
Under review as a conference paper at ICLR 2023

EXCLUSIVE SUPERMASK SUBNETWORK TRAINING FOR
CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Continual Learning (CL) methods mainly focus on avoiding catastrophic forgetting
and learning representations that are transferable to new tasks. Recently, Wortsman
et al. (2020) proposed a CL method, SupSup, which uses a randomly initialized,
fixed base network (model) and finds a supermask for each new task that selectively
keeps or removes each weight to produce a subnetwork. They prevent forgetting
as the network weights are not being updated. Although there is no forgetting,
the performance of supermask is sub-optimal because fixed weights restrict its
representational power. Furthermore, there is no accumulation or transfer of knowl-
edge inside the model when new tasks are learned. Hence, we propose EXSSNET
(Exclusive Supermask SubNEtwork Training), that performs exclusive and non-
overlapping subnetwork weight training. This avoids conflicting updates to the
shared weights by subsequent tasks to improve performance while still preventing
forgetting. Furthermore, we propose a novel KNN-based Knowledge Transfer
(KKT) module that dynamically initializes a new task’s mask based on previous
tasks for improving knowledge transfer. We demonstrate that EXSSNET outper-
forms SupSup and other strong previous methods on both text classification and
vision tasks while preventing forgetting. Moreover, EXSSNET is particularly ad-
vantageous for sparse masks that activate 2-10% of the model parameters, resulting
in an average improvement of 8.3% over SupSup. Additionally, EXSSNET scales
to a large number of tasks (100) and our KKT module helps to learn new tasks
faster while improving the overall performance.1

1 INTRODUCTION

In artificial intelligence, the overarching goal is to develop autonomous agents that can learn to
accomplish a set of tasks. Continual Learning (CL) (Ring, 1998; Thrun, 1998; Kirkpatrick et al.,
2017) is a key ingredient for developing agents that can accumulate expertise on new tasks. However,
when a model is sequentially trained on tasks t1 and t2 with different data distributions, the model’s
ability to extract meaningful features for the previous task t1 degrades. This loss in performance on
the previously learned tasks, is referred to as catastrophic forgetting (CF) (McCloskey & Cohen, 1989;
Zhao & Schmidhuber, 1996; Thrun, 1998; Goodfellow et al., 2013). Forgetting is a consequence
of two phenomena happening in conjunction: (1) not having access to the data samples from the
previous tasks, and (2) multiple tasks sequentially updating shared model parameters resulting in
conflicting updates, which is called as parameter interference (McCloskey & Cohen, 1989).

Recently, some CL methods avoid parameter interference by taking inspiration from the Lottery Ticket
Hypothesis (Frankle & Carbin, 2018) and Supermasks (Zhou et al., 2019) to exploit the expressive
power of sparse subnetworks. Zhou et al. (2019) observed that the number of sparse subnetwork
combinations is large enough (combinatorial) that even within randomly weighted neural networks,
there exist supermasks that achieve good performance. A supermask is a sparse binary mask that
selectively keeps or removes each connection in a fixed and randomly initialized network to produce
a subnetwork with good performance on a given task. We call this the subnetwork as supermask sub-
network that is shown in Figure 1, highlighted in red weights. Building upon this idea, Wortsman et al.
(2020) proposed a CL method, SupSup, which initializes a network with fixed and random weights

1Our code is uploaded as supplementary material.

1

Under review as a conference paper at ICLR 2023

Overlapping weights are not updated

Randomly initialized
weights

Mask over
weights

Mask over
weights

Mask over
weights

Find
 M

as
k

Fin
d M

as
k

Fin
d M

as
k

Ta
sk

1
Tr

ai
ni

ng

Ta
sk

2
Tr

ai
ni

ng

Ta
sk

3
Tr

ai
ni

ng

Train
non-overlapping

weights

Train
non-overlapping

 weights

Train
non-overlapping

weights

: Trained weights

: Untrained weights

: Overlapping weights

: Task1 : Task2

: Task3

Figure 1: EXSSNET diagram. We start with random weights W (0). For task 1, we first learn a supermask M1

(the corresponding subnetwork is marked by red color, column 2 row 1) and then train the weight corresponding
to M1 resulting in weights W (1) (bold red lines, column 1 row 2). Similarly, for task 2, we learn the mask M2

over fixed weights W (1). If mask M2 weights overlap with M1 (marked by bold dashed green lines in column
3 row 1), then only the non-overlapping weights (solid green lines) of the task 2 subnetwork are updated (as
shown by bold and solid green lines column 3 row 2). These already trained weights (bold lines) are not updated
by any subsequent task. Finally, for task 3, we learn the mask M3 (blue lines) and update the solid blue weights.

and then learns a different supermask for each new task. This allows them to prevent catastrophic
forgetting (CF) as there is no parameter interference (because the model weights are fixed).

Although SupSup (Wortsman et al., 2020) prevents CF, there are some problems to using supermasks
for CL: (1) Fixed random model weights in SupSup limits the supermask subnetwork’s representa-
tional power resulting in sub-optimal performance. As shown in Figure 2, for a single task the test
accuracy of SupSup is approximately 10% worse compared to a fully trained model where all model
weights are updated. As a possible remedy, one could try to naively train the weights corresponding
to supermask subnetworks of different tasks; however, it can lead to CF as shown in Figure 3. This
happens because subnetworks for different tasks can overlap and training subnetworks weights might
result in parameter interference. (2) When learning a task, there is no mechanism for transferring
knowledge from previously learned tasks to better learn the current task. Moreover, the model is not
accumulating knowledge over time as they weights are not being updated.

We overcome the aforementioned issues, we propose our method, EXSSNET (Exclusive Supermask
SubNEtwork Training), pronounced as ‘excess-net’, which first learns a mask for a task and then
selectively trains a subset of weights from the supermask subnetwork. We train the weights of this
subnetwork via exclusion that avoids updating parameters from the current subnetwork that have
already been updated by any of the previous tasks. This helps us to prevent forgetting. This procedure
is demonstrated in Figure 1 for learning three tasks sequentially. Training the supermask subnetwork’s
weights increases its representational power and allows EXSSNET to encode task-specific knowledge
inside the subnetwork. This solves the first problem and allows EXSSNET to perform comparable
to a fully trained network on individual tasks; and when learning multiple tasks, the exclusive
subnetwork training improves the performance of each task while still preventing forgetting.

To address the second problem of knowledge transfer, we propose a k-nearest neighbors based
knowledge transfer (KKT) module that transfers relevant information from the previously learned
tasks to improve performance on new tasks while learning them faster. Our KKT module uses KNN
classification to select a subnetwork from the previously learned tasks that has better than random
predictive power for the current task and use it as a starting point to learn the new tasks.

Next, we show our method’s advantage by experimenting with both natural language and vision tasks.
For natural language, we evaluate on WebNLP classification tasks (de Masson d'Autume et al., 2019;
Huang et al., 2021) and GLUE benchmark tasks (Wang et al., 2018), whereas, for vision, we evaluate
on SplitMNIST (Zenke et al., 2017; De Lange & Tuytelaars, 2021), SplitCIFAR100 (Chaudhry et al.,
2018; De Lange & Tuytelaars, 2021), and SplitTinyImageNet (Buzzega et al., 2020) datasets. We
show that for both language and vision domains, EXSSNET outperforms multiple strong and recent
continual learning methods based on replay, regularization, distillation, and parameter isolation. For
the vision domain, EXSSNET outperforms the strongest baseline by 4.8% and 1.4% on SplitCIFAR
and SplitTinyImageNet datasets respectively, while surpassing multitask model and bridging the
gap to training individual models for each task. In addition, for GLUE datasets, EXSSNET is 2%

2

Under review as a conference paper at ICLR 2023

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

30

40

50

60

Methods
ExSSNeT
SSNeT
SupSup
Fully Trained

Mask Density

A
ve

ra
ge

 T
es

t A
cc

ur
ac

y

Figure 2: Test accuracy versus the mask den-
sity for 100-way CIFAR100 classification. Re-
sults are averaged over three seeds.

