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Abstract
This paper introduces Quantum-PEFT that
leverages quantum computations for parameter-
efficient fine-tuning (PEFT). Unlike other addi-
tive PEFT methods, such as low-rank adapta-
tion (LoRA), Quantum-PEFT exploits an underly-
ing full-rank yet surprisingly parameter-efficient
quantum unitary parameterization with alternat-
ing entanglement. With the use of Pauli param-
eterization, the number of trainable parameters
grows only logarithmically with the ambient di-
mension, as opposed to linearly as in LoRA-based
PEFT methods. Consequently, Quantum-PEFT
achieves vanishingly smaller number of trainable
parameters than the lowest-rank LoRA as dimen-
sions grow, enhancing parameter efficiency while
maintaining a competitive performance. We ap-
ply Quantum-PEFT to several transfer learning
benchmarks in language and vision, demonstrat-
ing significant advantages in parameter efficiency.

1. Introduction
Fine-tuning large pre-trained models is a cost-effective
method to adapt a general-purpose model to additional do-
mains and tasks in computer vision and natural language pro-
cessing (Devlin et al., 2018; Liu et al., 2019; He et al., 2020;
Radford et al., 2019; Brown et al., 2020; AI@Meta, 2024).
Yet, even the practice of fine-tuning for each application can
be costly as models scale to billions or trillions of parame-
ters. The substantial memory requirements, such as GPT-3’s
350GB footprint (Brown et al., 2020), can pose significant
resource challenges, restricting practical deployment.

Parameter-efficient fine-tuning (PEFT) addresses the re-
source challenges of task specialization for massive pre-
trained networks without the need to fine-tune parameters
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in full model weights dimensions (Aghajanyan et al., 2020;
Hu et al., 2021; Edalati et al., 2022). For instance, low-rank
adaptation (LoRA) (Hu et al., 2021) uses low-rank decom-
positions to modify weights, whereby reducing the number
of trainable parameters. Despite its efficiency, there are
limitations to the number of parameters, which include a
compression ratio constrained by rank-1 decompositions
and a linear scaling of trainable parameters with weight
matrix dimensions.

We introduce Quantum-PEFT, a novel framework that
achieves extremely parameter-efficient fine-tuning beyond
LoRA-variants by leveraging quantum unitary parameter-
izations (Biamonte et al., 2017; Schuld et al., 2015). The
core idea is to reparameterize the layers of pre-trained net-
works as generalized quantum circuits capturing complex
transformations, which only require a logarithmic number
of trainable parameters. The ultra parameter efficiency is
enabled by parameterizing the low-rank subspaces via Kro-
necker products of generalized Pauli rotations. The key
contributions of our work include:

• We introduce new quantum-inspired modules based on
generalized Pauli parametrization and quantum tensor net-
work. We propose a novel framework, named Quantum-
PEFT, that leverages quantum unitary parameterizations
for extremely parameter-efficient fine-tuning, achieving
orders-of-magnitudes higher compression rates over state-
of-the-art PEFT methods.

• Quantum-PEFT with Pauli parameterization enables loga-
rithmic scaling of trainable parameters with respect to the
ambient dimension of the model, realizing even smaller
parameters than the lowest-rank LoRA.

• Through extensive experiments on language and vision
tasks, we show Quantum-PEFT’s significant advantage in
parameter efficiency, achieving 5 to 25-fold reduction in
trainable parameters compared to LoRA, yet maintaining
competitive performance.

2. Quantum-PEFT method
Notations: Let SU(N), suN , SO(N), O(N), and VK(N)
denote the special unitary Lie group of size N , its Lie alge-
bra, special orthogonal group, orthogonal group, and real-
valued Stiefel manifold having orthonormal K frames, re-
spectively. We denote I , R, ⊗, [·]⊤, and ȷ as identity matrix
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of proper size, real numbers field, Kronecker product, trans-
pose, and imaginary number, respectively.

2.1. Quantum machine learning (QML)

Typical QML uses quantum computers as a neural net-
work module where classical data and weight values are
embedded into quantum variational parameters such as
Pauli rotation angles to control measurement outcomes, as
shown in Fig. 1(a). Any quantum circuits can be decom-
posed (Kitaev, 1997) into a series of single-qubit rotations
and two-qubit entanglements. Pauli operators play an im-
portant role to generate any unitary rotations up to a global
phase. The group SU(N)—the Lie group of unitary N ×N
matrices having determinant 1—can be generated by the
Lie algebra suN , i.e., the set of N × N skew-Hermitian
matrices. For single-qubit rotations over SU(2), the Lie
algebra is a span of {ȷX, ȷY, ȷZ}, with Pauli matrices:
X = [ 0 1

1 0 ], Y =
[ 0 −ȷ
ȷ 0

]
, Z =

[
1 0
0 −1

]
. The exponential

mapping of its linear combinations generates SU(2). For
example, quantum RY rotation gate is given as

RY(θ) = exp(−ȷ θ2Y ) = exp

([
0 −θ/2
θ/2 0

])
=

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
, (1)

which alone spans the special orthogonal group SO(2) and
forms O(2) along with a reflection Z.

Two-design ansatz (Cerezo et al., 2021) used for QML uses
a small number of parameters in order of O[log2(N)] to
represent unitary matrices SU(N) whose statistical prop-
erties are identical to ensemble random unitaries with re-
spect to the Haar measure up to the first 2 moments. This
property suggests that gradient optimization can uniformly
adjust few-parameter Pauli rotation angles along the unitary
group SU(N). Comparing to the full degree of freedoms of
dim[SU(N)] = N2 − 1 for any skew-Hermitian matrices,
the QML has a great potential to realize parameter-efficient
representation in its logarithmic order. With q-qubit quan-
tum processing unit (QPU), it can manipulate exponentially
large dimensional state space of size N = 2q simultaneously
through Pauli unitary rotations. In the following, we intro-
duce a generalized framework to extend the QML features
for extremely parameter-efficient neural network modules,
which constitute the building blocks of Quantum-PEFT.

