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ABSTRACT

Continual learning with language models (LMs) is a promising and challenging
research that greatly impacts many applications. Existing solutions treat previous
tasks equally, making them vulnerable to task interference, lacking scalability
with a large number of tasks, and oblivious to the intrinsic relationships among
tasks. This work presents selective knowledge transfer (SKT), a novel framework
towards continual learning with LMs. SKT aims to maximize positive knowledge
transfer while systematically minimizing the effects of irrelevant information
from dissimilar tasks. To this end, SKT first assesses the degree of interference
between the current and previous tasks and then selectively aggregates the tasks that
maximize knowledge transfer for continual training. In addition, we integrate SKT
into the current state-of-the-art continual language learning algorithm, Progressive
Prompts, to introduce Log-evidence Progressive Prompts (LePP), which facilitates
knowledge transfer between tasks. Comprehensive evaluations on challenging few-
shot continual learning benchmarks demonstrate that LePP can surpass existing
baselines for continual learning with LMs with minimal overhead. Our extensive
ablation studies reveal that SKT can discover useful task correlations without any
prior knowledge, many of which align with human evaluations. Code will be
published upon acceptance.

1 INTRODUCTION

Modern language models are required to efficiently adapt to dynamic environments with only a few
labeled samples, to enable widespread adoption in the real world. This adaptability allows users to
effectively interact with language models, e.g. a chatbot, by providing a couple of input-output pairs
to achieve their desired outcomes. This goal can be achieved through Few-shot Continual Learning
(FSCL) (Zhang et al., 2024b; Pasunuru et al., 2021; Li et al., 2022), where the language models can
adapt to non-stationary distributions in a few-shot manner. However, two main obstacles arise in
learning a task stream: preventing catastrophic forgetting (CF), where the model’s performance on
previous tasks significantly deteriorates after learning a new one, and encouraging forward transfer
(FT), which leverages learned knowledge to facilitate the learning process of new tasks.

Existing approaches (Kirkpatrick et al., 2017; Rusu et al., 2016; Nguyen et al., 2017; Yoon et al.,
2018) address forgetting by isolating model parameters related to past knowledge. For example,
in regularization-based approaches (Kirkpatrick et al., 2017; Nguyen et al., 2017; Huang et al.,
2021), the model parameters of future tasks are constrained to remain close to those of previous
ones by adding auxiliary regularizers to the final loss function. Besides, parameter isolation-based
approaches (Rusu et al., 2016; Yoon et al., 2018) allocate new parameters for each new task and freeze
the neurons associated with prior tasks to preserve knowledge. This method mitigates forgetting and
leverages prior knowledge for FT through parameter sharing.

Research on continual learning (CL) for NLP tasks has extended these ideas to enable language
models to continually learn new tasks without forgetting. In particular, the NLP community has
focused heavily on the parameter isolation-based approach (Ke et al., 2020; 2021; Razdaibiedina et al.,
2023; Zhang et al., 2024b; Peng et al., 2024) because learning with pre-trained LMs significantly
improves the performance of CL systems and LMs are flexible to adapt to new tasks with parameter-
efficient fine-tuning (PEFT) (Houlsby et al., 2019; Hu et al., 2021; Lester et al., 2021; Li & Liang,
2021). We argue that existing PEFT-based approaches are vulnerable to task interference due to
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their naive aggregation mechanisms (Razdaibiedina et al., 2023), and they lack scalability because
of inefficient similar task selection procedures (Peng et al., 2024; Ke et al., 2020; 2021). Therefore,
these methods hinder the possibility of positive forward transfer, which plays a crucial role in FSL
where learning from similar tasks leads to better performance (Zhou et al., 2021), and the system
scalability with the number of tasks.

In this study, we propose selective knowledge transfer (SKT), a novel and generalized framework
to maximize the positive forward transfer of LMs in FSCL settings. In particular, our framework
consists of two stages: (1) Selection where relevant memories are chosen; (2) Aggregation where
the correlated past memories are effectively aggregated to facilitate the adaptation of the current task.
Following these principles, we devise Log-evidence Progressive Prompts (LePP), a CL algorithm
utilizing transferability measures (TMs) to select similar tasks. Unlike previous works that require
learning each task’s representation as a task key or a probe soft prompt, LePP only necessitates a
single forward pass over the few-shot dataset for each trained prompt, making it more computationally
efficient than its counterparts.

To validate the effectiveness of LePP, we conduct experiments on several challenging continual NLP
benchmarks. Experimental results demonstrate that LePP outperforms existing CL approaches with
prompt tuning. By integrating selective knowledge transfer (SKT) into its mechanism, LePP effec-
tively leverages relevant past knowledge while discarding irrelevant information, thereby accelerating
the learning of the current task and showcasing its scalability with an increasing number of tasks
in a sequence. Additionally, our ablation studies reveal that the task correlations identified by our
proposed framework align with human evaluations.

In summary, our paper presents three significant contributions:

• We introduce selective knowledge transfer (SKT), a novel CL framework for LMs. Our
framework leverages TMs, a recent advancement in model selection, to enable systems to
autonomously identify memories relevant to the current task. To our best knowledge, this is
the first exploration of applying TMs in CL with LMs.