0 10 20 30 40 50 60 70 80

30

40

50

60

70

80

Methods
ExSSNeT
SSNeT
SupSup

Average Sparse Overlap

A
ve

ra
ge

 T
es

t A
cc

ur
ac

y

Figure 3: Average Test accuracy on five 20-way
tasks from SplitCIFAR100 as a function of sparse
overlap. Results are averaged over three seeds.

better than the strongest baseline methods and surpasses the performance of multitask learning (that
has access to all the tasks at once and does not suffer from CF). Moreover, EXSSNET obtains an
average improvement of 8.3% over SupSup for sparse masks with 2− 10% of the model parameters
and scales to a large number of tasks (100). Furthermore, EXSSNET with the KKT module learns
new tasks in as few as 30 epochs compared to 100 epochs without it, while achieving 3.2% higher
accuracy on the SplitCIFAR100 dataset. In summary, our contributions are listed below:

• We propose a simple and novel method to improve mask learning by combining it with exclusive
subnetwork weight training to improve CL performance while preventing CF.

• We propose a KNN-based Knowledge Transfer (KKT) module for supermask initialization that
dynamically identifies previous tasks to transfer knowledge to learn new tasks better and faster.

• Extensive experiments on language and vision tasks show that EXSSNET outperforms strong
baselines and is comparable to multitask model for language tasks while surpassing it for vision
tasks. Moreover, EXSSNET works well for sparse masks and scales to a large number of tasks.

2 MOTIVATION

Using sparsity for CL is an effective technique to learn multiple tasks, i.e., by encoding them in
different subnetworks inside a single model. SupSup (Wortsman et al., 2020) is an instantiation of
this that initializes the network weights randomly and then learns a separate supermask for each task
as shown in the SupSup diagram in Appendix Figure 7. They prevent CF because the weights of the
network are fixed and never updated. However, this is a crucial problem as discussed below.

Problem 1 - Sub-Optimal Performance of Supermask: Although fixed network weights in SupSup
prevent CF, this also restricts the network’s representational capacity, leading to worse performance
compared to a fully trained network. We demonstrate this in Figure 2, where we report the test
accuracy of different methods with respect to the fraction of network parameters selected by the mask,
i.e., the mask density for an underlying ResNet18 model (Wortsman et al., 2020) on a single 100-way
classification on CIFAR100 dataset. The fully trained ResNet18 model (dashed green line) achieves
an accuracy of 63.9%. Similar to Zhou et al. (2019), we observe that the performance of SupSup
(yellow dashed line) is at least 8.3% worse compared to a fully trained model. As a possible partial
remedy, we propose a simple solution, SSNET (Supermask SubNEtwork Training), that first finds a
subnetwork for a task and then trains the subnetwork’s weights. This increases the representational
capacity of the subnetwork because there are more trainable parameters. For a single task, the test
accuracy of SSNET is better than SupSup for all mask densities and matches the performance of the
fully trained model beyond a density threshold. But as shown below, when learning multiple tasks
sequentially, SSNET gives rise to parameter interference that results in CF.

Problem 2 - Parameter Interference Due to Subnetwork Weight Training for Multiple Tasks:
Next, we demonstrate that when learning multiple tasks sequentially, SSNET can still lead to CF. In
Figure 3, we report the average test accuracy versus the fraction of overlapping parameters between
the masks of different tasks, i.e., the sparse overlap (see Equation 1) for five different 20-way
classification tasks from SplitCIFAR100 dataset with ResNet18 model. We observe that SSNET
outperforms SupSup for lower sparse overlap but as the sparse overlap increases, the performance
declines because the supermask subnetworks for different tasks have more overlapping (common)

3

Under review as a conference paper at ICLR 2023

weights (bold dashed lines in Figure 1). This leads to higher parameter interference resulting in
increased forgetting which suppresses the gain from subnetwork weight training.

To address this second problem, our final proposed method, EXSSNET selectively trains a subset of
the weights in the supermask subnetwork to prevent parameter interference. When learning multiple
tasks, this prevents CF resulting in strict improvement in performance over SupSup as shown in Figure
3 while having the representational power to bridge the gap with fully trained models, see Figure 2.

3 METHOD

As shown in Figure 1, when learning a new task ti, EXSSNET follows three steps: (1) We learn a
supermask Mi for the task; (2) We use all the previous tasks’ masks M1, . . . ,Mi−1 to create a free
parameter mask Mfree

i , that finds the parameters selected by the mask Mi that were not selected
by any of the previous masks; (3) We update the weights corresponding to the mask Mfree

i as this
avoids parameter interference. Now, we formally describe all the step of our method EXSSNET
(Exclusive Supermask SubNEtwork Training) for a Multi-layer perceptron (MLP).

Notation: When finding supermasks and training subnetworks weight, we can treat each layer l of
an MLP network separately. An intermediate layer l has nl nodes denoted by V(l) = {v1, . . . , vnl

}.
For a node v in layer l, let Iv denote its input and Zv = σ(Iv) denote its output, where σ(.) is the
activation function. Given this notation, Iv can be written as Iv =

∑
u∈V(l−1) wuvZu, where wuv is

the network weight connecting node u to node v. The complete network weights for the MLP are
denoted by W . When training the task ti, we have access to the supermasks from all previous tasks
{Mj}i−1

j=1 and the model weights W (i−1) obtained after learning task ti−1.

3.1 EXSSNET: EXCLUSIVE SUPERMASK SUBNETWORK TRAINING

Finding Supermasks: Following Wortsman et al. (2020), we use the algorithm of Ramanujan et al.
(2019) to learn a supermask Mi for the current task ti. The supermask Mi is learned with respect to
the underlying model weights W (i−1) and the mask selects a fraction of weights that lead to good
performance on the task without training the weights. To achieve this, we learn a score suv for each
weight wuv, and once trained, these scores are thresholded to obtain the mask. Here, the input to a
node v is Iv =

∑
u∈V(l−1) wuvZumuv , where muv = h(suv) is the binary mask value and h(.) is a

function which outputs 1 for top-k% of the scores in the layer with k being the mask density. Next,
we use a straight-through gradient estimator (Bengio et al., 2013) and iterate over the current task’s
data samples to update the scores for the corresponding supermask Mi as follows,

suv = suv − αĝsuv
; ĝsuv

=
∂L
∂Iv

∂Iv
∂suv

=
∂L
∂Iv

wuvZu

Finding Exclusive Mask Parameters: Given a learned mask Mi, we use all the previous tasks’
masks M1, . . . ,Mi−1 to create a free parameter mask Mfree

i , that finds the parameters selected by
the mask Mi that were not selected by any of the previous masks. We do this by – (1) creating a new
mask M1:i−1 containing all the parameters already updated by any of the previous tasks by taking a
union of all the previous masks {Mj}i−1

j=1 by using the logical or operation, and (2) Then we obtain a
mask Mfree

i by taking the intersection of all the network parameters not used by any previous task
which is given by the negation of the mask M1:i−1 with the current task mask Mi via a logical and
operation. Next, we use this mask Mfree

i for the exclusive supermask subnetwork weight training.

Exclusive Supermask Subnetwork Weight Training: For training the subnetwork parameters for
task ti given the free parameter mask Mfree

i , we perform the forward pass on the model after applying
the mask Mfree

i as model(x,W ⊙Mfree
i), where ⊙ is the element-wise multiplication. Hence, dur-

ing the weight training, only the parameters corresponding to the mask Mfree
i are updated because the

gradient value is 0 for all the weights wuv where mfree
uv = 0. While during the inference on task ti we

use the mask Mi. In contrast, SSNET uses the task mask Mi both during the training and inference as
model(x,W (i−1)⊙Mi). This updates all the parameters in the mask including the parameters that are
already updated by previous tasks that result in CF. Therefore, in cases where the sparse overlap is high,

4

Under review as a conference paper at ICLR 2023

EXSSNET is preferred over SSNET. To summarize, EXSSNET circumvents the CF issue of SSNET
while benefiting from the subnetwork training to improve overall performance as shown in Figure 3.

