 2.
Our extensions significantly increase the coverage of the verification engine on relevant questions
(i.e., ones deemed correct by EX-TEST) for each method, allowing us to formally analyze a larger
number of generated SQL queries. For example, for CSC-32B, the coverage increases from 84.83%
to 94.88%, which corresponds to 110 additional supported questions ((94.88%− 84.83%) ∗ 1094).
The average time taken by SPOTIT to find a counterexample is under 4 seconds for all methods,
which, combined with the fact that the analysis for each question can be done in parallel, confirms
that SPOTIT is already a practical method for formally comparing generated SQLs with gold SQLs.

1https://bird-bench.github.io/
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Table 2: % of SQL pairs supported by SPOTIT -

and SPOTIT. For SPOTIT, also the average time
in seconds on pairs where CEXs are found by the
verifier and how many of them are non-spurious.

Method (# quest.) SPOTIT - (%) SPOTIT (%) Avg. Time Valid. (%)

ALPHA (1064) 84.87 93.89 3.10 96.15
CHESS (976) 87.40 97.13 1.40 93.34
CSC-32B (1094) 84.83 94.88 3.24 94.46
CSC-7B (1061) 85.77 96.14 3.93 95.10
GENA-1 (1062) 84.56 94.92 1.01 94.52
GENA-2 (1082) 84.47 94.55 0.93 95.42
GSR (1020) 84.51 93.63 1.12 94.86
OMNI-MAJ (1026) 86.65 95.61 1.36 95.83
RSL (1038) 86.03 95.18 1.64 95.62
SLM (973) 85.92 94.24 1.36 95.05

Table 3: Performance of Text-to-SQL methods
using EX-TEST, EX-SPOTIT, and EX-SPOTIT+

on the 1533 BIRD-dev benchmarks.

EX-TEST EX-SPOTIT EX-SPOTIT+

Acc. (%) Rank Acc.(%) Rank Acc.(%) Rank
CSC-32B 71.32 1 58.80 3 57.82 4
GENA-2 70.53 2 59.84 1 59.13 1
ALPHA 69.36 3 55.87 6 55.02 6
GENA-1 69.23 4 59.45 2 59.00 2
CSC-7B 69.17 5 58.54 4 57.95 3
RSL 67.67 6 56.58 5 55.80 5
OMNI-MAJ 66.88 7 54.69 7 54.04 7
GSR 66.49 8 54.56 8 53.72 8
CHESS 63.62 9 52.87 9 52.35 9
SLM 63.43 10 51.37 10 50.98 10

Moreover, a high percentage (up to 96.15%) of the counterexamples found by the verifier are
successfully validated, which suggests that our SMT encoding is sufficiently precise in practice.

Comparing test-based evaluation with SPOTIT. We now evaluate the accuracy of each Text-to-SQL
method based on EX-TEST, EX-SPOTIT, and EX-SPOTIT+. As shown in Tab. 3, the accuracy of
each method drops significantly when SPOTIT is used to check query equivalence. For example, the
accuracy of CSC-32B drops from 71.32% to 58.80% with SPOTIT, and further to 57.82% when cross-
checking is enabled. This means that there are 207 generated SQLs (1533 ∗ (71.32%− 57.82%)) that
passed the test on the official test databases, but were differentiated from the gold SQL by SPOTIT.
Overall, SPOTIT resulted in a decrease in accuracy ranging from 9.8% to 13.5%, and cross-checking
results in a small further decrease, by up to 1%. Interestingly, the ranking of the Text-to-SQL methods
also changes substantially when evaluated under the more stringent, verification-based metrics,
particularly in the top half of the table. For example, CSC-32B, which is ranked 1st by the official
test-based metric, drops to 4th place when evaluated by SPOTIT+. And the 3rd place method ALPHA
drops to the 6th place. These results indicate that test-based methods can in many cases overlook
differences between the generated SQL and the gold SQL, which might lead to misrepresentation of
the actual performance (both absolute and relative) of existing Text-to-SQL methods.

Figure 4: The effect of bound K.

The effect of K. To study the effect of the choice of
the verification bound K, we vary its value from 1
to 7 and run SPOTIT on the predictions of CSC-32B,
the best model according to EX-TEST. As shown in
Fig. 4, SPOTIT was able to find significantly more
differentiating databases when K increases from 1 to
2 and the gain is marginal pass K = 3. This justifies
our choice of K = 5.

Figure 5: A breakdown of the pri-
mary reason for the difference be-
tween generated and gold SQLs.

Manual inspection of SPOTIT counterexamples. As SPOTIT
performs bounded verification, the differentiating databases it
finds are guaranteed to be minimal, which makes it easy to an-
alyze them and understand the source of difference between the
generated and gold SQLs. We manually examined the coun-
terexamples for a random sample of 50 queries generated by
CSC-32B and found that the difference between a generated
SQL and a gold SQL can be primarily attributed to the three
reasons that we described in Section 3: ambiguous question,
incorrect gold SQL, and incorrect generated SQL. Fig. 5 shows
a breakdown of the primary attributed reasons for those sampled
questions. Surprisingly, while incorrect predictions do constitute
a significant portion (26%), more often than not, the gold SQL
itself is problematic. There are also a small fraction of cases
(10%) where the question itself can be interpreted in multiple
ways and therefore admits different answers. We discussed two
examples of incorrect gold SQLs and ambiguous questions in Fig. 1. Additional examples of each
type of issues, along with the databases found by SPOTIT, are provided and discussed in App. D.
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Table 4: Evaluation of SPOTIT on Spider 2.0.

EX-TEST EX-SPOTIT

Acc.(%) Acc.(%) Supported (%) Avg. Time
OMNISQL 34.1 22.2 60.9% 3.4
GPT-5 42.2 36.3 50.9% 1.1

Additional analysis on Spider 2.0 benchmarks.
To assess the generalizability of SPOTIT to more
complex Text-to-SQL tasks, we evaluate it on the
recently introduced Spider 2.0 benchmark (Lei
et al., 2024). We consider OMNISQL (Li et al.,
2025b), a state-of-the-art Text-to-SQL method and
GPT-5 2 on the 135 SQLite questions. These
methods pass EX-TEST on 46 and 57 queries, respectively, which is competitive with the top entries
on the Spider 2.0 leaderboard.3 As shown in Tab. 4, SPOTIT finds differentiating databases for 16
((34.1% − 22.2%) ∗ 135) and 8 query pairs deemed correct by test-based evaluation respectively
for OMNISQL and GPT-5. SpotIt’s runtime for finding counterexamples remains low. We believe
this is due to the fact that the schemas in Spider 2.0 are only moderately larger than those in BIRD
(97.6 vs. 78.6 columns) and counter-examples can usually be detected with small values of K. The
main verification challenge when it comes to Spider 2.0 lies in the number of SQL operators required
for the queries but currently unsupported by our verification engine, which resulted in a smaller
percentage of supported query pairs. Upon closer examination, 52.6% of the unsupported Spider
2.0 queries involve the window function (i.e., OVER clauses). Overall, these results indicate that
SPOTIT is also useful for uncovering query discrepancies overlooked by test-based methods on the
challenging Spider 2.0 benchmarks.

Summary of findings and implications. We now summarize the findings of our evaluation of a
state-of-the-art Text-to-SQL evaluation dataset BIRD using SPOTIT and discuss their implications.

Finding 1: Existing test-based correctness metrics that involve executing the generated SQL and the
gold SQL on static test databases can overlook significant variations in output data returned by the
generated and gold SQLs. A search-based evaluation metric, such as SPOTIT, can serve as a practical
alternative that provides additional perspectives on the performance of Text-to-SQL methods.

Finding 2: there is a significant number of problematic gold SQLs in existing Text-to-SQL benchmark
sets. As shown by examples in Tab. 1 and App. D, in many cases, the issue can be hard to detect, yet
can cause significantly different behaviors from the intended one. The presence of incorrect gold
SQLs makes it hard to determine the true optimal performance on a benchmark set, as even a perfect
Text-to-SQL method cannot achieve 100% accuracy.

Figure 6: A breakdown of ques-
tions that passed EX-TEST but
failed SPOTIT+.

Based on our result analysis for CSC-32B, we speculate that when
most Text-to-SQL methods disagree with the gold SQL, the gold
SQL is likely problematic. To validate this, we count the number
of times that a prediction for a question is deemed correct by
EX-TEST but incorrect by SPOTIT+ across all 10 Text-to-SQL
methods. As shown in Fig. 6, there are 36 questions on which all
methods generated queries that differ from the gold SQL. Manual
inspection suggests that 31 of those 36 cases have problematic
gold SQLs, 3 have ambiguous questions, and only 2 represent
genuine errors in the generated SQLs.

Figure 7: A breakdown of ques-
tions for which CSC-32B’s pre-
dictions failed EX-TEST.

While so far we have focused on incorrect gold SQLs overlooked
by EX-TEST, our investigation begs the question: when the gen-
erated query differs from the gold SQL, how often in general is
the gold SQL problematic? Fig. 7 shows the number of times the
prediction for a question is deemed incorrect by EX-TEST across
the 10 Text-to-SQL methods, for questions where CSC-32B’s pre-
dictions failed EX-TEST. There are 294 questions where at least
8 of the other 9 methods also failed EX-TEST. If shared disagree-
ment with gold SQL is also a good indicator for problematic gold
SQL in this case, then even a perfect Text-to-SQL method might
not be able to achieve an EX-TEST score much higher than 80%

2We use the same prompt as used in OMNISQL.
3https://spider2-sql.github.io/. We were not able to obtain predictions of Text-to-SQL methods on the

leaderboard because they are predominantly closed source.
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on BIRD-dev. As the time of completing this manuscript, the best EX-TEST score for BIRD-dev
achieved by any method on the official leaderboard is 76.14%.

Large-scale benchmark sets inevitably contain problematic gold SQLs. Indeed, multiple sources have
found examples of problematic gold SQLs in the BIRD dataset (Hui, 2024; Wretblad et al., 2024),
and some of them have already been addressed by the maintainers. SPOTIT is the first approach that
can provide minimal, easily analyzable databases to differentiate generated and gold SQLs, and can
help to systematically uncover problematic gold SQLs.

Finding 3: A substantial number of questions in the Text-to-SQL dataset can be interpreted in different
ways, thus admitting different SQL queries. While ambiguity is inherent in natural language, judging
the correctness of a generated SQL query based on a single gold SQL query when the natural language
question admits multiple interpretations might result in unfair penalization of Text-to-SQL methods.