2.2. Quantum-PEFT: Pauli, generalized RY and CZ

Pauli parameterization As shown in Fig. 1(b), the simpli-
fied two-design (STD) ansatz (Cerezo et al., 2021) uses an
alternating circuit composed of RY and controlled-Z (CZ)
entangling gates: CZ = diag[1, 1, 1,−1], which is an ele-
ment of reflection groups O(1)4 = {±1}4. This ansatz is
suited for neural networks as they are real-valued quantum
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Figure 1. QML. (a) General pipeline for quantum neural network
(QNN), embedding classical data x and variational parameters θ
to control measurement y. (b) Simplified two-design ansatz. (c)
Generalized quantum-inspired network.

operations over SO(N), i.e., not complex-valued operations
over SU(N) arising when using RZ or RX rotations. In
Quantum-PEFT, we propose to use the Pauli parameteriza-
tion based on this STD ansatz, as given below:

QP =

L∏
l=1

((
I ⊗ CZ⊗ q−1

2
) q⊗
k=2

(
RY(θk,2l+1)

)
(
CZ⊗ q−1

2 ⊗ I
) q−1⊗
k=1

(
RY(θk,2l)

)) q⊗
k=1

(
RY(θk,1)

)
, (2)

where L is the number of alternating entanglement layers,
and q = log2(N) is the number of qubits (above equa-
tion assumes odd number). This Pauli parameterization has
(2L + 1) log2(N) − 2L parameters, increasing only loga-
rithmically with the matrix size N . While the tensor rank
is 2, the effective rank of the matrix QP is full of N thanks
to the alternating CZ entanglement. Not only parameter
efficient, but Pauli parametrization is also computationally
efficient as it takes O[N log2(N)L] operations compared
to quadratic complexity for unitary matrix rotations. When
running on a QPU, it would require only O[log2(N)L] oper-
ations. Solovay–Kitaev theorem (Kitaev, 1997) may suggest
that the required depth size L to achieve any unitary rota-
tions scales only in a polylog order. Motivated by the STD
ansatz, we can further generalize the parameterization from
SU(2) to SU(N ′) with an arbitrary size of N ′ > 2 as shown
in Fig. 1(c) as a building block to represent a large unitary
matrix SU(N) with a smaller number of unitary factors
SU(N ′) in a logarithmic scale of O[logN ′(N)]. To this end,
we introduce the generalized RY and CZ modules.

Generalized RY modules Generalized RY modules for
arbitrary unitary rotations of size N ′ can be realized by
mapping skew-Hermitian matrices for SU(N ′) or skew-
symmetric matrices for SO(N ′). We consider a diverse
set of mapping methods below. Let B ∈ RN ′×K be a
strictly lower-triangular matrix for a rank K ≤ N ′, where
the number of non-zero elements is RN ′ − R(R + 1)/2,
which is identical to dim[VK(N ′)] for the Stiefel mani-
fold VK(N ′) ∼= SO(N ′)/SO(N ′ − K). Given a skew-
symmetric matrix A = B −B⊤ ∈ RN ′×N ′

, we can gener-
ate a corresponding unitary (orthogonal) matrix, e.g., with
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exponential mapping, Cayley transform, Householder re-
flection, respectively, as follows:

QE = exp(A), QC = (I +A)(I −A)−1, (3)

QH =

K∏
k=1

(
I − 2N[B:,k]N[B:,k]

⊤), (4)

QG =

K∏
k=1

N∏
n=k+1

Gn−k(Bn,k), (5)

QT =

P∑
p=0

1

p!
Ap, QN = (I +A)

P∑
p=0

Ap, (6)

where N[·] is a normalization operator for canonical coset
decomposition (CCD) (Cabrera et al., 2010), and Gn(θ) de-
notes the Givens matrix which is identity except that the n
and (n+ 1)-th diagonal block is replaced with RY rotation.
The mappings of QT and QN are respectively approximated
versions of QE and QC to avoid matrix exponentiation and
inversion via Taylor series and Neumann series approxima-
tions up to a polynomial order P . Note that QP, QE and QG

are identical to RY at N ′ = 2.

Fig. 2(a) illustrates the generalized RY modules to construct
trainable orthogonal nodes on Stiefel manifold VK(N ′). Af-
ter mapping skew-symmetric matrix, truncating the square
unitary matrix as Q:K,: can generate right-orthogonal matrix.
As all the mappings described above are differentiable, the
Lie algebra can be trained via gradient methods. While most
mapping methods are studied in other literature (Qiu et al.,
2023; Liu et al., 2023b; Chang & Wang, 2021; Wisdom
et al., 2016; Bansal et al., 2018; Li et al., 2019), in a PEFT
context we can further reduce the number of parameters by
masking out the Lie parameters. For example, the top K ′

columns of B are only trainable, while the other parameters
are frozen or null-out. We call K ′ an intrinsic rank to cover
a subset of VK(N ′).