3.1.1 SPACE, TIME, AND MEMORY COMPLEXITY OF EXSSNET

For training, we store an additional set of scores on GPU with size as the model weight. The additional
GPU memory required is a small fraction because the model activations account for a huge fraction of
the total GPU memory. Our runtime is similar to training the weight of a model with < 5% overhead
due to the logical operations on masks and masking weight during the forward passes. For training
time comparisons refer to Appendix Table 10. On the disk, we need to store k ∗ |W | updated weights
of 32-bits and boolean mask which takes 1-bit for each parameter. Hence, we take max(|W | ∗ k ∗
t, |W |) ∗ 32 + |W | ∗ 1 bits in total as in the worst case we need to store all |W | model weights.

3.2 KKT: KNN-BASED KNOWLEDGE TRANSFER MODULE

When learning multiple tasks, it is a desired property to transfer information learned by the previous
tasks to achieve better performance on new tasks and to learn them faster (Biesialska et al., 2020).
Hence, we propose a K-Nearest Neighbours (KNN) based knowledge transfer (KKT) module that
uses KNN classification to dynamically find the most relevant previous task (Veniat et al., 2021)
to initialize the supermask for the current task. To be more specific, before learning the mask Mi

for the current task ti, we randomly sample a small fraction of data from task ti and split it into
a train and test set. Next, we use the trained subnetworks of each previous task t1, . . . , ti−1 to obtain
features on this sampled data. Then we learn i− 1 independent KNN-classification models using
these features. Then we evaluate these i− 1 models on the sampled test set to obtain accuracy scores
which denote the predictive power of features from each previous task for the current task. Finally,
we select the previous task with the highest accuracy on the current task. If this accuracy is better
than random then we use its mask to initialize the current task’s supermask. This enables EXSSNET
to transfer information from the previous task to learn new tasks better and faster.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND TRAINING DETAILS

Datasets: For natural language domain, we follow the shared text classification setup of IDBR
(Huang et al., 2021), LAMOL (Sun et al., 2019), and MBPA++ (De Lange et al., 2019) to sequentially
learn five text classification tasks; (1) Yelp Sentiment analysis (Zhang et al., 2015); (2) DBPedia
for Wikipedia article classification (Mendes et al., 2012) (3) Yahoo! Answer for Q&A classification
(Chang et al., 2008); (4) Amazon sentiment analysis (McAuley & Leskovec, 2013) (5) AG News
for news classification (Zhang et al., 2015). We call them WebNLP classification tasks for easier
reference. While comparing with the previous state-of-the-art text methods, we use the same training
and test set as IDBR and LAMOL containing 115,000/500/7,600 Train/Val/Test examples. For our
ablation studies, we follow IDBR and use a sampled dataset, please see Appendix Table 7 for statistics.
Additionally, we create a CL benchmark using the popular GLUE classification tasks (Wang et al.,
2018) consisting of more than 5k train samples. We use the official validation split as test data
and use 0.1% of the train data to create a validation set. Our final benchmark includes five tasks;
MNLI (353k/39k/9.8k), QQP (327k/36k/40k), QNLI (94k/10k/5.4k), SST-2 (60k/6.7k/872), CoLA
(7.6k/856/1k). For vision experiments, we follow SupSup and use three CL benchmarks, SplitMNIST
(Zenke et al., 2017) SplitCIFAR100 (Chaudhry et al., 2018) , and SplitTinyImageNet (Buzzega et al.,
2020) datasets with 10, 100 and 200 total classes respectively.

Metrics: We follow Chaudhry et al. (2018) and evaluate our model after learning task t on all the tasks,
denoted by T . This gives us an accuracy matrix A ∈ Rn×n, where ai,j represents the classification
accuracy on task j after learning task i. We want the model to perform well on all the tasks it has
been learned. This is measured by the average accuracy, A(T) = 1

N

∑N
k=1 aN,k, where N is the

number of tasks. Next, we want the model to retain performance on the previous tasks when learning
multiple tasks. This is measured by the forgetting metric (Lopez-Paz & Ranzato, 2017), F (T) =

1
N−1

∑N−1
t=1 (maxk∈{1,...,N−1} ak,t − aN,t). This is the average difference between the maximum

accuracy obtained for task t and its final accuracy. Higher accuracy and lower forgetting are desired.

5

Under review as a conference paper at ICLR 2023

Method (↓) GLUE WebNLP
Order (→) S1 S2 S3 S4 S5 Average
Random 33.3 (-) 7.14 (-) 7.14 (-) 7.14 (-) 7.14 (-) 7.14 (-)
Multitask 79.9 (0.0) 77.2 (0.0) 77.2 (0.0) 77.2 (0.0) 77.2 (0.0) 77.2 (0.0)
Individual 87.7 (0.0) 79.5 (0.0) 79.5 (0.0) 79.5 (0.0) 79.5 (0.0) 79.5 (0.0)

FT 14.1 (86.0) 26.9 (62.1) 22.8 (67.6) 30.6 (55.9) 15.6 (76.8) 24.0 (65.6)
AdaptBERT + FT 24.7 (53.4) 20.8 (68.4) 19.1 (70.9) 23.6 (64.5) 14.6 (76.0) 19.6 (70.0)
AdaptBERT + Replay 76.8 (3.8) 73.2 (3.0) 74.5 (2.0) 74.5 (2.0) 74.6 (2.0) 74.2 (2.3)
MultiAdaptBERT 78.5 (0.0) 76.7 (0.0) 76.7 (0.0) 76.7 (0.0) 76.7 (0.0) 76.7 (0.0)
Prompt Tuning 76.3 (0.0) 66.3 (0.0) 66.3 (0.0) 66.3 (0.0) 66.3 (0.0) 66.3 (0.0)
Regularization 72.5 (8.8) 76.0 (2.8) 74.9 (3.8) 76.4 (1.8) 76.5 (2.0) 76.0 (2.6)
Replay 77.7 (4.8) 75.1 (3.1) 74.6 (3.5) 75.2 (2.2) 75.7 (3.1) 75.1 (3.0)
MBPA++† - 74.9 (-) 73.1 (-) 74.9 (-) 74.1 (-) 74.3 (-)
LAMOL† - 76.1 (-) 76.1 (-) 77.2 (-) 76.7 (-) 76.5 (-)
IDBR 73.0 (6.8) 75.9 (2.7) 75.4 (3.5) 76.5 (1.6) 76.4 (1.9) 76.0 (2.4)
SupSup 78.3 (0.0) 75.9 (0.0) 76.1 (0.0) 76.0 (0.0) 75.9 (0.0) 76.0 (0.0)

SSNET 78.4 (3.6) 76.3 (0.8) 76.3 (0.8) 76.4 (0.3) 76.3 (0.3) 76.3 (0.6)
EXSSNET 80.5 (0.0) 77.0 (0.0) 77.1 (0.0) 76.7 (0.0) 76.9 (0.0) 76.9 (0.0)

Table 1: Comparing average test accuracy ↑ (and forgetting metric ↓) for multiple tasks and sequence orders
with state-of-the-art (SotA) methods. Results with † are taken from (Huang et al., 2021).