Finding 4 (for the verification community): SMT-based equivalence verification techniques can
already support a large fraction of practical SQL queries. Our results demonstrate that verification
can often be completed within seconds. Due to the practical relevance of Text-to-SQL, we believe
there is motivation for the verification community to invest more resources to precisely cover a larger
fragment of SQL. In App. C, we discuss further extensions that would be especially useful according
to our evaluation. Another significant next step to incorporate user preferences (potentially from
natural languages) to search for particular types of counterexample databases. One way to achieve
this is to encode the preferences as additional constraints in the SMT formulation of the verification
problem.

6 RELATED WORK

Popular evaluation platforms such as BIRD-SQL (Li et al., 2024) and Spider 2.0 (Lei et al., 2024)
evaluate query correctness by testing on predefined database instances. Several additional evaluations
have been proposed to take into account partially correct generated queries (Pinna et al., 2025),
efficiency of query executions (Zhang et al., 2024), and ambiguity in the questions (Li et al., 2023a;
BIRD, 2025). However, the final correctness check is still via testing on a static database. Formal
SQL equivalence checking broadly falls into two categories, full-fledged verification (Chu et al.,
2017c; 2018; Zhou et al., 2022; 2024; Wang et al., 2024) and bounded verification (Veanes et al.,
2010; Chu et al., 2017a;b; He et al., 2024). To the best of our knowledge, VERIEQL (He et al., 2024)
supports the most expressive SQL fragments, while also offering extensibility for new features. We
significantly extend the VERIEQL framework to support date and string types as well as a number of
common operators for the Text-to-SQL evaluation task. Test data generation methods can also be
useful for detecting query non-equivalence (Chandra et al., 2015; Somwase et al., 2024; Zhong et al.,
2020).However, when the counterexamples require very specific structures, random fuzzing/testing
can become unreliable in refuting equivalence. In contrast, SPOTIT systematically searches over the
space of possible differentiating databases, finds minimal counter-examples, and provides a formal
guarantee: if SPOTIT deems two SQL queries equivalent, then no counterexample of size less than a
fixed number exists. A more detailed review of related work can be found in App. A.

7 CONCLUSION

We presented SPOTIT, the first verification-based evaluation pipeline for Text-to-SQL. We introduced
techniques to support a richer SQL grammar, which enabled us to efficiently analyze a large fragment
of SQL queries commonly seen in Text-to-SQL tasks. Our initial motivation for developing SPOTIT
was to examine the extent to which the accuracy of a Text-to-SQL method is overestimated by
test-based evaluation, which is widely adopted as the default metric on high-profile Text-to-SQL
evaluation platforms. However, a closer inspection of the verification results revealed a far more
complex picture. While SPOTIT can indeed detect incorrect generated SQL queries that were
overlooked by test-based methods, a significant portion of the inconsistency between the gold and
generated SQLs can be explained by the benchmarks themselves–either due to problematic gold
SQLs or due to ambiguous natural language questions. We discussed the implications of and the
next steps from our findings, and hope that our work will motivate further work on evaluating and
improving Text-to-SQL evaluation frameworks.
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A RELATED WORK

A large number of Text-to-SQL frameworks have been proposed over the last few years by research
groups in academia and industry (Liu et al., 2023; Dong et al., 2023; Chang & Fosler-Lussier, 2023;
TiDBCloud, 2020; Talaei et al., 2024b; Gao et al., 2025; Sequeda et al., 2023; Sheng & Xu, 2025b;
Liu et al., 2025; Shkapenyuk et al., 2025; Zhai et al., 2025). However, evaluation frameworks have
received much less attention. There are two main publicly available platforms: BIRD-SQL (Li et al.,
2024) and Spider (Lei et al., 2024) that are commonly used to evaluate the performance of Text-to-
SQL methods. Their evaluation procedure is performed on predefined database instances, whereas
SPOTIT searches for a separation database instance. A number of evaluation metrics were proposed
to take into account partially correct generated queries (Pinna et al., 2025) or the efficiency of query
executions (Zhang et al., 2024). Recently, (Li et al., 2023a; BIRD, 2025) proposed an iterative
evaluation framework in which the system can interact with the user by asking additional questions
(e.g., to resolve ambiguity). However, the final evaluation of the correctness of the generated SQL
query is still performed on a static database.

There are two lines of work in formal equivalence checking for SQL queries: full-fledged and
bounded verification. The full-fledged methods (Chu et al., 2017c; 2018; Zhou et al., 2022; 2024;
Wang et al., 2024) encode queries into specific representations (e.g., algebraic expressions (Chu
et al., 2018; Wang et al., 2024)) and determine equivalence by proving the equivalence of these
representations, thereby guaranteeing equivalence of queries for any possible database. However,
such methods typically support only a limited subset of SQL and cannot generate counterexamples
for non-equivalent queries. In contrast, the bounded verification approaches (Veanes et al., 2010; Chu
et al., 2017a;b; He et al., 2024) check equivalence within a finite search space, making them capable
of handling larger subsets of SQL and identifying counterexamples. To the best of our knowledge,
VERIEQL supports the most expressive SQL fragments and rich integrity constraints, while also
offering extensibility for new features (He et al., 2024). In this work, we significantly extend the
VERIEQL framework to support date and string types as well as a number of common operators for
the Text-to-SQL evaluation task.

Test data generation methods can also be useful for detecting query non-equivalence (Chandra et al.,
2015; Somwase et al., 2024; Zhong et al., 2020).However, when the counterexamples require very
specific structures (which is the case for many query pairs that passed EX-test but failed SpotIt as
seen in App. D), random fuzzing/testing can become unreliable in refuting equivalence. In contrast,
SPOTIT systematically searches over the space of possible differentiating databases, finds minimal
counter-examples, and provides a formal guarantee: if two SQL queries are considered equivalent,
then no counterexample of size less than a fixed number exists. Computational resources permitted,
one could in principle run a portfolio of test-based and verification-based equivalence-checking
methods in parallel to more quickly detect non-equivalence. This is an orthogonal but interesting
future direction.
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B ANALYSIS OF RUNTIME

Tables 5, 6, 7, 8, and 9 show the effect of different parameters on runtime, including the number of
columns, integrity constraints, tables in the databases, the number of sub-queries in the gold SQL,
and the number of nodes in the abstract syntax tree in the gold SQL. We found that all parameters
except for the number of tables are positively correlated with median runtime.

#columns Median runtime (s)

11 0.4310
21 0.1701
31 0.1963
48 0.3887
55 0.5576
64 0.3007
71 0.5365
89 0.2672
94 0.3154

115 0.6537
199 0.8006

Table 5: Median runtime by number of columns

#constraints Median runtime (s)

5 0.2842
7 0.1701
10 0.4324
16 0.5576
17 0.3887
19 0.1963
21 0.5365
36 0.6877

Table 6: Median runtime by number of constraints

#tables Median runtime (s)

3 0.2842
4 0.4310
5 0.1701
6 0.6537
7 0.8006
8 0.4249
10 0.1963
13 0.3154

Table 7: Median runtime by number of tables

#subqueries Median runtime (s)

0 0.3676
1 0.3972
2 1.9128

Table 8: Median runtime by number of subqueries
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#AST nodes Median runtime (s)

0–19 0.1812
20–39 0.3408
40–59 0.3426
60–79 0.4216
80–99 0.9683

100–119 1.1865
120–139 0.2053
140–159 1.2395

Table 9: Median runtime by number of AST nodes (buckets of 20)

C LIMITATIONS OF EXISTING BOUNDED SQL EQUIVALENCE CHECKER

While SPOTIT builds on top of and extends VERIEQL, a state-of-the-art bounded verifier that claims
to cover the largest SQL fragment, we find that there are still SQL operators which it either does not
support or cannot precisely capture. In this section, we describe the features that appear frequently in
failure cases of SPOTIT.

• The gold query for question 726 in the BIRD-dev benchmark.

SELECT superhero name, height cm,
RANK() OVER (ORDER BY height cm DESC) AS HeightRank

FROM superhero INNER JOIN publisher
ON superhero.publisher id = publisher.id

WHERE publisher.publisher name = “Marvel Comics”

SPOTIT does not support the window and analytic functions such as RANK and LAG.

• A SQL query generated by OMNISQL.

WITH RECURSIVE TimeSeriesAS (
SELECT ‘2016-01-01’ AS mth
UNION ALL
SELECT DATE(mth, ’+1 month’) AS mth FROM TimeSeries
WHERE mth < ‘2017-12-01’

),
. . .

SELECT product name FROM SalesRatio . . . ORDER BY product name

SPOTIT cannot encode recursive common table expressions above.

• Imprecisely encoding for ORDER BY and LIMIT:
Since VERIEQL establishs tables under bag semantics (namely, multi-set), database in-
stances are considered equivalent if they has the same tuples with the same multiplicities.
For instance, T1 and T2 in Tables 10–11 are equivalent under bag semantics.
However, when VERIEQL symbolically execute ORDER BY A, VERIEQL automatically
converts semantics from bag to list in which the order of tuples matters. In such a case,
database instances is equivalent iff they are tuple-wise the same. For instance, T1 and T2

in Tables 10–11 are not equivalent under list semantics. Furthermore, if ORDER BY A is
followed by LIMIT 1, then execution results on T1 and T2 are, respectively, R1 and R2.

Table 10: T1

A B

R1 1 2

R2 1 3

Table 11: T2

A B

R2 1 3

R1 1 2

More concretely, consider the gold query Q1 of question 653 in the BIRD-dev benchmark,
a query Q2 generated by ALPHA, and a counterexample database found by VERIEQL as
follows:
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The gold query Q1:

SELECT DisplayName FROM users WHERE id = (
SELECT OwnerUserId FROM posts ORDER BY ViewCount DESC LIMIT 1

)

The generated query Q2:

SELECT u.displayname AS ownerdisplayname
FROM posts AS p INNER JOIN users AS u ON p.owneruserid = u.id
ORDER BY p.viewcount DESC LIMIT 1

Table 12: posts

viewcount owneruserid

Null 1

Null 0

Table 13: users

id displayname

0 ‘A’

1 ‘B’

VERIEQL’s execution results of Q1 and Q2 are shown in Tables 14–15.

