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ABSTRACT

Protein language models (pLMs) are powerful predictors of protein structure and
function, learning through unsupervised training on millions of protein sequences.
pLMs are thought to capture common motifs in protein sequences, but the specifics
of pLM features are not well understood. Identifying these features would not
only shed light on how pLMs work, but potentially uncover novel protein biol-
ogy––studying the model to study the biology. Motivated by this, we train sparse
autoencoders (SAEs) on the residual stream of a pLM, ESM-2. By characterizing
SAE features, we determine that pLMs use a combination of generic features and
family-specific features to represent a protein. In addition, we demonstrate how
known sequence determinants of properties such as thermostability and subcellular
localization can be identified by linear probing of SAE features. For predictive fea-
tures without known functional associations, we hypothesize their role in unknown
mechanisms and provide visualization tools to aid their interpretation. Our study
gives a better understanding of the limitations of pLMs, and demonstrates how
SAE features can be used to help generate hypotheses for biological mechanisms.
We release our code, model weights and feature visualizer.1.

1 INTRODUCTION

Protein language models (pLMs) are language models trained on large datasets of protein sequences.
In the process of minimizing loss on their pre-training task–usually masked token prediction–they
learn representations of proteins useful for downstream tasks including protein structure (Lin et al.,
2023) and function (Rao et al., 2019; Notin et al., 2022) prediction. For this reason, pLMs have
become a growing component of the protein biologist’s toolkit.

As these models are widely adopted, a number of studies have investigated their inner workings to
understand their limitations. Previous work suggests pLMs do not learn the biophysics of proteins,
but rather store common sequence motifs and contacts (Zhang et al., 2024). For many downstream
tasks, pLM performance is driven by features learned in early layers and does not scale well with
pre-training (Li et al., 2024). Yet exactly what pLMs have learned about proteins remains unknown.

∗Equal contribution
1Code for training, evaluating, and visualizing: https://github.com/etowahadams/interprot;

visualizer for exploring feature activations overlaid with structure: https://interprot.com; SAE weights:
https://huggingface.co/liambai/InterProt-ESM2-SAEs
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Recent work in mechanistic interpretability points to a path forward. Sparse autoencoders (SAEs)
have successfully extracted interpretable features from large language models (LLMs) like GPT-4
and Claude (Gao et al., 2024; Templeton et al., 2024). SAEs decompose model activations into a
sparse, high-dimensional representation where individual latent dimensions often have interpretable
activation patterns. These features provide a window into the inner workings of these complex
models. Training SAEs on pLMs can serve an additional purpose. Unlike natural languages, which
we intuitively understand, the language of proteins is more cryptic. SAE features from pLMs could
potentially unveil patterns in protein sequences that we have not yet discovered.

In this work, we train SAEs on the residual stream of ESM-2, a widely used pLM (Lin et al.,
2022) (Figure 1a). To interpret the SAE latents, we develop InterProt, a tool that visualizes latent
activations on protein sequences and structures. We find that some features are highly interpretable,
corresponding to a range of concepts from secondary structure elements to entire domains, as reported
contemporaneously by Simon & Zou (2024). Furthermore, we find that many features activate highly
only on specific protein families, suggesting that pLMs rely on internal representations of protein
families to perform their pre-training task. We introduce a method to categorize SAE latents based on
their family specificity and activation pattern (Figure 1b).

After developing a framework for understanding features, we explore the impact of SAE hyperpa-
rameters and ESM layers. We find that increasing the sparsity imposed on SAE latents increases the
number of features that are family-specific as does increasing the expansion factor. The number of
family-specific features also varies substantially by ESM layer, with middle layers containing the
most family-specific features.

With the goal of mapping SAE features to important protein properties, we train linear probes on
SAE features and analyze the most predictive features. Our method identifies features corresponding
to known sequence determinants for properties such as thermostability and subcellular localization.
These results demonstrate that SAEs can help us not only understand pLMs, but also the data on
which they are trained. By making pLM representations interpretable, we envision that SAE features
may help generate hypotheses for unknown biological mechanisms (Figure 1c).

Figure 1: Overview of our paper. a. We train SAEs on the output of ESM intermediate layers. b.
We interpret SAE latents using our latent visualizer InterProt and categorize features based on their
activation pattern and family specificity. c. By interpreting the weights of linear models trained on
SAE latents, we show how features that correspond to known sequence determinants can be identified.

2 RELATED WORKS

2.1 INTERPRETING PROTEIN LANGUAGE MODELS

Previous evaluations of pLM representations on downstream tasks provide evidence of features that
pLMs may be learning (Rao et al., 2019; Dallago et al., 2021; Detlefsen et al., 2022; Li et al., 2024).
In particular, Li et al. 2024 performs a comprehensive analysis of ESM performance on a range of
downstream tasks across different model sizes and layers. Of the tasks they tested, they find that only
structure-related prediction tasks scales with model size, and that most tasks use “low-level features”
learned early in pre-training. A key limitation of using downstream tasks to understand the features
learned by pLMs is that features cannot be discovered without supervision. In contrast, SAEs can
uncover features in a more unsupervised manner.
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pLMs seem to use a notion of sequence homology and recurring protein motifs. Using influence
functions, Gordon et al. 2024 found that pLM-derived sequence likelihoods are driven by homologous
protein training data. Zhang et al. 2024 proposed that pLMs store common motifs in proteins and the
pairwise contacts between them. They arrive at this proposition by analyzing what residue segments
must be unmasked to recover a sequence contact (via the “categorical Jacobian”).