Sparse Overlap to Quantify Parameter Interference: Next, we propose a measure to quantify pa-
rameter interference for a task i, i.e., the fraction of the parameters in mask Mi that are already updated
by some previous task. We define sparse overlap as the difference between the number of parameters
selected by mask Mi and Mfree

i divided by the total parameters selected by Mi. Formally, we define
sparse overlap (SO) between current supermask Mi and supermasks for previous tasks {Mj}i−1

j=1 as,

SO(Mi, {Mj}i−1
j=1) =

sum(Mi)− sum(Mfree
i)

sum(Mi)
; Mfree

i = Mi ∧ ¬(∨i−1
j=1(Mj)) (1)

where ∧,∨,¬ are logical and, or, and not operations.

Previous Methods and Baselines: For both vision and language (VL) tasks, we compare with:
(VL.1) Naive Training/Finetuning (Yogatama et al., 2019): where for the vision domain we train all
model parameters from scratch whereas for the language domain we finetune BERT model weights for
each task sequentially. (VL.2) Experience Replay (ER) (de Masson d'Autume et al., 2019): we replay
previous tasks examples when we train new tasks; (VL.3) Multitask Learning (Crawshaw, 2020):
where all the tasks are used jointly to train the model and have strong performance; (VL.4) Individual
Models: where we train a separate model for each task. This is considered an upper bound for CL;
(VL.5) Supsup (Wortsman et al., 2020). For natural language (L), we further compare with the follow-
ing methods: (L.6) Regularization (Huang et al., 2021): Along with the Replay method, we regularize
the hidden states of the BERT classifier with an L2 loss term; We show three Adapter BERT (Houlsby
et al., 2019) variants, (L.7) AdaptBERT + FT where we have single adapter which is finetuned
for all task; (L.8) AdaptBERT + ER where a single adapter is finetuned with replay; (L.9) Multi-
AdaptBERT where a separate adapter is finetuned for each task; (L.10) Prompt Tuning (Li & Liang,
2021) that learns 50 different continuous prompt tokens for each task. (L.11) MBPA++ (de Mas-
son d'Autume et al., 2019) perform replay with random examples during training and does local adap-
tation during inference to select replay example; (L.12) LAMOL (Sun et al., 2019) uses a language
model to generate pseudo-samples for previous tasks for replay; (L.13) IDBR (Huang et al., 2021) dis-
entangles hidden representations into generic and task-specific representations and regularizes them
while also performing replay. For vision task (V), we additionally compare with two popular regular-
ization based methods, (V.6) Online EWC (Schwarz et al., 2018), (V.7) Synaptic Intelligence (SI)
(Zenke et al., 2017); one knowledge distillation method, (V.8) Learning without Forgetting (LwF)
(Li & Hoiem, 2017), three additional experience replay method, (V.9) AGEM (Chaudhry et al., 2018),
(V.10) Dark Experience Replay (DER) (Buzzega et al., 2020), (V.11) DER++ (Buzzega et al., 2020).

Implementation Details: We focus on the task incremental setting (Hsu et al., 2018) and unless
otherwise specified, we obtain supermasks with a mask density of 0.1. For language tasks, unless
specified otherwise we initialize the token embedding for our methods using a frozen BERT-base-
uncased (Devlin et al., 2018) model’s representations using Huggingface (Wolf et al., 2020). We use
a static CNN model from Kim (2014) as our text classifier. Following Sun et al. (2019); Huang et al.

6

Under review as a conference paper at ICLR 2023

Method S-MNIST S-CIFAR100 S-TinyImageNet
Multitask 96.5 (0.0) 53.0 (0.0) 45.9 (0.0)
Individual 99.7 (0.0) 75.5 (0.0) 53.7 (0.0)

Naive Sequential 49.6 (25.0) 19.3 (73.7) 11.5 (43.9)
EWC 96.1 (4.5) 32.4 (60.5) 20.5 (52.1)

SI 99.2 (0.6) 46.1 (47.8) 19.5 (46.2)
LwF 99.2 (0.8) 29.5 (70.2) 18.1 (56.5)

AGEM 98.3 (1.9) 52.1 (42.0) 21.6 (54.9)
ER 99.2 (0.6) 60.1 (27.5) 35.6 (36.0)

DER 98.9 (1.2) 62.5 (28.4) 35.9 (37.7)
DER++ 98.3 (1.8) 62.5 (27.5) 36.2 (35.7)
SupSup 99.6 (0.0) 62.1 (0.0) 50.6 (0.0)

SSNET 99.7 (0.0) 23.9 (54.4) 49.6 (1.9)
EXSSNET 99.7 (0.0) 67.3 (0.0) 52.0 (0.0)

Table 2: Average accuracy ↑ (Forgetting metric ↓) on all
tasks for vision. For our method we report the results are
averaged over three random seeds.

0 20 40 60 80

40

50

60

70

0 20 40 60 80

40

50

60

70

0 20 40 60 80

40

50

60

70

0 20 40 60 80

40

50

60

70

80

ExSSNeT + KKT

ExSSNeT

Epochs Epochs

Va
l.

A
cc

ur
ac

y
Va

l.
A

cc
ur

ac
y

Speedup

Figure 4: We plot validation accuracy vs Epoch
for EXSSNET and EXSSNET + KKT. We ob-
serve that KKT helps to learn the subsequent tasks
faster and improves performance.

(2021), for WebNLP datasets we learn different task orders S1-S52 that are provided in Appendix
Table 6. Following (Wortsman et al., 2020), we use LeNet (Lecun et al., 1998) for SplitMNIST, a
Resnet-18 model (Wortsman et al., 2020) for SplitCIFAR100, a ResNet50 model (He et al., 2016) for
TinyImageNet datasets. Unless specified, we randomly split all the vision datasets to obtain five tasks
with disjoint classes. In all our experiments, all methods perform an equal number of epochs over the
datasets. For additional details on implementation and hyperparameters refer to Appendix A.1.1.

4.2 MAIN RESULTS

Q1. Does Supermask Subnetwork Training Help?

In these experiments, we show that EXSSNET outperforms multiple strong baseline methods
including SupSup. For our main language experiments in Table 1, we sequentially learn multiple task
orders, S1 - S52 corresponding to the GLUE and WebNLP benchmarks. These task orders are listed
in Appendix Table 6. We report the average test accuracy (and forgetting in parentheses). For natural
language, we perform better than previous state-of-the-art CL methods in four out of five cases, across
multiple task orders, and in aggregate. Specifically, on the GLUE benchmark, EXSSNET is at least
2.0% better than other methods while avoiding CF. Furthermore, EXSSNET either outperforms or is
close to the performance of the multitasking baseline which is a strong baseline for CL methods.

For vision tasks, we split the MNIST, CIFAR100, and TinyImageNet datasets into five different
tasks with an equal number of disjoint classes and report results. We report these results in Table
2 and observe that EXSSNET leads to a 4.8% and 1.4% improvement over the strongest baseline
for Split-CIFAR100 and Split-TinyImageNet datasets. Furthermore, both EXSSNET and SupSup
outperform the multitask baseline. Moreover, EXSSNET bridges the gap to individually trained
models significantly, for TinyImageNet we reach within 1.7% of individual models’ performance.
The average sparse overlap of EXSSNET is 19.4% across all three datasets implying that there is
a lot more capacity in the model. See appendix Table 8 for sparse overlap of other methods.

We note that past methods employ specific tricks like local adaptation in MBPA++, a generative
replay module in LAMOL, and experience replay in AGEM, DER, and ER. In contrast, EXSSNET
does not require replay and simply trains different subnetworks for tasks.

Q2. Can KKT Knowledge Transfer Module Share Knowledge Effectively?

