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Abstract

High Dynamic Range Novel View Synthesis
(HDR-NVS) aims to establish a 3D scene HDR
model from Low Dynamic Range (LDR) im-
agery. Typically, multiple-exposure LDR im-
ages are employed to capture a wider range of
brightness levels in a scene, as a single LDR im-
age cannot represent both the brightest and dark-
est regions simultaneously. While effective, this
multiple-exposure HDR-NVS approach has sig-
nificant limitations, including susceptibility to mo-
tion artifacts (e.g., ghosting and blurring), high
capture and storage costs. To overcome these
challenges, we introduce, for the first time, the
single-exposure HDR-NVS problem, where only
single exposure LDR images are available during
training. We further introduce a novel approach,
Mono-HDR-3D, featuring two dedicated modules
formulated by the LDR image formation prin-
ciples, one for converting LDR colors to HDR
counterparts and the other for transforming HDR
images to LDR format so that unsupervised learn-
ing is enabled in a closed loop. Designed as a
meta-algorithm, our approach can be seamlessly
integrated with existing NVS models. Extensive
experiments show that Mono-HDR-3D signifi-
cantly outperforms previous methods. Source
code is released at https://github.com/
prinasi/Mono-HDR-3D.

1. Introduction

Compared to common Low Dynamic Range (LDR) imaging,
High Dynamic Range (HDR) imaging enables the capture
and representation of a broader range of luminance / bright-
ness levels, thereby providing more realistic and visually
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Figure 1. Examples of (a, b) underexposure and (c, d) overexpo-
sure. At: Exposure time.

appealing representations of real-world scenes (Cai et al.,
2024). It can encompass both the darkest shadows and the
brightest highlights within a single frame. This capability
is crucial in a number of fields such as creative media pro-
duction, photography, virtual reality, and augmented reality
that require precise color reproduction, detailed shadow and
highlight information, and enhanced visual realism (Wang
& Yoon, 2021). This enhanced dynamic range not only facil-
itates more realistic and visually appealing representations
of complex scenes (Liu et al., 2023), but also improves the
performance of various computer vision tasks, such as ob-
ject recognition, scene segmentation, and depth estimation,
by providing richer and more detailed visual information
(Yan et al., 2023).

Novel View Synthesis (NVS) refers to the process of gener-
ating new views of a scene from arbitrary viewpoints, given
a set of input images captured from different perspectives
(Duan et al., 2024). This involves understanding and mod-
eling the underlying 3D structure of a scene, as well as
accurately rendering the appearance of the scene and ob-
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jects. Most NVS works focus on LDR image models which
fall short in those domains requiring HDR rendering.

Indeed, a couple of recent works (Cai et al., 2024; Huang
et al., 2022) have studied the HDR-NVS problem by captur-
ing multiple exposures of LDR images per view about the
same scene. However, multiple exposure-based approaches
remain vulnerable to motion artifacts, ghosting effects, and
demand precise alignment of images captured under vary-
ing exposure settings (Eilertsen et al., 2017b). Specifically,
longer exposure frames tend to accumulate object or cam-
era movement, leading to blurred details—an issue that
becomes more pronounced when exposure durations differ
significantly (Kalantari et al., 2017). During HDR synthe-
sis, pixel-wise fusion (e.g., weighted averaging) can su-
perimpose differing object positions onto the same region,
producing semi-transparent or duplicated contours that are
especially evident in dynamic scenes with significant object
displacement (Reinhard, 2020). Furthermore, variations in
exposure times often yield discrepancies in brightness distri-
bution, local contrast, and overall appearance, complicating
conventional registration algorithms. Finally, in rapidly
changing environments or when using mobile devices, cap-
turing multiple exposures in quick succession may prove
impractical, limiting the applicability of these methods.

To address these issues, we propose a more deployable
yet more challenging task, namely HDR-NVS with single-
exposure LDR images, which eliminates the reliance on mul-
tiple exposures and thus avoids the aforementioned limita-
tions. However, as illustrated in Fig. 1, single-exposure im-
ages frequently suffer from overexposure or underexposure,
posing significant challenges for HDR-NVS. Furthermore,
we present a novel HDR 3D scene modeling framework,
Mono-HDR-3D, characterized by learning to approximate
the underlying LDR image formation process of camera
imaging. Specifically, we start with learning an LDR 3D
scene model from single-exposure LDR training images,
followed by lifting the color space to HDR with a dedicated
color transformation module in a per-channel manner. This
from-LDR-to-HDR design is opposite to previous models
since single-exposure LDR images are insufficient for de-
riving an HDR model. We further introduce a closed-loop
design by augmenting a process of converting HDR images
to LDR images, allowing additional supervision even in the
case of no access to HDR ground-truth training data.