• We integrate our proposed framework into current prompt-based CL algorithms that can
maximize positive knowledge transfer to improve system performance.

• We conduct extensive experiments to demonstrate the superiority of our proposed framework
over previous SoTAs on popular NLP benchmarks. Ablation studies reveal that SKT can
uncover task correlations within a stream, which helps to understand the effect of task
relatedness on the performance of the CL system. In addition, we show that SKT can work
with different data modalities including images.

2 PRELIMINARIES

Continual learning Task Incremental Learning (TIL) consecutively trains a neural network fθ on
a sequence of datasets T = {T1, T2, . . . , TM}, where M is the number of datasets in the sequence.
Tt = {xt

i, y
t
i}

Nt
i=1 contains Nt annotated inputs (xt

i, y
t
i) drawn from an unknown distribution Pt(X,Y )

i.e., (xt
i, y

t
i) ∼ Pt(X,Y ). Here, X is the space of input x, while Y is the space of label y with p

classes, where |Y | = p. In Few-shot Learning (FSL), we sample k sentences per class for each task
as inputs. In our TIL setting, during training at time step t, the model is prohibited from accessing
the previous data Ti<t due to privacy issues, and the task-ids are available during inference.

Prompt tuning Prompt Tuning (PT) (Lester et al., 2021) attaches a trainable token P =
[p1, p2, . . . , pl] ∈ Rl×d at the beginning of the input sequence’s embedding X = [e1, e2, . . . , en] ∈
Rn×d of an input x, where n and l are the number of tokens in the input sequence x and the prefix
P , respectively. The prompted input X̂ = [P,X] ∈ R(l+n)×d is then forwarded to the network
gθ, which is initialized with pre-trained weights θ0 to maximize the log-likelihood of Y . Formally,
for each task T , we optimize the soft prompt P while keeping the model’s weight unchanged:
P ∗ = argmaxP

∑
(x,y)∈T log p(y|x, P, θ0).

Inspired by Progressive Neural Networks (Rusu et al., 2016), Progressive Prompts (Razdaibiedina
et al., 2023) extended this idea to apply PT in the TIL setting. At a time step t, we initialize a new train-
able prompt Pt which is then concatenated with all previously trained prompts {Pj}j<t and the text
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Figure 1: Overview of our proposed framework: In the selection stage, previous tasks’ prompt is
sorted by their transferability score, and top-K prompts with the highest score is selected to construct
the past knowledge, which is crucial for facilitating knowledge transfer of the new task adaptation.
During the adaptation phase, we maintain the shared LM and past knowledge frozen and utilize PT to
derive a distinct soft prompt for each task t.

embedding Xt to create a new embedding X̂t = [Pt, Pt−1, . . . , P1, Xt]. For each task Tt, we obtain
P ∗
t by maximizing the log-likelihood of Yt given X̂t i.e., P ∗

t = argmaxPt

∑
(xt,yt)∈Tt

log p(yt|X̂t).
The prompt Pt is trainable while prompts trained on previous tasks Pj<t and the pre-trained language
model weights Θ are frozen during task t training. After training task t, we store P ∗

t for inference.

Transferability measures In (Tran et al., 2019), transferability Tr(Ds,Dt) of source task Ds to
target task Dt is defined as the expected log-likelihood on the training set of trained weights ws

with Ds on target dataset Dt i.e., Tr(Ds,DT ) = E[log p(ws,Dt)]. However, an exact calculation of
Tr(Ds,Dt) is not required to compare models in practice since we only need a measure having a
positive correlation with Tr(Ds,Dt). Therefore, transferability measures (TM) are developed as an
computationally efficient alternative for tasks or model comparison. In particular, a transferability
measureM is a real-valued metric taking (Ds,Dt) as inputs and returns a real valueM(Ds,Dt) ∈ R.
In cases where the source task Ds is unavailable, we can approximateM(Ds,Dt) ≈ M(ws,Dt).
Given two pre-trained weights w1 and w2 learned from different sources, a target dataset Dt, trans-
ferability scoresM(w1,Dt) andM(w2,Dt), and the actual performance scores Perf(w1,Dt) and
Perf(w2,Dt) of w1 and w2 on the target dataset Dt,M should satisfy the following equation:

Perf(w1,Dt) ≤ Perf(w2,Dt) ⇐⇒ M(w1,Dt) ≤M(w2,Dt). (1)

As indicated in Eq.(1), the pre-trained weight w2 has a higher transferability score than w1, and w2 is
expected to achieve higher performance on Dt than w1.

Previous research (Bassignana et al., 2022) empirically shows that transferability estimators such as
LogME (You et al., 2021) are more reliable than NLP practitioners in model selection for downstream
adaptation. LogME employs the marginal likelihood p(y|F ) to measure the compatibility of target
dataset features extracted by a source model F ∈ Rn×d with its corresponding labels y ∈ Rn.
Here, n is the size of the target dataset and d is the feature dimension. Theoretically, p(y|F ) =∫
w
p(y|F,w)p(w)dw is intractable since it requires integration over the space of w, where w is the

classification head on top of the extracted features. However, in (You et al., 2021), the authors
provided an iterative approach based on optimization to estimate the density p(y|F ).