Many studies have explored how pLMs work mechanistically as well. Analyses of attention matrices
in pLMs have been shown to resemble pairwise contact maps (Vig et al., 2021; Rao et al., 2021; Lin
et al., 2023), and contain information such as binding sites (Vig et al., 2021), allosteric sites (Kannan
et al., 2024; Dong et al., 2024), and other known biological concepts (Chen et al., 2025).

Concurrent to our work, Simon & Zou (2024) trained SAEs on ESM-2 and presented methods
to analyze their latents: visualizing them, evaluating them against Swiss-Prot annotations, and
interpreting them with a language model. Our work builds on this foundation with different SAE
training techniques, new feature categorizations, and new analysis methods with an emphasis on
coevolution and scientific discovery. Mechanistic interpretability has also been applied to non-protein
models in biology; we discuss those related works in subsection A.1.

3 BACKGROUND AND METHODS

3.1 SPARSE AUTOENCODERS (SAES)

An SAE is an autoencoder designed to learn meaningful representations by enforcing sparsity
constraints on encoder output. We use SAEs with TopK activation, as introduced in Gao et al. 2024.
This activation function only allows the k largest latents to be non-zero. We choose TopK SAEs for
their improved reconstruction at a given level of sparsity compared to other techniques, and because it
allows us to directly set the L0-norm of the encoding using k. We note that improved reconstruction
may come at the cost of increased feature absorption (Karvonen et al., 2024). We train TopK SAEs
on 1 million randomly-selected sequences under 1022 residues from UniRef50 (Suzek et al., 2007).

Following Lieberum et al. 2024, we refer to the hidden dimensions of the SAE as “latents” to clearly
distinguish them from the underlying conceptual features of the model. This is in contrast to previous
works which use the word feature to refer to both Bricken et al. (2024).

3.2 DOWNSTREAM TASKS

Secondary structure. The secondary structure dataset from TAPE (Rao et al., 2019) contains
residue-level labels in 3 classes: alpha helix, beta strand, or other. To prevent data leakage, sequences
are divided into training and test sets based on a threshold of 25% sequence identity.

Subcellular localization. Subcellular localization is a protein-level label for where a protein is
localized within a cell. The dataset from Almagro Armenteros et al. (2017) consists of UniProt-
sourced eukaryotic proteins, with stringent homology-based train-test splits.

Thermostability. The thermostability dataset from the Melteome Atlas (Jarzab et al., 2020) measures
the melting temperature of 48,000 proteins across 13 species. We use the train-test split from FLIP
(Dallago et al., 2021) containing all sequences clustered at 25% sequence identity.

Mammalian cell expression. The dataset curated by Masson et al. (2022) contains expression data
of 2,165 proteins from the human secretome in Chinese hamster ovary (CHO) cells, commonly used
mammalian hosts for therapeutic protein production. We use this dataset as a binary classification
task to determine whether a protein can be successfully expressed in CHO cells. We split proteins
into training and test sets based on a threshold of 40% sequence identity.

3.3 LINEAR PROBES

For each task and for varying ESM layers, we train linear probes on both ESM and SAE embeddings.
We mean-pool embeddings over the length of the sequence for tasks with protein-level labels:
subcellular localization, thermostability, and mammalian cell expression. For all linear regression
and logistic regression tasks, we perform grid search over a range of regularization strengths and pick
the best model using a validation set. Table 1 summarizes probe implementation for each task.
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4 FEATURE ANALYSIS

4.1 SAES UNCOVER INTERPRETABLE FEATURES

We train TopK SAEs on the residual stream of different layers of ESM-2 (650M) to explore its
learned representations. To interpret a given SAE latent dimension (i.e., a latent), we examine the top
activating protein sequences, i.e., those that produce the largest activation for that dimension. We
developed a latent visualizer, InterProt, to streamline the process of identifying features. InterProt
allows users to align the most-activating sequences and highlight their corresponding protein structure
by activation strength. It is open source and can be accessed at interprot.com.

Through these visualizations, we gain insight into how ESM internally represents protein sequences
(Figure 2). Many discovered features correspond to recognizable biological concepts, such as
secondary structure elements (e.g., alpha helices and beta strands), short conserved motifs, or entire
functional domains. Some features capture biochemical concepts like cysteine-cysteine bonds or the
orientation of residue side chains. In many ways, latents capture characteristics of a protein that a
biologist might notice.

Notably, while many latents are intuitive (e.g., focused on conserved motifs), others are unexpectedly
specific. For instance, rather than a single, generic “alpha helix” latent, we observe multiple helix-
related latents that activate under more context-dependent conditions (e.g., at the beginning of a helix,
only when the helix is buried, or when the helix meets a certain length criterion). Other examples
include highly context specific amino acids, such as asparagine residues in disordered regions.