Our contributions can be summarized as follows. (I) We
introduce a new HDR-NVS problem where only single-
exposure LDR images are needed so that the data acquisi-
tion process is made significantly easier and generic, as well
as eliminating those intrinsic limitations with multiple expo-
sures. (II) We propose a generic framework, Mono-HDR-
3D, that learns to capture the underlying camera imaging
process for bridging LDR and HDR space effectively under

the challenging single exposure scenario. Designed as a
generic approach, our method can be integrated with differ-
ent 3D scene models such as NeRF (Mildenhall et al., 2021)
or 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023). (IIT)
Extensive experiments validate that our method significantly
outperforms previous alternatives.

2. Related Work

High Dynamic Range Imaging Conventional HDR imag-
ing primarily relies on specialized high-end cameras to cap-
ture HDR images (Tiwari & Rani, 2015). However, the high
cost of these cameras renders them inaccessible to general
consumers. An alternative approach involves reconstructing
HDR images from imagery captured by LDR cameras using
algorithms (Wang & Yoon, 2021). Before NeRF (Milden-
hall et al., 2021) was proposed, two primary approaches
have been extensively explored. The first generates HDR
content by merging multiple LDR images of the same scene
taken at varying exposure levels (Kalantari et al., 2017; Yan
et al., 2020). However, the necessity of capturing LDR
images with different exposures demands specific software
and hardware capabilities, which is not only costly but also
brings in various issues, as discussed earlier. Thus, the
second focuses on synthesizing HDR imagery from single-
exposure LDR images (Eilertsen et al., 2017a). Without
the challenges associated with multi-exposure capture, it
is more feasible for generating HDR images in scenarios
where multiple exposures are impractical or datasets are
limited (Hanji et al., 2022).

Recent deep learning based methods try to capture the map-
ping relationship between LDR and HDR images, often
achieving state-of-the-art performances (Dille et al., 2025;
Kim et al., 2024). However, these methods mainly focus
on individual 2D imagery, lacking 3D perception capabil-
ities and are not suitable for the novel view HDR image
rendering problem.

Novel View Synthesis (NVS) is essential for applications
such as virtual/augmented reality, gaming, and 3D recon-
struction (Avidan & Shashua, 1997; Gao et al., 2023). Tra-
ditional methods, including Structure-from-Motion (SfM)
(Schonberger & Frahm, 2016) and Multi-View Stereo
(MVS) (Rosu & Behnke, 2022), rely on multi-view ge-
ometry to reconstruct 3D scenes but often struggle with
occlusions, textureless regions, and high computational
costs (Jiang, 2023). Recent advances in NVS leverage deep
learning to learn continuous scene representations. Notably,
NeRF (Mildenhall et al., 2021) encodes color and density in
a neural network, enabling novel view synthesis by querying
3D coordinates and viewing directions. Extensions such as
Mip-NeRF (Barron et al., 2021), FastNeRF (Garbin et al.,
2021), and transformer-based models (Lin et al., 2023; Miy-
ato et al., 2023) have improved efficiency, scalability, and
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Figure 2. Overview of Mono-HDR-3D. (a) Given single exposure LDR training images with camera poses, we learn an LDR 3D scene
model (e.g., NeRF or 3DGS). (b) Importantly, this LDR model is lifted up to an HDR counterpart via a camera imaging aware LDR-to-
HDR Color Converter (L2H-CC). (c) Further, a closed-loop design is formed by converting HDR images back to LDR counterparts with a
latent HDR-to-LDR Color Converter (H2L-CC). This enables optimizing the HDR model even with LDR training images, particularly
useful in case of no access to HDR training data. During inference, only the HDR or LDR 3D scene model is needed, taking the novel
camera view as the input and outputting the corresponding image rendering.

quality. However, most techniques focus on LDR outputs,
limiting their applicability for HDR rendering. Alterna-
tively, 3D Gaussian Splatting (3DGS) represents scenes
using learnable 3D Gaussians optimized with multi-view
supervision (Kerbl et al., 2023) which bypasses volumet-
ric integration and heavy network optimizations, achieving
faster training and inference, facilitating real-time rendering.