3
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3 METHODOLOGY

3.1 IMPROVING FSCL VIA SELECTIVE KNOWLEDGE TRANSFER

Let g be the base network initialized with pre-trained weights θ0. At a timestep t, we aim to learn a
set of incremental model parameters θt for the current task Tt. We assume the existence of model
parameters θpastt representing the past knowledge. The memory θpastt is employed jointly with θt
to maximize the log-likelihood on the downstream task Tt using gradient descent. Formally, we
optimize the following objective function:

θ∗t = argmax
θt

∑
x,y∈Tt

log p(y|x, θt, θpastt ). (2)

In the above equation, θpastt needs to be chosen wisely to ensure the maximum KT for task t. We
establish θpastt from a subset of similar memories 1 PK ⊆ P , where P is the set of all previous
memories. Next, we introduce how to select PK , and then explain how to construct θpastt using PK .

Selection We introduce the selection process of past memories with the help of transferability
measures. In parameter isolation-based CL approaches, a set of incremental parameters P =
{θ1, . . . , θt−1} associated with previous tasks {T1, . . . , Tt−1} are used to learn a subsequent task
Tt. Note that the prior datasets Tj<t are absent, and we only have the incremental parameters θj<t

for measuring task similarity. We select the subset PK ⊆ P as the set of K incremental parameters
trained on the most prior similar tasks to the current task Tt, where K is a hyper-parameter. To
measure the similarity between a prior task Tj and the current task Tt, we estimate the transferability
score stj =M(θj , Tt) of the trained residual parameters θj on task Tt, noting that all feature-based
transferability measures could be employed (You et al., 2021; Gholami et al., 2023).

Aggregation (Zhou et al., 2022) found that jointly training the current task with related ones
outperforms training on all tasks and that key tasks should have higher weights during new task
training. Inspired by this observation, we derive an aggregation mechanism called weighted sum where
the past knowledge θpastt is calculated as a linear combination of all selected incremental weights
θk ∈ PK with their corresponding transferability scores stk w.r.t. the current task as coefficients:

θpastt =

∑K
k=1 s

t
kθk∑K

k=1 s
t
k

. (3)

Discussions Our proposed framework is general, and can be applied to any parameter-efficient
tuning approaches such as Prompt Tuning (PT) (Lester et al., 2021), Adapter (Houlsby et al., 2019)
and LoRA (Hu et al., 2021). In Sec. 3.2, we devise Log-evidence Progressive Prompts, a representative
of our proposed framework for prompt-based CL algorithms. Another advantage of our proposed
framework is its efficiency, as it does not require training per task’s representation (Zhang et al.,
2015), which would otherwise add significant computational overhead due to the backward pass for
gradient descent calculation. Finally, using TMs offers a useful interpretation of task similarity, i.e.,
identifying which tasks should be jointly trained with the current task to maximize accuracy. The
experiment in Sec. 4.4 demonstrates this capability of our proposed method.

3.2 LOG-EVIDENCE PROGRESSIVE PROMPTS (LEPP)

We devise Log-evidence Progressive Prompts (LePP), a two-stage CL algorithm based on Progressive
Prompts using SKT. Given a set of trained prompts P = {P1, . . . , Pt−1} at a time step t, we propose
learning a incremental soft prompt Pt on a current task Tt = (Dtrain

t ,Dtest
t ) following 2 steps:

prompt selection and prompt aggregation. In the prompt selection step, we first extract the encoder
features F j

t of the training dataset Dtrain
t for each trained prompt Pj ∈ P . Then, the transferability

score sjt is calculated as the log evidence of the current task label Yt given the encoder features F j
t ,

i.e. stj = log p(Yt|F j
t ). We select the top K prompts with the highest scores st as PK . In the prompt

1In this paper, we consider the incremental weights as past memories, and use the terms interchangeably.
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Algorithm 1 Log-evidence Progressive Prompts (LePP)

Input: Training sets T = {T1, T2, . . . , TM}, Tt = {(xi
t, y

i
t)}

Nt
i=1, a prompt pool P = {}

1: for t = 1, . . . ,M do
2: Random initialize the t-th task’s soft prompt Pt

3: # Selection stage for task Tt

4: for Pj ∈ P do
5: Get the feature matrix F j

t = Feat(Dtrain
t , Pj), F

j
t ∈ RNt×d

6: Get the label vector Yt

7: Calculate transferability score sjt = log p(F j
t , Yt) using Alg.1 in You et al. (2021)

8: end for
9: if |P| ≤ K then

10: PK ← P
11: else
12: PK = {P1, . . . , PK} ←K prompts with the highest transferability scores skt from P
13: end if
14: # Adaption stage for task Tt

15: Calculate P past
t =

∑K
k=1 skt Pk∑K
k=1 skt

,∀P k ∈ PK

16: Optimize P ∗
t = argmaxPt

∑
(xt,yt)∈Tt

log p(y|[Pt, P
past
t , X],Θ).

17: P = P ∪ {P ∗
t }

18: end for

aggregation step, the past prompt P past
t is the weighted combination of all selected prompts in PK .