Table 14: VERIEQL’s result of Q1

DisplayName

‘A’

Table 15: VERIEQL’s result of Q2

ownerdisplayname

‘B’

SQLite’s execution results of Q1 and Q2 are shown in Tables 16–17.

Table 16: SQLite’s result of Q1

DisplayName

‘A’

Table 17: SQLite’s result of Q2

ownerdisplayname

‘A’

Naturally, VERIEQL identifies a spurious counterexample where Q1’s result is ‘B’ instead
of ‘A’. This is because the intermediate table from the FROM clause of Q2 is shown as
Table 18 where the values in column “viewcount” are all Null values. While executing the
ORDER BY, VERIEQL does not reorder the tuples of this intermediate table but SQLite
engine will swap these two tuples. Therefore, VERIEQL failed in this verification task.

Table 18: VERIEQL’s intermediate table of Q2

u.DisplayName p.viewcount

‘A’ Null

‘B’ Null
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D ADDITIONAL INCONSISTENCY BETWEEN PREDICTED AND GOLD SQLS
OVERLOOKED BY EX-TEST

D.1 EXAMPLE 3.1 (EXTENDED)

Tables 19–20 show a counterexample database Dcex (these are two relevant tables). The generated
SQL P returns no records, since laboratory.rnp is equal to ‘+-’ in the single record that violated
NOT laboratory.rnp IN (’-’, ’+-’). In contrast, the gold SQL Q returns ’1000-01-01’,
because the condition T2.rnp != ’-’ OR ’+-’ is incorrect.

Table 19: patient

id sex birthday description first date admission diagnosis

0 ’1’ ’1000-01-01’ ’1000-01-01’ ’1000-01-01’ ’1’ ’1’

Table 20: laboratory (skipped irrelevant columns)

id date got gpt ldh RNP . . .
0 ’1000-01-01’ 0 0 0 ’+-’ . . .

D.2 EXAMPLE 3.2 (EXTENDED)

Tables 21–22 show a counterexample database Dcex (these are two relevant tables).

The generated SQL P counts two records while the gold SQL Q counts only one record, because the
DISTINCT operator is applied before counting.

Table 21: examination (skipped irrelevant columns)

id examination date acl igg acl igm ana ana pattern acl iga diagnosis kct rvvt lac . . .

1 ’1000-01-01’ 11 12 0 ’1’ 0 ’1’ ’1’ ’1’ ’1’ . . .

1 ’1000-01-01’ 14 15 0 ’1’ 0 ’1’ ’1’ ’1’ ’1’ . . .

Table 22: patient

id sex birthday description first date admission diagnosis

0 ’1’ ’1000-01-01’ ’1000-01-01’ ’1000-01-01’ ’1’ ’1’

1 ’1’ ’1000-01-01’ ’1000-01-01’ ’1000-01-01’ ’1’ ’1’
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D.3 ADDITIONAL EXAMPLES

Example D.1. Consider the question N3 and the corresponding SQL queries (Figure 8). The
differentiating database found by SPOTIT is shown in Tables 23,24, 25. Note that there is a typo in
the evidence. According to external medical sources, the normal range of uric acid levels in females
should be defined as less than or equal to 6.50, not greater than. The annotator overlooked this typo,
and as a result, the gold SQL is clearly incorrect.

N3: ”What is the anti Cardiolipin antibody concentration of the female patient
with the highest uric acid level in the normal range?”
Evidence: ”Anti Cardiolipin antibody concentration refers to ‘aCL IgG‘, ‘aCL IgM‘, ‘aCL IgA‘;
female patient refers to Sex = F’; highest uric acid level in the normal range refers to MAX(UA > 6.50);”

/*Gold SQL Q*/:
SELECT T3.acl_igg, T3.acl_igm, T3.acl_iga
FROM patient AS T1
INNER JOIN laboratory AS T2 ON T1.id = T2.id
INNER JOIN examination AS T3 ON T3.id = T2.id

WHERE T1.sex = ’F’ AND T2.ua > 6.5

ORDER BY T2.ua DESC
LIMIT 1

/*Generated SQL P*/:
SELECT examination.acl_igg, examination.acl_igm, examination.acl_iga
FROM patient
INNER JOIN laboratory ON patient.id = laboratory.id
INNER JOIN examination ON patient.id = examination.id

WHERE patient.sex = ’F’ AND laboratory.ua <= 6.5

ORDER BY laboratory.ua DESC
LIMIT 1

Figure 8: An example of a query with an incorrect gold SQL.

Table 23: patient (skipped irrelevant columns)

id sex . . .
0 ’F’ . . .

Table 24: laboratory (skipped irrelevant columns)

id ua . . .
0 6.5 . . .

Table 25: examination (skipped irrelevant columns)

id acl igg acl igm acl iga . . .
0 1 1 1 . . .
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Example D.2. Consider the question N4 and the corresponding SQL queries (Figure 9). The
differentiating database found by SPOTIT is shown in Tables 26,27. The natural langue question
asks for transactions after January 1st, 2012, which requires excluding January 1st, 2012. However,
the gold SQL uses a greater-than-or-equal-to condition, which includes 2012/01/01, thus being
incorrect.

N4: ”Among the transactions made in gas stations in the Czech Republic, how many took place after 2012/1/1?”
Evidence: ”Country code for Czech Republic is ‘CZE’.”

/*Gold SQL Q*/:
SELECT COUNT(T1.transactionid)
FROM transactions_1k AS T1
INNER JOIN gasstations AS T2 ON T1.gasstationid = T2.gasstationid

WHERE T2.country = ’CZE’ AND STRFTIME(’%Y’, T1.date) ≥ ’2012’ ;

/*Generated SQL P*/:
SELECT COUNT(*)
FROM transactions_1k AS T
INNER JOIN gasstations AS G ON T.gasstationid = G.gasstationid

WHERE G.country = ’CZE’ AND T.date > ’2012-01-01’ ;

Figure 9: An example of a query with an incorrect gold SQL.

Table 26: transactions 1k (skipped irrelevant columns)

transaction id gasstation id date . . .
0 0 ’2012-01-01’ . . .

Table 27: gasstations (skipped irrelevant columns)

gasstation id country . . .
0 ’CZE’ . . .
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Example D.3. Consider the question N5 and the corresponding SQL queries (Figure 10). The
differentiating database found by SPOTIT is shown in Tables 28,29. This example demonstrates an
incorrect gold SQL, which orders by the latest time (DESC) rather than the earlier time (ASC). This
directly contradicts the natural language question.

N5: ”Which country’s gas station had the first paid customer in 2012/8/25?”
Evidence: ”2012/8/25’ can be represented by ’2012-08-25’.”

/*Gold SQL Q*/:
SELECT T2.country
FROM transactions_1k AS T1
INNER JOIN gasstations AS T2 ON T1.gasstationid = T2.gasstationid
WHERE T1.date = ’2012-08-25’

ORDER BY T1.time DESC

LIMIT 1;

/*Generated SQL P*/:
SELECT G.country
FROM gasstations AS G
JOIN (
SELECT gasstationid
FROM transactions_1k
WHERE date = ’2012-08-25’

ORDER BY time ASC LIMIT 1

) AS T
ON G.gasstationid = T.gasstationid;

Figure 10: An example of a query with an incorrect gold SQL.

Table 28: transactions 1k (skipped irrelevant columns)

gasstation id date time . . .
0 ’2012-08-25’ 1 . . .
0 ’2012-08-25’ 2 . . .

Table 29: gasstations (skipped irrelevant columns)

gasstation id country . . .
0 ’1’ . . .
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Example D.4. Consider the question N6 and the corresponding SQL queries (Figure 11). The
differentiating database found by SPOTIT is shown in Tables 30, 31. The gold SQL incorrectly
encodes the exclusive inequality specified in the natural langue question by using the BETWEEN
operator, which leads to inclusive bounds. Thus, the gold SQL is incorrect as it includes values
outside of the specified range.

N6: ”Please list a patient’s platelet level if it is within the normal range
and if he or she is daignosed with MCTD”
Evidence: ”PLT > 100 and PLT < 400 means platelet level is within the normal range;
PLT < 100 and PLT > 400 means platelet level is not within the normal range;
diagnosed with MCTD refers to Diagnosis = ’MCTD’”;

/*Gold SQL Q*/:
SELECT T2.plt
FROM patient AS T1
INNER JOIN laboratory AS T2 ON T1.id = T2.id

WHERE T1.diagnosis = ’MCTD’ AND T2.plt BETWEEN 100 AND 400

/*Generated SQL P*/:
SELECT L.plt
FROM LABORATORY L
INNER JOIN PATIENT P ON L.id = P.id

WHERE P.diagnosis = ’MCTD’ AND L.plt > 100 AND L.plt < 400

Figure 11: An example of a query with an incorrect gold SQL.

Table 30: patient (skipped irrelevant columns)

id diagnosis . . .
0 ’MCTD’ . . .

Table 31: laboratory (skipped irrelevant columns)

id plt . . .
0 100 . . .

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Example D.5. Consider the question N7 and the corresponding SQL queries (Figure 12). The
differentiating database found by SPOTIT is shown in Tables 32, 33. In this example, the generated
SQL is incorrect as it is clearly missing the link to major constraint, filtering only by name.

N7: ”Please indicate the college of the person whose first name is Katy
with the link to the major ’rec1N0upiVLy5esTO’ ”

/*Gold SQL Q*/:
SELECT T2.college
FROM member AS T1
INNER JOIN major AS T2 ON T2.major_id = T1.link_to_major

WHERE T1.link to major = ’rec1N0upiVLy5esTO’ AND T1.first name = ’Katy’

/*Generated SQL P*/:
SELECT major.college
FROM member
INNER JOIN MAJOR ON member.link_to_major = major.major_id

WHERE member.first name = ’Katy’

Figure 12: An example of a query with an incorrect generated SQL.

Table 32: member (skipped irrelevant columns)

link to major first name . . .
’1’ ’Katy’ . . .

Table 33: major (skipped irrelevant columns)

major id college . . .
1 ’0’ . . .
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Example D.6. Consider the question N8 and the corresponding SQL queries (Figure 13). The
differentiating database found by SPOTIT is shown in Tables 34, 35. In this example, the generated
SQL only checks whether the patient was diagnosed with SLE on January 1st, 1997. However, the
natural language question also asks for the patient’s original diagnose at their first hospital visit.
Since the generated SQL doesn’t include this condition, it’s incorrect as it could return a diagnoses
from a later visit rather than the patient’s first one.