HDR Novel View Synthesis (HDR-NVS) aims to generate
novel view HDR images from LDR observations, crucial
for scenes with large brightness variations and rich details.
Huang et al. proposed the first HRD-NVS model, HDR-
NeRF (Huang et al., 2022), by extending the standard NeRF
(Mildenhall et al., 2021) to learn an implicit mapping from
physical radiance to HDR color. However, this method is
costly in both model training and inference. Taking the
advantage of 3DGS (Kerbl et al., 2023), Cai et al. (2024)
addressed this issue by learning an MLP-based tone-mapper
between LDR and HDR models. Despite their promising re-
sults, these methods rely on multiple-exposure LDR training
imagery, limiting their applicability in cases with dynamic
environments or limited image capturing conditions. To
address this limitation, we introduce single-exposure HDR-
NVS, which leverages only single-exposure LDR images.

3. Method
3.1. Problem formulation

For each of N distinct viewpoints V' = {V;, V4, --- , Vn },
we capture a set of single-exposure LDR images denoted as
I, = {IlVNIlVQ, e ,IlVN}. The objective is to learn a 3D
scene model F that can synthesize an HDR image I i’,mw
for any given novel viewpoint Vi, ¢.,:

F (I, Viyew) = It 1)

The synthesized HDR image I (’,m_w needs to exhibit an ex-
panded dynamic range compared to LDR training imagery,
while maintaining geometric coherence with the underlying
3D structure of the scene (Reinhard, 2020). Let G represent
the 3D geometry inferred from I', then F (I lV, View) must
align with G at a viewpoint V,,.,,. In addition, the HDR
synthesis must preserve consistent lighting and color across
different views (Debevec & Malik, 2023).

Formally, we need to ensure the following constraint holds
for each 3D scene point:

oy, , (wv,.., (X)) = C(Iy,(1v,(X))),¥X € G, WV € V

@
where C denotes the color information of images, X repre-
sents the 3D point’s coordinates, and 7y (X)) is a projection
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function mapping the 3D scene point X onto the 2D image
coordinates corresponding to viewpoint V.

These constraints require the model F to effectively uti-
lize the limited information from single-exposure inputs to
compensate for the absence of multi-exposure sequences.

3.2. Mono-HDR-3D

Architecture. To address the proposed problem as in Sec.
3.1, we propose a novel single-exposure HDR-NVS frame-
work, Mono-HDR-3D. Specifically, given single-exposure
LDR images (with corresponding camera poses) as input,
we first learn an LDR 3D scene model (e.g., NeRF (Milden-
hall et al., 2021) or 3DGS (Kerbl et al., 2023)). This is
because single-exposure LDR images provide insufficient
information to fully recover an HDR scene. Then, we ele-
vate this LDR model to an HDR counterpart via our camera-
imaging—aware LDR-to-HDR Color Converter (L2H-CC).
Additionally, we introduce a latent HDR-to-LDR Color Con-
verter (H2L-CC) as a closed-loop component, enabling the
optimization of HDR features even when only LDR training
images are available, which ensures the framework to be
robust in the absence of ground-truth HDR data. The overall
architecture of Mono-HDR-3D is depicted in Fig. 2.

Camera imaging mechanism. We embark with the semi-
nal LDR image formation formula (Hasinoff et al., 2010):

Unsaturation;
3)

I max, Saturation

7 _{At/g'1h+fo+€7
=

where I; denotes the LDR color, At is the exposure time,
g is the sensor gain, I}, represents the corresponding HDR
pixel value, and I is the constant offset current with e de-
noting the sensor noise. Unsaturation refers to those pixels
that can be accurately represented by the LDR image after
the camera’s imaging pipeline processing, while saturation
occurs when the sensor reaches its limit, causing the pixel
value to be capped at a maximum saturation value Iyy.

Let the saturated pixel value in Eq. (3) of LDR images as

Imax = lideal — Ioverﬂow (4)

where [igeas and Ioveriow represent the pixel values captured
by an infinitely capable camera and the overflow values
between the ideal and real cameras, respectively. For unsat-
uration pixels, obviously Ioyerfiow = 0.

