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Abstract

Time series forecasting is crucial for applications across multiple domains and vari-
ous scenarios. Although Transformers have dramatically advanced the landscape of
forecasting, their effectiveness remains debated. Recent findings have indicated that
simpler linear models might outperform complex Transformer-based approaches,
highlighting the potential for more streamlined architectures. In this paper, we
shift the focus from evaluating the overall Transformer architecture to specifically
examining the effectiveness of self-attention for time series forecasting. To this
end, we introduce a new architecture, Cross-Attention-only Time Series trans-
former (CATS), that rethinks the traditional transformer framework by eliminating
self-attention and leveraging cross-attention mechanisms instead. By establishing
future horizon-dependent parameters as queries and enhanced parameter sharing,
our model not only improves long-term forecasting accuracy but also reduces the
number of parameters and memory usage. Extensive experiment across various
datasets demonstrates that our model achieves superior performance with the lowest
mean squared error and uses fewer parameters compared to existing models. The
implementation of our model is available at: https://github.com/dongbeank/CATS.

1 Introduction

Time series forecasting plays a critical role within the machine learning society, given its applications
ranging from financial forecasting to medical diagnostics. To improve the accuracy of predictions,
researchers have extensively explored and developed various models. These range from traditional
statistical methods to modern deep learning techniques. Most notably, Transformer [19] has brought
about a paradigm shift in time series forecasting, resulting in numerous high-performance models,
such as Informer [29], Autoformer [23], Pyraformer [11], FEDformer [31], and Crossformer [28].
This line of work establishes new benchmarks for high performance in time series forecasting.

However, Zeng et al. [26] have raised questions about the effectiveness of Transformer-based time
series forecasting models especially for long term time series forecasting. Specifically, their experi-
ments demonstrated that simple linear models could outperform these Transformer-based approaches,
thereby opening new avenues for research into simpler architectural frameworks. Indeed, the follow-
ing studies [12, 6] have further validated that these linear models can be enhanced by incorporating
additional features.

Despite these developments, the effectiveness of each components in Transformer architecture in time
series forecasting remains a subject of debate. Nie et al. [14] introduced an encoder-only Transformer
that utilizes patching rather than point-wise input tokens, which exhibited improved performance
compared to linear models. Zeng et al. [26] also highlighted potential shortcomings in simpler linear
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Figure 1: Experimental results illustrating the mean squared error (MSE) and the number of parameters
with varying input sequence lengths on ETTm1. Each bubble represents a different model, with the
bubble size indicating the number of parameters in millions—larger bubbles denote models with
more parameters. Our model consistently shows the lowest MSE (i.e., best performance) with fewer
parameters even for longer input sequences. The detailed results can be found in Table 5.

networks, such as their inability to capture temporal dynamics at change points [18] compared to
Transformers. Consequently, while a streamlined architecture may be beneficial, it is imperative to
critically evaluate which elements of the Transformer are necessary and which are not for time series
modeling.

In light of these considerations, our study shifts focus from the overall architecture of the Transformer
to a more specific question: Are self-attentions effective for time series forecasting? While this
question is also noted in [26], their analysis was limited to substituting attention layers with linear
layers, leaving substantial room for potential model design when focusing on Transformers. Further-
more, the issue of temporal information loss (i.e., permutation-invariant and anti-order characteristics
of self-attention) is predominantly caused by the use of self-attention rather than the Transformer
architecture itself. Therefore, we aim to resolve the issues of self-attention and therefore propose a
new forecasting architecture that achieves higher performance with a more efficient structure.

In this paper, we introduce a novel forecasting architecture named Cross-Attention-only Time Series
transformer (CATS) that simplifies the original Transformer architecture by eliminating all self-
attentions and focusing on the potential of cross-attentions. Specifically, our model establishes future
horizon-dependent parameters as queries and treats past time series data as key and value pairs. This
allows us to enhance parameter sharing and improve long-term forecasting performance. As shown in
Figure 1, our model shows the lowest mean squared error (i.e., better forecasting performance) even
for longer input sequences and with fewer parameters than existing models. Moreover, we demonstrate
that this simplified architecture can provide a clearer understanding of how future predictions are
derived from past data with individual attention maps for the specific forecasting horizon. Finally,
through extensive experiments, we show that our proposed model not only achieves state-of-the-art
performance but also requires fewer parameters and less memory consumption compared to previous
Transformer models across various time series datasets.

2 Related Work

Time Series Transformers Transformer models [19] have shown effective in various domains
[5, 4, 15], with a novel encoder-decoder structure with self-attention, masked self-attention, and
cross-attention. The self-attention mechanism is a key component for extracting semantic correlations
between paired elements, even with identical input elements; however, autoregressive inference with
self-attention requires quadratic time and memory complexity. Therefore, Informer [29] proposed
directly predicting multi-steps, and a line of work, such as Autoformer [23], FEDformer [31], and
Pyraformer [11], investigated the complexity issue in time series transformers. Simultaneously, unique
properties of time series, such as stationarity [12], decomposition [23], frequency features [31], or
cross-dimensional properties [28] were employed to modify the attention layer for forecasting tasks.
Recently, researchers have investigated the essential architecture in Transformers to capture long-term
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dependencies. PatchTST [14] became a de-facto standard Transformer model by patching the time
series input in a channel-independence manner, which is widely used in following Transformer-
based forecasting models [13, 7]. On the other hand, Das et al. [3] emphasized the importance of
decoder-only forecasting models, while they focused on zero-shot using pre-trained language models.
However, none of them have investigated the importance of cross-attention for time series forecasting.

Temporal Information Encoding Fixed temporal order in time series is the distinct property
of time series, in contrast to the language domain where semantic information does not heavily
depend on the word ordering [4]. Thus, some researchers have used learnable positional encoding in
Transformers to embed time-dependent properties [9, 23]. However, Zeng et al. [26] first argued that
self-attention is not suitable for time series due to its permutation invariant and anti-order properties.
While they focus on building complex representations, they are inefficient in maintaining the original
context of historical and future values. They rather proposed linear models without any embedding
layer and demonstrated that it can achieve better performance than Transformer models, particularly
showing robust performance to long input sequences. Recent linear time series models outperformed
previous Transformer models with simple architectures by focusing on pre-processing and frequency-
based properties [10, 2, 21]. On the other hand, Woo et al. [22] investigated the new line of works
of time-index models, which try to model the underlying dynamics with given time stamps. These
related works imply that preserving the order of time series sequences plays a crucial role in time
series forecasting.

3 Revisiting Self-Attention in Time Series Forecasting

Motivation of Self-Attention Removal Following the concerns about the effectiveness of self-
attention on temporal information preservation [26], we conduct an experiment using PatchTST
[14]. We consider three variations of the PatchTST model: the original PatchTST with overlapping
patches with length 16 and stride 8 (Fig. 2a); a modified PatchTST with non-overlapping patches
with length 24 (Fig. 2b); and a version where self-attention is replaced by a linear embedding layer,
using non-overlapping patches with length 24 (Fig. 2c). This setup allows us to isolate the effects of
self-attention on temporal information preservation, while controlling for the impact of patch overlap.
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Figure 2: Absolute values of weights in the final linear layer for different PatchTST variations. The
distinct patterns reveal how each model captures temporal information.

Fig. 2 illustrates the absolute values of the weights in the final linear layer for these model variations.
Compared to the original PatchTST (Fig. 2a), both non-overlapping versions (Fig. 2b and Fig. 2c)
show more vivid patterns. The version with linear embedding (Fig. 2c) demonstrates the clearest
capture of temporal information, suggesting that the self-attention mechanism itself may not be
necessary for capturing temporal information.

In Table 1, we summarize the forecasting performance of the original PatchTST (Fig. 2a) and
PatchTST without self-attention (Fig. 2c). PatchTST without self-attention consistently improves
or maintains performance across all forecasting horizons. Specifically, the original version with
self-attention shows lower performance for longer forecast horizons. This result suggests that self-
attention may not only be unnecessary for effective time series forecasting but could even hinder
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Table 1: Effect of self-attention in
PatchTST on forecasting perfor-
mance (MSE) on ETTm1.

Horizon original w/o self-attn
96 0.290 0.290

192 0.332 0.328
336 0.366 0.359
720 0.416 0.414

performance in certain cases. Therefore, better performance of
w/o self-attention challenges the conventional belief regarding the
importance of self-attention mechanisms in Transformer-based
models for time series forecasting tasks.