N8: ”For the patient who was diagnosed SLE on 1997/1/27, what was his/her original diagnose when he/she came to the hospital for the
first time?”
Evidence: ”’SLE’ and original diagnose refers to Diagnosis; 1997/1/27 refers to ‘Examination Date‘ = ’1997-01-27’; first came to the
hospital refers to patient.’First Date’.”

/*Gold SQL Q*/:
SELECT T1.diagnosis
FROM patient AS T1
INNER JOIN examination AS T2 ON T1.id = T2.id
WHERE T1.id = (
SELECT id
FROM examination
WHERE examination_date = ’1997-01-27’ AND diagnosis = ’SLE’

) AND T2.examination date = T1.first date;

/*Generated SQL P*/:
SELECT T2.diagnosis
FROM examination AS T1
INNER JOIN patient AS T2 ON T1.id = T2.id

WHERE T1.diagnosis = ’SLE’ AND T1.examination date = ’1997-01-27’;

Figure 13: An example of a query with an incorrect generated SQL.

Table 34: patient (skipped irrelevant columns)

id diagnosis first date . . .
0 ’1’ ’1997-01-26’ . . .

Table 35: examination (skipped irrelevant columns)

id examination date diagnosis . . .
0 ’1997-01-27’ ’SLE’ . . .
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Example D.7. Consider the question N9 and the corresponding SQL queries (Figure 14). The
differentiating database found by SPOTIT is shown in Tables 36,37. This is an example of an
ambiguous question. The term ’members’ can be interpreted in at least two ways: any student
who is a part of the club, or more specifically, students in the club with the recorded position of

’member’. While the gold SQL takes the second interpretation, filtering on T2.position = ’Member’,
it’s just as reasonable to assume that all students in the club are members, and leave out a secondary
filter. Coupled with the lack of evidence, the resulting difference in queries is most likely due to the
ambiguity of the natural language question. Hence, it’s been marked as an ambiguous question.

N9: ”List the last name of members with a major in environmental engineering
and include its department and college name.
Evidence: ”Environmental Engineering’ is the major name”

/*Gold SQL Q*/:
SELECT T2.last_name, T1.department, T1.college
FROM major AS T1
INNER JOIN member AS T2 ON T1.major_id = T2.link_to_major

WHERE T2.position = ’Member’ AND T1.major name = ’Enviormental Engineering’

/*Generated SQL P*/:
SELECT T1.last_name, T2.department, T2.college
FROM member AS T1
INNER JOIN major AS T2 ON T1.link_to_major = T2.major_id

WHERE T2.major name = ’Enviormental Engineering’

Figure 14: An example of an ambiguous question.

Table 36: major (skipped irrelevant columns)

major id major name department college . . .
0 ’Environmental Engineering’ ’1’ ’1’ . . .

Table 37: member (skipped irrelevant columns)

last name link to major position . . .
’1’ 0 ’1’ . . .
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Example D.8. Consider the question N10 and the corresponding SQL queries (Figure 15). The
differentiating database found by SPOTIT is shown in Tables 38, 39. This example is marked as
ambiguous because the natural language question is underspecified. If the intent is to return the
legal status of every valid artifact card, which is a reasonable interpretation, than the generated
SQL would be correct. However, if the intent is to return the set of unique legal statuses across valid
artifact cards, than the gold SQL is correct.

N10: ”For artifact type of cards that do not have multiple faces on the same card, state its legalities status for vintage play format.”
Evidence: ”Artifact type of cards refers to types = ’Artifact’; card does not have multiple faces on the same card refers to side is NULL’;
vintage play format refers to format = ’vintage’;”

/*Gold SQL Q*/:

SELECT DISTINCT T2.status

FROM cards AS T1
INNER JOIN legalities AS T2 ON T1.uuid = T2.uuid
WHERE T1.type = ’Artifact’ AND T2.format = ’vintage’ AND T1.side IS NULL;

/*Generated SQL P*/:

SELECT T2.status

FROM cards AS T1
JOIN legalities AS T2 ON T1.uuid = T2.uuid
WHERE T1.type = ’Artifact’ AND T1.side IS NULL AND T2.format = ’vintage’;

Figure 15: An example of an ambiguous question.

Table 38: cards (skipped irrelevant columns)

uuid type side . . .
’0’ ’Artifact’ NULL . . .

Table 39: legalities (skipped irrelevant columns)

uuid format status . . .
’0’ ’vintage’ ’1’ . . .
’0’ ’vintage’ ’1’ . . .
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Example D.9. Consider the question N11 and the corresponding SQL queries (Figure 16). The
differentiating database found by SPOTIT is shown in Tables 40, 41. This example is considered
ambiguous because the natural language question and evidence do not specify a tie-breaking rule. In
the case that there are two comments on valid posts with a tied high score, a query with LIMIT 1 may
return either comment. This is why the generated and gold SQL return different results. Since the
difference arises solely from a lack of specificity, this example is marked as ambiguous.

N11: ”Among the posts with views ranging from 100 to 150, what is the comment with the highest score?”
Evidence: ”Views ranging from 100 to 150 refers to ViewCount BETWEEN 100 and 150; comment with the highest score refers to Text
where MAX(Score);”

/*Gold SQL Q*/:
SELECT text
FROM comments
WHERE postId IN (
SELECT id
FROM posts
WHERE viewCount BETWEEN 100 AND 150

) ORDER BY score DESC

LIMIT 1

/*Generated SQL P*/:
SELECT T2.text
FROM posts AS T1
INNER JOIN comments AS T2 ON T1.id = T2.postId
WHERE T1.viewCount BETWEEN 100 AND 150
ORDER BY T2.score DESC

LIMIT 1

Figure 16: An example of an ambiguous question.

Table 40: comments (skipped irrelevant columns)

postId score text . . .
0 1 ’1’ . . .
1 1 ’2’ . . .

Table 41: posts (skipped irrelevant columns)

id viewCount . . .
0 100 . . .
1 100 . . .
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E SEMANTICS

JEK :: Database D → Relation → Value

JToInt(E)KD,xs = let v = JEKD,xs in
ite(v = Null ∨ IsInt(v), v,

ite(IsStr(v), JStrToInt(v)KD,xs, JDateToInt(v)KD,xs))
JToDate(E)KD,xs = let v = JEKD,xs in

ite(v = Null ∨ IsDate(v), v,
ite(IsInt(v), JIntToDate(v)KD,xs, JStrToDate(v)KD,xs))

JToStr(E)KD,xs = let v = JEKD,xs in
ite(v = Null ∨ IsStr(v), v,

ite(IsInt(v), JIntToStr(v)KD,xs, JDateToStr(v)KD,xs))
JDateToInt(vs)KD,xs = ite(vs = Null,Null, vs[0] ∗ 104 + vs[1] ∗ 102 + vs[2])
JStrToInt(s)KD,xs = let

v = ite(IsDigits(s), StrToInt(s),
ite(s[0] = “-” ∧ IsDigits(s[1 :]),−StrToInt(s), 0))

in ite(s = Null,Null, v)
JIntToStr(v)KD,xs = ite(v = Null,Null, IntToStr(v))
JDateToStr(vs)KD,xs = let

y = IntToStr(vs[0]),
m = ite(vs[1] ≤ 9, “0” + IntToStr(vs[1]),

IntToStr(vs[1])),
d = ite(vs[2] ≤ 9, “0” + IntToStr(vs[2]),

IntToStr(vs[2]))
in ite(vs = Null,Null, y + “-” +m+ “-” + d)

JIntToDate(v)KD,xs = let v1 = ⌊v/104⌋, v2 = ⌊(v%104)/102⌋, v3 = v%102 in
ite(v = Null ∨ IsValidDate(v),Null, [v1, v2, v3])

JStrToDate(s)KD,xs = let v = JStrToInt(s)KD,xs in
ite(s = Null,Null, JIntToDate(v)KD,xs)

JE1 ⋄ E2KD,xs = let
v1 = JToInt(E1)KD,xs and v2 = JToInt(E2)KD,xs,

in ite(v1 = Null ∨ v2 = Null,Null, v1 ⋄ v2)
JSubStr(E1, E2, E3)KD,xs = let

ei = JEiKD,xs, e
′
1 = JToStr(e1)KD,xs, l = len(e′1),

e′2 = JToInt(e2)KD,xs, e
′
3 = JToInt(e3)KD,xs,

v = ite(−l ≤ e′2 < 0, e2 + l, ite(0 < e′2 ≤ l, e′2 − 1, l + 1)),
s = ite(v = 0 ∨ v < −l ∨ v > l ∨ e′3 ≤ 0, ε,

ite(e′3 ≥ l − v, e′1[v : l], e
′
1[v :2v + e′3]))

in ite(e1 = Null ∨ IsStr(e2) ∨ IsStr(e3),Null, s)
JConcate(E1, E2)KD,xs = let v1 = JToStr(E1)KD,xs and v2 = JToStr(E2)KD,xs in

ite(v1 = Null ∨ v2 = Null,Null,Concat(v1, v2))
JStrftime(κ,E)KD,xs = let v = JToDate(E)KD,xs in

ite(κ = “%Y”, v[0], ite(κ = “%M”, v[1], v[2]))
JJulianDay(E)KD,xs = let v = JEKD,xs in ToJulianDay(v), if IsDate(v)
JDateShift(E, i, δ)KD,xs = let v = JEKD,xs in DateAdd(v, i, δ), if IsDate(v)

JϕK :: Database D → Relation → Bool ∪ Null

JPrefixOf(s, E)KD,xs = let v = JToStr(E)KD,xs in ite(v = Null,Null, PrefixOf(s, v))
JSuffixOf(s, E)KD,xs = let v = JToStr(E)KD,xs in ite(v = Null,Null, SuffixOf(s, v))
JLike(s, E)KD,xs = let v = JToStr(E)KD,xs in ite(v = Null,Null,RegexMatch(s, v))
JContain(s, E)KD,xs = let s′ = Concat(“%”, s, “%”) in JLike(s′, E)KD,xs

JE1 ⊙ E2KD,xs = let v1 = JE1KD,xs and v2 = JE2KD,xs in
ite(v1 = Null ∨ v2 = Null,⊥, v1 ⊙ v2), if Type(v1) = Type(v2)