Three potential limitations of this mapping pipeline are i)
redundant memory induced before truncation, ii) more com-
putational complexity than the one without mapping, and
iii) numerical errors at finite-precision operations. Never-
theless, the memory redundancy will be readily resolved
by tensor contraction ordering (Pfeifer et al., 2014), except
for QE. For example, multiplying unitary matrix with a
feature vector x ∈ RN ′×1 can be recursively contracted as
QTx =

∑
p

1
p! (B−B⊤)px, which does not require the full

matrix QT but a series of low-rank multiplications with B.
Regarding complexity and accuracy, we will discuss in the
next subsection, and also quantization impact in Section 3.

The above-mentioned generalized RY modules for SU(N ′)
are assembled to construct a larger unitary node SU(N) via
generalized STD network shown in Fig. 1(c). However, N
should be a power of N ′. Using quantum Shannon decompo-
sition (QSD) (Shende et al., 2005) i.e. recursive cosine-sine

N’ N’

K N’
(a) Generalized RY gates: SO(N’)
For trainable orthogonal nodes

(b) Generalized CZ gates: O(1)N’

For trainable diagonal nodes
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Figure 2. (a) generalized RY modules for orthogonal nodes on
Stiefel manifold VK(N ′); (b) generalized CZ modules for diago-
nal nodes on either O(1)N

′
or RN′

. Top K′ columns are trainable
parameters in B as intrinsic rank.

decomposition (CSD), any unitary matrix SU(N) can be
constructed by SU(N1) and SU(N2) for lower dimensions
such that N1 ≥ N2 and N1 +N2 = N for N > 1:

U =

[
U1 0
0 U2

]C −S 0
0 0 I
S C 0

[
V1 0
0 V2

]
, (7)

where U ∈ SU(N), U1, V2 ∈ SU(N1), U2, V1 ∈ SU(N2),
diagonal cosine and sine matrices such that C2 + S2 = I ∈
RN2×N2 . Hence, power-of-N ′ rotations such as Kronecker
products of Pauli rotations can be still used for arbitrary size
of matrices. It hence can solve the power-of-N ′ limitation.

Generalized CZ modules Generalizing CZ modules pro-
vides a few options: trainable diagonal matrix in any real
number RN ′

, discrete number, and binary {±1}N ′
. Train-

able discrete diagonal matrix can be realized e.g. by Gum-
bel softmax or ReinMax trick (Liu et al., 2024). We refer
to a trainable binary diagonal matrix as Rademacher map-
ping, which can create perfect unitarity and reflection group
in O(1)N

′
. Specifically, Rademacher mapping with Rein-

Max trick is given as QR = diag[ReinMaxτ ([Λ,−Λ]) ×
[+1,−1]] with a temperature τ and diagonal parameter
Λ ∈ RN ′

. Fig. 2(b) illustrates diagonal nodes and its ten-
sor diagram. When identity map is used, it can be used as
singular values of any matrices under its singular-value de-
composition (SVD). Therefore, the use of both trainable uni-
tary matrices and diagonal matrices is sufficient for general
representation. It can solve the unitarity limitation of QML.

2.3. Quantum-PEFT: method formulation

PEFT We use the quantum-inspired machine learning
modules described above, to realize PEFT. Specifically, we
construct a parameter-efficient tensor network by exploit-
ing new modules: trainable unitary nodes parameterized
by the Lie algebra to generate Stiefel manifold VK(N) via
our generalized RY modules; trainable diagonal nodes ei-
ther on RN or O(1)N via our generalized CZ modules, and
the Pauli parameterization. As one of PEFT tensor net-
works, we reparametrize the weight updates as a product
of trainable unitary matrices U ∈ VK(N) ⊂ RN×K and
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Table 1. Comparison of different PEFT methods.
Method # Trainable Parameters

LoRA (TTD) 2NK
AdaLoRA (CP) 2NK +K

Quantum-PEFT (TD: QT) 2NK −K2 (for K ′ = K, N ′ = N )
Quantum-PEFT (TD: QP) 2(2L+ 1) log2(N) +K

V ∈ VK(M) ⊂ RM×K generated by our generalized RY
modules, and a trainable diagonal matrix Λ ∈ RK×K gen-
erated by our generalized CZ modules. Specifically, the
weight update ∆W for a weight matrix W ∈ RN×M is
given by: ∆W = UΛV ⊤. In this SVD form, the number
of trainable parameters depends on the chosen parametriza-
tion for the underlying orthogonal matrices. Specifically,
the Taylor parametrization QT for the maximum decompo-
sition size N ′ = N yields 2NK − K2 trainable parame-
ters (with K ′ = K), while the Pauli parametrization QP

achieves an extremely compact representation with only
2(2L+1) log2(N)+K parameters, scaling logarithmically
with the matrix dimension N . The underlying parametriza-
tions induced by our generalized RY modules spanning
orthogonal group can effectively capture a full-rank weight
update. This contrasts with AdaLoRA (Zhang et al., 2023),
which uses approximate orthogonality imposed by regu-
larization terms in loss, failing to reduce the number of
trainable parameters being limited by the low-rank decom-
position. Consequently, Quantum-PEFT enables orders-of-
magnitude parameter reduction compared to conventional
LoRA-based approaches, while retaining the expressive
power of effectively full-rank representations.

Parameter efficiency Fig. 5 shows tensor diagrams un-
der tensor network interpretation of LoRA variants. As
shown in Table 1, the LoRA uses two K-rank matrices,
having 2NK parameters in total for a matrix size N ≫ K.
This is known as 2-mode tensor train decomposition (TTD).
AdaLoRA uses approximated SVD, but unitarity is not per-
fectly imposed, leading to K(K + 1) redundant parameters
and extra regularization terms. From the tensor network
perspective, AdaLoRA falls under Canonical Polyadic (CP)
decomposition which does not strictly assume orthogonality.
Using the Lie algebra, Quantum-PEFT can readily real-
ize the non-redundant parameterization for trainable SVD
(i.e., 2-mode Tucker decomposition: TD). With QSD, Pauli
parameterization can further reduce the number of param-
eters for arbitrary tensor networks into a logarithmic scale.
More discussions of other tensor networks are found in Ap-
pendix C.2. When we apply Hadamard product of tensor
networks like LoHA (Yeh et al., 2024), Quantum-PEFT can
further increase the capacity.