Our findings offer new insights into the role of self-attention in
time series forecasting. As shown in Fig. 2 and Table 1, replacing
self-attention with a linear layer not only captures clear temporal
patterns but also results in significant performance improvements,
particularly for longer forecast horizons. These results highlight
potential areas for enhancing the handling of temporal informa-
tion, beyond addressing the well-known concerns regarding computational complexity.
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Figure 3: Illustration of existing time series forecasting architectures and the proposed architecture.

Rethinking Transformer Design Given the challenges associated with self-attention in time series
forecasting, we propose a fundamental rethinking of the Transformer architecture for this task. Fig. 3
illustrates the differences between existing architectures and our proposed approach. Traditional
Transformer architectures (Fig. 3a) and encoder-only models (Fig. 3b) rely heavily on self-attention
mechanisms, which may lead to temporal information loss. In contrast, Zeng et al. [26] proposed a
simplified linear model, DLinear (Fig. 3c), which removes all Transformer-based components. While
this approach reduces computational load and potentially avoids some temporal information loss, it
may struggle to capture complex temporal dependencies.

To address these challenges while preserving the advantages of Transformer architectures, we
propose the Cross-Attention-only Time Series transformer (CATS), depicted in Fig. 3d. Our approach
removes all self-attention layers and focuses solely on cross-attention, aiming to better capture
temporal dependencies while maintaining the structural advantages of the transformer architecture.
In the following section, we will introduce our CATS model in detail, explaining our key innovations
including a novel use of cross-attention, efficient parameter sharing, and adaptive masking techniques.

4 Proposed Methodology

4.1 Problem Definition and Notations

A multivariate time series forecasting task aims to predict future values X̃ = {xL+1, . . . ,xL+T } ∈
RM×T with the prediction X̂ = {x̂L+1, . . . , x̂L+T } ∈ RM×T based on past datasets X =
{x1, . . . ,xL} ∈ RM×L. Here, T represents the forecasting horizon, L denotes the input sequence
length, and M represents the dimension of time series data.

In traditional time series transformers, we feed the historical multivariate time series X to embedding
layers, resulting in the historical embedding H ∈ RD×L. Here, D is the embedding size. Note
that, in channel-independence manners, the multivariate input is considered to separate univariate
time series x ∈ R1×L. With patching [14], univariate time series x transforms into patches p =
Patch(x) ∈ RP×NL where P is the size of each patch and NL is the number of input patches. Similar
to non-patching situations, patches are fed to embedding layers P = Embedding(p) ∈ RD×NL .
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Figure 4: Illustration on the proposed model architecture. Our model removes all self-attentions from
the original Transformer structure and focuses on cross-attentions. To fully utilize the cross-attention,
we conceptualize the future horizon as queries and use the input time series (i.e., past time series) as
keys and values (Fig. A). This simplified structure enables us to enhance the parameter sharing across
forecasting horizons (Fig. B) and make use of query-adaptive masking (Fig. C) for performance.

4.2 Model Structure

Our proposed architecture consists of three key components: (A) Cross-Attention with Future as
Query, (B) Parameter Sharing across Horizons, and (C) Query-Adaptive Masking. Fig. 4 illustrates
how our model modifies the traditional transformer structure.

By focusing solely on cross-attention, our approach allows us to maintain the periodic properties of
time series, which self-attention, with its permutation-invariant and anti-order characteristics, strug-
gles to capture. Furthermore, we leverage advanced architectural designs of time series transformers,
such as patching [14], which linear models cannot utilize. The following subsections provide detailed
descriptions of each component of our CATS model, explaining how these elements work together to
address the challenges of time series forecasting.

Cross-Attention via Future as Query Similar to self-attention, the cross-attention mechanism
employs three elements: key, query, and value. The distinctive feature of cross-attention is that the
query originates from a different source than the key or value. Generally, the query component aims
to identify the most relevant information among the keys and uses it to extract crucial data from the
values [1, 27]. In the realm of time series forecasting, where predictions are often made for a specific
target horizon—such as forecasting 10 steps ahead. Therefore, within this concept of forecasting, we
argue that each future horizon should be regarded as a question, i.e., an independent query.

To implement this, we establish horizon-dependent parameters as learnable queries. As shown in
Fig. 4, we begin by creating parameters for the specified forecasting horizon. For each of these
virtualized parameters, we assign a fixed number of parameters to represent the corresponding
horizon as learnable queries q. For example, qi is a horizon-dependent query at L+ i. When patching
is applied, these queries are then processed independently; each learnable query q ∈ RP is first fed
into the embedding layer, and then fed into the multi-head attention with the embedded input time
series patches as the key and value.

Based on these new query parameters, we can utilize a cross-attention-only structure in the decoder,
resulting in an advantage in efficiency. In Table 2, we summarize the time complexity of recent
Transformer models and ours. The results indicate that our method only requires the time complexity
of O(LT/P 2), where most of the Transformer-based models require O(L2) except FEDformer and
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Table 2: Time complexity of Transformer-based models to calculate attention outputs. Time refers to
the inference time obtained by averaging 10 runs under L = 96 and T = 720 on Electricity.

Method Encoder Decoder Time Method Encoder Decoder Time

Transformer [13] O(L2) O(T (T + L)) 10.4ms Informer [29] O(L logL) O(T (T + logL)) 13.5ms
Autoformer [23] O(L logL) O ((L/2 +H) log (L/2 + T )) 24.1ms Pyraformer [11] O(L) O(T (T + L)) 11.2ms
FEDformer [31] O(L) O (L/2 +H) 69.3ms Crossformer [28] O

(
ML2/P 2

)
O
(
MT (T + L)/P 2

)
30.6ms

PatchTST [14] O
(
L2/P 2

)
- 7.6ms CATS (Ours) - O

(
LT/P 2

)
7.0ms

Pyraformer. However, since these two models have an encoder-decoder and a relatively huge amount
of parameters, they require 10x and 4x computational times than ours, respectively.

Parameter Sharing across Horizons One of the strongest benefits of cross-attention via future
horizon as a query q is that each cross-attention is only calculated on the values from a single
forecasting horizon and the input time series. Mathematically, for a prediction of future value x̂L+i

can be expressed as a function solely dependent on the past samples X = [x1, ...,xL] and qi,
independent of qj for all i ̸= j or i and j are not in the same patch.

This independent forecasting mechanism offers a notable advantage; a higher level of parameter
sharing. As demonstrated in [14], significant reductions in the required number of parameters can be
achieved in time series forecasting through parameter sharing between inputs or patches, enhancing
computational efficiency. Regarding this, we propose parameter sharing across all possible layers
— the embedding layer, multi-head attention, and projection layer — for every horizon-dependent
query q. In other words, all horizon queries q1, . . . ,qT or q1, . . . ,qNT

share the same embedding
layer used for the input time series x1, . . . ,xL or patches p1, . . . ,pNL

before proceeding to the
cross-attention layer, respectively. Furthermore, to maximize the parameter sharing, we also propose
cross-dimension sharing that uses the same query parameters for all dimensions.

For the multi-head attention and projection layers, we apply the same algorithm across horizons.
Notably, unlike the approach in PatchTST [14], we also share the projection layer for each predic-
tion. Specifically, PatchTST, being an encoder-only model, employs a fully connected layer as the
projection layer for the encoder outputs P ∈ RD×NL , resulting in (D ×NL) × T parameters. In
contrast, our model first processes raw queries q = [q1, . . . ,qNT

] ∈ RP×NT . These queries are then
embedded through the cross-attention mechanism, resulting in Q = [q1, . . . , qNT

] ∈ RD×NT . The
final projection uses shared parameters W ∈ RP×D, producing an output WQ ∈ RP×NT . Thus, our
number of parameters for this projection becomes P ×D, which is not proportionally increasing to T .
This approach significantly reduces time complexity during both the training and inference phases.

Table 3: Effect of parameter sharing
across horizons on the number of param-
eters for different forecasting horizons
on ETTh1.

Horizon w/ sharing w/o sharing
96 355,320 404,672

192 355,416 552,320
336 355,560 958,112
720 355,944 3,121,568

In Table 3, we outline the impact of parameter sharing
across different forecasting horizons. In contrast to the
model without parameter sharing, which exhibits a rapid
increase in parameters as the forecasting horizon extends,
our model, which shares all layers including the projection
layer, maintains a nearly consistent number of parameters.

Additionally, all operations, including embedding and
multi-head attention, are performed independently for each
learnable query. This implies that the forecast for a spe-
cific horizon does not depend on other horizons. Such an
approach allows us to generate distinct attention maps for each forecasting horizon, providing a clear
understanding of how each prediction is derived. Please refer to Section 5.5.