Figure 17: Formal semantics for extended expressions and predicates. The IsValidDate function
checks whether a string represent a date within the supported date range of a database engine. The
ToJulianDay function converts a date to a Julian day and the DateAdd function move a date-value by
modifier arguments i and δ. The definition of these two functions are shown in Appendix G.
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F ENCODING

JToInt(E)KS,Γ,T = let v = JEKS,Γ,T in
ite(v = Null ∨ IsInt(v), v,

ite(IsStr(v), JStrToInt(v)KS,Γ,T , JDateToInt(v)KS,Γ,T ))
JToDate(E)KS,Γ,T = let v = JEKS,Γ,T in

ite(v = Null ∨ IsDate(v), v,
ite(IsInt(v), JIntToDate(v)KS,Γ,T , JStrToDate(v)KS,Γ,T ))

JToStr(E)KS,Γ,T = let v = JEKS,Γ,T in
ite(v = Null ∨ IsStr(v), v,

ite(IsInt(v), JIntToStr(v)KS,Γ,T , JDateToStr(v)KS,Γ,T ))
JDateToInt(vs)KS,Γ,T = ite(vs = Null,Null, vs[0] ∗ 104 + vs[1] ∗ 102 + vs[2])
JStrToInt(s)KS,Γ,T = let

s1 = s[1 :z3.Length(s)], v1 = z3.StrToInt(s1),
v = ite(s[0] = “-”,−v1, z3.StrToInt(s)),
Φ = ite(v < 0, z3.IntToStr(−v) = v1, z3.IntToStr(v) = s),

in ite(s = Null,Null, ite(Φ, v, 0))
JIntToStr(v)KS,Γ,T = ite(v = Null,Null, z3.IntToStr(v))
JDateToStr(vs)KS,Γ,T = let y = z3.IntToStr(vs[0]),

m = ite(vs[1] ≤ 9, “0” + z3.IntToStr(vs[1]),
z3.IntToStr(vs[1])),

d = ite(vs[2] ≤ 9, “0” + z3.IntToStr(vs[2]),
z3.IntToStr(vs[2]))

in ite(vs = Null,Null, y + “-” +m+ “-” + d)
JIntToDate(v)KS,Γ,T = let y = fdiv(v, 104),m = fdiv(v%104, 102), d = v%102,

Φ0 = y%4 = 0 ∧ (y%100 ̸= 0 ∨ y%400 = 0)
Φ1 = MIN YEAR ≤ y ≤ MAX YEAR,
Φ2 = 1 ≤ m ≤ 12,
Φ3 = 1 ≤ d ∧ (∨c∈{1,3,5,7,8,10,12}m = c → d ≤ 31)

∧(m = 2 → d ≤ 28 + ite(Φ0, 1, 0))
∧(∨c∈{4,6,9,11}m = c → d ≤ 30)

in ite(v = Null ∨ ¬(Φ1 ∧ Φ2 ∧ Φ3),Null, [y,m, d])
JStrToDate(s)KS,Γ,T = let v = JStrToInt(s)KS,Γ,T in

ite(s = Null,Null, JIntToDate(v)KS,Γ,T )
JE1 ⋄ E2KS,Γ,T = let v1 = JToInt(E1)KS,Γ,T and v2 = JToInt(E2)KS,Γ,T ,

in ite(v1 = Null ∨ v2 = Null,Null, v1 ⋄ v2)
JSubStr(E1, E2, E3)KS,Γ,T = let

ei = JEiKS,Γ,T , e′1 = JToStr(e1)KS,Γ,T , l = z3.Length(e′1),
e′2 = JToInt(e2)KS,Γ,T , e′3 = JToInt(e3)KS,Γ,T ,
v = ite(−l ≤ e′2 < 0, e2 + l, ite(0 < e′2 ≤ l, e′2 − 1, l + 1)),
s = ite(v = 0 ∨ v < −l ∨ v > l ∨ e′3 ≤ 0, ε,

ite(e′3 ≥ l − v, e′1[v : l], e
′
1[v :2v + e′3]))

in ite(e1 = Null ∨ IsStr(e2) ∨ IsStr(e3),Null, s)
JConcate(E1, E2)KS,Γ,T = let v1 = JToStr(E1)KS,Γ,T and v2 = JToStr(E2)KS,Γ,T in

ite(v1 = Null ∨ v2 = Null,Null, z3.Concat(v1, v2))
JStrftime(κ,E)KS,Γ,T = let v = JToDate(E)KS,Γ,T in

ite(v = Null,Null,
ite(κ = “%Y”, v[0], ite(κ = “%M”, v[1], v[2])))

JJulianDay(E)KS,Γ,T = let v = JEKS,Γ,T , y = ite(v[1] ≤ 2, v[0]− 1, v[0]),
m = ite(v[1] ≤ 2, v[1] + 12, v[1]), d = v[2],
c = 2− fdiv(y, 100) + fdiv(y, 400),
a1 = fdiv(36525 ∗ (y + 4716), 102),
a2 = fdiv(306001 ∗ (m+ 1), 104),

in a1 + a2 + d+ c− 1524.5, if IsDate(v)
JDateShift(E, i, δ)KS,Γ,T = let v = JEKS,Γ,T in

ite(δ = “Year”,DateShiftByYears(v, i),
ite(δ = “Month”,DateShiftByMonths(v, i),

DateShiftByDays(v, i)))

Figure 18: Symbolic encoding for extended expressions. The floor division function is defined as
fdiv(x, y) = ite(x%y = 0, x/y, (x − x%y)/y). For clarity, we overload IsInt, IsStr and IsDate to
check whether formulas represent integers, strings and dates, respectively. Type conversions and
string manipulations are handled using the built-in functions of Z3.
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JPrefixOf(s, E)KS,Γ,T = let v = JToStr(E)KS,Γ,T in ite(v = Null,Null, z3.PrefixOf(s, v))
JSuffixOf(s, E)KS,Γ,T = let v = JToStr(E)KS,Γ,T in ite(v = Null,Null, z3.SuffixOf(s, v))
JLike(s, E)KS,Γ,T = let v = JToStr(E)KS,Γ,T in

ite(v = Null,Null, z3.RegexMatch(s, v))
JContain(s, E)KS,Γ,T = let v = JToStr(E)KS,Γ,T and s′ = Concat(“.*”, s, “.*”) in

ite(v = Null,Null, z3.RegexMatch(s′, v))
JE1 ⊙ E2KS,Γ,T = let v1 = JE1KS,Γ,T and v2 = JE2KS,Γ,T in

ite(v1 = Null ∨ v2 = Null,⊥, v1 ⊙ v2), if Type(v1) = Type(v2)

Figure 19: Symbolic encoding for extended predicates.

G PROOF

In this section, we provide the proof of theorems in the main paper.

Theorem 1 (Correctness of expression encoding). Let D be a database over schema S , xs be a tuple
list, and E be an expression. Consider a symbolic database Γ over S , a list of symbolic tuples T , and
E’s symbolic encoding JEKS,Γ,T . For any satisfying interpretation I with I(Γ) = D ∧ I(T ) = xs,
evaluating the expression E over the database D and the tuple list xs yields the interpretation of E’s
symbolic encoding I(JEKS,Γ,T ), i.e., I(Γ) = D ∧ I(T ) = xs ⇒ JEKD,xs = I(JEKS,Γ,T ).

Lemma 1. Suppose JEKD,xs = v, then I(Γ) = D ∧ I(T ) = xs ⇒ JEKI(Γ),I(T ) = I(JEKS,Γ,T )
is true iff JEKI(Γ),I(T ) = v and I(JEKS,Γ,T ) = v.

Proof. Theorem 1 is proved by proving Lemma 1. By structural induction on E.

1. Base cases and some inductive cases are proved in He et al. (2024).

2. Inductive case: E = ToInt(E)

JToInt(E)KS,Γ,T = ite(v = Null ∨ IsInt(v), v, ite(IsStr(v), JStrToInt(v)KS,Γ,T ,
JDateToInt(v)KS,Γ,T )) where v = JEKS,Γ,T by Fig-
ure 18. JToInt(E)KI(Γ),I(T ) = ite(v′ = Null ∨
IsInt(v′), v′, ite(IsStr(v′), JStrToInt(v′)KI(Γ),I(T ), JDateToInt(v′)KI(Γ),I(T )))
where v′ = JEKI(Γ),I(T ) by Figure 17. By inductive hypothesis, we have
I(v) = I(JEKS,Γ,T ) = JEKI(Γ),I(T ) = v′. Therefore,

I(JToInt(E)KS,Γ,T ) = I(ite(v = Null ∨ IsInt(v), v, ite(IsStr(v), JStrToInt(v)KS,Γ,T ,
JDateToInt(v)KS,Γ,T )))

= ite(I(v) = Null ∨ I(IsInt(v)), I(v), ite(I(IsStr(v)),
I(JStrToInt(v)KS,Γ,T ), I(JDateToInt(v)KS,Γ,T )))

= ite(I(v) = Null ∨ IsInt(I(v)), I(v), ite(IsStr(I(v)),
JStrToInt(I(v))KI(Γ),I(T ), JDateToInt(I(v))KI(Γ),I(T )))

= ite(v′ = Null ∨ IsInt(v′), v′, ite(IsStr(v′),
JStrToInt(v′)KI(Γ),I(T ), JDateToInt(v′)KI(Γ),I(T )))

= JToInt(E)KI(Γ),I(T )

3. Inductive case: E = ToDate(E)

JToDate(E)KS,Γ,T = ite(v = Null ∨ IsDate(v), v, ite(IsInt(v), JIntToDate(v)KS,Γ,T ,
JStrToDate(v)KS,Γ,T )) where v = JEKS,Γ,T by Fig-
ure 18. JToDate(E)KI(Γ),I(T ) = ite(v′ = Null ∨
IsDate(v′), v′, ite(IsInt(v′), JIntToDate(v′)KI(Γ),I(T ), JStrToDate(v′)KI(Γ),I(T )))
where v′ = JEKI(Γ),I(T ) by Figure 17. By inductive hypothesis, we have
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I(v) = I(JEKS,Γ,T ) = JEKI(Γ),I(T ) = v′. Therefore,

I(JToDate(E)KS,Γ,T ) = I(ite(v = Null ∨ IsDate(v), v, ite(IsInt(v),
JIntToDate(v)KS,Γ,T , JStrToDate(v)KS,Γ,T )))