Formally, P past
t =

∑K
k=1 skt Pk∑K
k=1 skt

, where skt is the transferability score corresponding to Pk. Finally, we

concatenate [Pt, P
past
t , X] and utilize the same prompt tuning mechanism as in Sec. 2 to obtain the

optimal prompt P ∗
t for the current task Tt. The detailed algorithm is provided in the Algorithm 1.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Datasets We evaluate our proposed method on two popular continual learning benchmarks for NLP.
We first validate it on a short-stream few-shot CL learning benchmark introduced in (Qin & Joty,
2022). This benchmark contains four text classification datasets from (Zhang et al., 2015) including
DBPedia (article classification), Amazon (sentiment analysis), Yahoo Answers (question answering),
and AGNews (new classification). We randomly select 16 samples per class for training and hold out
500 samples per class for validation. We also consider the challenging long-stream text classification
benchmark (Razdaibiedina et al., 2023), where the performance of CL algorithms is highly vulnerable
to negative transfer. This benchmark contains 15 text classification tasks from different task types
and domains. We randomly pick 10, 20, and 100 samples per class for training, while holding out
500 samples per class for validation. Task descriptions are provided in the Appendix.

Baselines We compare our proposed method with traditional CL baselines and prompt-based CL
baselines for NLP tasks. In general, sequential fine-tuning (FT), prompt tuning (PT), and experience
replay (ER) are employed. For T5-based models, we include Progressive Prompts (Razdaibiedina
et al., 2023) and LFPT5 (Qin & Joty, 2022). For BERT-based models, we compare our proposed
method with IDBR (Huang et al., 2021), MBPA++ (de Masson D’Autume et al., 2019), and Progres-
sive Prompts (Razdaibiedina et al., 2023).

Metrics We calculate the Average Accuracy (AA) over M tasks to measure the effectiveness
of our proposed method. Formally, after training on task M , AA is calculated as AAM =
1
M

∑M
m=1 Acc(m,M), where Acc(t,M) is the accuracy on the test set of t-th task after the last

5
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Table 1: Average performance on long-sequence experiments of the proposed algorithm com-
pared to baselines using the BERT-based model. All results are averaged over 5 runs. Asterisk
indicates models trained the entire models while others only train a soft prompt. Bold indicates the
best results. Our proposed method outperforms baselines by a wide margin.

Method ↓ Order8 Order9 Order10
Num samples→ 10 20 100 10 20 100 10 20 100

FT∗ 38.44 29.92 33.94 37.74 30.52 38.64 34.95 33.65 40.32
PT 39.58 34.98 54.53 30.6 39.31 54.83 33.49 34.91 34.77
ER∗ 31.97 50.67 35.37 32.81 50.68 36.93 38.49 50.63 39.62
IDBR∗ (2021) 33.94 39.73 38.21 39.45 37.96 40.81 34.07 32.90 36.74
Progressive (2023) 54.03 55.59 61.66 53.89 56.68 58.31 54.00 54.12 64.65

LePP(ours) 56.12 58.91 64.01 56.96 57.77 63.61 56.35 58.48 65.28

task training is completed. In other words, the average accuracy demonstrates the system’s average
performance after training on the final task.

4.2 IMPLEMENTATION DETAILS

Backbones SKT is a model-agnostic method for CL that can be integrated into any backbone.
For NLP, we employ three main backbones with different scales and architectures including
BERTbase (Devlin et al., 2018) with 110M parameters, and T5 backbones (T5small and T5large

with 60M and 770M parameters, respectively). We use the model implementations and pre-trained
weights from Hugging Face (Wolf et al., 2020) to ensure consistent results.

Training configurations We conducted experiments with T5small and BERTbase on 4 NVIDIA
A5000 GPUs, while experiments with T5large were conducted on 2 NVIDIA A40 GPUs. We used
hyperparameters as indicated in (Razdaibiedina et al., 2023) for a fair comparison. In particular, we
employ Adam optimizer with a learning rate of 0.3 and a batch size of 8. We set the prefix length of the
soft prompt to 10 tokens per task. Since T5 models are encoder-decoder models, we utilize the same
text-to-text format as in Progressive Prompts for training T5 models. For example, the label “0/1” is
converted to “positive/negative” for text generation. For BERT-based models, the prefix length is 50
tokens per task and the learning rate is chosen at 0.1. In addition, we applied the reparameterization
trick via a two-layer MLP with 800 hidden neurons in each layer, which can be discarded during
inference. Since the BERT-based model is encoder-only, we keep the original task labels and train an
additional linear layer on top of the encoder to classify sentences. In our experiments, we selected
five prompts with the highest transferability scores for knowledge aggregation.