Query-Adaptive Masking Parameter sharing across horizons enhances the efficiency of our
proposed architecture and simplifies the model. However, we observed that a high degree of parameter
sharing could lead to overfitting to the keys and values (i.e., past time series data), rather than the
queries (i.e., forecasting horizon). Specifically, the model may converge to generate similar or identical
predictions, x̂L+i and x̂L+j , despite receiving different horizon queries, qi and qj (i.e., the target
horizons differ).

Therefore, to ensure the model focuses on each horizon-dependent query q, we introduce a new
technique that masks the attention outputs. As illustrated in the right-bottom figure of Fig. 4, for each
horizon, we apply a mask to the direct connection from Multi-Head Attention to LayerNorm with a
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probability p. This mask prevents access to the input time series information, resulting in only the
query to influence future value predictions. This selective disconnection, rather than the application of
dropout in the residual connections, helps the layers to concentrate more effectively on the forecasting
queries. We note that this approach can be related to stochastic depth in residual networks [8]. The
stochastic depth technique has proven effective across various tasks, such as vision tasks [17, 25]. To
the best of our knowledge, this is the first application of stochastic depth in Transformers for time
series forecasting. A detailed analysis of query-adaptive masking can be found in Appendix.

In summary, the framework described in this section, including cross-attention via future as query,
parameter sharing across horizons, and query-adaptive masking, is named the Cross-Attention-only
Time Series transformer (CATS).

5 Experiments

In this section, we provide extensive experiments to provide the benefits of our proposed framework,
CATS, including forecasting performance and computational efficiency. To this end, we use 7 different
real-world datasets and 9 baseline models. For datasets, we use Electricity, ETT (ETTh1, ETTh2,
ETTm1, and ETTm2), Weather, Traffic, and M4. These datasets are provided in [23] and [24] for
time series forecasting benchmark, detailed in Appendix.

For baselines, we utilize a wide range of various baselines, including the state-of-the-art long-term
time series forecasting model TimeMixer [21], PatchTST [14], Timesnet [24], Crossformer [28],
MICN [20], FiLM [30], DLinear [26], Autoformer [23], and Informer [29]. For both long-term and
short-term time series forecasting results, we report performance of our model alongside the results of
other models as presented in TimeMixer [21], ensuring a consistent comparison across all baselines.
We used 4 NVIDIA RTX 4090 24GB GPUs with 2 Intel(R) Xeon(R) Gold 5218R CPUs @ 2.10GHz
for all experiments.

5.1 Long-term Time Series Forecasting Results

To ease comparison, we follow the settings of [21] for long-term forecasting, using various forecast
horizons with a fixed 96 input sequence length. Detailed settings are provided in the Appendix.
Table 11 summarizes the forecasting performance across all datasets and baselines. Our proposed
model, CATS, demonstrates superior performance in multivariate long-term forecasting tasks across
multiple datasets. CATS consistently achieves the lowest Mean Squared Error (MSE) and Mean
Absolute Error (MAE) on the Traffic dataset for all forecast horizons, outperforming all other
models. For the Weather, Electricity, and ETT datasets, CATS shows competitive performance,
achieving the best results on most forecast horizons. This indicates that CATS effectively captures
underlying patterns in diverse time series data, highlighting its capability to handle complex temporal
dependencies. Additional experiments with longer input sequence lengths of 512 are provided in the
Appendix.

Table 4: Multivariate long-term forecasting results with recent forecasting models and ours for unified
hyperparameter settings. The best results are in bold and the second best are underlined. Full results
are provided in Appendix.
Models CATS TimeMixer PatchTST Timesnet Crossformer MICN FiLM DLinear Autoformer Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.161 0.207 0.163 0.209 0.186 0.227 0.172 0.220 0.195 0.271 0.198 0.261 0.195 0.236 0.195 0.252 0.266 0.336 0.300 0.384

192 0.208 0.250 0.208 0.250 0.234 0.265 0.219 0.261 0.209 0.277 0.239 0.299 0.239 0.271 0.237 0.295 0.307 0.367 0.598 0.544
336 0.264 0.290 0.251 0.287 0.284 0.301 0.246 0.337 0.273 0.332 0.285 0.336 0.289 0.306 0.282 0.331 0.359 0.395 0.578 0.523
720 0.342 0.341 0.339 0.341 0.356 0.349 0.365 0.359 0.379 0.401 0.351 0.388 0.361 0.351 0.345 0.382 0.419 0.428 1.059 0.741

E
le

ct
ri

ci
ty 96 0.149 0.237 0.153 0.247 0.190 0.296 0.168 0.272 0.219 0.314 0.180 0.293 0.198 0.274 0.210 0.302 0.201 0.317 0.274 0.368

192 0.163 0.250 0.166 0.256 0.199 0.304 0.184 0.322 0.231 0.322 0.189 0.302 0.198 0.278 0.210 0.305 0.222 0.334 0.296 0.386
336 0.180 0.268 0.185 0.277 0.217 0.319 0.198 0.300 0.246 0.337 0.198 0.312 0.217 0.300 0.223 0.319 0.231 0.443 0.300 0.394
720 0.219 0.302 0.225 0.310 0.258 0.352 0.220 0.320 0.280 0.363 0.217 0.330 0.278 0.356 0.258 0.350 0.254 0.361 0.373 0.439

Tr
af

fic

96 0.421 0.270 0.462 0.285 0.526 0.347 0.593 0.321 0.644 0.429 0.577 0.350 0.647 0.384 0.650 0.396 0.613 0.388 0.719 0.391
192 0.436 0.275 0.473 0.296 0.522 0.332 0.617 0.336 0.665 0.431 0.589 0.356 0.600 0.361 0.598 0.370 0.616 0.382 0.696 0.379
336 0.453 0.284 0.498 0.296 0.517 0.334 0.629 0.336 0.674 0.420 0.594 0.358 0.610 0.367 0.605 0.373 0.622 0.337 0.777 0.420
720 0.484 0.303 0.506 0.313 0.552 0.352 0.640 0.350 0.683 0.424 0.613 0.361 0.691 0.425 0.645 0.394 0.660 0.408 0.864 0.472

E
T

T
(A

vg
) 96 0.289 0.339 0.290 0.339 0.326 0.362 0.312 0.355 0.465 0.456 0.340 0.388 0.324 0.358 0.319 0.368 0.389 0.415 1.414 0.816

192 0.348 0.374 0.350 0.373 0.388 0.397 0.365 0.385 0.553 0.518 0.408 0.431 0.384 0.393 0.399 0.418 0.448 0.443 1.985 0.989
336 0.376 0.395 0.390 0.404 0.426 0.423 0.455 0.421 0.686 0.584 0.479 0.476 0.428 0.423 0.469 0.463 0.491 0.473 2.101 1.101
720 0.434 0.433 0.439 0.438 0.464 0.455 0.467 0.455 1.038 0.754 0.597 0.541 0.481 0.459 0.596 0.537 0.533 0.504 2.343 1.163
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Table 5: Comparison of models with the number of parameters, GPU memory consumption, and
MSE across different input sequence lengths on ETTm1. Full results with more diverse input lengths
are provided in Appendix.

Parameters GPU Memory MSE
Input Length 336 720 1440 2880 336 720 1440 2880 336 720 1440 2880

PatchTST 4.3M 8.7M (2.0x) 17.0M (4.0x) 33.6M (7.9x) 3.5GB 7.4GB (2.1x) 22.0GB (6.3x) 58.6GB (16.9x) 0.418 0.418 0.420 0.412
TimeMixer 1.1M 4.1M (3.6x) 14.2M (12.6x) 52.9M (46.8x) 2.9GB 3.9GB (1.3x) 5.9GB (2.0x) 10.3GB (3.6x) 0.428 0.425 0.414 0.472
DLinear 0.5M 1.0M (2.1x) 2.1M (4.2x) 4.2M (8.5x) 1.1GB 1.1GB (1.0x) 1.2GB (1.0x) 1.2GB (1.1x) 0.426 0.422 0.401 0.408
CATS 0.4M 0.4M (1.0x) 0.4M (1.0x) 0.4M (1.1x) 1.9GB 2.1GB (1.1x) 2.7GB (1.4x) 3.8GB (2.0x) 0.407 0.402 0.399 0.395

5.2 Efficient and Robust Forecasting for Long Input Sequences

Zeng et al. [26] observed that many models experience a decline in performance when using long
input sequences for time series forecasting. To address this, some approaches have been developed to
capture long-term dependencies. For instance, TimeMixer [21] employs linear models with mixed
scale, and PatchTST [14] utilizes an encoder network to encode long-term information. However,
these models still have computational issues, particularly in terms of escalating memory and parameter
requirements. Thus, in this subsection, we provide a comparison between previous models and ours
in terms of efficient and robust forecasting for long input sequences.