= ite(I(v) = Null ∨ I(IsDate(v)), I(v), ite(I(IsInt(v)),
I(JIntToDate(v)KS,Γ,T ), I(JStrToDate(v)KS,Γ,T )))

= ite(I(v) = Null ∨ IsDate(I(v)), I(v), ite(IsInt(I(v)),
I(JIntToDate(v)KS,Γ,T ), I(JStrToDate(v)KS,Γ,T )))

= ite(v′ = Null ∨ IsDate(v′), v′, ite(IsInt(v′),
JIntToDate(v′)KI(Γ),I(T ), JStrToDate(v′)KI(Γ),I(T )))

= JToDate(E)KI(Γ),I(T )

4. Inductive case: E = ToStr(E)

JToStr(E)KS,Γ,T = ite(v = Null ∨ IsStr(v), v, ite(IsInt(v), JIntToStr(v)KS,Γ,T ,
JDateToStr(v)KS,Γ,T )) where v = JEKS,Γ,T by Fig-
ure 18. JToStr(E)KI(Γ),I(T ) = ite(v′ = Null ∨
IsStr(v′), v′, ite(IsInt(v′), JIntToStr(v′)KI(Γ),I(T ), JDateToStr(v′)KI(Γ),I(T )))
where v′ = JEKI(Γ),I(T ) by Figure 17. By inductive hypothesis, we have
I(v) = I(JEKS,Γ,T ) = JEKI(Γ),I(T ) = v′. Therefore,

I(JToStr(E)KS,Γ,T ) = I(ite(v = Null ∨ IsStr(v), v, ite(IsInt(v),
JIntToStr(v)KS,Γ,T , JDateToStr(v)KS,Γ,T )))

= ite(I(v) = Null ∨ I(IsStr(v)), I(v), ite(I(IsInt(v)),
I(JIntToStr(v)KS,Γ,T ), I(JDateToStr(v)KS,Γ,T )))

= ite(I(v) = Null ∨ IsStr(I(v)), I(v), ite(IsInt(I(v)),
I(JIntToStr(v)KS,Γ,T ), I(JDateToStr(v)KS,Γ,T )))

= ite(v′ = Null ∨ IsStr(v′), v′, ite(IsInt(v′),
JIntToStr(v′)KI(Γ),I(T ), JDateToStr(v′)KI(Γ),I(T )))

= JToStr(E)KI(Γ),I(T )

5. Inductive case: E = DateToInt(vs)

JDateToInt(vs)KS,Γ,T = ite(vs = Null,Null, vs[0]∗104+vs[1]∗102+vs[2]) by Figure 18.
JDateToInt(vs)KI(Γ),I(T ) = ite(vs = Null,Null, vs[0] ∗ 104 + vs[1] ∗ 102 + vs[2]) by
Figure 17. Therefore, I(JDateToInt(vs)KS,Γ,T ) = ite(vs = Null,Null, vs[0] ∗ 104 +
vs[1] ∗ 102 + vs[2]) = JDateToInt(vs)KI(Γ),I(T ).

6. Inductive case: E = StrToInt(s)

JStrToInt(s)KS,Γ,T = ite(s = Null,Null, ite(Φ, v, 0)) where s1 = s[1 : z3.Length(s)],
v1 = z3.StrToInt(s1), v = ite(s[0] = “-”,−v1, z3.StrToInt(s)), and Φ = ite(v <
0, z3.IntToStr(−v) = v1, z3.IntToStr(v) = s) by Figure 18. JStrToInt(s)KI(Γ),I(T ) =
ite(v′ = Null,Null, v′) where v′ = ite(IsDigits(s),StrToInt(s), ite(s[0] = “-” ∧
IsDigits(s[1 :]),−StrToInt(s), 0)) by Figure 17.

On the one hand, the Z3 builtin function z3.StrToInt(s) = StrToInt(s) if StrToInt(s) ≥ 0;
otherwise, z3.StrToInt(s) = −1. To show our encoding precisely capture semantics of
SQL’s type conversion from strings to integers, let us discuss it in three cases:

(a) If StrToInt(s) ≥ 0, then v = z3.StrToInt(s) = StrToInt(s) and Φ holds. Thus,
ite(Φ, v, 0) = v.

(b) If StrToInt(s) < 0, then v = −v1 and Φ = ⊤ where v1 = StrToInt(s[1 :]).
ite(Φ, v, 0) = v = −v1.

(c) If s contains more than digits (e.g., “abc” and “-abc”), MYSQL evaluates non-
numerical strings to 0 by default. By the semantics of z3.StrToInt, Φ never holds
which leads ite(Φ, v, 0) = 0.

By 6a, 6c and 6c, we known ite(Φ, s, 0) precisely captures the semantics of SQL’s type
conversion from strings to integers.

On the other hand, let us discuss the rule in three cases:
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(a) If StrToInt(s) ≥ 0, then v′ = StrToInt(s).
(b) If StrToInt(s) < 0, then v′ = −StrToInt(s[1 :]).
(c) If s contains more than digits (e.g., “abc” and “-abc”), MYSQL evaluates non-

numerical strings to 0 by default. By the semantics of this rule, v′ = 0.

By 6a, 6c and 6c, we known v′ precisely captures the semantics of SQL’s type conversion
from strings to integers.

Therefore, I(ite(Φ, s, 0)) = v′ and

I(JStrToInt(s)KS,Γ,T ) = I(ite(s = Null,Null, ite(Φ, v, 0)))
= ite(s = Null,Null, I(ite(Φ, v, 0)))
= ite(s = Null,Null, v′)
= JStrToInt(s)KI(Γ),I(T )

7. Inductive case: E = IntToStr(v)

JIntToStr(v)KS,Γ,T = ite(v = Null,Null, z3.IntToStr(v)) by Figure 18.
JIntToStr(v)KI(Γ),I(T ) = ite(v = Null,Null, IntToStr(v)) by Figure 17. Note that
since the Z3 builtin function z3.IntToStr precisely capture the semantics of IntToStr,
I(z3.IntToStr(v)) = IntToStr(v). Therefore,

I(JIntToStr(v)KS,Γ,T ) = I(ite(v = Null,Null, z3.IntToStr(v)))
= ite(v = Null,Null, I(z3.IntToStr(v)))
= ite(v = Null,Null, IntToStr(v))
= JIntToStr(v)KI(Γ),I(T )

8. Inductive case: E = DateToStr(vs)

JDateToStr(vs)KS,Γ,T = ite(vs = Null,Null, y + “-” + m + “-” + d) where y =
z3.IntToStr(vs[0]), m = ite(vs[1] ≤ 9, “0” + z3.IntToStr(vs[1]), z3.IntToStr(vs[1])),
and d = ite(vs[2] ≤ 9, “0” + z3.IntToStr(vs[2]), z3.IntToStr(vs[2])) by Figure 18.
JDateToStr(vs)KI(Γ),I(T ) = ite(vs = Null,Null, y′ + “-” + m′ + “-” + d′) where
y′ = IntToStr(vs[0]), m′ = ite(vs[1] ≤ 9, “0” + IntToStr(vs[1]), IntToStr(vs[1])), and
d′ = ite(vs[2] ≤ 9, “0” + IntToStr(vs[2]), IntToStr(vs[2])) by Figure 17. Note that since
the Z3 builtin function z3.IntToStr precisely capture the semantics of IntToStr, I(y) = y′,
I(m) = m′, and I(d) = d′. Therefore,

I(JDateToStr(vs)KS,Γ,T ) = I(ite(vs = Null,Null, y + “-” +m+ “-” + d))
= ite(vs = Null,Null, I(y) + “-” + I(m) + “-” + I(d))
= ite(vs = Null,Null, y′ + “-” +m′ + “-” + d′)
= JDateToStr(v)KI(Γ),I(T )

9. Inductive case: E = IntToDate(v)

JIntToDate(v)KS,Γ,T = ite(v = Null∨¬(Φ1∧Φ2∧Φ3),Null, [y,m, d]) where fdiv(x, y) =
ite(x%y = 0, x/y, (x − x%y)/y), y = fdiv(v, 104), m = fdiv(v%104, 102), d = v%102,
Φ0 = y%4 = 0 ∧ (y%100 ̸= 0 ∨ y%400 = 0), Φ1 = MIN YEAR ≤ y ≤ MAX YEAR,
Φ2 = 1 ≤ m ≤ 12, Φ3 = 1 ≤ d ∧ (∨c∈{1,3,5,7,8,10,12}m = c → d ≤ 31) ∧ (m =
2 → d ≤ 28 + ite(Φ0, 1, 0)) ∧ (∨c∈{4,6,9,11}m = c → d ≤ 30) by Figure 18.
JIntToDate(v)KI(Γ),I(T ) = ite(v′ = Null ∨ IsValidDate(v),Null, [v′1, v

′
2, v
′
3]) where

v′1 = ⌊v/104⌋, v′2 = ⌊(v%104)/102⌋, v′3 = v%102 by Figure 17. By semantics of fdiv, we
know y = v′1, m = v′2 and d = v′3. Note that the function IsValidDate precisely capture the
semantics of ¬(Φ1 ∧ Φ2 ∧ Φ3), checking whether a date is valid in MYSQL. Therefore,
I(¬(Φ1 ∧ Φ2 ∧ Φ3)) = IsValidDate(v′) and

I(JIntToDate(v)KS,Γ,T ) = I(ite(v = Null ∨ ¬(Φ1 ∧ Φ2 ∧ Φ3),Null, [y,m, d]))
= ite(v = Null ∨ I(¬(Φ1 ∧ Φ2 ∧ Φ3)),Null, I([y,m, d]))
= ite(v = Null ∨ IsValidDate(v′),Null, [v′1, v

′
2, v
′
3])

= JIntToDate(v)KI(Γ),I(T )

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

10. Inductive case: E = StrToDate(s)

JStrToDate(s)KS,Γ,T = ite(s = Null,Null, JIntToDate(v)KS,Γ,T ) where
v = JStrToInt(s)KS,Γ,T by Figure 18. JStrToDate(s)KI(Γ),I(T ) = ite(s =
Null,Null, JIntToDate(v′)KI(Γ),I(T )) where v′ = JStrToInt(s)KS,Γ,T by Figure 17. By
inductive hypothesis, we have I(JIntToDate(v)KS,Γ,T ) = JI(IntToDate(v))KI(Γ),I(T ) =
JIntToDate(I(v))KI(Γ),I(T ) = JIntToDate(v′)KI(Γ),I(T ). Therefore,

I(JStrToDate(s)KS,Γ,T ) = I(ite(s = Null,Null, JIntToDate(v)KS,Γ,T ))
= ite(s = Null,Null, I(JIntToDate(v)KS,Γ,T ))
= ite(s = Null,Null, JIntToDate(v′)KI(Γ),I(T ))
= JStrToDate(s)KI(Γ),I(T )

11. Inductive case: E = E1 ⋄ E2.

Since our extended grammar considers Null, integers, dates and strings, as shown in
Figure 2, the proof for this inductive case is overloaded.