3. Experiments
In this section, we evaluate Quantum-PEFT on the GLUE
benchmark (Wang et al., 2019). Our experiments are not to
claim that Quantum-PEFT always improves the accuracy

Table 2. GLUE benchmark. Matthew’s correlation for CoLA, aver-
age correlation for STS-B, and accuracy for other tasks.

Method # Trainable
Parameters

SST-2 CoLA RTE MRPC STS-B

FT 184M 95.63 69.19 83.75 89.46 91.60

BitFit 0.1M 94.84 66.96 78.70 87.75 91.35
HAdapter 0.61M 95.30 67.87 85.56 89.22 91.30
PAdapter 0.60M 95.53 69.48 84.12 89.22 91.52
HAdapter 0.31M 95.41 67.65 83.39 89.25 91.31
PAdapter 0.30M 94.72 69.06 84.48 89.71 91.38
LoRA 0.33M 94.95 68.71 85.56 89.71 91.68
AdaLoRA 0.32M 95.80 70.04 87.36 90.44 91.63

Quantum-PEFT 0.013M 95.85 67.85 86.57 90.78 91.06

compared to LoRA, but to show that Quantum-PEFT can
maintain a competitive level of accuracy with orders-of-
magnitude fewer parameters. Results on E2E benchmark
and Vision Transformer with CIFAR-10 are deferred to
Appendices D.2 and D.3, respectively.

Our experiment follows the set-up in (Zhang et al., 2023).
The fine-tuning is applied on DeBERTaV3-base (He et al.,
2021b). We compare Quantum-PEFT with the following
baselines: Full parameters fine-tuning (FT), LoRA (Hu
et al., 2021), BitFit (Zaken et al., 2022), adapter tuning
with Houlsby adapter (HAdapter) (Houlsby et al., 2019),
adapter tuning with Pfeiffer adapter (PAdapter) (Pfeiffer
et al., 2021), and AdaLoRA (Zhang et al., 2023). Detailed
hyperparameters can be found in Appendix D. The results in
Table 2 show that in both SST-2 and MRPC tasks, Quantum-
PEFT can outperform AdaLoRA. On other tasks, Quantum-
PEFT can still achieve comparable performance with other
baselines. Notably, Quantum-PEFT only requires 0.013
million parameters, which are 25 times fewer than LoRA.

4. Conclusions
We introduced Quantum-PEFT, a novel framework
leveraging quantum ML principles to achieve extremely
parameter-efficient fine-tuning of large pre-trained mod-
els. Through reparameterizing neural network layers
as generalized quantum circuits, we represent weight
updates using highly compact unitary matrix embeddings.
Unlike prior low-rank adaptation methods bottlenecked
by linear parameter growth, Quantum-PEFT’s parameter
count scales logarithmically with the model size via Pauli
parametrization and can achieve lower parameter number
than lowest-rank LoRA. Experiments across language and
vision benchmarks show excellent capabilities, achieving
orders-of-magnitudes higher compression rates than LoRA
while maintaining competitive performance.
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Novikova, J., Dušek, O., and Rieser, V. The E2E dataset:
New challenges for end-to-end generation. arXiv preprint
arXiv:1706.09254, 2017.
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A. Related work
Parameter-efficient fine-tuning (PEFT) Parameter-efficient fine-tuning (PEFT) methods allow significantly lower model
training cost for different downstream tasks. A plethora of methods have been proposed for PEFT (Houlsby et al., 2019;
Aghajanyan et al., 2020; Hu et al., 2021; Edalati et al., 2022; Lester et al., 2021; Li & Liang, 2021; He et al., 2021a;
Karimi Mahabadi et al., 2021; Chen et al., 2022; Jie & Deng, 2023; Hao et al., 2022; Houlsby et al., 2019; Pfeiffer et al.,
2021), among which reparameterization-based techniques (Aghajanyan et al., 2020; Hu et al., 2021; Edalati et al., 2022)
bear the most relevance to our study, where the model architecture is not changed but reparametrized with a lower number
of trainable parameters. Low-rank adaptation (LoRA) (Hu et al., 2021) has shown promising results by updating the
pretrained weight matrix through the addition of a product of two low-rank matrices. The simplicity of this low-rank weight
reparameterization has led to its widespread adoption (Zi et al., 2023; Chavan et al., 2023; Hayou et al., 2024; Zhu et al.,
2024). Many variants were introduced, e.g., methods based on Kronecker product, such as KronA (Edalati et al., 2022)
and LoKr (Yeh et al., 2024), Hadamard product, such as LoHA (Yeh et al., 2024), tensor rank decomposition, such as
LoTR (Bershatsky et al., 2024) and SuperLoRA (Chen et al., 2024), and nonlinear mappings, such as LoDA (Liu et al.,
2023a).