First of all, to provide a fair comparison, we summarize the number of parameters, GPU memory
consumption, and forecasting performance of comparison models with varying input lengths. As
summarized in Table 5, existing complex models, such as PatchTST and TimeMixer, suffer from
increased parameters and computational burdens when performing forecasting with long input lengths.
Although DLinear uses fewer parameters and less GPU memory, its performance is limited due to its
linear structure in capturing non-linearity patterns. Considering both performance and efficiency, the
proposed model demonstrates robust performance improvement even with longer input lengths. In
Appendix, we provide additional experimental results supporting these findings.
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Figure 5: Efficiency and performance analysis for time series forecasting models. We summarize the
forecasting performance, number of parameters, GPU memory consumption, and running time with
varying forecasting horizon lengths on Traffic. The running time is averaged from 300 iterations.

Furthermore, we conduct a deeper comparison between Transformer-based models. Especially,
TimeMixer [21] argues that their model outperforms PatchTST [14] in the setting of long input
sequences. Regarding this setting, we also conduct an experiment on L = 512. We summarize the
results in Fig. 5. Among these Transformer-based models, our model achieves the lowest MSE for
most forecasting horizons. Moreover, our model requires even a lower number of parameters, GPU
memory, and running time. Especially, for parameter efficiency, CATS shows significant differences
even on a log scale due to its efficient parameter-sharing. Fig. 5c highlights GPU memory usage
across different forecasting horizons. While PatchTST and TimeMixer consume significantly more
memory, CATS maintains a low and stable memory consumption, demonstrating superior memory
efficiency. In Fig. 5d CATS also consistently achieves lower running times compared to PatchTST
and TimeMixer.

Additionally, we also compare the same factors when we use a longer input length L = 2880. As
more input length is used, the forecasting performance of our model outperforms all other models.
Most importantly, while the computational complexity increases as input length increases, our model
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achieves a faster running time, compared to other models with a 512 input sequence length. Overall,
these results emphasize the efficiency and performance advantages of our model, particularly in terms
of parameter count, memory usage, and running time.

5.3 Short-term Time Series Forecasting Results

Table 6 summarizes the averaged results for the M4 dataset, comparing the performance of various
models. Our CATS model consistently achieved the best results across all metrics. Notably, CATS
reduced MASE by 19.94% compared to PatchTST, a self-attention-only model that suffers from
temporal information loss as mentioned in Section 3. CATS, with its cross-attention-only structure,
effectively mitigated this issue and captured temporal dependencies more efficiently than previous
models. Although TimeMixer, a state-of-the-art linear model, performed well, CATS surpassed it
across all metrics. This demonstrates that CATS excels at capturing short-term temporal dependencies,
providing superior performance in short-term forecasting tasks.

Table 6: Averaged univariate short-term forecasting results in the M4 dataset. The best results are in
bold and the second best are underlined. Full results are presented in Appendix.

Models CATS TimeMixer Timesnet PatchTST MICN FiLM DLinear Autoformer Informer

A
ve

ra
ge SMAPE 11.701 11.723 11.829 13.152 19.638 14.863 13.639 12.909 14.086

MASE 1.557 1.559 1.585 1.945 5.947 2.207 2.095 1.771 2.718
OWA 0.838 0.840 0.851 0.998 2.279 1.125 1.051 0.939 1.230

5.4 Replacement of Cross-Attention with Self-Attention

In our propose structure, we mainly use cross-attention rather than self-attention due to the forecasting-
unfriendly properties of self-attention. To verify the effectiveness of cross-attention in the proposed
structure, we replace the cross-attention layers with self-attention layers while maintaining other
structures. In Table 7, we gradually replace the cross-attention with self-attention (SA) among a total
of three cross-attention layers. To maintain the original Transformer structure, we set the maximum
replacement as two. As shown in this table, we confirm the effectiveness of the cross-attention
mechanism compared to using self-attention layers. Specifically, the zero SA, which is our model,
shows better performance than using SA for almost all cases except only one case.

Table 7: Performance comparison on models with three attention layers. We replace one or more
cross-attentions (CA) with self-attentions (SA) in our model. In total, there are three cross-attentions
in all settngs and ‘Zero SA’ stands for our model. The best results are in bold.

Dataset Electricity ETTm1

Case Zero SA One SA Two SA Zero SA One SA Two SA

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.126 0.218 0.128 0.220 0.133 0.225 0.283 0.340 0.284 0.338 0.284 0.340
192 0.144 0.235 0.150 0.238 0.153 0.245 0.319 0.363 0.331 0.373 0.324 0.368
336 0.159 0.252 0.167 0.257 0.169 0.263 0.351 0.385 0.376 0.401 0.369 0.400
720 0.194 0.283 0.205 0.293 0.210 0.300 0.400 0.414 0.429 0.437 0.442 0.445

5.5 Explaining Periodic Patterns through Cross-Attention

As noted in Section 4.2, in our proposed model, all operations including embedding and multi-head
attention are performed independently for each learnable query. In other words, the forecast for
a specific horizon does not depend on other horizons. This approach helps us better understand
how each prediction is derived. Therefore, in this subsection, we visualize how the proposed model
understands the periodic properties.

To provide an easy understanding, we here consider a simple time series forecasting task with data
that consists of two independent signals as follows:

x(t) = {x(t mod τ)}∞t=1, xi ∼ N (0, 1) (i = 0, 1, . . . , τ − 1), (1)

y(t) =

{
+k if t ≡ 0 (mod S)

−k if t ≡ 1
2S (mod S).

(2)
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For prediction, we use an input sequence length L = 48 and a forecasting horizon T = 72 with
signals x(t) and y(t) are defined with τ = 24, S = 8, and k = 5. The patch length is set to 4 without
overlapping to elucidate the distinct periodic components with 2 attention heads.
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Figure 6: Score map of cross-attentions between input and output patches.

In Fig. 6, we illustrate a score map (12×18) of the cross-attention from the trained CATS. Since both
patch length and stride are set to 4, each patch will contain exactly one shock value. We observe that
the cross-attentions capture the shocks within the signal and the periodicity of the signal in Fig. 6a
and Fig. 6b, respectively. Fig. 6a shows that patches an even number of steps before the current patch
contain the shocks of the same direction, resulting in higher attention scores, while odd-numbered
steps have lower scores. Moreover, the correlation over 24 steps is clearly demonstrated in patches
spaced by multiples of 6 steps, as shown in Fig. 6b. This periodic pattern ensures that the attention
mechanism effectively captures the periodicity in x(t), reflecting the model’s ability to leverage this
periodic information for more accurate predictions. In Appendix, we provide a detailed explanation.
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Figure 7: Illustration of (a) forecasting result, (b) averaged cross-attention score, and (c,d) patches
with the highest score on ETTm1. The score map is averaged from all the heads across layers.

Fig. 7 illustrates (a) forecasting results, (b) a cross-attention score map (5×4) on the ETTm1 dataset,
and (c, d) the two pairs with the highest attention scores. We predict 96 steps with input sequence
length 96 on ETTm1. The input patches consist of four patches of 24 lengths and one padding patch.
As shown in Fig. 7c and 7d, the patches with high attention scores exhibit similar temporal patterns,
demonstrating the ability of CATS to detect sequential and periodic patterns.

6 Conclusion

Based on our study, we exploit the advantages of Transformer models in time series forecasting
by removing self-attentions and developing a new cross-attention-based architecture. We believe
that our model establishes a strong baseline for such forecasting tasks and offers further insights
into the complexities of long-term forecasting problems. Our findings provide a reevaluation of
self-attentions in this domain, and we hope that future research can critically assess the efficacy and
efficiency across various time series analysis tasks. As a limitation, our proposed methods assume
channel independence between variables based on the recent work [14]. As the time series data in the
real-world are highly correlated, we hope future research can address cross-variate dependency with
reduced computation complexity based on the proposed architecture.
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A Experimental settings

A.1 Datasets

We evaluated the performance using seven datasets commonly used in long-term time series forecast-
ing, including Weather, Traffic, Electricity, ETT (ETTh1, ETTh2, ETTm1, and ETTm2), and M4.
These datasets capture a range of periodic characteristics and scenarios that are difficult to predict
in the real world, making them highly suitable for tasks, such as long-term time series forecasting,
generation, and imputation. Details of these datasets are described in Table 8. The M4 dataset are
provided Wu et al. [24], while the remaining datasets are provided in Wu et al. [23].