By integrating Eq. (4) with Eq. (3), the formation process
of LDR images can be unified as:

I, = At/g Iy +1p+€— Ioverﬂowa
" (&)

D() B()

Figure 3. Structure of our camera imaging aware LDR-to-HDR
Color Converter (L2H-CC). ¢}/c: LDR/HDR color; LO: Linear
Operation, R: ReLU, SP: Softplus. ® and &: Element-wise multi-
plication and addition.

where the term D(-) is responsible for linearly scaling the
brightness values of HDR images to fit within the represen-
tation range of LDR images, while the term B(-) is to learn
the offset and correction of LDR image brightness values.

By reversing Eq. (5), the HDR value can be obtained as:

Ih, = Q/At : ([l - IO + Ioverﬂow) 79/At €,

~—— ——
(6)
X() S()
where the term X (-) serves as a scaling factor that linearly
amplifies the brightness values of the LDR image to match
the range of HDR images, the term S(-) adjusts and corrects
the amplified LDR brightness values, and the term Y'(+)

performs noise correction on the adjusted HDR brightness
values.

Y ()

L2H-CC. Simulating the above camera imaging formula
Eq. (6), we design an LDR-to-HDR color converter, L2H-
CC, that learns to approximate the inherent camera response
characteristics and facilitates accurate HDR color estima-
tion:

e = fon(ch), @)

where ¢! and ¢! represent the HDR color and the LDR color,
respectively. This is challenging as only the LDR color [; is
known whilst all the rest are not, resulting in vast modeling
freedom.

To address this challenge, we impose network architectural
prior in the spirit of camera imaging. That being said, L2H-
CC consists of three dedicated modules organized in a way
that approximates the camera’s color conversion behavior
(Eq. (6)), as shown in Fig. 3. Given an LDR color cé, a
linear layer with a ReLLU activation is first used to convert
LDR colors into a latent feature space. To simulate the
three terms S(-), X(-) and Y'(-), we adopt a simple MLP
with ReLU for efficient non-linear computation. The ReLU
activation ensures nonnegative outputs, aligning with the
underlying physical constraints of these parameters (Hasi-
noff et al., 2010). Note that no activation function is applied
to the Y (-) module, as the noise component € is inherently
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Figure 4. Structure of our camera imaging aware HDR-to-LDR
Color Converter (H2L-CC). I"/T'; HDR/LDR image; LO: Linear
Operation, R: ReLU, T: Tanh, SM: Sigmoid. ¢: Element-wise
addition.

random. We also adopt a residual structure (He et al., 2016),
which stabilizes the learning process by capturing subtle
discrepancies between the LDR input and the HDR output,
thereby preserving fine-grained color details more effec-
tively.

H2L-CC. We further introduce a closed-loop design, H2L-
CC, that converts the rendered HDR images back to LDR
for enabling HDR model optimization even when only LDR
training data is available. Similarly, we formulate this com-
ponent according to the camera imaging principle expressed
in Eq. (5), formally denoted as:

I' = fin(I"), (8)

where I' and I" denote the rendered LDR and HDR images,
respectively.

Concretely, H2L-CC is composed of two modules that
approximate the terms of Eq. (5), as shown in Fig. 4. We
first transform the HDR image colors into a latent feature
space with a linear layer followed by ReLU activation. To
simulate each term D(-) and B(-), a specific linear layer
with activation is employed, with ReLU for D(-) and Tanh
for B(-). This choice of activation functions is made by
their physical meanings (Hasinoff et al., 2010) as discussed
earlier, ensuring that the network can effectively simulate
the HDR-to-LDR conversion process.

3.3. Model optimization and instantiation

The overall objective loss function of Mono-HDR-3D can
be generally expressed as

L = Ligr + aLngr + BL1, 9

where L4, denotes the standard loss function of the underly-
ing 3D representation model used (e.g., NeRF (Mildenhall
et al., 2021) or 3DGS (Kerbl et al., 2023)), L4, for match-
ing the HDR ground-truth images if available, and Ly is
used to train the proposed H2L-CC in the same function
as L. The two hyper-parameters, o and (3, control the
relative importance among the terms.