Unitary-constrained PEFT AdaLoRA (Zhang et al., 2023) introduces dynamic rank adjustment during fine-tuning,
with additional regularizer for orthogonality. Unlike AdaLoRA that involves inexact orthogonality constraints and extra
regularization terms, Quantum-PEFT directly parameterizes full-rank unitary matrices via efficient quantum circuit em-
beddings. Orthogonal fine-tuning (OFT) (Qiu et al., 2023; Liu et al., 2023b) employs a unitary matrix to transform the
pretrained weights, showing stronger generalization than LoRA. Despite its enhanced generalization performance, OFT
typically requires more trainable parameters than LoRA, highlighting the need for more parameter-efficient PEFT methods.
In addition, OFT methods rely on an expensive Cayley transform and a structured block-diagonal matrix.

Unitary-constrained machine learning Unitary constraints in machine learning have been explored extensively due
to their potential to make training more stable and improve generalization. (Chang & Wang, 2021) uses deep unitary
convolution based on an exponential map with Lie parameters. In recurrent neural networks (RNNs), several methods with
unitary weights have been proposed, such as (Arjovsky et al., 2016), which uses unitary evolution without requiring expensive
eigen-value decomposition, and (Jing et al., 2017), which employs unitary neural networks. Different parametrizations have
been used, including orthogonal weight matrices through the Cayley transform (Helfrich et al., 2018) and Householder
reflection for RNNs (Mhammedi et al., 2017) and ViT (Huang et al., 2022). Optimization of deep learning models over the
Stiefel manifold has been studied in multiple works (Wisdom et al., 2016; Bansal et al., 2018; Li et al., 2019).

Quantum machine learning Main relevant concepts in quantum machine learning include expressibility and entan-
gling (Sim et al., 2019). Variational principles for quantum neural networks (QNNs) were studied in (Farhi & Neven,
2018), with extensions for quanvolutional networks (Henderson et al., 2020), quantum autoencoders (QAEs) (Romero
et al., 2017), quantum support vector machines (QSVMs) (Suykens, 2013; Rebentrost et al., 2014), quantum graph neural
networks (QGNNs) (Zheng et al., 2021), and quantum generative adversarial networks (QGANs) (Lloyd & Weedbrook,
2018; Dallaire-Demers & Killoran, 2018). It was proved that QNNs hold the universal approximation property (Pérez-Salinas
et al., 2020). More importantly, quantum circuits can be analytically differentiable with a parameter-shift rule (Schuld et al.,
2019) that enables stochastic gradient optimization of QNN.

Tensor network Tensor network (Roberts et al., 2019) provides a way to represent/manipulate multi-dimensional arrays
of data by factorizing into a network of lower-dimensional tensors. Many tensor rank decomposition methods are used for
tensor networks, including matrix product state (MPS) and tree tensor network (TTN) (Huggins et al., 2019), based on
tensor train decomposition (TTD) and Hierarchical Tucker decomposition (HTD), respectively. More sophisticated ones
used in QML include multi-scale entanglement renormalization ansatz (MERA) (Vidal, 2008) and projected entangled-pair
states (PEPS) (Orús, 2014). Tensorization provides efficient parameterization of DNN architecture (Novikov et al., 2015).

B. Comparison of unitary mapping
Fig. 3 shows the comparison of different unitary mapping methods over different matrix size N for a rank of K = 4. We
examined the unitarity test and speed bench on RTX6000 GPU for forward and backward processing. The unitarity error
measures an averaged ℓ∞ norm of ∥QQ⊤ − I∥∞ over a batch size of 32 and 10 random seeds. The exponential mapping
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Figure 3. Unitarity error analysis and speed bench including forward and backward passes for different unitary mapping methods as a
function of matrix size of N for a rank of K = 4 on an NVIDIA RTX6000 GPU 24GB.

uses torch.linalg.matrix exp, and matrix inversion for Cayley transform uses torch.linalg.solve. We
assume P = 18 polynomial order for Taylor and Neumann series. It was found that Neumann series and exponential
mapping become inaccurate as the matrix size is increased. While Pauli parameterization has relatively higher error than
the rest of methods, it can be much faster in large matrix size. Householder reflections and Givens rotations had slower
behaviors due to sequential nature. Although Rademacher diagonal matrix of {±1}K has a low complexity and perfect
unitarity (here, we used ReinMax trick), it alone does not cover the Stiefel manifold VK(N). Overall, Taylor series method
showed a good trade-off between accuracy and speed. Note that most large foundation models use thousands for a matrix
size of N per weight. Therefore, the accuracy and speed at large matrix size regimes are important. With these trade-offs in
mind, in the experiments we evaluate the Taylor QT and Pauli QP parametrizations, where Pauli gives logarithmic number
of trainable parameters in the ambient dimension and Taylor shows satisfactory speed for larger models.

C. Further details and discussions on Quantum-PEFT
To further elaborate on Quantum-PEFT, we provide the tensor network diagrams in Figure 4 exemplifying its mechanism
w.r.t. other LoRA-based methods.

C.1. Quantum-inspired PEFT modules

Generalized measurements As well as generalized-RY gates and CZ gates, we introduce generalized measurement
module. Although quantum operation is linear, quantum measurement can be nonlinear in general. Hence, motivated from
the quantum measurement to solve the linearity constraint, we can impose nonlinearity using activation functions. Using
log-softmax after squaring corresponds to measuring quantum state probability. For our case, such nonlinear activations can
be imposed at any mid-circuit operations. In Fig. 4, we introduce a new tensor diagram with delay symbols representing the
nonlinear node. Nonlinear mapping can be also trainable when using another multi-layer perceptron (MLP) as used in LoDA.
Letting f(·) be such a nonlinear function, tensor contraction can be done via nonlinear Einstein sum: fout(

∑
f in(

∏
Q

[k]
i,j))

for parent tensor nodes {Q[k]}, where fout and f in denote outer nonlinearity and inner nonlinearity, respectively. Note that
the nonlinear nodes can only pass the data after tensor contraction from all ancestor nodes.