Table 8: Details of 13 real-world datasets.
Dimension Frequency Timesteps Information Forecasting Horizon

Weather 21 10-min 52,696 Weather (96, 192, 336, 720)
Electricity 321 Hourly 17,544 Electricity (96, 192, 336, 720)

Traffic 862 Hourly 26,304 Transportation (96, 192, 336, 720)
ETTh1 7 Hourly 17,420 Temperature (96, 192, 336, 720)
ETTh2 7 Hourly 17,420 Temperature (96, 192, 336, 720)
ETTm1 7 15-min 69,680 Temperature (96, 192, 336, 720)
ETTm2 7 15-min 69,680 Temperature (96, 192, 336, 720)

M4-Quartely 1 Quartely 48000 Finance 8
M4-Monthly 1 Monthly 96000 Industry 18
M4-Yearly 1 Yearly 46000 Demographic 6
M4-Weekly 1 Weekly 718 Macro 13
M4-Daily 1 Daily 8454 Micro 14

M4-Hourly 1 Hourly 828 Other 48

A.2 Hyperparameter Settings

In every experiment in our paper, following [14], we fixed the random seed of 2021 to enhance the
reproducibility of our experiments. Additionally, following numerous studies in the field of time
series forecasting [14], we fixed the input sequence length L = 96. For the forecasting horizon T , we
also used the widely accepted values, i.e., [96, 192, 336, 720]. For our model, in all configurations, we
adopt the GeGLU activation function [16] between the two linear layers in the feed-forward network
for our model. Additionally, we use learnable positional embedding parameters for the input data and
omit positional embeddings for learnable queries to avoid redundant parameter learning.

For the experiments summarized in Table 4 and Table 11, our model uses three cross-attention layers
with embedding size D = 256, number of attention heads H = 32. Specifically, to avoid overfitting
on small datasets [14], we use patch length 48 on the ETTh1 and ETTh2 datasets. Further details on
the hyperparameter settings for these experiments are provided in Table 9.

Table 9: Experimental settings used in Table 4 and Table 11.
Metric Layers Embedding Size Query Sharing Input Sequence Length Batch Size Epoch Learning Rate

Weather 3 256 False 96 64 30 10−3

Electricity 3 256 False 96 32 30 10−3

Traffic 3 256 True 96 32 100 10−3

ETTh1 3 256 False 96 256 10 10−3

ETTh2 3 256 True 96 256 10 10−3

ETTm1 3 256 False 96 128 30 10−3

ETTm2 3 256 True 96 128 30 10−3

Additionally, for the short-term forecasting experiments on the M4 dataset, we employed a slightly
different configuration to better suit the nature of short-term time series. The hyperparameter settings
for these experiments are detailed in Table 10. The complete results for these short-term experiments
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are presented in Table 12, while the full results for the long-term forecasting experiments with a fixed
96 input sequence length are provided in the Appendix in Table 11.

Table 10: Experimental settings of the M4 dataset.
Dataset Layers Embedding Size Input Sequence Length Batch Size Epoch Patience Learning Rate

M4-Quartely 3 64 16 32 30 10 10−3

M4-Monthly 3 64 36 32 30 10 10−3

M4-Yearly 3 64 12 32 30 10 10−3

M4-Weekly 3 64 26 32 30 10 10−3

M4-Daily 3 64 28 32 30 10 10−3

M4-Hourly 3 128 96 32 30 10 10−3

Table 11: Multivariate long-term forecasting results with recent forecasting models and ours for
unified hyperparameter settings. The best results are in bold and the second best are underlined.
Models CATS TimeMixer PatchTST Timesnet Crossformer MICN FiLM DLinear Autoformer Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.161 0.207 0.163 0.209 0.186 0.227 0.172 0.220 0.195 0.271 0.198 0.261 0.195 0.236 0.195 0.252 0.266 0.336 0.300 0.384

192 0.208 0.250 0.208 0.250 0.234 0.265 0.219 0.261 0.209 0.277 0.239 0.299 0.239 0.271 0.237 0.295 0.307 0.367 0.598 0.544
336 0.264 0.290 0.251 0.287 0.284 0.301 0.246 0.337 0.273 0.332 0.285 0.336 0.289 0.306 0.282 0.331 0.359 0.395 0.578 0.523
720 0.342 0.341 0.339 0.341 0.356 0.349 0.365 0.359 0.379 0.401 0.351 0.388 0.361 0.351 0.345 0.382 0.419 0.428 1.059 0.741

E
le

ct
ri

ci
ty 96 0.149 0.237 0.153 0.247 0.190 0.296 0.168 0.272 0.219 0.314 0.180 0.293 0.198 0.274 0.210 0.302 0.201 0.317 0.274 0.368

192 0.163 0.250 0.166 0.256 0.199 0.304 0.184 0.322 0.231 0.322 0.189 0.302 0.198 0.278 0.210 0.305 0.222 0.334 0.296 0.386
336 0.180 0.268 0.185 0.277 0.217 0.319 0.198 0.300 0.246 0.337 0.198 0.312 0.217 0.300 0.223 0.319 0.231 0.443 0.300 0.394
720 0.219 0.302 0.225 0.310 0.258 0.352 0.220 0.320 0.280 0.363 0.217 0.330 0.278 0.356 0.258 0.350 0.254 0.361 0.373 0.439

Tr
af

fic

96 0.421 0.270 0.462 0.285 0.526 0.347 0.593 0.321 0.644 0.429 0.577 0.350 0.647 0.384 0.650 0.396 0.613 0.388 0.719 0.391
192 0.436 0.275 0.473 0.296 0.522 0.332 0.617 0.336 0.665 0.431 0.589 0.356 0.600 0.361 0.598 0.370 0.616 0.382 0.696 0.379
336 0.453 0.284 0.498 0.296 0.517 0.334 0.629 0.336 0.674 0.420 0.594 0.358 0.610 0.367 0.605 0.373 0.622 0.337 0.777 0.420
720 0.484 0.303 0.506 0.313 0.552 0.352 0.640 0.350 0.683 0.424 0.613 0.361 0.691 0.425 0.645 0.394 0.660 0.408 0.864 0.472

E
T

T
m

1 96 0.318 0.357 0.320 0.357 0.352 0.374 0.338 0.375 0.404 0.426 0.365 0.387 0.353 0.370 0.346 0.374 0.505 0.475 0.672 0.571
192 0.357 0.377 0.361 0.381 0.390 0.393 0.374 0.387 0.450 0.451 0.403 0.408 0.389 0.387 0.382 0.391 0.553 0.496 0.795 0.669
336 0.387 0.401 0.390 0.404 0.421 0.414 0.410 0.411 0.532 0.515 0.436 0.431 0.421 0.408 0.415 0.415 0.621 0.537 1.212 0.871
720 0.448 0.437 0.454 0.441 0.462 0.449 0.478 0.450 0.666 0.589 0.489 0.462 0.481 0.441 0.473 0.451 0.671 0.561 1.166 0.823

E
T

T
m

2 96 0.178 0.261 0.175 0.258 0.183 0.270 0.187 0.267 0.287 0.366 0.197 0.296 0.183 0.266 0.193 0.293 0.255 0.339 0.365 0.453
192 0.248 0.308 0.237 0.299 0.255 0.314 0.249 0.309 0.414 0.492 0.284 0.361 0.248 0.305 0.284 0.361 0.281 0.340 0.533 0.563
336 0.304 0.343 0.298 0.340 0.309 0.347 0.321 0.351 0.597 0.542 0.381 0.429 0.309 0.343 0.382 0.429 0.339 0.372 1.363 0.887
720 0.402 0.402 0.391 0.396 0.412 0.404 0.408 0.403 1.730 1.042 0.549 0.522 0.410 0.400 0.558 0.525 0.433 0.432 3.379 1.338

E
T

T
h1

96 0.371 0.395 0.375 0.400 0.460 0.447 0.384 0.402 0.423 0.448 0.426 0.446 0.438 0.433 0.397 0.412 0.449 0.459 0.865 0.713
192 0.426 0.422 0.429 0.421 0.512 0.477 0.436 0.429 0.471 0.474 0.454 0.464 0.493 0.466 0.446 0.441 0.500 0.482 1.008 0.792
336 0.437 0.432 0.484 0.458 0.546 0.496 0.638 0.469 0.570 0.546 0.493 0.487 0.547 0.495 0.489 0.467 0.521 0.496 1.107 0.809
720 0.474 0.461 0.498 0.482 0.544 0.517 0.521 0.500 0.653 0.621 0.526 0.526 0.586 0.538 0.513 0.510 0.514 0.512 1.181 0.865

E
T

T
h2

96 0.287 0.341 0.289 0.341 0.308 0.355 0.340 0.374 0.745 0.584 0.372 0.424 0.322 0.364 0.340 0.394 0.346 0.388 3.755 1.525
192 0.361 0.388 0.372 0.392 0.393 0.405 0.402 0.414 0.877 0.656 0.492 0.492 0.404 0.414 0.482 0.479 0.456 0.453 5.602 1.931
336 0.374 0.403 0.386 0.414 0.427 0.436 0.452 0.452 1.043 0.731 0.607 0.555 0.435 0.445 0.591 0.541 0.482 0.486 4.721 1.835
720 0.412 0.433 0.412 0.434 0.436 0.450 0.462 0.468 1.104 0.763 0.824 0.655 0.447 0.458 0.839 0.661 0.515 0.511 3.647 1.625

Table 12: Full results of univariate short-term forecasting in the M4 dataset. All forecasting horizons
are in [6, 48]. The best results are in bold and the second best are underlined.