4.3 MAIN RESULTS

Results on the long stream benchmark We first validate our framework with the BERTbase

model, one of the most popular language models based on the transformer architecture. We ran
experiments with three different orders as in (Razdaibiedina et al., 2023), their details are in the
Appendix, and report results in Tab. 1. LePP consistently outperforms other baselines across all three
orders with a large margin. Interestingly, even with only 10 samples per class, LePP yields significant
improvements, achieving 2.09% to 3.07% higher average accuracy than the second-best method.
LePP is a model-agnostic method that can work with any backbone, so we employ T5-based models
in our experiments. Due to the limited computational resources, we ran experiments five times with
a random task order and reported the average results obtained by training T5small and T5large on
different dataset sizes with 10, 20, and 100 samples per class, as shown in Tab. 2. The results indicate
that LePP outperforms other baselines and consistently yields substantial improvements over the
previous state-of-the-art, Progressive Prompts. Specifically, for T5small, our approach achieves up
to 4.46%, 3.2%, and 3.15% higher average accuracy than Progressive Prompts when training with
10, 20, and 100 samples per class, respectively. For T5large, despite performance saturation due to
the number of model parameters, our method still provides additional boosts in average accuracy.
For instance, LePP’s accuracy is up to 1.73 % higher than that of Progressive Prompts. These results

6
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Table 2: Average performance on long-sequence experiments of the proposed algorithm com-
pared to baselines using T5 models. All results are averaged over 5 runs. Asterisk indicates models
trained the entire models while others only train a soft prompt. Bold indicates the best results. Our
proposed method outperforms baselines.

Method ↓ Random order Method ↓ Random order
Num samples→ 10 20 100 Num samples→ 10 20 100

T5-small T5-large
MTL∗ 60.93 66.93 61.86 MTL∗ 39.73 70.72 70.44
FT∗ 38.73 40.36 43.63 FT∗ 41.82 41.73 40.29
ER∗ 55.89 59.37 61.01 ER∗ 49.39 53.91 34.66
LFPT5 (2022) 25.64 31.84 32.05 LFPT5 (2022) 36.12 32.94 42.94
Progressive (2023) 59.11 63.86 66.62 Progressive (2023) 74.05 77.24 78.93

LePP (Ours) 63.57 67.38 69.77 LePP (Ours) 75.05 77.55 80.66
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Figure 3: Ablation studies on hyper-parameter choices. The dashing line indicates the Progressive
Prompts’ performance. (a) Selecting prompts with the highest scores yields the best result. (b)
Re-weighting prompts with TMs consistently outperforms Progressive Prompts and more accurate
TMs lead to higher AAs. (c) Using a proper number of prompts yields significant improvements.

demonstrate the robustness of our proposed method which can effectively select useful information
for learning new tasks and remains scalable with the size of language models and architecture.

Baselines40
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52.59

65.23
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72.96 74.66
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Figure 2: Average accuracy on standard continual
learning benchmark of LePP compared to base-
lines.

Results on the standard continual learning
benchmark We also conduct experiments on
a standard few-shot continual learning bench-
mark with T5large (Qin & Joty, 2022) to illus-
trate the effectiveness of our proposed method
with short sequences and its robustness to task
order. We run experiments with five random
task orders and 16 samples per class, and report
the average results in Fig. 2. Notably, LePP sur-
passes other baselines on the short stream bench-
mark and boosts Progressive Prompts’s perfor-
mance. Particularly, LePP consistently out-
performs Progressive Prompts, achieving 1.7%
higher average accuracy. This demonstrates that
our method can autonomously select relevant
knowledge regardless of task orders, thereby im-
proving the overall system performance.

4.4 ABLATION STUDIES

Task selection and knowledge aggregation In our experiments, we select the five most transferable
tasks for new task adaptation and aggregate selected prompts by weighted averaging. To validate
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Table 3: Task selection frequency of each target dataset in the long-sequence benchmark.

task Selected prior tasks

qqp copa(3), wic(3), multirc(3), cb(3), boolq(3)
rte cb(3), mnli(2), wic(2), boolq(2), qqp(2), multirc(2), copa(2)
imdb boolq(3), wic(3), qqp(3), copa(3)
sst2 copa(3), boolq(3), imdb(3), cb(2)
dbpedia boolq(3), cb(3), multirc(2), copa(2)
ag imdb(2), qqp(2), multirc(2), boolq(2), cb(2), copa(2)
yelp imdb(2), ag (2), copa(3), boolq(2), cb(2), wic(2)
amazon ag(2), yelp(2), qqp(2), boolq(2), cb (2), copa(2)
yahoo ag(3), imdb(2), yelp(2), boolq(2), cb(2), copa(2)

this design choice, we conduct an ablation study comparing it with other selection methods: (1)
random selection, (2) 5 most recent tasks, (3) 5 least transferable tasks, and naively concatenate all
the selected prompts as in Progressive Prompts (Razdaibiedina et al., 2023). We run experiments on
the long-sequence benchmark with the T5small backbone, using the same settings as in Sec. 4.2, and
report results in the Fig. 3a. As expected, selecting the most transferable tasks yields the greatest
improvement over other baselines, while learning from random sources can disrupt the learning
process of the target task. Additionally, learning from the most recent tasks can decrease accuracy
if those tasks are irrelevant to the current one. Interestingly, learning from the least transferable
tasks slightly improved overall performance, with an increase of 0.32% over Progressive Prompts.
Our results support previous findings Paredes et al. (2012) that learning from unrelated tasks can be
beneficial in MTL. Since our weighted ensemble learning procedure partially resembles the MTL
mechanism, therefore it can inherit this property. However, selecting the most relevant tasks remains
the preferred strategy with the highest average accuracy. We additionally compare the knowledge
aggregation mechanisms including selected prompts concatenation c-LePP and weighted averaging
LePP. Fig. 3a shows that weighted averaging outperforms concatenation by a significant margin of
2.93%, demonstrating that transferability scores provide useful information for learning a new task
using previous knowledge.