Quantization To further save memory, we can use a standard integer quantization for trainable parameter: θ: θq =
round((θ−µ)/β)β+µ, where scale value β = (θmax−θmin)/(2

n−1) and zero value µ = θmin for n-bit quantization. The
maximum θmax and minimum values θmin are obtained in a chunk of group size g. When the quantization is applied on the
Lie parameters, we employ the straight-through trick for quantization-aware training (QAT), i.e., θ := θq + θ − θ.detach(),
where .detach() means no gradient passing. Once trained, the required memory will be n+ 32/g bits per Lie parameter
when β and µ use floating-point (FP) 16 bits precision.
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C.2. Tensor network implication

Fig. 4 shows tensor diagrams for various LoRA variants. Our Quantum-PEFT framework can unify them with reduced
number of parameters by exploiting trainable orthogonal nodes, trainable diagonal nodes, and trainable nonlinear nodes.
As mentioned, LoRA uses 2-mode tensor train decomposition (TTD) which is also known as matrix product state (MPS)
tensor network. LoDA introduced the nonlinear node in tensor network. AdaLoRA is based on CP decomposition, which
has parameter redundant. LoTR extends LoRA towards higher-mode TTD. SuperLoRA uses another tensor network based
on higher-oder Tucker decomposition (TD), while nonlinear mapping is optionally introduced. In fact, TTD and TD can be
normalized except one node, and hence our Quantum-PEFT based on the Lie algebra can eliminate the redundant parameters
to improve the efficiency for LoRA, LoTR and SuperLoRA. Similarly, our framework provides parameter-efficient unitary
nodes in most other tensor networks including tensor ring decomposition (TRD), hierarchical Tucker decompostion (HTD)
a.k.a. tree tensor network (TTN), multi-scale entanglement renormalization ansatz (MERA), and projected entangled pair
states (PEPS). As descussed, Pauli parameterization based on STD ansatz can further reduce the number of parameters for
those tensor networks into a logarithmic scale. Note that STD parameterization can be regarded as a renormalization step of
each orthogonal node in tensor networks. Fig. 6 shows an example of the STD renormalization step when N is 3-folded
into N ′ = N1/3. The total number of parameters to represent the unitary node for VK(N) can be reduced in a logarithmic
order of logN ′(N). When K = 1, N = 39, N ′ = 32, L = 1, it becomes 180 from 729. Reducing the size of N ′ can further
improve the parameter efficiency.

Table 3 shows an example result for ViT CIFAR10 transfer learning task, using Taylor parameterization (with K = K ′ = 4
and P = 18) for different tensor networks, including CP, TRD, HTD (TTN), TD, and TTD (MPS). We find that all tensor
networks offer competitive performance to LoRA.

C.3. Intrinsic rank impact

We introduced an intrinsic rank K ′ to reduce the trainable parameters than the specified rank K, by masking the top K ′

columns of Lie parameters. In Table 4, we show the impact of intrinsic rank K ′ for Taylor parameterization on ViT transfer
learning task. We can see that decreasing the intrinsic rank K ′ gradually degrade the accuracy and the required number of
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node when K = 1, N = 36, N ′ = 32, L = 1.

parameters. While the subspace rank is K = 8, the number of parameters can be effectively K ′ ≤ K. The performance
degradation from K ′ = 8 to K ′ = 1 is only 0.49%, and more importantly the accuracy is much better than LoRA in Table 8.
For example, LoRA with K = 1 has an accuracy of 98.15%, while Quantum-PEFT QT parameterization with K = 8 and
K ′ = 1 has 98.38%, at the comparable number of parameters. It shows the great potential of masking out the Lie parameters
while keeping higher subspace rank.

C.4. Broader impacts and future work

It is interesting to investigate how we can further reduce the memory for trainable parameters by employing quantization or
pruning.

Mixed-precision tensor network One could consider a mixed-precision tensor network, where each tensor node and
its parameter group can have different precisions. Fig. 7(a) shows an example of Quantum-PEFT in 3-dimensional TRD
tensor network. The TRD is formulated by 3 unitary nodes {Q[k]} and 1 diagonal node Λ. Specifically the (i, j, k)-
th element is given by nonlinear Einstein sum: Wi,j,k = fout(

∑
l,m,n f

in(Q
[1]
l,i,mQ

[2]
m,j,nΛn,nQ

[3]
n,k,l)). As shown in

Fig. 7(b), each node has trainable parameters θ, and we can adaptively assign more bits or fewer bits depending on
the group range ∆i = θi,max − θi,min for the i-th group. For example, the bit loading may use the following strategy:
qi = round(q log2(∆

κ
i /∆̄)) with an average range ∆̄ = E[∆κ

i ] where qi bits are assigned for the i-th group with an
exponent κ >= 0. When κ = 0, it reduces to uniform bit loading: i.e., qi = q for all group i. More sophisticated
but time-consuming strategy is to consider the quantization error of the weight matrix min |Wq − W |, which requires
combinatorial optimization.
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Table 3. Different tensor network results with Taylor parameterization for ViT transfer learning from ImageNet-21k to CIFAR10. Base
ViT is not quantized.

Method CP TRD HTD (TTN) TD TTD (MPS)

# Parameters 0.074M 0.147M 0.026M 0.074M 0.111M
Accuracy 98.53% 98.14% 98.11% 98.05% 98.81%

Table 4. Impact of intrinsic rank K′ for Taylor parameterization for ViT transfer learning from ImageNet-21k to CIFAR10. Base ViT is
quantized with 3-bit integers. Tensor rank is K = 8.