JE1 ⋄E2KS,Γ,T = ite(v1 = Null∨ v2 = Null,Null, v1 ⋄ v2) where v1 = JToInt(E1)KS,Γ,T
and v2 = JToInt(E2)KS,Γ,T by Figure 18. JE1 ⋄ E2KI(Γ),I(T ) = ite(v′1 = Null ∨ v′2 =
Null,Null, v′1 ⋄ v′2) where v′1 = JToInt(E1)KI(Γ),I(T ) and v′2 = JToInt(E2)KI(Γ),I(T )

by Figure 17. By inductive hypothesis, we have I(v1) = I(JToInt(E1)KS,Γ,T ) =
JToInt(E1)KI(Γ),I(T ) = v′1 and I(v2) = I(JToInt(E2)KS,Γ,T ) = JToInt(E2)KI(Γ),I(T ) =
v′2. Therefore,

I(JE1 ⋄ E2KS,Γ,T ) = I(ite(v1 = Null ∨ v2 = Null,Null, v1 ⋄ v2))
= ite(I((v1) = Null ∨ I((v2) = Null,Null, I((v1) ⋄ I((v2))
= ite(v′1 = Null ∨ v′2 = Null,Null, v′1 ⋄ v′2)
= JE1 ⋄ E2KI(Γ),I(T )

12. Inductive case: E = SubStr(E1, E2, E3).

JSubStr(E1, E2, E3)KS,Γ,T = ite(e1 = Null ∨ IsStr(e2) ∨ IsStr(e3),Null, s) where
ei = JEiKS,Γ,T for 1 ≤ i ≤ 3, e′1 = JToStr(e1)KS,Γ,T , l = z3.Length(e′1), e′2 =
JToInt(e2)KS,Γ,T , e′3 = JToInt(e3)KS,Γ,T , v = ite(−l ≤ e2 < 0, ite(0 < e′2 ≤ l, e′2 − 1, l+
1)), s = ite(v = 0 ∨ v < −l ∨ v > l ∨ e′3 ≤ 0, ε, ite(e′3 ≥ l− v, e′1[v : l], e′1[v : 2v + e′3]))
by Figure 18.
JSubStr(E1, E2, E3)KI(Γ),I(T ) = ite(e4 = Null ∨ IsStr(e5) ∨ IsStr(e6),Null, s) where
ei+3 = JEiKI(Γ),I(T ) for 1 ≤ i ≤ 3, e′4 = JToStr(e4)KI(Γ),I(T ), l′ = z3.Length(e′4),
e′5 = JToInt(e5)KI(Γ),I(T ), e′6 = JToInt(e6)KI(Γ),I(T ), v′ = ite(−l ≤ e5 < 0, ite(0 <
e′5 ≤ l, e′5 − 1, l + 1)), s′ = ite(v = 0 ∨ v < −l ∨ v > l ∨ e′6 ≤ 0, ε, ite(e′6 ≥ l − v, e′4[v :
l], e′1[v : 2v + e′6])) by Figure 17.
By inductive hypothesis, we have I(ei) = I(JEiKI(Γ),I(T )) = JEiKS,Γ,T = ei+3 for
1 ≤ i ≤ 3. Then, I(e′1) = I(JToStr(e1)KS,Γ,T ) = JToStr(e4)KI(Γ),I(T ) = e′4, I(e′2) =
I(JToInt(e2)KS,Γ,T ) = JToInt(e5)KI(Γ),I(T ) = e′5, and I(e′3) = I(JToInt(e3)KS,Γ,T ) =
JToInt(e6)KI(Γ),I(T ) = e′6, I(v) = v′, and I(s) = s′. Furthermore, since the Z3
builtin function z3.Length precisely captures the semantics of len, we have I(l) =
I(z3.Length(e′1)) = len(e′4) = l′. Therefore,

I(JSubStr(E1, E2, E3)KS,Γ,T ) = I(ite(e1 = Null ∨ IsStr(e2) ∨ IsStr(e3),Null, s))
= ite(I(e1) = Null ∨ I(IsStr(e2)) ∨ I(IsStr(e3)),

Null, I(s))
= ite(e4 = Null ∨ IsStr(e5) ∨ IsStr(e6)), s′)
= JSubStr(E1, E2, E3)KI(Γ),I(T )

13. Inductive case: ϕ = Concate(E1, E2).

JConcate(E1, E2)KS,Γ,T = ite(v1 = Null ∨ v2 = Null,⊥, z3.Concat(v1, v2))
where v1 = JToStr(E1)KS,Γ,T and v2 = JToStr(E2)KS,Γ,T by Figure 18.
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JConcate(E1, E2)KI(Γ),I(T ) = ite(v′1 = Null ∨ v′2 = Null,⊥, z3.Concat(v′1, v
′
2)) where

v′1 = JToStr(E1)KI(Γ),I(T ) and v′2 = JToStr(E2)KI(Γ),I(T ) by Figure 17. By induc-
tive hypothesis, we have I(v1) = I(JE1KS,Γ,T ) = JE1KI(Γ),I(T ) = v′1 and I(v2) =
I(JE2KS,Γ,T ) = JE2KI(Γ),I(T ) = v′2. Furthermore, by the semantics of z3.Concat,
I(z3.Concat) = Concate. Therefore,

I(JConcate(E1, E2)KS,Γ,T ) = I(ite(v1 = Null ∨ v2 = Null,⊥, z3.Concat(v1, v2)))
= ite(I(v1) = Null ∨ I(v2) = Null,⊥,

I(z3.Concat)(I(v1), I(v2)))
= ite(v′1 = Null ∨ v′2 = Null,⊥,Concat(v′1, v

′
2))

= JConcate(E1, E2)KI(Γ),I(T )

14. Inductive case: E = Strftime(κ,E).

JStrftime(κ,E)KS,Γ,T = ite(v = Null,Null, ite(κ = “%Y”, v[0], ite(κ =
“%M”, v[1], v[2]))) where v = JEKS,Γ,T by Figure 18. JStrftime(κ,E)KI(Γ),I(T ) =
ite(v = Null,Null, ite(κ = “%Y”, v[0], ite(κ = “%M”, v[1], v[2]))) where v =
JEKI(Γ),I(T ) by Figure 17. By inductive hypothesis, we have I(v) = I(JEKS,Γ,T ) =
JEKI(Γ),I(T ) = v′. Therefore,

I(JStrftime(κ,E)KS,Γ,T ) = I(ite(v = Null,Null, ite(κ = “%Y”, v[0],
ite(κ = “%M”, v[1], v[2]))))

= ite(I(v) = Null,Null, ite(κ = “%Y”, I(v)[0],
ite(κ = “%M”, I(v)[1], I(v)[2])))

= ite(v′ = Null,Null, ite(κ = “%Y”, v′[0],
ite(κ = “%M”, v′[1], v′[2])))

= JStrftime(κ,E)KI(Γ),I(T )

15. Inductive case: E = JulianDay(E).

JJulianDay(E)KS,Γ,T = ToJulianDay(v) where v = JEKS,Γ,T if v is evaluated to be a
date by Figure 18. Also, ToJulianDay(v) = ⌊365.25 ∗ (y + 4716)⌋ + ⌊30.6001 ∗ (m +
4716)⌋ + d + c − 1524.5 where y = v[1] ≤ 2?v[0] − 1 : v[0], m = v[1] ≤ 2?v[1] + 12 :
v[1], d = v[2], and c = 2 − ⌊y/100⌋ + ⌊y/400⌋. JJulianDay(E)KI(Γ),I(T ) = a1 +
a2 + d′ + c′ − 1524.5 where v′ = JEKI(Γ),I(T ), y′ = ite(v′[1] ≤ 2, v′[0] − 1, v′[0]),
m′ = ite(v′[1] ≤ 2, v′[1] + 12, v′[1]), d′ = v′[2], c′ = 2 − fdiv(y′, 100) + fdiv(y′, 400),
a1 = fdiv(36525∗(y′+4716), 102), and a2 = fdiv(306001∗(m′+1), 104) if v1 is evaluated
to be a date by Figure 17. By inductive hypothesis, we have I(v) = I(JEKS,Γ,T ) =
JEKI(Γ),I(T ) = v′. Furthermore, by the semantics of fdiv, I(⌊365.25 ∗ (y + 4716)⌋) = a1
and I(⌊30.6001 ∗ (m+ 4716)⌋) = a2. Therefore,

I(JJulianDay(E)KS,Γ,T ) = I(ToJulianDay(v))
= I(⌊365.25 ∗ (y + 4716)⌋+ ⌊30.6001 ∗ (m+ 4716)⌋

+d+ c− 1524.5)
= a1 + a2 + d′ + c′ − 1524.5
= JJulianDay(E)KI(Γ),I(T )

16. Inductive case: E = DateShift(E, i, δ).

JDateShift(E, i, δ)KS,Γ,T = DateAdd(v, i, δ) where v = JToDate(E)KS,Γ,T if v is evalu-
ated to be a date by Figure 18. Also, DateAdd(v, i, δ) is defined as follows:

(a) If δ = “Year”, then DateAdd(v, i, δ) = ite(v′[0] < MIN YEAR ∨ MAX YEAR <
v′[0],Null,Null, v′) where v′ = [v[0] + i, v[1], v[2]] as i can be negative and dates
falling outside the valid date range are regarded as Null.

(b) If δ = “Month”, then DateAdd(v, i, δ) = ite(v′[0] < MIN YEAR ∨ MAX YEAR <
v′[0],Null,Null, v′) where v′ = [v[0] + fdiv(v[1] + i, 12), (v[1] + i)%12, v[2]].