Models CATS TimeMixer Timesnet PatchTST MICN FiLM DLinear Autoformer Informer

Q
ua

rt
er

ly SMAPE 9.979 9.996 10.100 10.644 15.214 12.925 12.145 11.338 11.360
MASE 1.164 1.166 1.182 1.278 1.963 1.664 1.520 1.365 1.401
OWA 0.878 0.825 0.890 0.949 1.407 1.193 1.106 1.012 1.027

M
on

th
ly SMAPE 12.557 12.605 12.670 13.399 16.943 15.407 13.514 13.958 14.062

MASE 0.916 0.919 0.933 1.031 1.442 1.298 1.037 1.103 1.141
OWA 0.866 0.869 0.878 0.949 1.265 1.144 0.956 1.002 1.024

Y
ea

rl
y SMAPE 13.263 13.206 13.387 16.463 25.022 17.431 16.965 13.974 14.727
MASE 2.967 2.916 2.996 3.967 7.162 4.043 4.283 3.134 3.418
OWA 0.779 0.776 0.786 1.003 1.667 1.042 1.058 0.822 0.881

O
th

er
s SMAPE 4.560 4.564 4.891 6.558 41.985 7.134 6.709 5.485 24.460

MASE 3.107 3.115 3.302 4.511 62.734 5.09 4.953 3.865 20.960
OWA 0.970 0.982 1.035 1.401 14.313 1.553 1.487 1.187 5.879

A
ve

ra
ge SMAPE 11.701 11.723 11.829 13.152 19.638 14.863 13.639 12.909 14.086

MASE 1.557 1.559 1.585 1.945 5.947 2.207 2.095 1.771 2.718
OWA 0.838 0.840 0.851 0.998 2.279 1.125 1.051 0.939 1.230
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B Additional Experimental Results

B.1 Performance with Longer Input Sequences

In Table 5, we compared models with the number of parameters, GPU memory consumption, and
MSE across different input lengths on ETTm1 with varying input sequence lengths. In this section, we
provide comprehensive results on longer input sequence lengths L = 512. The detailed parameters
can be found in Table 13 and the corresponding experimental results are summarized in Table 14.
As with unified hyperparameter settings, we follow the settings of the most recent work [21] to ease
comparison. Overall, the experimental results clearly illustrate the superiority of CATS over recent
forecasting models across multiple datasets and prediction horizons. CATS consistently shows the
lowest Mean Squared Error (MSE) and Mean Absolute Error (MAE) across a variety of datasets
and forecast horizons. For instance, on Electricity, at the 96 forecast horizon, CATS achieves the
best MSE score of 0.144 and the best MAE score of 0.189, underscoring its accuracy in predicting
electrical demand.

Table 13: Experimental settings with an input sequence length of 512.
Metric Layers Embedding Size Query Sharing Input Sequence Length Batch Size Epoch Learning Rate

Weather 3 128 False 512 128 30 10−3

Electricity 3 128 False 512 32 30 10−3

Traffic 3 128 True 512 32 100 10−3

ETTh1 3 256 False 512 128 10 10−3

ETTh2 3 256 True 512 256 10 10−3

ETTm1 3 128 False 512 128 30 10−3

ETTm2 3 256 True 512 128 30 10−3

Table 14: Multivariate long-term forecasting results with an input sequence length of 512. The best
results are in bold and the second best are underlined.
Models CATS TimeMixer PatchTST Timesnet Crossformer MICN FiLM DLinear Autoformer Informer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.144 0.199 0.147 0.197 0.149 0.198 0.172 0.220 0.232 0.302 0.161 0.229 0.199 0.262 0.176 0.237 0.266 0.336 0.300 0.384

192 0.188 0.240 0.189 0.239 0.194 0.241 0.219 0.261 0.371 0.410 0.220 0.281 0.228 0.288 0.220 0.282 0.307 0.367 0.598 0.544
336 0.238 0.280 0.241 0.280 0.306 0.282 0.246 0.337 0.495 0.515 0.278 0.331 0.267 0.323 0.265 0.319 0.359 0.395 0.578 0.523
720 0.308 0.329 0.310 0.330 0.314 0.334 0.365 0.359 0.526 0.542 0.311 0.356 0.319 0.361 0.323 0.362 0.419 0.428 0.590 0.741

E
le

ct
ri

ci
ty 96 0.126 0.218 0.129 0.224 0.129 0.222 0.168 0.272 0.150 0.251 0.164 0.269 0.154 0.267 0.140 0.237 0.201 0.317 0.274 0.368

192 0.144 0.235 0.140 0.220 0.147 0.240 0.184 0.322 0.161 0.260 0.177 0.285 0.164 0.258 0.153 0.249 0.222 0.334 0.296 0.386
336 0.159 0.252 0.161 0.255 0.163 0.259 0.198 0.300 0.182 0.281 0.193 0.304 0.188 0.283 0.169 0.267 0.231 0.338 0.300 0.394
720 0.194 0.283 0.194 0.287 0.197 0.290 0.220 0.320 0.251 0.339 0.212 0.321 0.236 0.332 0.203 0.301 0.254 0.361 0.373 0.439

Tr
af

fic

96 0.352 0.243 0.360 0.249 0.360 0.249 0.593 0.321 0.514 0.267 0.519 0.309 0.416 0.294 0.410 0.282 0.613 0.388 0.719 0.391
192 0.373 0.253 0.375 0.250 0.379 0.256 0.617 0.336 0.549 0.252 0.537 0.315 0.408 0.288 0.423 0.287 0.616 0.382 0.696 0.379
336 0.387 0.260 0.385 0.270 0.392 0.264 0.629 0.336 0.530 0.300 0.534 0.313 0.425 0.298 0.436 0.296 0.622 0.337 0.777 0.420
720 0.425 0.281 0.430 0.281 0.432 0.286 0.640 0.350 0.573 0.313 0.577 0.325 0.520 0.353 0.466 0.315 0.660 0.408 0.864 0.472

E
T

T
h1

96 0.373 0.401 0.361 0.390 0.370 0.400 0.384 0.402 0.418 0.438 0.421 0.431 0.422 0.432 0.375 0.399 0.449 0.459 0.865 0.713
192 0.401 0.421 0.409 0.414 0.413 0.429 0.436 0.429 0.539 0.517 0.474 0.487 0.462 0.458 0.405 0.416 0.500 0.482 0.080 0.792
336 0.415 0.434 0.430 0.429 0.422 0.440 0.638 0.469 0.709 0.638 0.569 0.551 0.501 0.483 0.439 0.443 0.521 0.496 0.107 0.809
720 0.435 0.446 0.445 0.460 0.447 0.468 0.521 0.500 0.733 0.636 0.770 0.672 0.544 0.526 0.472 0.490 0.514 0.512 0.181 0.865

E
T

T
h2

96 0.256 0.328 0.271 0.330 0.274 0.337 0.340 0.374 0.425 0.463 0.299 0.364 0.323 0.370 0.289 0.353 0.358 0.397 0.755 0.525
192 0.311 0.366 0.317 0.402 0.314 0.382 0.231 0.322 0.473 0.500 0.441 0.454 0.391 0.415 0.383 0.418 0.456 0.453 0.602 0.931
336 0.319 0.382 0.332 0.396 0.329 0.384 0.452 0.452 0.581 0.562 0.654 0.567 0.415 0.440 0.448 0.465 0.482 0.486 0.721 0.835
720 0.395 0.438 0.342 0.408 0.379 0.422 0.462 0.468 0.775 0.665 0.956 0.716 0.441 0.459 0.605 0.551 0.515 0.511 0.647 0.625