Intrinsic rank K′ 1 2 3 4 5 6 7 8

# Parameters 0.037M 0.074M 0.111M 0.147M 0.184M 0.221M 0.257M 0.294M
Accuracy 98.38% 98.52% 98.76% 98.74% 98.63% 98.79% 98.81% 98.87%

When the bit allocation is zero (i.e., ∆i is close to zero) as shown in Fig. 7(c), it corresponds to structural pruning except
that the masked group can still hold non-zero values µ. Further fine-grained pruning is also possible by nulling out θ if the
value magnitude is smaller than a threshold. Therefore, it can accomplish an adaptive rank mechanism similar to AdaLoRA.

Pretrained model compression In fact, Quantum-PEFT framework can also be applicable to compress the pretrained
model before adaptation. Tensor rank decomposition, quantization and pruning can be applied to pretrained model before
transfer learning tasks, similar to Q-LoRA, R-LoDA, and S-LoDA. For ViT transfer learning task, we evaluated 3-bit
quantization of pre-trained models.

D. Additional experimental results and detailed setups
D.1. GLUE benchmark

Below, we provide a summary of the tasks in the GLUE benchmark that are used in this work.

• SST-2: stands for The Stanford Sentiment Treebank, a dataset on sentiment analysis tasks with two labels. The size of the
training set is 67k, and the size of the test set is 1.8k.

• CoLA, represents The Corpus of Linguistic Acceptability, a dataset on sentence classification with two labels. It consists
of 8.5k training data and 1k test data.

• RTE: stands for The Recognizing Textual Entailment, including 2.5k training data points and 3k test data points.

• MRPC: represents The Microsoft Research Paraphrase Corpus, a dataset on pairwise text classification with 3.7k training
points and 1.7k test points.

• STS-B: represents The Semantic Textual Similarity Benchmark, a task on measuring text similarity with 7k training points
and 1.4k test points.

We fine-tune the query/key/value projection matrices, the output projection in the attention block, and the weight matrices in
two-layer MLPs. For all of the baselines, we follow the hyperparameters in (Zhang et al., 2023). For Quantum-PEFT, we
use QP with L = 1 in all tasks. We select the best learning rate by parameters sweep. We conduct five runs with different
random seeds and report the mean. We use the same number of training epochs as in AdaLoRA. Due to limited computing
resources, we focus on tasks with training instances less than 100k, including SST-2, CoLA, RTE, MRPC, and STS-B.
We select the same number of epochs for Quantum-PEFT as in AdaLoRA. We perform a hyperparameters sweep for the
learning rate over {0.01, 0.03, 0.06, 0.001, 0003, 0.006}. We select the best learning rate and the best checkpoints over each
epoch. We present the hyperparameters for Quantum-PEFT in Table 5.

D.2. E2E benchmark

We fine-tune GPT-2 (Radford et al., 2019) Medium on the common E2E natural language generation benchmark (Novikova
et al., 2017), following the setups of (Hu et al., 2021). GPT2-Medium has 354M parameters with 24 transformer layers.
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Table 5. Hyperparameter configurations for Quantum-PEFT on the GLUE benchmark.

Hyperparameter SST-2 CoLA RTE MRPC STS-B

# GPUs 1 1 1 1 1
Optimizer AdamW AdamW AdamW AdamW AdamW
Learning Rate Schedule Linear Linear Linear Linear Linear
Weight Decay 0.01 0.01 0.01 0.01 0.01
Batch Size 256 128 128 128 128
Epochs 24 25 50 30 25
Warmup ratio 0.1 0.1 0.1 0.1 0.1
Max sequence length 128 64 320 320 128
Rank K 3 3 3 3 3
α 32 32 32 32 32
Learning Rate 0.006 0.01 0.06 0.01 0.03
Unitary Parametrization QP (L = 1) QP (L = 1) QP (L = 1) QP (L = 1) QP (L = 1)

The E2E benchmark consists of 42,200 samples for training, 4,600 for validation, and 4,600 for testing. We compare
Quantum-PEFTwith LoRA (Hu et al., 2021), AdaLoRA (Zhang et al., 2023), and full FT. Full FT results are sourced from
prior works (Zi et al., 2023). For fair comparison, we use the same training settings and hardware for LoRA, AdaLoRA, and
Quantum-PEFT. We train LoRA, AdaLoRa, and Quantum-PEFTusing 4 NVIDIA A100 GPUs using the code provided by
the respective authors. We apply LoRA, AdaLoRA, and Quantum-PEFTto the query and value projection layers in each
attention block and use the same number of training epochs, batch size, and LoRA scaling, except different learning rate.
Table 6 lists hyperparameters for the experiment on transfer learning task of E2E benchmark.

Table 7 shows the results for E2E Challenge dataset on 5 evaluation metrics. Quantum-PEFT’s performance is on par or
better than LoRA with approximately 4 times less trainable parameters. For the BLEU metric, our method obtains 0.58
performance gain compared with LoRA, with comparable results on the other metrics. We report results from the final
epoch, whereas (Hu et al., 2021) presented the best performance observed during training, and use 4 GPUs rather than 1
due to time constraints, which may contribute to the observed variances w.r.t. the reported performance in (Hu et al., 2021).
These results demonstrate that Quantum-PEFTcan achieve a comparable level of accuracy to the baselines while using
significantly fewer parameters.