In Section 3.2, we presented our KKT module for enabling knowledge sharing across tasks. In Table
3, we show that adding the KKT module to EXSSNET, SSNET, and SupSup improves performance
on vision benchmarks. The experimental setting here is similar to Table 2. We observe across
all methods and datasets that the KKT module improves average test accuracy. Specifically, for
the Split-CIFAR100 dataset, the KKT module results in 5.0%, and 3.2% improvement for SupSup

2For example, in S2 order the model learns the task in this order, ag yelp amazon yahoo dbpedia

7

Under review as a conference paper at ICLR 2023

Method S-MNIST S-CIFAR100 S-TinyImageNet
SupSup 99.6 62.1 50.6
+ KKT 99.6 [+0.0] 67.1 [+5.0] 53.3 [+2.7]

SSNET 99.7 23.9 49.6
+ KKT 99.3 [-0.4] 23.5 [-0.4] 51.8 [+2.2]

EXSSNET 99.7 67.3 52.0
+ KKT 99.7 [+0.0] 70.5 [+3.2] 54.0 [+2.0]

Table 3: We report average test accuracies ↑ [and
gains from KKT] when using the KKT knowledge
sharing module for Vision datasets. The overall best
method is highlighted in gray.

0.02

0.04

0.06

0.08

0.1

0.2

0.3

0.5

0.7

0.9

30

40

50

60

70

80

Methods
ExSSNeT
SSNeT
SupSup

Mask Density (Log Scale)

A
ve

ra
ge

 T
es

t A
cc

ur
ac

y

Figure 5: Average test accuracy versus mask density
on SplitCIFAR100 dataset.

Method S-TinyImageNet Avg. Sparse Overlap

SupSup 90.34 (0.0) 90.1
SSNET 89.02 (2.2) 90.0

EXSSNET 91.21 (0.0) 90.0

Table 4: Average accuracy ↑ (forgetting metric ↓)
and average sparse overlap when learning 100 tasks.

Method FastText Glove BERT
SupSup 54.01 55.52 74.0
SSNET 60.41 [+6.4] 59.78 [+4.3] 74.5 [+0.5]

EXSSNET 62.52 [+8.5] 62.81 [+7.3] 74.8 [+0.8]

Table 5: Ablation result for token embeddings. We
report average accuracy ↑ [and gains over SupSup]

and EXSSNET respectively; while for Split-TinyImageNet, EXSSNET + KKT outperforms the
individual models. We observe a performance decline for SSNET when using KKT because KKT
promotes sharing of parameters across tasks which can lead to worse performance for SSNET.
Furthermore, EXSSNET + KKT outperforms all other methods on both the Split-CIFAR100 and
Split-TinyImageNet datasets. For EXSSNET + KKT, the average sparse overlap is 49.6% across all
three datasets (see appendix Table 8). These results indicate that the benefits of weight training and
the KKT module can be coupled together to further improve performance.

Q3. Can KKT Knowledge Transfer Module Improve Learning Speed of Subsequent Tasks?

Next, we show that the KKT module enables us to learn new tasks faster. To demonstrate this, in Figure
4 we plot the running mean of the validation accuracy vs epochs for different tasks from the Split-
CIFAR100 experiment in Table 3. We show curves for EXSSNET with and without the KKT module
and omit the first task as both these methods are identical for Task 1 because there is no previous task
to transfer knowledge. For all the subsequent tasks (Task 2,3,4,5), we observe that – (1) EXSSNET +
KKT starts off with a much better initial performance compared to EXSSNET (2) given a fixed number
of epochs for training, EXSSNET + KKT always learns the task better because it has a better accuracy
at all epochs; and (3) EXSSNET + KKT can achieve similar performance as EXSSNET in much fewer
epochs as shown by the green horizontal arrows. This clearly illustrates that using the KKT knowledge-
transfer module not only helps to learn the tasks better (see Table 3) but it also learns them faster.

4.3 ADDITIONAL RESULTS AND ANALYSIS

Q4. Effect of Mask Density on Performance: Next, we show the advantage of using EXSSNET
when the mask density is low. In Figure 5, we show the average accuracy for the Split-CIFAR100
dataset as a function of mask density. We observe that EXSSNET obtains 7.9%, 18.4%, 8.4%, and
4.7% improvement over SupSup for mask density values 0.02, 0.04, 0.06, 0.08 respectively. This is a
highly desirable property as tasks select fewer parameters which inherently reduces sparse overlap
allowing EXSSNET to learn a large number of tasks.

Q5. Can EXSSNET Learn a Large Number of Tasks? SupSup showed that it can scale to a
large number of tasks. Next, we show that this property is preserved by EXSSNET. We perform
experiments to learn 100 tasks created by splitting the TinyImageNet dataset. Note that, as the
number of task increase, the sparse overlap between the masks also increases resulting in fewer free
model weights. In the extreme case where there are no free weights, EXSSNET by design reduces
to SupSup because there will be no weight training. From Table 4, we conclude that EXSSNET
can learn 100 tasks while still improving performance over SupSup and preventing forgetting.

Q6. Effect of Token Embedding Initialization for NLP: For our language experiments, we use
a pretrained BERT model (Devlin et al., 2019) to obtain the initial token representations. Using
the powerful representations from a multitask model like BERT overshadows the superiority of

8

Under review as a conference paper at ICLR 2023

EXSSNET over SupSup in terms of performance. Hence, we perform ablations on the token
embedding initialization to further highlight these differences. In Table 5, we present the average
test accuracy on the S22 task-order sequence of the sampled version of WebNLP dataset (see Section
4.1, Datasets). We initialize the token representations using FastText (Bojanowski et al., 2016),
Glove (Pennington et al., 2014), and BERT embeddings. From Table 5, we observe that – (1) the
performance gap between EXSSNET and SupSup increases from 0.8% → 7.3% and 0.8% → 8.5%
when moving from BERT to Glove and FastText initializations respectively. These gains imply that
it is even more beneficial to use EXSSNET in absence of good initial representations, and (2) the
performance trend, EXSSNET > SSNET > SupSup is consistent across initialization.

5 RELATED WORK

Continual Learning methods fall into three main categories: Regularization, Replay, and Architec-
ture based methods. We point the readers to Delange et al. (2021); Biesialska et al. (2020) for a
comprehensive survey of all continual learning methods. Next, we discuss these main categories.

Regularization-based methods estimate the importance of model components and add importance
regularization terms to the loss function. Zenke et al. (2017) regularize based on the distance of
weights from their initialization, whereas Kirkpatrick et al. (2017); Schwarz et al. (2018) use an
approximation of the Fisher information matrix (Pascanu & Bengio, 2013) to regularize the parameters.
In NLP, regularization methods (Han et al., 2020; Wang et al., 2019) are used to constrain the relevant
information from the huge amount of knowledge inside large language models (LLM). Huang
et al. (2021) first identifying hidden spaces that need to be updated versus retained via information
disentanglement (Fu et al., 2017; Li et al., 2020) and then regularize these hidden spaces separately.
Our method inherently avoids the need for regularization as it avoids parameter interference.

Replay based methods maintain a small memory buffer of data samples (De Lange et al., 2019)
or their relevant proxies (Rebuffi et al., 2017) from the previous tasks and retrain for them later to
prevent CF. Lopez-Paz & Ranzato (2017); Chaudhry et al. (2018) use the buffer during optimization
to constrain parameter gradients. Shin et al. (2017); Kemker & Kanan (2018) uses a generative
model to sample and replay pseudo-data during training, whereas Rebuffi et al. (2017) replay distilled
knowledge from the previous tasks. de Masson d'Autume et al. (2019) employ episodic memory
along with local adaptation for CL in the NLP domain, whereas Sun et al. (2019) trains a language
model to generate a pseudo-sample for replay. These methods usually have associated memory and
runtime costs whereas our method works without a replay buffer.