Different transferability measures In LePP, we employ an evidence-based metric to estimate the
task transferability, therefore, it is also compatible with other transferability estimation metrics. In
this ablation study, we compare LogME with other metrics, including PARC (Bolya et al., 2021),
TransRate (Huang et al., 2022), and ETran (Gholami et al., 2023). We replicate the experiment with
T5small on the long task sequence benchmark with the same hyperparameters as indicated in Sec. 4.2
and report the results in Tab. 3b. As shown in the table, using transferability measures to weight
the task importances yields substantial improvements over the Progressive Prompts’ performance,
therefore it is robust to the TM choice. Notably, ETran has the highest average accuracy among TMs
since it takes into account the fact that a target dataset could be in-distribution regarding a source
model. Therefore, it can further eliminate noisy prior source models with respect to future tasks.

The number of selected tasks K We examine how the number of selected tasks affects our final
results. We conduct experiments with T5large on the long-sequence benchmark as indicated in
Sec. 4.2. We select the 2, 5, 7, and 10 highest-scoring prompts to compare them with using all prompts.
The selected prompts are aggregated in a weighted sum manner. The experiment results are reported
in Fig. 3c. Fig. 3c shows that selecting only the two most relevant prompts already provides benefits
over Progressive Prompts. As the number of selected tasks increases, more useful information can be
discovered from the task sequence. However, the average accuracies remain relatively stable when
selecting between 5 to 10 prompts. Interestingly, the system’s performance degrades substantially
when we utilize all previous prompts. This indicates that not all previous prompts are informative for
future tasks, and discarding irrelevant prompts leads to further enhancements.

Analyses on task similarity We investigate the task-selected frequency from three different runs
during continual training of the Bert-base-uncased model with a long sequence (order 9) using 100
samples per class. Table 3 shows the selected tasks and their frequency appearing in the top five
selected tasks when training on the current dataset. The results confirm that LogME can autonomously
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identify similar tasks from the sequence, and prioritize them in the top-5 selection. For example, CB
and MNLI, natural language inference tasks, were chosen for learning RTE, another nature language
inference task. A similar phenomenon is observed for sentiment analysis tasks such as Yelp-IMDB
and Amazon-Yelp. In addition, QA tasks (BoolQ, Multirc) stand out as the most frequently selected
task type selected by LogME. One possible explanation for this observation is that the QA tasks
involve high-level reasoning which could benefit other tasks, and QA tasks are often used as source
tasks for pre-training (Jia et al., 2021). We observed the same finding as (Wu et al., 2024) that CB
as a source task yields positive transfer for many target tasks. Interestingly, our metric can detect
dissimilar source-target pairs but could result in positive transfers such as WIC-MultiRC, WIC-Yahoo,
CB-QQP. This interpretation is useful if more data belonging to a task or related tasks becomes
available in the future, as we would not have to re-estimate the task similarity for training this task or
training a sequence from scratch.

Table 4: Average accuracy on two computer vision bench-
marks Split-CIFAR-100 and Split-CUB. Higher is better. In-
corporating our proposed strategy increases the performance
of HiDE-Prompt.

Method Split-CIFAR Split-CUB

L2P (2022c) 97.64 79.09
DualPrompt (2022b) 97.74 80.18

SPrompt (2022a) 97.46 78.36
HiDE-Prompt (2024a) 97.72 82.22

SKT-HiDE (Ours) 98.13 82.90

Results on computer vision bench-
marks Our proposed framework is
general and can be applied to other
modalities. To validate its general-
ization, we conduct experiments on
two popular large-scale computer vi-
sion datasets, Split-CIFAR-100 and
Split-CUB-200. We randomly split
each dataset into 10 tasks, with 10 and
20 classes for CIFAR-100 and CUB-
200, respectively. We incorporate
SKT into the ensemble step of HiDE-
Prompt to derive SKT-HiDE. Specif-
ically, all selected previous prompts
are weighted by their transferability
score pt = α

∑K
k=1 s

t
kek + (1− α)et, where stk is the transferability score of task k prompt on the

current task t. We select the three most transferable prompts for learning the new task t, and use
the same hyperparameters as in Wang et al. (2024a). Averaged results from 3 runs are reported in
Tab. 4. We can observe that selecting highly transferable prompts for learning a new task consistently
yields additional improvements with 0.41% and 0.68% over HiDe-Prompt, the current state-of-the-art
algorithm for computer vision CL, on Split-CIFAR-100 and Split-CUB-200, respectively. This
demonstrates the generalization of our proposed framework, which works effectively across different
modalities including text and images.