Mono-HDR-GS is obtained by integrating Mono-HDR-3D
with 3DGS (Kerbl et al., 2023). For the LDR branch, we
adopt:

Al Al
Lige = Ly(INT)+ X Lossm(I',T),  (10)

where the £1 loss and D-SSIM loss (Wang et al., 2004) are

)
balanced by \. I denotes the ground-truth LDR images.
To optimize HDR generation, following HDR-GS we use a
Lo loss in the pu-law LDR (Kalantari et al., 2017) domain as

11 log(14p-norm(I™)) log(1+ -norm(fh))
Ehdr _” : log(l—k,u) — == log(l—l—u) ||§’
Y

. ~h
where 11 denotes the amount of compression, I represents
the ground-truth HDR images, and norm(-) specifies the
min-max normalization.

Mono-HDR-NeRF is formed by integrating Mono-HDR-
3D with NeRF (Mildenhall et al., 2021). In this case, we
adopt the Mean Square Error (MSE) based loss function
same as HDR-NeRF:

Lige = Loar = Last = MSE(IL, 1), (12)

4. Experiments

Datasets. Following HDR-GS and HDR-NeRF, we use the
multi-view image dataset with 8 synthetic scenes created
by the software Blender (Blender Foundation, 2025) and
4 real scenes captured by a camera, where each scene con-
tains 35 images captured under 5 different exposure times
{t1,t2,t3,t4,t5}. We use the same training and test data,
where images at 18 views with the exposure time randomly
selected from {¢1,t3, 5} are used for training, while the
other 17 views at the same exposure time and HDR images
are used for testing. Under our proposed single exposure
setting, only a specific exposure time is selected for model
training and evaluation for one experiment. All methods are
compared fairly using the same training and test sets.

Evaluation metrics. We employ the PSNR and SSIM as
quantitative metrics. We utilize LPIPS as a perceptual met-
ric, where lower values signify better perceptual quality.
Similar to HDR-GS (Cai et al., 2024), we also quantitatively
evaluate the rendered HDR images in the tone-mapped do-
main and qualitatively show HDR results tone-mapped by
Photomatrix pro (HDRsoft Team, 2025).

Implementation details. Both models are trained with the
Adam optimizer with the same parameters as HDR-NeRF
and HDR-GS. For Eq. (9), we set 5 to 0.01/0.05 , while
a = 0.6 for Mono-HDR-NeRF/Mono-HDR-GS. We set the
learning rate of L2ZH-CC /H2L-CC to 5 x 10~4/1 x 1073,
and the decays to 5 x 107%/5 x 10~* by cross-validation.
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Table 1. Quantitative results on the synthetic datasets. For the LDR results, we report averaged across exposure times ¢1, ¢3, and t5. All

results are averaged over all scenes.

Method Inference Speed (fps) LDR result HDR result

PSNRT SSIMT LPIPS, PSNR{T SSIM?T LPIPS|
HDR-NeRF 0.26 30.62 0.658 0.285 13.76 0.511 0.443
Mono-HDR-NeRF (Ours) 0.26 38.78 0.936 0.048 32.86 0.940 0.068
HDR-GS 147.45 39.48 0.977 0.018 35.30 0.965 0.030
Mono-HDR-GS (Ours) 136.97 41.68 0.983 0.009 38.57 0.975 0.012

(a)

(b)

©

HDR-GS

Mono-HDR-GS (Ours)

Ground Truth

Figure 5. Comparison of HDR-NVS on both (a/b) synthetic and (c) real datasets. A¢: Exposure time.

4.1. Quantitative evaluation

Competitors. We compare Mono-HDR-3D with two latest
state-of-the-art approaches: (1) HDR-NeRF (Huang et al.,
2022), the first to synthesize HDR images of novel views
using the implicit NeRF model, and (2) HDR-GS (Cai et al.,
2024), which leverages the efficient representation of 3DGS
to build an HDR representation model. To the best of our
knowledge, these are the only existing methods specifically
designed to synthesize HDR novel views from LDR training
imagery. Whilst designed for multi-exposure LDR setting,
they can be also applied to our proposed single-exposure
setting. We used their official repositories to conduct the
experiments for ensuring their own optimal performance.

Tab. 1 presents the quantitative results on the synthetic
datasets for both LDR and HDR-NVS. Notably, HDR-NVS

results are the most important, as they encapsulate the core
objective of this study. The reported results are averaged
across three different exposure times to ensure the complete-
ness and reliability of the performance metrics.