Architecture based methods can be divided into two categories: (1) methods that add new modules
over time (Sodhani et al., 2019; Veniat et al., 2021; Douillard et al., 2022); and (2) methods that
isolate the network’s parameters for different tasks (Fernando et al., 2017; Mallya & Lazebnik, 2018;
Mallya et al., 2018). Rusu et al. (2016) introduce a new network for each task that is connected to all
the previous tasks resulting in super-linear growth in network size. Schwarz et al. (2018) fix this issue
by distilling the new network after each task into the original one. Recent prompt learning-based CL
models for vision (Wang et al., 2022a;b) assume access to a pre-trained model to learn a set of prompts
that can potentially be shared across tasks to perform CL this is orthogonal to our method that trains
from scratch. Methods like Fernando et al. (2017) initialize a fixed-size model and reuse a subset of
modules for each task by finding a path in the graph of neural network modules. Mallya & Lazebnik
(2018) allocates parameters to specific tasks and then trains them in isolation which limits the number
of tasks that can be learned. In contrast, Mallya et al. (2018) use a frozen pretrained model and learns a
new mask for each task but a pretrained model is crucial for their method’s good performance. Worts-
man et al. (2020) removes the pretrained model dependence and learns a mask for each task over a
fixed randomly initialized network. EXSSNET avoids the shortcomings of Mallya & Lazebnik (2018);
Mallya et al. (2018) and performs supermask subnetwork training to increase the representational
capacity compared to (Wortsman et al., 2020) while performing knowledge transfer and avoiding CF.

6 DISCUSSION AND CONCLUSION

In this paper, we define a simple yet effective method EXSSNET and the KKT knowledge transfer
module that leverages sparsity to learning tasks while resolving the shortcomings of supermasks by
performing Exclusive Subnetwork Training. EXSSNET improves performance, prevents forgetting,
accumulates and transfers knowledge across tasks, and works for both vision and language domains.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013. URL
http://arxiv.org/abs/1308.3432.

Magdalena Biesialska, Katarzyna Biesialska, and Marta R. Costa-jussà. Continual lifelong learning
in natural language processing: A survey. In Proceedings of the 28th International Conference on
Computational Linguistics, pp. 6523–6541, Barcelona, Spain (Online), December 2020. Interna-
tional Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.574. URL
https://aclanthology.org/2020.coling-main.574.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606, 2016.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 15920–15930. Curran Associates, Inc., 2020.

Ming-Wei Chang, Lev Ratinov, Dan Roth, and Vivek Srikumar. Importance of semantic representation:
Dataless classification. In Proceedings of the 23rd National Conference on Artificial Intelligence -
Volume 2, AAAI’08, pp. 830–835. AAAI Press, 2008. ISBN 9781577353683.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Michael Crawshaw. Multi-task learning with deep neural networks: A survey. ArXiv, abs/2009.09796,
2020.

Matthias De Lange and Tinne Tuytelaars. Continual prototype evolution: Learning online from non-
stationary data streams. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 8250–8259, October 2021.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. Continual learning: A comparative study on how to defy forgetting
in classification tasks. arXiv preprint arXiv:1909.08383, 2(6), 2019.

Cyprien de Masson d'Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama. Episodic mem-
ory in lifelong language learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf.

M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and T. Tuytelaars.
A continual learning survey: Defying forgetting in classification tasks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, pp. 1–1, 2021. doi: 10.1109/TPAMI.2021.3057446.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//www.aclweb.org/anthology/N19-1423.

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers
for continual learning with dynamic token expansion. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

10

http://arxiv.org/abs/1308.3432
https://aclanthology.org/2020.coling-main.574
https://proceedings.neurips.cc/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f8d2e80c1458ea2501f98a2cafadb397-Paper.pdf
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423

Under review as a conference paper at ICLR 2023

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A. Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. CoRR, abs/1701.08734, 2017. URL http://arxiv.org/abs/1701.08734.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. Style transfer in text: Explo-
ration and evaluation. arXiv preprint arXiv:1711.06861, 2017.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
Continual relation learning via episodic memory activation and reconsolidation. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6429–6440, Online,
July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.573. URL
https://www.aclweb.org/anthology/2020.acl-main.573.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 2790–2799. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/houlsby19a.html.

Yen-Chang Hsu, Yen-Cheng Liu, and Zsolt Kira. Re-evaluating continual learning scenarios: A
categorization and case for strong baselines. CoRR, abs/1810.12488, 2018. URL http://
arxiv.org/abs/1810.12488.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, and Diyi Yang. Continual learning for
text classification with information disentanglement based regularization. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2736–2746, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.218. URL https://aclanthology.org/
2021.naacl-main.218.

Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental learning. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=SJ1Xmf-Rb.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751,
Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1181.
URL https://aclanthology.org/D14-1181.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

11

http://arxiv.org/abs/1701.08734
https://www.aclweb.org/anthology/2020.acl-main.573
https://proceedings.mlr.press/v97/houlsby19a.html
https://proceedings.mlr.press/v97/houlsby19a.html
http://arxiv.org/abs/1810.12488
http://arxiv.org/abs/1810.12488
https://aclanthology.org/2021.naacl-main.218
https://aclanthology.org/2021.naacl-main.218
https://openreview.net/forum?id=SJ1Xmf-Rb
https://openreview.net/forum?id=SJ1Xmf-Rb
https://aclanthology.org/D14-1181

Under review as a conference paper at ICLR 2023

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-long.353.

Yuan Li, Chunyuan Li, Yizhe Zhang, Xiujun Li, Guoqing Zheng, Lawrence Carin, and Jianfeng Gao.
Complementary auxiliary classifiers for label-conditional text generation. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(05):8303–8310, Apr. 2020. doi: 10.1609/aaai.v34i05.6346.
URL https://ojs.aaai.org/index.php/AAAI/article/view/6346.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pp. 6467–6476, 2017.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2016.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
7765–7773, 2018.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to multiple
tasks by learning to mask weights. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 67–82, 2018.

Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: Understanding rating
dimensions with review text. In Proceedings of the 7th ACM Conference on Recommender
Systems, RecSys ’13, pp. 165–172, New York, NY, USA, 2013. Association for Computing
Machinery. ISBN 9781450324090. doi: 10.1145/2507157.2507163. URL https://doi.org/
10.1145/2507157.2507163.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Pablo Mendes, Max Jakob, and Christian Bizer. DBpedia: A multilingual cross-domain knowledge
base. In Proceedings of the Eighth International Conference on Language Resources and Eval-
uation (LREC’12), pp. 1813–1817, Istanbul, Turkey, May 2012. European Language Resources
Association (ELRA). URL http://www.lrec-conf.org/proceedings/lrec2012/
pdf/570_Paper.pdf.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1532–1543, Doha, Qatar, October 2014. Association for Computational
Linguistics. doi: 10.3115/v1/D14-1162. URL https://aclanthology.org/D14-1162.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari.
What’s hidden in a randomly weighted neural network? arXiv preprint arXiv:1911.13299, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Mark B Ring. Child: A first step towards continual learning. In Learning to learn, pp. 261–292.
Springer, 1998.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

12

https://aclanthology.org/2021.acl-long.353
https://ojs.aaai.org/index.php/AAAI/article/view/6346
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1145/2507157.2507163
http://www.lrec-conf.org/proceedings/lrec2012/pdf/570_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/570_Paper.pdf
https://aclanthology.org/D14-1162

Under review as a conference paper at ICLR 2023

Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable frame-
work for continual learning. arXiv preprint arXiv:1805.06370, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Shagun Sodhani, Sarath Chandar, and Yoshua Bengio. Toward training recurrent neural networks for
lifelong learning. Neural Computation, 32(1):1–35, 2019.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. Lamol: Language modeling for lifelong language
learning. In International Conference on Learning Representations, 2019.

Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pp. 181–209. Springer, 1998.

Tom Veniat, Ludovic Denoyer, and MarcAurelio Ranzato. Efficient continual learning with modular
networks and task-driven priors. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=EKV158tSfwv.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, Brussels, Belgium, November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/W18-5446. URL https://aclanthology.org/W18-5446.