(c) If δ = “Day”, then DateAdd(v, i, δ) = ite(v′ < MIN DATE ∧ v′ >
MAX DATE,Null, v′) where v′ is a new data variable s.t. SinceBegin(v′) −
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SinceBegin(v) = i. In addition, the SinceBegin function counts the ordinal num-
ber of a date from a certain day, e.g., “0000-01-01”, which can be defined as
SinceBegin(y,m, d) = year2day(y) + month2day(m) + d where

year2day(y) = 365× y − 1 + fdiv(y − 1, 4)− fdiv(y − 1, 100) + fdiv(y − 1, 400)
month2day(m) =

∑m−1
i=1 ite(i ∈ {1, 3, 5, 7, 8, 10, 12}, 31,

ite(i = 2, 28 + ite(leap(y), 1, 0), 30))

. Thus, SinceBegin(v′) − SinceBegin(v) = i ensure the date v′ is i days away from
the date v.

JDateShift(E)KI(Γ),I(T ) = ite(δ = “Year”,DateShiftByYears(v, i), ite(δ =
“Month”,DateShiftByMonths(v, i),DateShiftByDays(v, i))) where v1 = JEKI(Γ),I(T ) if
v1 is evaluated to be a date by Figure 17. By the semantics of the DateShiftByYears,
DateShiftByMonths and DateShiftByDays functions, they corresponding to the case 16a,
16b and 16c. Therefore,

I(JDateShift(E, i, δ)KS,Γ,T ) = I(ite(δ = “Year”,DateShiftByYears(v, i),
ite(δ = “Month”,DateShiftByMonths(v, i),

DateShiftByDays(v, i))))
= JDateShift(E, i, δ)KI(Γ),I(T )

Theorem 3 (Correctness of predicate encoding). Let D be a database over schema S , xs be a tuple
list, and ϕ be a predicate. Consider a symbolic database Γ over S, a list of symbolic tuples T , and
ϕ’s symbolic encoding JϕKS,Γ,T . For any satisfying interpretation I with I(Γ) = D ∧ I(T ) = xs,
evaluating ϕ over the database D and the tuple list xs yields the interpretation of ϕ’s symbolic
encoding I(JϕKS,Γ,T ), i.e.,

I(Γ) = D ∧ I(T ) = xs ⇒ JϕKD,xs = I(JϕKS,Γ,T )

Lemma 2. Suppose JϕKD,xs is valid, then I(Γ) = D ∧ I(T ) = xs ⇒ JϕKI(Γ),I(T ) = I(JϕKS,Γ,T )
holds.

Proof. Theorem 3 is proved by proving Lemma 2. By structural induction on ϕ.

1. Base cases and some inductive cases are proved in He et al. (2024).

2. Inductive case: ϕ = PrefixOf(s, E).

JPrefixOf(s, E)KS,Γ,T = ite(v = Null,Null, z3.PrefixOf(s, v)) where
v = JToStr(E)KS,Γ,T by Figure 19. JPrefixOf(s, E)KI(Γ),I(T ) = ite(v′ =
Null,Null,PrefixOf(s, v′)) where v′ = JToStr(E)KI(Γ),I(T ) by Figure 17. By in-
ductive hypothesis, we have I(v) = I(JToStr(E)KI(Γ),I(T )) = JToStr(E)KS,Γ,T = v′.
Furthermore, since the Z3 builtin function z3.PrefixOf precisely captures the semantics
of PrefixOf, we have I(z3.PrefixOf(s, v)) = I(z3.PrefixOf(s, JToStr(E)KS,Γ,T )) =
PrefixOf(s, I(JToStr(E)KS,Γ,T )) = PrefixOf(s, JToStr(E)KI(Γ),I(T )) = PrefixOf(s, v′) .
Therefore,

I(JPrefixOf(s, E)KS,Γ,T ) = I(ite(v = Null,Null, z3.PrefixOf(s, v)))
= ite(I(v) = Null,Null, I(z3.PrefixOf(s, v)))
= ite(v′ = Null,Null,PrefixOf(s, v′))
= JPrefixOf(s, E)KI(Γ),I(T )

3. Inductive case: ϕ = SuffixOf(s, E).

JSuffixOf(s, E)KS,Γ,T = ite(v = Null,Null, z3.SuffixOf(s, v)) where
v = JToStr(E)KS,Γ,T by Figure 19. JSuffixOf(s, E)KI(Γ),I(T ) = ite(v′ =
Null,Null,SuffixOf(s, v′)) where v′ = JToStr(E)KI(Γ),I(T ) by Figure 17. By in-
ductive hypothesis, we have I(v) = I(JToStr(E)KI(Γ),I(T )) = JToStr(E)KS,Γ,T = v′.
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Furthermore, since the Z3 builtin function z3.SuffixOf precisely captures the semantics
of SuffixOf, we have I(z3.SuffixOf(s, v)) = I(z3.SuffixOf(s, JToStr(E)KS,Γ,T )) =
SuffixOf(s, I(JToStr(E)KS,Γ,T )) = SuffixOf(s, JToStr(E)KI(Γ),I(T )) = SuffixOf(s, v′) .
Therefore,

I(JSuffixOf(s, E)KS,Γ,T ) = I(ite(v = Null,Null, z3.SuffixOf(s, v)))
= ite(I(v) = Null,Null, I(z3.SuffixOf(s, v)))
= ite(v′ = Null,Null,SuffixOf(s, v′))
= JSuffixOf(s, E)KI(Γ),I(T )

4. Inductive case: ϕ = Like(s, E).

JLike(s, E)KS,Γ,T = ite(v = Null,⊥, z3.RegexMatch(s)) where v = JToStr(E)KS,Γ,T
by Figure 19. JLike(s, E)KI(Γ),I(T ) = ite(v′ = Null,Null,RegexMatch(s, v′))
where v′ = JToStr(E)KI(Γ),I(T ) by Figure 17. By inductive hypothesis, we
have I(v) = I(JToStr(E)KS,Γ,T ) = JToStr(E)KI(Γ),I(T ) = v′. Furthermore,
since Z3 precisely support regular expressions, we have I(z3.RegexMatch(s, v)) =
I(z3.RegexMatch(s, JToStr(E)KS,Γ,T )) = RegexMatch(s, I(JToStr(E)KS,Γ,T )) =
RegexMatch(s, JToStr(E)KI(Γ),I(T )) = RegexMatch(s, v′). Therefore,

I(JLike(s, E)KS,Γ,T ) = I(ite(v = Null,⊥, z3.RegexMatch(s, v)))
= ite(I(v) = Null,⊥, I(z3.RegexMatch(s, v)))
= ite(v′ = Null,⊥,RegexMatch(s, v′))
= JLike(s, E)KI(Γ),I(T )

5. Inductive case: ϕ = Contain(s, E).

JContain(s, E)KS,Γ,T = ite(v = Null,⊥, z3.RegexMatch(s′, v)) where
s′ = Concate(“.*”, s, “.*”) and v = JToStr(E)KS,Γ,T by Figure 19.
JContain(s, E)KI(Γ),I(T ) = JLike(s′′, E)KI(Γ),I(T ) = ite(v′ =
Null,Null,RegexMatch(s′′, v′)) where s′′ = Concate(“%”, s, “%”) and v′ =
JToStr(E)KI(Γ),I(T ) by Figure 17. Futhermore, by the semantics of z3.RegexMatch
and RegexMatch, we know s′ and s′′ represent the same regular expression, and
I(z3.RegexMatch(s′, x′)) = RegexMatch(s′′, x′′) iff I(x′) = x′′. Therefore,

I(JContain(s, E)KS,Γ,T ) = I(ite(v = Null,⊥, z3.RegexMatch(s′, v)))
= ite(I(v) = Null,⊥, I(z3.RegexMatch(s′, v)))
= ite(v′ = Null,⊥,RegexMatch(s′′, v′))
= JLike(s′′, E)KI(Γ),I(T )

= JContain(s, E)KI(Γ),I(T )

6. Inductive case: ϕ = E1 ⊙ E2.

JE1 ⊙ E2KS,Γ,T = ite(v1 = Null ∨ v2 = Null,⊥, v1 ⊙ v2) where v1 = JE1KS,Γ,T and
v2 = JE2KS,Γ,T if v1 and v2 share the same type, i.e., Type(v1) = Type(v2) by Figure 19.
JE1 ⊙ E2KI(Γ),I(T ) = ite(v′1 = Null ∨ v′2 = Null,⊥, v′1 ⊙ v′2) where v1 = JE1KI(Γ),I(T )

and v′2 = JE2KI(Γ),I(T ) if v′1 and v′2 share the same type, i.e., Type(v′1) = Type(v′2) by
Figure 17. Note that this operation only works for E1 and E2 sharing the same type which
is consistent with MYSQL. By inductive hypothesis, we have I(v1) = I(JE1KI(Γ),I(T )) =
JE1KS,Γ,T = v′1 and I(v2) = I(JE2KI(Γ),I(T )) = JE2KS,Γ,T = v′2. Therefore, when E1

and E2 have the same type, we have

I(JE1 ⊙ E2KS,Γ,T ) = I(ite(v1 = Null ∨ v2 = Null,⊥, v1 ⊙ v2))
= ite(I(v1) = Null ∨ I(v2) = Null,⊥, I(v1)⊙ I(v2))
= ite(v′1 = Null ∨ v′2 = Null,⊥, v′1 ⊙ v′2)
= JE1 ⊙ E2KI(Γ),I(T )

Theorem 2 (Equivalence under set semantics). Given two relations R1 = [t1, . . . , tn] and R2 =
[r1, . . . , rm], if formula (2) is valid, then R1 and R2 are equivalent under set semantics.
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Proof. Let F1 be the first conjunct of formula (2), i.e.,
∧n

i=1(¬Del(ti) → ∨m
j=1(¬Del(rj)∧ ti = rj),

and let F2 be the second conjunct of formula (2), i.e.,
∧m

j=1(¬Del(rj) → ∨n
i=1(¬Del(ti) ∧ rj = ti).

Since formula (2) is valid, both F1 and F2 are valid. Now consider F1. It specifies for any tuple
ti ∈ R1, if ti is not deleted, then there exists a tuple rj that is not deleted and ti = rj . By the
definition of ⊆, R1 ⊆ R2. Similarly, F2 specifies R2 ⊆ R1. Therefore, R1 = R2.
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