D.3. ViT CIFAR10 task

We evaluate a transfer learning task of the ViT model pre-trained on ImageNet-21k (Deng et al., 2009) towards CIFAR10
dataset (Krizhevsky et al., 2009). Detailed settings are found in Appendix D. The base model is frozen after being quantized
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Table 6. Hyperparameter configurations for LoRA and Quantum-PEFT on the E2E benchmark for GPT2 Medium.

Hyperparameter LoRA Quantum-PEFT

# GPUs 4 4
Optimizer AdamW AdamW
Learning Rate Schedule Linear Linear
Weight Decay 0.01 0.01
Batch Size 8 8
Epochs 5 5
Warmup Steps 500 500
Label Smooth 0.1 0.1
Rank K 4 2 (K ′ = 1)
α 32 32
Learning Rate 0.0002 0.002
Unitary Parametrization — QT (P = 3)

Table 7. Results for different adaptation methods on the E2E benchmark and GPT2 Medium model. Quantum-PEFT achieves similar
performance as LoRA with 4 times less trainable parameters.

Method # Trainable
Parameters

BLEU NIST METEOR ROUGE-L CIDEr

FT 354.92M 68.2 8.62 46.2 71.0 2.47

AdaLoRA 0.38M 64.64 8.38 43.49 65.90 2.18
LoRA 0.39M 66.88 8.55 45.48 68.40 2.31

Quantum-PEFT 0.098M 67.46 8.58 45.02 67.36 2.31

with 3 bits, and adapters for query and value projections are updated. For Quantum-PEFT, we use QP parameterization
for K = L = 1 with 2-split Hadamard product. Table 8 shows the comparison of full FT, LoRA, and Quantum-PEFT.
When no fine-tuning was applied, the classification accuracy of the original ViT is poor, and thus fine-tuning is important.
Compared to the full FT which requires 95.81M parameters, PEFT can significantly reduce the required number of trainable
parameters, especially with our Quantum-PEFT. For example, Quantum-PEFT has 21-hold fewer parameters than LoRA
with rank 4. More importantly, Quantum-PEFT shows superior performance despite the fact of the fewest parameters.

Table 9 shows the QAT performance with different number of bits per the Lie parameter for Taylor parameterization
(K = K ′ = 4 and P = 18). Here, the base ViT model is not quantized, while only adapters are quantized. We use
g = 128 and FP16 for scale and zero values β and µ. It is observed that reducing the precision for the Lie parameterization
can gradually degrade. Nevertheless, thanks to QAT, no significant loss can be seen even with 1-bit integer quantization
from FP32: i.e., 0.65% degradation. We also evaluate the performance of mixed-precision Taylor parameterization. One
can see that adaptive bit loading can significantly improve the performance at few-bit quantization regimes. For instance,
adaptive 1-bit quantization of Lie parameters has just 0.17% loss from FP32, and 0.28% improvement from uniform 1-bit
quantization. This may come from the effective pruning gain. More details of model decomposition and quantization are
found in Appendix C.2 and C.4.

Table 10 lists hyperparameters for the experiment on transfer learning task of ViT. The base ViT model
(google/vit-base-patch16-224)1 pretrained on ImageNet-21k has 12 layers of multi-head attention modules, each
of which has 12 heads, 768 features, and a token length of 769. CIFAR10 is an image classification dataset having 10 classes
of 32× 32 colored images with 50k training samples and 10k test samples. We use up-sampling to 224× 224 resolutions
with random resized cropping and horizontal flip. The original classifier head has 1000 class output, and we selected 10
outputs based on the prediction score of CIFAR10 training data in prior to PEFT process. All weights and biases of the
base ViT model including the classifier head are frozen after being quantized with 3-bit integers via rounding as described
in Appendix C.4. Therefore, the base model is compressed from floating-point 32 bits to integer 3 bits (with auxiliary scale
and zero values β and µ for g = 128 group), i.e., from 330MiB to 34MiB storage. It was confirmed that less than 3-bit

1https://huggingface.co/google/vit-base-patch16-224

14

https://huggingface.co/google/vit-base-patch16-224


Table 8. Results for ViT transfer learning from ImageNet-21k to CIFAR10. Base ViT is quantized with 3 bits.
Method Original FT LoRAK=1 LoRAK=2 LoRAK=4 Quantum-PEFT

# Parameters — 85.81M 0.037M 0.074M 0.147M 0.007M
Accuracy 76.21% 98.05% 98.14% 98.30% 98.39% 98.46%

Table 9. Quantization impact on Lie parameters with Taylor parameterization for ViT transfer learning from ImageNet-21k to CIFAR10.
Base ViT is not quantized.

Quantization FP32 INT8 INT4 INT3 INT2 INT1

# Bits per parameter 32 8.25 4.25 3.25 2.25 1.25
Accuracy (Uniform Bit Loading) 98.81% 98.79% 98.78% 98.75% 98.67% 97.96%
Accuracy (Adaptive Bit Loading) 98.81% 98.78% 98.87% 98.80% 98.77% 98.64%

quantization for the base ViT model compression had poor performance: 56.0% accuracy with 1 bit and 97.4% with 2 bits.
The required run-time on GPU A40 40GB was about 3.37 second per iteration, and 5284.16 second per epoch.

Table 10. Hyperparameter configurations for LoRA and Quantum-PEFT on the CIFAR-10 transfer learning task for ViT.

Hyperparameter LoRA Quantum-PEFT

# GPUs 1 1
Optimizer AdamW AdamW
Learning Rate Schedule Constant Constant
Weight Decay 0.01 0.01
Batch Size 32 32
Epochs 100 100
Patience 5 5
Rank K 1,2,4 1, 4
Learning Rate 0.001 0.003
Unitary Parametrization — QP (L = 1), QT (P = 18)

15