In addition to visual quality assessment, model inference
speed (fps) is also included. We highlight the following key
points:

(D In terms of HDR-NVS results, our models significantly
outperform all alternatives, particularly HDR-NeRF, in gen-
eration quality. This advantage arises because HDR-NeRF
struggles to converge without multiple exposure LDR train-
ing data, often producing images that are entirely black or
white. This highlights the greater challenges associated
with the proposed single exposure setting while also vali-
dating the efficacy and superiority of our model design in



High Dynamic Range Novel View Synthesis with Single Exposure

@

(b)

A e

At = 0.667s

(C) E l

HDR-GS

s

Mono-HDR-GS (Ours)

Ground Truth

Figure 6. Comparison of LDR-NVS on both (a/b) synthetic and (c) real datasets. A¢: Exposure time.

addressing such challenges.

(IT) Regarding the LDR-NVS results, we observe a similar
performance advantage with our models. This indicates
that directly learning an HDR model from single-exposure
LDR data, as competitors do, would be inferior due to the
absence of multiple exposure observations. This also partly
explains our stronger HDR-NVS results, which somehow
are dependent on the quality of the LDR output.

(IIT) In terms of efficiency, our models perform comparably
to alternatives using either NeRF or 3DGS as the represen-
tation model. This suggests that our models do not sacrifice
efficiency for the sake of quality.

Result analysis on real data. While less important, Tab. 2
presents the quantitative results of LDR-NVS on the real
datasets, as there are no ground-truth HDR images available.
The results are averaged across three distinct exposure times
and encompass all scenes. It is evident that no method
clearly stands out in synthesis quality.

4.2. Qualitative evaluation

Numerical metrics such as PSNR, SSIM, and LPIPS may
not fully reflect the perceived quality of images. Therefore,
a qualitative evaluation through visual comparison is es-
sential. For HDR-NVS results on both synthetic and real
datasets, as shown in Fig. 5, HDR-GS struggles to accu-
rately reconstruct the darkest and brightest details, whereas
our Mono-HDR-GS excels in rendering more intricate struc-

Table 2. Quantitative results on the real datasets. We report the
results averaged across all scenes and exposure times ¢1, ¢3, and
ts. Note, HDR results cannot be reported due to no ground-truth.

LDR result
Method PSNRT SSIM{ LPIPS)
HDR-NeRF 3250 0948  0.069
Mono-HDR-NeRF (Ours)  32.52 0948  0.069
HDR-GS 3534 0966  0.019
Mono-HDR-GS (Ours) ~ 35.81  0.967  0.017

tures. Regarding LDR-NVS results, as illustrated in Fig. 6,
HDR-GS tends to produce blurry and visually unappealing
results (e.g., the synthetic data case) or fails in rendering
extremely bright and contrastive regions (e.g., the real data
case). In contrast, our Mono-HDR-GS can successfully
recover smoother color details and present the brightness
properly for such challenging cases.

Visual comparisons of LDR renderings synthesized by HDR-
NeRF and Mono-HDR-NeRF on both synthetic and real
datasets are presented in Appendix A. As shown in Fig. 8
HDR-NEeRF trained on single-exposure LDR images pro-
duces color artifacts and blurry outputs, while Mono-HDR-
NeRF achieves superior color consistency and detail preser-
vation. Additionally, in real-world scenarios, HDR-NeRF
struggles with abrupt color transitions, whereas Mono-HDR-
NeRF maintains smoother color continuity.



High Dynamic Range Novel View Synthesis with Single Exposure

At = 0.125s

HDR-NeRF

Mono-HDR-NeRF (Ours)

Ground Truth

Figure 7. HDR reconstruction comparison on synthetic datasets. A¢: Exposure time.

Table 3. Ablation analysis on the synthetic datasets. The results
are averaged across exposures and scenes. MLP: Alternative design
with similar amount of parameters.

Row  L2H-CC H2L-CC HDR result

MLP Ours MLP Ours PSNRT SSIM} LPIPS|
1 v v 1902 0778 0327
2 v Y 3843 0974 0015
3 v V3857 0975 0012

Table 4. Ablation analysis of closed-loop design on the synthetic
datasets. The results are averaged across exposures and scenes.