Hong Wang, Wenhan Xiong, Mo Yu, Xiaoxiao Guo, Shiyu Chang, and William Yang Wang. Sentence
embedding alignment for lifelong relation extraction. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 796–806, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1086. URL https:
//www.aclweb.org/anthology/N19-1086.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. European Conference on Computer Vision, 2022a.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022b.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. arXiv preprint arXiv:2002.06715, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https://www.
aclweb.org/anthology/2020.emnlp-demos.6.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad
Rastegari, Jason Yosinski, and Ali Farhadi. Supermasks in superposition. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 15173–15184. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
ad1f8bb9b51f023cdc80cf94bb615aa9-Paper.pdf.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome Connor, Tomas Kocisky, Mike Chrzanowski,
Lingpeng Kong, Angeliki Lazaridou, Wang Ling, Lei Yu, Chris Dyer, et al. Learning and evaluating
general linguistic intelligence. arXiv preprint arXiv:1901.11373, 2019.

13

https://openreview.net/forum?id=EKV158tSfwv
https://aclanthology.org/W18-5446
https://www.aclweb.org/anthology/N19-1086
https://www.aclweb.org/anthology/N19-1086
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2020/file/ad1f8bb9b51f023cdc80cf94bb615aa9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ad1f8bb9b51f023cdc80cf94bb615aa9-Paper.pdf

Under review as a conference paper at ICLR 2023

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3987–
3995. JMLR. org, 2017.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In Advances in neural information processing systems, pp. 649–657, 2015.

Jieyu Zhao and Jurgen Schmidhuber. Incremental self-improvement for life-time multi-agent re-
inforcement learning. In From Animals to Animats 4: Proceedings of the Fourth International
Conference on Simulation of Adaptive Behavior, Cambridge, MA, pp. 516–525, 1996.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. In Advances in Neural Information Processing Systems, pp. 3592–3602,
2019.

A APPENDIX FOR EXSSNET

A.1 ADDITIONAL EXPERIMENTS AND DETAILS

ID Task Sequence

S1 mnli qqp qnli sst2 cola (Dec. data Size)

S2 ag yelp amazon yahoo dbpedia
S3 yelp yahoo amazon dbpedia ag
S4 dbpedia yahoo ag amazon yelp
S5 yelp ag dbpedia amazon yahoo
S6 ag yelp yahoo
S7 yelp yahoo ag
S8 yahoo ag yelp

Table 6: Task sequences used in text experiments.
For the GLUE dataset, we use order corresponding
to decreasing train data size. Sequence S2-S8 are
from (Huang et al., 2021; de Masson d'Autume
et al., 2019; Sun et al., 2019).

Dataset Class Type Train Validation Test

AGNews 4 News 8k 8k 7.6k
Yelp 5 Sentiment 10k 10k 7.6k

Amazon 5 Sentiment 10k 10k 7.6k
DBPedia 14 Wikipedia 28k 28k 7.6k

Yahoo 10 Q&A 20k 20k 7.6k

Table 7: Statistics for sampled data used from Huang
et al. (2021) for hyperparameter tuning. The validation
set is the same size as the train set. Class means the
number of output classes for the text classification
task. Type is the domain of text classification.

A.1.1 EXPERIMENTAL SETUP AND HYPERPARAMETERS

Implementation Details: Unless otherwise specified, we obtain supermasks with a mask density
of 0.1. In our CNN models, we use non-affine batch normalization to avoid storing their means and
variance parameters for all tasks (Wortsman et al., 2020). Similar to (Wortsman et al., 2020), bias
terms in our model are 0 and we randomly initialize the model parameters using signed kaiming
constant (Ramanujan et al., 2019). We use Adam optimizer (Kingma & Ba, 2014) along with cosine
decay (Loshchilov & Hutter, 2016) and conduct our experiments on GPUs with 12GB of memory. For
our main experiment, we run three independent runs for each experiment and report the averages for
all the metrics and experiments. For natural language tasks, unless specified otherwise we initialize
the token embedding for our methods using a frozen BERT-base-uncased (Devlin et al., 2018) model’s
representations using Huggingface (Wolf et al., 2020). We use a static CNN model from Kim (2014)
as our text classifier over BERT representations. The model employs 1D convolutions along with
Tanh activation. Following Sun et al. (2019); Huang et al. (2021), we evaluate our model on various
task sequences as provided in Appendix Table 6, while limiting the maximum number of tokens to
256. Following (Wortsman et al., 2020), we use LeNet (Lecun et al., 1998) for SplitMNIST dataset, a
Resnet-18 model with fewer channels (Wortsman et al., 2020) for SplitCIFAR100 dataset, a ResNet50
model (He et al., 2016) for TinyImageNet dataset. Unless specified, we randomly split all the vision
datasets to obtain five tasks with disjoint classes. We use the codebase of DER (Buzzega et al., 2020)
to obtain the vision baselines. In all our experiments, all methods perform an equal number of epochs
over the datasets.

For the ablation experiment on natural language data, following Huang et al. (2021), we use a sampled
version of the WebNLP datasets due to limited resources. The reduced dataset contains 2000 training
and validation examples from each output class. The test set is the same as the main experiments.
The dataset statistics are summarized in Table 7. For WebNLP datasets, we tune the learning rate

14

Under review as a conference paper at ICLR 2023

Table 8: We report the average sparse overlap for all
method and dataset combinations reported in Table
3.

Method S-MNIST S-CIFAR100 S-TinyImageNet
SupSup 22.6 18.9 18.1
+ KKT 46.4 48.3 52.4

SSNET 22.5 17.6 18.6
+ KKT 52.7 49.9 52.4

EXSSNET 22.5 17.3 18.5
+ KKT 47.8 48.8 52.4

20 40 60 80 100

30

40

50

60

70

80

90
Naive

LwF

SI

EWC

AGEM

RPC

ER

DER

DER++

SupSup

SSNeT

ExSSNeT

Num. Seen Classes

A
ve

ra
ge

 A
cc

ur
ac

y

Figure 6: Average Accuracy of all seen tasks as a
function of the number of learned classes for the Split-
CIFAR100 dataset.

on the validation set across the values {0.01, 0.001, 0.0001}, for GLUE datasets we use the default
learning rate of the BERT model. For our vision experiments, we use the default learning rate for the
dataset provided in their original implementation. For TinyImageNet, SplitCIFAR100, SplitMNIST
dataset, we run for 30, 100, and 30 epochs respectively. We store 0.1% of our vision datasets for
replay while for our language experiments we use 0.01% of the data because of the large number of
datasets available for them.

A.1.2 SPARSE OVERLAP NUMBERS

In Table 8, we report the sparse overlap numbers for SupSup, SSNET, and EXSSNET with and
without the KKT knowledge transfer module. This table corresponds to the results in main paper
Table 3.

A.1.3 AVERAGE ACCURACY EVOLUTION

In Figure 6, we plot
∑

i≤t Ati vs t, that is the average accuracy as a function of observed classes.
This plot corresponds to the SplitCIFAR100 results provided in the main paper Table 2. We can
observe from these results that Supsup and ExSSNeT performance does not degrade when we learn
new tasks leading to a very stable curve whereas for other methods the performance degrades as we
learn new tasks indicating some degree of forgetting.

d
Model (↓) Length-5 WebNLP Length-3 WebNLP
Order (→) S2 S3 S4 Average S6 S7 S8 Average

Random 7.14 7.14 7.14 7.14 10.0 10.0 10.0 10.0
MTL 75.09 75.09 75.09 75.09 74.16 74.16 74.16 74.16

Finetune† 32.37 32.22 26.44 30.34 25.79 36.56 41.01 34.45
Replay† 68.25 70.52 70.24 69.67 69.32 70.25 71.31 70.29

Regularization† 72.28 73.03 72.92 72.74 71.50 70.88 72.93 71.77
AdaptBERT 30.49 20.16 23.01 24.55 24.48 31.08 26.67 27.41

AdaptBERT + Replay 69.30 67.91 71.98 69.73 66.12 69.15 71.62 68.96
IDBR† 72.63 73.72 73.23 73.19 71.80 72.72 73.08 72.53
SupSup 74.01 74.04 74.18 74.08 72.01 72.35 72.53 72.29

SSNET 74.5 74.5 74.65 74.55 73.1 72.92 73.07 73.03
EXSSNET 74.78 74.72 74.71 74.73 72.67 72.99 73.24 72.97

Table 9: Average test accuracy reported over task sequences for three independent runs on sub-sampled data.
Results with † are taken from Huang et al. (2021).