5 RELATED WORKS

Continual learning In continual learning (CL), neural networks are prone to catastrophic forgetting
when trained sequentially on a sequence of tasks with non-stationary data. To address this, constraints
can be placed on the parameter space to maintain stability, such as Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017) adding regularizers to keep task parameters close, Progressive Net-
works (Rusu et al., 2016) freezing trained parameters, and Dynamically Expandable Network (Yoon
et al., 2018) identifying key parameters for new tasks via retraining. In language models, these ideas
enhance robustness to forgetting and knowledge sharing between tasks. For instance, IDBR (Huang
et al., 2021) disentangles task-specific and task-generic information, while CTR (Ke et al., 2021) and
CAT (Ke et al., 2021) introduce CL plug-in modules between BERT layers for knowledge sharing,
but these methods face inefficiencies with large models due to whole network training, task masking,
and memory constraints. Especially, those methods are only tested on either NLP tasks (Ke et al.,
2020; Huang et al., 2021; Ke et al., 2021; Razdaibiedina et al., 2023) or CV tasks (Nguyen et al.,
2017; Yoon et al., 2018; Wang et al., 2022b;c; 2024a).

Parameter-efficient Fine-tuning Parameter-efficient Fine-tuning (PEFT) (Houlsby et al., 2019;
Liu et al., 2022; Li & Liang, 2021; Hu et al., 2021) has demonstrated significant success in fine-tuning
foundational language models with a remarkable reduction in parameters. Building on this success
in single-task adaptation, several approaches (Madotto et al., 2021; Peng et al., 2024; Zhang et al.,
2024b) have been devised to extend its application to continual learning (CL) settings. For example,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

AdapterCL (Madotto et al., 2021) trains a separate adapter for each task to facilitate the continual
training of task-oriented dialog systems. LFPT5 (Qin & Joty, 2022) addresses the few-shot language
learning problem by learning a large soft prompt shared among tasks to enhance knowledge sharing.
PTCC (Zhang et al., 2024b) recalibrates the weights of each trained soft prompt for initializing
new tasks based on the similarity between tasks in both context and label spaces. However, these
approaches suffer from several limitations, including limited knowledge sharing (Madotto et al.,
2021), catastrophic forgetting (Qin & Joty, 2022), task interference (Razdaibiedina et al., 2023), and
limited scalability with the number of tasks (Peng et al., 2024; Zhang et al., 2024b).

Transferability measures Selecting the pre-trained model that can achieve the highest performance
after fine-tuning poses a significant challenge, given the vast number of off-the-shelf pre-trained
models available on model hubs (Wolf et al., 2020; maintainers & contributors, 2016), and the
impracticality of brute-force fine-tuning. Transferability measures (Nguyen et al., 2020; 2023; Huang
et al., 2022; Tran et al., 2019; You et al., 2021; Zhang et al., 2024a), which produce a real-value
score correlated with the actual model performance for model ranking, have emerged as a promising
solution to this problem. Although transferability measures have shown success in computer vision
tasks (Agostinelli et al., 2022; Wang et al., 2024b), their application in NLP tasks is still limited
to single-task transfer learning (Bassignana et al., 2022), while their potential in continual learning
(CL) remains largely unexplored. In a recent work (Bassignana et al., 2022), authors highlight that
LogME provides a more robust method for ranking model performance compared to the intuitions of
NLP practitioners. Motivated by this observation, we take the first step in applying transferability
measures to facilitate the forward transfer of CL systems.

6 CONCLUSIONS AND LIMITATIONS

Conclusions We present selective knowledge transfer (SKT), a novel framework for few-shot
continual learning with LMs, to advance the positive forward transfer for learning future tasks.
Our proposed framework is computationally efficient and can autonomously reveal similar and
dissimilar tasks, therefore its scalability is guaranteed with the length of the task stream. We develop
Log-evidence Progressive Prompts LePP, an enhanced version of Progressive Prompts following
our proposed principle. Extensive experiments confirm our proposed framework can significantly
leverage existing SoTAs for continual learning with NLP and CV.

Limitations This study has several limitations. First, it focuses solely on classification tasks,
excluding other NLP tasks like text generation. This exclusion arises because existing transferability
measures mainly cater to classification and regression tasks. Although text generation could be
treated as a regression task, this approach neglects the intricate relationships between words in
sentences, leaving the challenge of developing an efficient transferability measure for generative
models unresolved. Second, our framework relies on a hyper-parameter K to select the optimal
amount of relevant knowledge, which is a sub-optimal ideal. A potential solution is to use a greedy
algorithm for a near-optimal selection or develop a measure to identify tasks that might cause negative
transfer. These aspects remain open for future exploration.
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Table 5: Descriptions of 15 datasets in long sequence CL experiments.

Dataset Collection Type Domain
yelp CL benchmark sentiment analysis Yelp reviews
amazon CL benchmark sentiment analysis Amazon reviews
dbpedia CL benchmark topic classification Wikipedia
yahoo CL benchmark QA Yahoo Q&A
ag CL benchmark topic classification news
mnli GLUE NLI various
qqp GLUE paraphrase detection Quora
rte GLUE NLI news, Wikipedia
sst2 GLUE sentiment analysis movie reviews
wic SuperGLUE word sense disambiguation lexical databases
cb SuperGLUE NLI various
copa SuperGLUE QA blogs, encylopedia
boolq SuperGLUE boolean QA Wikipedia
multirc SuperGLUE QA various
imdb other sentiment analysis movie reviews

Table 6: Task orders for training BERT-based models.