Row L2H-CC H2L-CC HDR result
PSNRT SSIMT LPIPS|
1 W x 3819 0974 0015
2 v J 3857 0975  0.012
4.3. Ablation studies

We conduct an ablation study with the most efficient model,
Mono-HDR-GS, on the synthetic datasets.

Module design. To validate the architectural rationale of
the proposed L2H-CC and H2L-CC modules, we bench-
mark them against a baseline MLP architecture with compa-
rable parameter counts. The results in Tab. 3 reveal:

(I) Row 1 vs. 3: Replacing the L2ZH-CC module with a plain
MLP leads to a statistically significant performance drop,
underscoring the criticality of explicitly modeling camera
imaging physics (Sec. 3.2).

(IT) Row 2 vs. 3: Substituting H2L-CC with an MLP yields
a performance drop, although quite slight, demonstrating
that the closed-loop design improves robustness even when
HDR ground truth is available.

Effect of closed-loop design. Following the above de-
sign based ablation, we further look into the effect of our

closed-loop design with H2L-CC with HDR training data.
The results in Tab. 4 indicate that this design brings a pos-
itive impact of 0.38 dB increase in PSNR for HDR-NVS,
demonstrating that the closed-loop framework contributes
significantly to enhancing the quality of the reconstructed
HDR images.

Loss contributions. Based on our proposed Mono-HDR-
GS, we conduct systematic ablation studies to evaluate the
contribution of each loss component in Eq. (9). The results
in Tab. 5 reveal three key observations:

(I) Row 2 vs. 7: HDR loss Ly serves as the founda-
tional component for HDR-NVS performance. When used
alone, Mono-HDR-GS achieves moderate metrics (33.93
dB PSNR, 0.925 SSIM), while its absence leads to severe
degradation (e.g., Row 5 shows 13.50 dB PSNR without
Lng). This validates its critical role in reconstructing high
dynamic range scenes.

(IT) Row 4 vs. 6: LDR loss Ly provides essential regular-
ization for scene modeling. When combined with Lyg;, it
improves PSNR by +4.26 dB (Row 2 vs. 4) and maintains
structural fidelity. Notably, L4, alone fails to train (Row 1),
but acts as a complementary constraint when paired with
HDR-aware objectives.

(IIT) Row 4 vs. 7: Closed-loop loss Ly enhances photo-
metric consistency across exposure domains. Its integration
elevates PSNR by +0.38 dB while reducing perceptual dis-
tance. This demonstrates that bidirectional optimization
between HDR and LDR spaces refines both radiance esti-
mation and tone mapping.

Performance of different LDR / HDR ratios. To evalu-
ate the robustness of our Mono-HDR-GS framework under
varying data availability, we conduct experiments with LDR
/ HDR ratios ranging from 0/1 (pure HDR) to 5/1 (dominant
LDR), as shown in Tab. 6. The results demonstrate:
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Table 5. Ablation analysis of different loss components on the
synthetic datasets. Results are averaged across exposures and
scenes.

HDR result
Row Loss
PSNRtT SSIMtT LPIPS|

1 ler - - -

2 Lg: 33.93 0.925 0.050
3 Ly 11.87 0504  0.371
4 Ligr + Lhar 38.19 0.974 0.015
5 Lige + Ly 13.50 0.507 0.359
6 Lngr + L 33.58 0.934 0.058
7 Ligr + Lhar + Lo 38.57 0.975 0.012

(I) Data Efficiency: Our model maintains strong perfor-
mance even with sparse HDR data. For instance, at 5/1 ratio,
Mono-HDR-GS retains 92.6% of its peak PSNR (35.51 dB
vs. 38.57 dB at 1/1), suggesting effective knowledge transfer
from LDR supervision.

(II) LDR Supervision: When HDR data becomes extremely
scarce (5/1 vs. 0/1), the PSNR degradation of Mono-HDR-
GS (from 35.51 dB to 33.93 dB) is significantly smaller than
HDR-GS (from 34.89 dB to 33.46 dB). This confirms that
LDR supervision provides a more robust geometric prior
for HDR reconstruction.

(ITIT) HDR Ceriticality: Pure HDR supervision (0/1) out-
performs pure LDR supervision (1/0) by +23.4 dB PSNR,
validating the irreplaceable role of HDR data in captur-
ing radiance information. This finding emphasizes HDR’s
fundamental importance for high-quality HDR novel view
synthesis.