15

Under review as a conference paper at ICLR 2023

Method Runtime (in minutes)
Multitask 200
Finetune 175
Replay 204

AdapterBERT + FT 170
AdapterBERT + Replay 173

MultiAdaptBERT 170
Regularization 257

IDBR 258
SupSup 117
SSNET 117

EXSSNET 117

Table 10: Runtime comparison of different
methods used in the text experiments.

Method (↓) GLUE WebNLP

Order (→) S1 S2 S3 S4 S5 Average

Random 33.3 7.14 7.14 7.14 7.14 7.14
Multitask 80.6 77.4 77.5 76.9 76.8 77.1

FT 14.0 27.0 22.9 30.4 15.6 24.0
Replay 79.7 75.2 74.5 75.2 75.5 75.1
AdaptBERT + FT 25.1 20.8 19.1 23.6 14.6 19.5
AdaptBERT + Replay 78.6 73.3 74.3 74.7 74.6 74.2
MultiAdaptBERT 83.6 76.7 76.7 76.7 76.7 76.7
Regularization 75.5 75.9 75.0 76.5 76.3 75.9
IDBR 77.5 75.8 75.4 76.4 76.4 76.0
SupSup 78.1 75.7 76.0 76.0 75.9 75.9

SSNET 77.2 76.3 76.3 77.0 76.1 76.4
EXSSNET 80.1 77.1 77.3 77.2 77.1 77.2

Table 11: Average validation accuracy (↑) for multiple tasks and
sequence orders with previous state-of-the-art (SotA) methods.

A.1.4 EFFECT OF TASK ORDER AND NUMBER OF TASKS

Following Huang et al. (2021), we conduct experiments to study the effect of task length and order
in the language domain. We use task sequences of lengths three and five, with multiple different
task orders on the sampled data (Section 4.1, Table 6, and Appendix) to characterize the impact of
these variables on the performance. In Table 9, we present the average test accuracy averaged over
three different random seeds. We observe that across all six different settings our method performs
better compared to all the baseline methods. Our methods bridge the gap toward multitask methods’
performance, leaving a gap of 0.36% and 1.19% for lengths three and five sequences, respectively.

A.1.5 RUNTIME COMPARISON ACROSS METHODS

In this Section, we provide the result to compare the runtime of various methods used in the paper.
We ran each method on the sampled version of the WebNLP dataset for the S2 task order as defined
in Table 6. We report the runtime of methods for four epochs over each dataset in Table 10. Note
that the masking-based method, SupSup, SSNET, EXSSNET takes much lower time because they
are not updating the BERT parameters and are just finding a mask over a much smaller CNN-based
classification model using pretrained representation from BERT. This gives our method an inherent
advantage that we are able to improve performance but with significantly lower runtime while learning
a mask over much fewer parameters for the natural language setting.

A.1.6 VALIDATION RESULTS

In Table 11, we provide the average validation accuracies for the main natural language results
presented in Table 1. We do not provide the validation results of LAMOL (Sun et al., 2019) and
MBPA++ (de Masson d'Autume et al., 2019) as we used the results provided in their original papers.
For the vision domain, we did not use a validation set because no hyperparameter tuning was
performed as we used the experimental setting and default parameters from the original source code
from (Wortsman et al., 2020; Wen et al., 2020).

A.2 ADDITIONAL MODEL DETAILS

A.2.1 ALGORITHM FOR EXSSNET

In Algorithm 1, we provide a pseudo-code for our method EXSSNET for easier reference and under-
standing. We also attach our working code as supplementary material to encourage reproducibility.

16

Under review as a conference paper at ICLR 2023

Algorithm 1 EXSSNET training procedure.
Input: Tasks T , a model M, mask sparsity k, exclusive=True
Output: Trained model
▷ Initialize model weights W (0)

initialize_model_weights(M)
forall i ∈ range(|T |) do

▷ Set the mask Mi corresponding to task ti for optimization.
mask_opt_params = Mi

▷ Learn the supermask Mi using edge-popup
forall em ∈ mask_epochs do

Mi = learn_supermask(model, mask_opt_params, ti)
end
▷ Model weight at this point are same as the last iteration W (i−1)

if i > 1 and exclusive then
▷ Find mask for all the weights used by previous tasks.

M1:i−1 = ∨i−1
j=1(Mj)

▷ Get mask for weights in Mi which are not in {Mi}i−1
j=1

Mfree
i = Mi ∧ ¬M1:i−1

▷ Find non-overlapping weight for updating.

W
(i)
free = Mfree

i ⊙ W (i−1)

else if not exclusive then
W

(i)
free = W (i−1)

end
weight_opt_params = W

(i)
free

▷ Learn the free weight in the supermask Mi

forall em ∈ weight_epochs do
W (i) = update_weights(model, weight_opt_params, ti)

end
end

A.2.2 MODEL DIAGRAM FOR SUPSUP

In Figure 7, we provide the canonical model diagram for SupSup. Please read the figure description
for more details regarding the distinctions between SupSup and ExSSNeT.

Randomly initialized
weights

Mask over
weights

Mask over
weights

Mask over
weights

: Untrained weights

: Task 1 : Task 2

: Task 3

Find Mask

for Task 1

Find Mask
for Task 3

Find Mask
for Task 2

Figure 7: This is a canonical model diagram for SupSup. In SupSup, the model weights are always fixed at
the random initialization W (0). For each task SupSup learns a new mask (in this case M1,M2,M3) over the
weights W (0). A mask selectively activates a subset of weights for a particular task. This subset of selected
weights forms a subnetwork inside the full model which we refer to as the supermask subnetwork. For example,
when learning Task 2, SupSup learns the mask M2 (the weights activated by the mask are highlighted in green)
over the fixed weight W (0). These highlighted weights along with the participating nodes are the subnetwork
formed by mask M2. Whenever a prediction is made for Task 2 samples, this mask is selected and used to obtain
the predictions. Please note that the model weights W (0) are never updated after their random initialization.
Hence, for SupSup there is no learned knowledge sharing across tasks. This is in contrast to our setup in Figure
1, where for the first task the mask is learned over the weights W (0) but once the mask is selected the weights of
the corresponding subnetwork are also updates to obtain new weight W (1). Then the next task’s mask is learned
over these new set of weights W (1) and so on. Also note that in Figure 1, we do not show the KKT knowledge
transfer module here to avoid confusion.

17

	Introduction
	Motivation
	Method
	ExSSNeT: Exclusive Supermask SubNetwork Training
	Space, Time, and Memory Complexity of ExSSNeT

	KKT: Knn-Based Knowledge Transfer Module

	Experiments
	Experimental Setup and Training Details
	Main Results
	Additional Results and Analysis

	Related Work
	Discussion and Conclusion
	Appendix for ExSSNeT
	Additional Experiments and Details
	Experimental setup and hyperparameters
	Sparse Overlap Numbers
	Average Accuracy Evolution
	Effect of Task Order and Number of Tasks
	Runtime Comparison across methods
	Validation results

	Additional Model Details
	Algorithm for ExSSNeT
	Model Diagram for Supsup