E
T

T
m

1 96 0.283 0.340 0.291 0.340 0.293 0.346 0.338 0.375 0.361 0.403 0.316 0.362 0.302 0.345 0.299 0.343 0.505 0.475 0.672 0.571
192 0.319 0.363 0.327 0.365 0.333 0.370 0.374 0.387 0.387 0.422 0.363 0.390 0.338 0.368 0.335 0.365 0.553 0.496 0.795 0.669
336 0.351 0.385 0.360 0.381 0.369 0.392 0.410 0.411 0.605 0.572 0.408 0.426 0.373 0.388 0.369 0.386 0.621 0.537 0.212 0.871
720 0.400 0.414 0.415 0.417 0.416 0.420 0.478 0.450 0.703 0.645 0.481 0.476 0.420 0.420 0.425 0.421 0.671 0.561 0.166 0.823

E
T

T
m

2 96 0.165 0.256 0.164 0.254 0.166 0.256 0.187 0.267 0.275 0.358 0.179 0.275 0.165 0.256 0.167 0.260 0.255 0.339 0.365 0.453
192 0.221 0.297 0.223 0.295 0.223 0.296 0.249 0.309 0.345 0.400 0.307 0.376 0.222 0.296 0.224 0.303 0.281 0.340 0.533 0.563
336 0.274 0.334 0.279 0.330 0.274 0.329 0.321 0.351 0.657 0.528 0.325 0.388 0.277 0.333 0.281 0.342 0.339 0.372 0.363 0.887
720 0.362 0.390 0.359 0.383 0.362 0.385 0.408 0.403 0.208 0.753 0.502 0.490 0.371 0.389 0.397 0.421 0.422 0.419 0.379 0.388

B.2 Additional Results for Section 5.2

We provide additional experimental results to support the findings discussed in Section 5.2. Tables 15
and 16 summarize detailed comparisons of the number of parameters, GPU memory consumption,
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Table 15: Comparison of models with the number of parameters, GPU memory consumption, and
MSE across different input sequence lengths on ETTm1. Full results of Table 5.

Parameters across different input lengths

Models 96 192 336 512 720 1440 2880

PatchTST 1,506,384 2,612,304 4,271,184 6,298,704 8,694,864 16,989,264 33,578,064
TimeMixer 190,313 484,217 1,129,193 2,250,137 4,046,633 14,211,593 52,912,313
DLinear 139,680 277,920 485,280 738,720 1,038,240 2,075,040 4,148,640
CATS 360,264 360,776 361,544 362,440 363,592 367,432 375,112

GPU Memory Consumption across different input lengths

Models 96 192 336 512 720 1440 2880

PatchTST 2,234MB 2,650MB 3,484MB 4,914MB 7,368MB 2,1968MB 58,590MB
TimeMixer 2,204MB 2,522MB 2,914MB 3,414MB 3,888MB 5,876MB 10,324MB
DLinear 1,098MB 1,102MB 1,104MB 1,114MB 1,114MB 1,154MB 1,214MB
CATS 1,712MB 1,796MB 1,884MB 2,042MB 2,140MB 2,700MB 3,826MB

MSE across different input lengths

Models 96 192 336 512 720 1440 2880

PatchTST 0.457 0.424 0.418 0.420 0.418 0.420 0.413
TimeMixer 0.454 0.433 0.428 0.436 0.425 0.414 0.472
DLinear 0.473 0.438 0.426 0.427 0.422 0.401 0.408
CATS 0.450 0.418 0.407 0.400 0.402 0.399 0.395

Table 16: Comparison of models with the number of parameters, GPU memory consumption, and
MSE across different input sequence lengths on Weather.

Parameters across different input lengths

Models 96 192 336 512 720 1440 2880

PatchTST 1,506,384 2,612,304 4,271,184 6,298,704 8,694,864 16,989,264 33,578,064
TimeMixer 219,249 595,305 1,465,569 3,028,185 5,582,529 20,343,969 77,423,049
DLinear 139,680 277,920 485,280 738,720 1,038,240 2,075,040 4,148,640
CATS 370,344 370,856 371,624 372,520 373,672 377,512 385,192

GPU Memory Consumption across different input lengths

Models 96 192 336 512 720 1440 2880

PatchTST 1,680MB 2,110MB 2,762MB 4,596MB 5,726MB 16,472MB 45,278MB
TimeMixer 1,894MB 2,154MB 2,728MB 3,414MB 4,356MB 8,358MB 20,624MB
DLinear 1,106MB 1,114MB 1,188MB 1,188MB 1,188MB 1,362MB 1,632MB
CATS 1,522MB 1,590MB 1,665MB 1,755MB 1,892MB 2,282MB 3,140MB

MSE across different input lengths

Models 96 192 336 512 720 1440 2880

PatchTST 0.351 0.336 0.320 0.315 0.309 0.308 0.312
TimeMixer 0.339 0.331 0.318 0.319 0.324 0.318 0.327
DLinear 0.346 0.334 0.325 0.320 0.316 0.311 0.309
CATS 0.342 0.325 0.314 0.308 0.305 0.301 0.291

and MSE across different input lengths for the ETTm1 and Weather datasets, respectively. The
linear models, TimeMixer and DLinear, exhibit smaller parameters for shorter input lengths. Despite
CATS having slightly more parameters than TimeMixer for smaller inputs, it outperforms in terms of
memory usage and MSE. This suggests that CATS is more efficient and effective in handling shorter
inputs. For PatchTST, the number of parameters does not increase within the actual Transformer
backbone as the input length increases. However, due to the need to flatten and project all inputs
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at the end, the parameters scale linearly with the input length. This highlights a limitation of the
Encoder’s architecture. On the other hand, TimeMixer’s parameters grow almost quadratically as the
input length doubles. Similarly, DLinear’s parameters increase linearly with the input length. Our
proposed model, CATS demonstrates significant efficiency through parameter sharing, where the
parameters hardly increase with longer inputs. Notably, from an input length of 336, CATS has fewer
parameters than DLinear, showcasing the deep learning model’s advantage in detecting inherent
patterns in the data.

Regarding GPU memory consumption, we observe that both PatchTST and TimeMixer require
significantly more GPU memory as the input length increases. For example, PatchTST’s GPU
memory usage scales drastically, making it less feasible for long input sequences. TimeMixer also
shows an increase in GPU memory consumption, although it is less severe than PatchTST. In contrast,
DLinear maintains a relatively constant GPU memory usage, demonstrating its efficiency in terms of
computational resources. However, CATS stands out by offering a balanced approach, with moderate
GPU memory usage that scales more favorably compared to PatchTST and TimeMixer. This balance
between memory efficiency and performance is crucial for practical applications requiring long-term
time series forecasting.

Furthermore, when analyzing the MSE across different input lengths, CATS consistently shows the
best performance. It maintains lower MSE compared to other models across all input lengths. This
robustness in performance, combined with its efficient parameter and memory usage, highlights
the superiority of CATS in long-term time series forecasting tasks. Overall, these results show the
advantages of CATS in terms of parameter efficiency, GPU memory consumption, and forecasting
accuracy. These findings support the proposed model’s potential for practical and scalable time series
forecasting solutions.

Table 17 presents the full results on the Traffic dataset. Here, we use the Traffic dataset with a batch
size of 8. All GPU memory consumption was measured in a setting using four multi-GPUs. As shown
in Table 17, CATS with a 2880 input sequence length consistently outperforms models with a 512
input sequence length, including PatchTST and TimeMixer. Specifically, CATS demonstrates fewer
parameters, lower GPU memory consumption, and faster running speeds. These results highlight the
efficiency of CATS with large input sizes. The Traffic dataset, characterized by high-dimensional
data, shows a significant reduction in MSE when using longer input sequences.

Table 18 provides the full results on the Electricity dataset. Similar to the Traffic dataset, CATS shows
superior efficiency in training, particularly with an input size of 2880, across all cases. Here, we
use the Electricity dataset with a batch size of 32. All GPU memory consumption was measured in
a setting using four multi-GPUs. In this experiment, CATS with a 512 input sequence length did
not use parameter sharing for queries, while CATS with a 2880 input sequence length did. This
demonstrates the effectiveness of query parameter sharing when utilizing large amounts of data for
training. The results confirm that query sharing among dimensions leads to greater efficiency and
improved performance.
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Table 17: Comparison of models with the number of parameters, GPU memory consumption, running
speed, and MSE across different forecasting horizon sizes on Traffic. Full results of Fig. 5.