(IV) Overall Superiority: Across all ratios, Mono-HDR-
GS consistently outperforms HDR-GS with statistically sig-
nificant margins. At equal computational cost, our Mono-
HDR-GS achieves up to +3.27 dB PSNR improvement (1/1
ratio) and maintains superior structural fidelity. Notably,
even with 100% LDR data (1/0 ratio), our method gener-
ates marginally better results than HDR-GS trained solely
on HDR images, demonstrating the effectiveness of closed-
loop design.

5. Conclusion

This paper pioneers the Single-Exposure HDR-NVS prob-
lem by introducing Mono-HDR-3D, a novel meta-algorithm
designed to operate effectively with only single-exposure
LDR images during training. Unlike conventional HDR-
NVS approaches that rely on multiple-exposure imagery,
Mono-HDR-3D addresses critical limitations such as mo-
tion artifacts, high capture and storage costs, and the need
for precise exposure tuning. This not only enhances ap-
plicability but also simplifies deployment in dynamic and
rapidly changing scenes. Extensive experimental evalua-
tions demonstrate that Mono-HDR-3D significantly outper-

Table 6. Ablation studies of different ratio of LDR / HDR images.

Method LDR / HDR HDR result
PSNRT SSIM{ LPIPS|
HDR-GS P 3530 0965  0.030
Mono-HDR-GS 3857 0975 0.012
HDR-GS W 3526 0963  0.033
Mono-HDR-GS 3797 0975 0013
HDR-GS 1 3516 0958  0.035
Mono-HDR-GS 3753 0974 0014
HDR-GS . 3489 0961  0.027
Mono-HDR-GS 3551 0963  0.023
HDR-GS ol 3346 0936  0.075
Mono-HDR-GS 3393 0925  0.050
HDR-GS o 1051 0503 0350
Mono-HDR-GS 1350 0507 0359

forms existing methods in generative quality under such
more challenging conditions. Importantly, the seamless
integration capability of Mono-HDR-3D with existing 3D
representation models highlights its versatility and potential
for widespread adoption, making advanced HDR techniques
accessible to a broader audience and even future advance-
ment in representation modeling.

This work opens new avenues for efficient and robust HDR
scene modeling, especially in contexts where access to ex-
pensive, professional cameras for training data collection
is limited or not possible. By democratizing the process
of HDR imaging, we empower more individuals and orga-
nizations even with limited resources to engage with high-
quality imaging technologies. Future work will focus on
further optimizing Mono-HDR-3D and exploring its appli-
cation across more diverse real-world environments, solidi-
fying its role as a go-to solution or baseline in the evolution
of HDR imaging and 3D scene synthesis, while continuing
to make these advancements accessible to all.
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Impact Statement

In this work, we address the high demands for high-quality
visual generation and immersion as required in many fields
such as VR / AR, entertainment, creative media, broadcast-
ing, TV, and gaming. This has great potential for democra-
tizing both the academic research often featured with limited
resources, as well as related industries with diverse back-
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grounds and contexts. Unlike existing methods requiring
costly multi-exposure LDR imagery capture, our approach
enables HDR scene reconstruction from single-exposure
images with strong accuracy and realism.

While this research problem and our technology are still
in the early stage, potential misuse risks (e.g., malicious
content generation) might warrant ethical considerations.
We advocate for responsible deployment and emphasize that
its benefits in advancing safer, high-fidelity digital environ-
ments outweigh foreseeable risks per se.
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Appendix for ‘“High Dynamic Range Novel View Synthesis with Single Exposure”

A. Additional Visualization Comparisons of HDR-NeRF and Mono-HDR-NeRF

This section presents additional visual comparisons between HDR-NeRF and our Mono-HDR-NeRF, including LDR novel
view rendering results on both synthetic and real datasets. These comparisons are illustrated in Fig. 8.

(a)

At = 0.125s

(b)

©

e 4

HDR-NeRF Mono-HDR-NeRF (Ours) Ground Truth

Figure 8. Comparison of LDR-NVS on both (a/b) synthetic and (c) real datasets. A¢: Exposure time.
It can be observed that, HDR-NeRF suffers from color artifacts and blurriness when rendering LDR images, and may fail to

converge, producing black outputs without multi-exposure data. In contrast, Mono-HDR-NeRF achieves superior color
consistency and detail preservation in LDR rendering.
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