Task Order
Order 8 mnli, cb, wic, copa, qqp, boolq, rte, imdb, yelp, amazon, sst2, dbpedia, ag, multirc, yahoo
Order 9 multirc, boolq, wic, mnli, cb, copa, qqp, rte, imdb, sst2, dbpedia, ag, yelp, amazon, yahoo
Order 10 yelp, amazon, mnli, cb, copa, qqp, rte, imdb, sst2, dbpedia, ag, yahoo, multirc, boolq, wic

A APPENDIX

A.1 TASK DESCRIPTION

Table. 5 contains the details of 15 datasets used in our long sequence experiments. These datasets are
collected from different NLP benchmarks including CL benchmark (Zhang et al., 2015), GLUE (Wang
et al., 2018), and SuperGLUE (Wang et al., 2019). They encompass a variety of tasks e.g., sentiment
analysis, topic classification, question answering, and natural language inference (NLI). Additionally,
the text data comes from a wide range of domains including movie reviews, Amazon reviews,
Wikipedia, and so on. As a result, learning under these settings is susceptible to negative transfer,
highlighting the need for accurate task selection.

A.2 TASK ORDER

We provide detailed task orders to train BERT-based models in Tab. 6 to investigate the robustness of
our proposed method with task order.

A.3 TRAINING

As in (Razdaibiedina et al., 2023), we use a batch size of 8 for all experiments except for multitask
training, where the batch size is set to 2 due to the VRAM limitations of GPUs. We also vary
the number of training epochs depending on the number of samples. Specifically, for 10 and 20
samples per class, we train our model for 300 epochs for each task. For 100 samples per class, the
model is trained for 150 epochs. In terms of random initialization, we use the same initialization
technique as Lester et al. (2021), where new prompts are initialized by randomly sampling tokens in
the embedding layer.
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Algorithm 2 Feature extraction (Feat)

Input: Dataset D = {xi, yi}Ni=1, a trained prompt P , encoder model Enc = (emb, h)
Output: Feature matrix F

1: for i = 1, . . . , N do
2: Get the embedding vector Xi = emb(xi) of xi

3: fi = h([P ;Xi])
4: end for
5: F = [f1, f2, ..., fN ]T

Table 7: Total training time comparison on Split-CIFAR. SKT-HiDE yields better performance
while occur a minimal computational overhead.

Method Running Time

HiDE-Prompt (2024a) 2:07:43s
SKT-HiDE (ours) 2:08:35s

A.4 ALGORITHM

This section outlines the procedure for extracting features on a target datasetD using a trained prompt
P . Firstly, for each sample, we feed the tokenized input xi through the embedding layer to obtain the
embedding vector Xi. Then, the trained prompt P is prepended to embedding Xi, resulting in the
prompted embedding[P ;X], which is then forwarded to h, the rest of the encoder model, to output
the feature fi. This process is repeated for every sample in the dataset D to get the feature matrix F .

A.5 RUNNING TIME

We report the total running time on Split-CIFAR in Tab. 7. SKT can combine with other prompt-based
CL algorithms to yield additional improvements with a minimal computational overhead.

A.6 PER-TASK PERFORMANCE

We report the per-task accuracies to demonstrate the effectiveness of our proposed method. In
particular, Tab. 8 contains the averaged accuracies of BERT models with order-8 using 100 samples
per-class while in Tab. 9 reports the averaged accuracies of T5-small model in a single order with 20
samples. Our approach consistently improves each task performance, therefore increases the system
performance overall.
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Table 8: Accuracy of each task in a long sequence using order-8 and BERT-based model. All
results are averaged over 5 runs. Clearly, LePP consistently increases accuracies of 9/15 tasks, and
outperforms Progressive Prompts.

Task Progressive LePP (Ours)
mnli 45.62 45.69
cb 71.42 71.43
wic 51.59 53.92
copa 48.67 51.33
qqp 69.80 72.38
boolq 53.00 52.70
rte 54.43 51.07
imdb 69.93 75.10
yelp 47.43 48.95
amazon 38.49 47.85
sst2 75.15 84.10
dbpedia 98.43 98.66
ag 86.92 87.20
multirc 49.43 49.03
yahoo 70.80 70.76

average 61.66 64.01

Table 9: Accuracy of each task in a long sequence using T5-small. Bold indicates the best results.
Clearly, LePP consistently increases accuracies of 9/15 tasks, and outperforms Progressive Prompts.

Task Progressive LePP (Ours)
boolq 51.92 52.60
imdb 86.24 87.35
rte 58.99 53.59
sst2 89.05 87.06
dbpedia14 92.50 92.52
cb 77.14 77.68
copa 46.40 46.50
amazon 34.98 34.00
wic 54.10 55.49
yelp 42.53 43.72
yahoo 58.03 63.06
qqp 74.24 87.85
ag 77.84 79.85
multirc 56.12 73.65
mnli 57.84 70.96
average 63.86 67.06
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