Horizon Models Paramters Gpu Memory Running Time MSE

96

PatchTST 1,186,272 28.54GB 0.1390s/iter 0.360
TimeMixer 2,442,961 38.12GB 0.2548s/iter 0.360
CATS (L = 512) 357,496 5.81GB 0.0533s/iter 0.352
CATS (L = 2880) 370,168 9.79GB 0.1158s/iter 0.339

192

PatchTST 1,972,800 28.34GB 0.1412s/iter 0.379
TimeMixer 2,535,505 38.13GB 0.2596s/iter 0.375
CATS (L = 512) 357,592 6.73GB 0.0571s/iter 0.373
CATS (L = 2880) 370,264 11.10GB 0.1209s/iter 0.362

336

PatchTST 3,152,592 28.91GB 0.1487s/iter 0.392
TimeMixer 2,674,321 38.69GB 0.2647s/iter 0.385
CATS (L = 512) 357,736 7.46GB 0.0584s/iter 0.387
CATS (L = 2880) 370,408 12.72GB 0.1266s/iter 0.379

720

PatchTST 6,298,704 29.15GB 0.1628s/iter 0.432
TimeMixer 3,044,497 41.17GB 0.2777s/iter 0.430
CATS (L = 512) 358,120 10.10GB 0.0734s/iter 0.423
CATS (L = 2880) 370,792 18.40GB 0.1556s/iter 0.420

Table 18: Comparison of models with the number of parameters, GPU memory consumption, running
speed, and MSE across different forecasting horizon sizes on Electricity.

Horizon Models Paramters Gpu Memory Running Time MSE

96

PatchTST 1,186,272 40.36GB 0.2021s/iter 0.129
TimeMixer 2,429,049 33.80GB 0.2118s/iter 0.129
CATS (L = 512) 388,216 6.89GB 0.0587s/iter 0.126
CATS (L = 2880) 370,168 12.82GB 0.1653s/iter 0.126

192

PatchTST 1,972,800 40.39GB 0.2048s/iter 0.147
TimeMixer 2,521,593 33.81GB 0.2212s/iter 0.140
CATS (L = 512) 419,032 8.07GB 0.0636s/iter 0.144
CATS (L = 2880) 370,264 14.70GB 0.1725s/iter 0.139

336

PatchTST 3,152,592 40.42GB 0.2070s/iter 0.163
TimeMixer 2,660,409 34.24GB 0.2314s/iter 0.161
CATS (L = 512) 465,256 9.15GB 0.0690s/iter 0.159
CATS (L = 2880) 370,408 17.38GB 0.1839s/iter 0.153

720

PatchTST 6,298,704 41.40GB 0.2313s/iter 0.197
TimeMixer 3,030,585 36.13GB 0.2478s/iter 0.194
CATS (L = 512) 588,520 12.77GB 0.0964s/iter 0.194
CATS (L = 2880) 370,792 25.86GB 0.2262s/iter 0.183

B.3 Ablation Study on Query-adaptive Masking

In this section, we demonstrate the effectiveness of query-adaptive masking compared to dropout,
which is a widely adopted technique in Transformer-based forecasting models. We consider four
different setups: using only dropout, using query-adaptive masking with fixed probabilities, query-
adaptive masking with linearly increasing probabilities, and using both methods simultaneously.
As shown in Fig. 8, the query-adaptive masking shows better forecasting performance and faster
converge speed compared to dropout. Applying a gradually increasing masking probability based
on the horizon predicted by the query shows slight performance improvements over using a fixed
probability or combining with dropout. In contrast, using dropout alone shows noticeable differences
in both convergence speed and overall performance. This demonstrates that when multiple inputs
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with different forecasting horizons share a single model, probabilistic masking is more beneficial for
model training than dropout.
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(a) ETTm1 with T = 720
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Figure 8: Comparison of performance with query-adaptive masking with two different probabilities,
dropout, and using both query-adaptive masking and dropout. The results of p = 0.1 to 0.7 indicate a
probability masking that is linearly increased proportionally to the horizon predicted by the query.

C Detailed Explanation of Section 5.5

In this section, we provide the detailed results of experiments in Section 5.5. We first restate the
formulation of two independent signals used in Section 5.5 as follows:

x(t) = {x(t mod τ)}∞t=1, xi ∼ N (0, 1) (i = 0, 1, . . . , τ − 1),

y(t) =

{
+k if t ≡ 0 (mod S)

−k if t ≡ 1
2S (mod S)

,

We use the model parameters as follows: the patch length is 4 without overlapping, the decoder has 1
layer, and there are 2 attention heads. The signals x(t) and y(t) are defined with τ = 24, S = 8, and
k = 5. The visualization of synthetic data is shown in Fig. 9. We utilize an input sequence length
L = 48 and a forecasting horizon T = 72. This setup allows us to generate time series data with
distinct periodic components.

In the main paper, Fig. 6 displays a cross-attention score map between the input patch and the output
patch derived from this experiment. The left figure presents the attention score of the first attention
head, illustrating the model’s ability to detect shocks within the signal. The right figure more clearly
demonstrates the periodicity of the signal. Given that the patch length and stride are both set to 4,
each patch will contain exactly one shock value, either -5 or +5. This is because the shocks occur
every 4 steps, alternating between positive and negative shocks. Consequently, the patch immediately
preceding the current patch will contain a different shock, leading to lower attention scores due to
the differing shock values. In contrast, patches that are an even number of steps before the current
patch will contain the same type of shock, resulting in higher attention scores. These points are well
illustrated in Fig. 6a, where the varying attention scores correspond to the presence of alternating
shocks. This pattern helps to highlight the alternating shock signal within the data.

Additionally, if there is a correlation with the series preceding 24 steps, the patches that are 6 steps or
multiples of 6 steps before the current patch will exhibit high attention scores due to the periodic
nature of the signal x(t). The diagonal formation of the attention scores, which accurately follows a
period of 24, is clearly depicted in Fig. 6b, highlighting the model’s capability to utilize fixed-period
input patches to predict future outcomes. This periodic pattern ensures that the attention mechanism
effectively captures the 24-step periodicity in x(t), reflecting the model’s ability to leverage this
periodic information for more accurate predictions.

This experimental configuration provides a robust framework to evaluate how well our proposed model
captures and interprets the underlying patterns in the data, specifically focusing on the alternating
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Figure 9: Visualization of input signals for toy experiment.

shock signal and the periodic nature of the normal signal. This dual emphasis on both the shock signal
and the periodicity of the normal signal enhances the interpretability and predictive performance
of the model, distinctly demonstrating how the model leverages periodic information to enhance
prediction accuracy.

To push further, we reproduce the experiment of Fig. 7 with other datasets used in forecasting tasks.
We illustrate the results of the Weather, Traffic, Electricity, ETTm2, ETTh1, and ETTh2 in Figures
10, 11, 12, 13, 14, and 15, respectively. For each figure, (a) represents the forecasting results, (b)
shows the cross-attention score map, and (c) and (d) illustrate the two pairs with the highest attention
scores. For all figures, our attention-based explanation successfully discovers similar periodic patterns.
Therefore, we believe that our model has the potential to provide a clearer understanding of the
mechanisms underlying forecasting predictions. We hope that future research will continue to explore
and expand upon this foundation.
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Figure 10: Illustration of (a) forecasting result, (b) averaged cross-attention score, and (c,d) patches
with the highest score on Weather. The score map is averaged from all the heads across layers.
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Figure 11: Illustration of (a) forecasting result, (b) averaged cross-attention score, and (c,d) patches
with the highest score on Traffic. The score map is averaged from all the heads across layers.
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Figure 12: Illustration of (a) forecasting result, (b) averaged cross-attention score, and (c,d) patches
with the highest score on Electricity. The score map is averaged from all the heads across layers.
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Figure 13: Illustration of (a) forecasting result, (b) averaged cross-attention score, and (c,d) patches
with the highest score on ETTm2. The score map is averaged from all the heads across layers.
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Figure 14: Illustration of (a) forecasting result, (b) averaged cross-attention score, and (c,d) patches
with the highest score on ETTh1. The score map is averaged from all the heads across layers.
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Figure 15: Illustration of (a) forecasting result, (b) averaged cross-attention score, and (c,d) patches
with the highest score on ETTh2. The score map is averaged from all the heads across layers.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in Appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We made the main claims in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

24



Justification: We discuss the limitations of the work in the Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in Appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We uploaded the source code of our model and experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We uploaded the source code of our model and experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results in
Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in Appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Instead of error bars, following the numerous studies in the field of time series
forecasting [14, 26], we fixed the random seed and provided the comparable experimental
results in the main paper with generally accepted datasets and settings [21].
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: In the main paper and the Appendix, we provide sufficient information on the
used computer resources.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that the research conducted in the paper conform, in every respect,
with the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We confirm that there is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: We confirm that the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We confirm that we have cited the original paper that produced the code
package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We confirm that that the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We confirm that the paper does not involve crowdsourcing nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We confirm that the paper does not involve crowdsourcing nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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