Figure 2: Examples of SAE features. We find features related to secondary structure (a), conserved
motifs and domains (b), and biochemical patterns in specific structural contexts (c). The structures
are colored according to activation (red: activation, blue: no activation).

4.2 SAE LATENTS REVEAL A LEARNED NOTION OF PROTEIN FAMILIES

Intriguingly, a large subset of latents appear to be protein family-specific. These latents activate
weakly on most sequences but strongly on proteins belonging to a particular family. For example, the
latent shown in Figure 3a appears to highly activates only for the central helix in beta-lactamases,
but only exhibits marginal activations when a similar structural motif appears in proteins outside the
beta-lactamase family.

By contrast, a non-family-specific latent such as the “disordered” latent in Figure 3b, responds broadly
to intrinsically disordered regions in proteins across many families. These observations collectively
suggest that pLMs learn internal representations that, in part, mirror known sequence-homology
based groupings of proteins, akin to a model-internal notion of protein families.
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To better understand the relationship between a family-specific latent and protein family, we inves-
tigate what happens when we “steer” ESM using the latent. Specifically, we set the activation of
a family-specific latent to some multiplicative factor of the maximum activation of the sequence,
and continue the forward pass of the model using the reconstructed activation. We find that the
steered sequence retains awareness of family-level conservation, as it changes most minimally at
evolutionarily conserved positions (Figure 5).

Figure 3: a. Example of a family specific feature, the central helix of a beta lactamase. The histogram
shows the distribution of maximum activations in the sequences which activate the latent. b. Example
of a non-family specific feature, corresponding to disordered sequences. c. Latents classified by
activation pattern across layers. d. Number of family-specific latents across layers. The SAEs used in
c and d have a hidden dimension of 4096 and k=64.

4.3 CLASSIFYING LATENTS

Motivated by these observations, we propose two classification schemes for the SAE latents.

Activation Pattern. Latents exibit distinct activation patterns across their top sequences (Figure 1b).
To capture these differences, we use a rule-based scheme that classifies features into categories such
as: point (activates on single residues at a time), periodic (activates in a regular interval, repeating
every n residues), motif (activates in short, medium, or long contiguous intervals), and domain
(activates over nearly the entire sequence). Refer to Table 2 for precise definitions.

Family Specificity. To quantify family specificity, we use each latent for binary classification: given a
protein, can this latent’s activations be used to predict membership in a particular family? We label a
latent “family-specific” if it achieves an F1 score > 0.7 at some activation threshold (subsection A.4).

These classifications allow us to systematically group SAE features and draw broader conclusions
about their roles in representing protein structure and function.

4.4 INFLUENCE OF SAE TRAINING CHOICES ON LATENT CLASSIFICATION

Prior literature on LLMs suggests that SAE-learned features depend on multiple factors, including
model hyperparameters (e.g., the sparsity level and latent dimension size) and training data (e.g.,
which layer’s activations are used). We therefore examine how these factors impact the types of
features that emerge in pLMs.

Effect of k. In TopK SAEs, k controls the number of latents active for a given input, effectively
setting the sparsity level. We find that, for a fixed hidden dimension, lower k (i.e., higher sparsity)
yields more family-specific features (Figure 6a). One plausible explanation is that family-specific
features constitute the most salient signals used in reconstruction. Identifying family specific features
may help us understand how de novo proteins are represented by pLMs.

5



Published at LMRL Workshop at ICLR 2025

Effect of expansion factor. We also experiment with increasing the latent dimension, called the
expansion factor. While we initially hypothesized that a larger latent dimension might shift the
distribution of feature activation patterns, we observed that the activation pattern classifications (point,
motif, domain, etc.) remain largely consistent (Figure 6b).

Comparison across layers. Finally, we investigate layer-wise differences in the learned features.
Previous studies have shown that downstream performance can vary substantially depending on the
layer, suggesting that different layers capture different features. In our experiments, family-specific
features tend to peak in certain early-to-mid layers, then decline in later layers (Figure 3d). Similarly,
features which activate contiguously over long sections (motif/domain) are more common in earlier
layers, whereas later layers exhibit features with shorter contiguous activations (Figure 3c). Given
that later layers are thought to specialize for final logit computation (Gao et al., 2024), one possibility
is that shorter, more specific activations better serve this goal.

5 INTERPRETABLE PROBING

Representations learned by pLMs can be used in downstream tasks. Often, this is as simple as training
a linear model on the pLM embeddings. Although this leads to a predictive model, it does so at the
expense of interpretability, as the coefficients of the linear model do not correspond to interpretable
features. In this section, we explore the ability of SAE representations to overcome this limitation.
Since SAE latents are often interpretable, those that contribute significantly to prediction could reveal
biological reasons that explain the prediction.

In the context of LLMs, linear probes on SAE embeddings can achieve performance similar to,
or in some cases better than, linear probes on their base model embeddings (Bricken et al., 2024;
Kantamneni et al., 2024). To explore this dynamic in pLMs, we train linear probes on ESM and
SAE embeddings across different layers. Following Li et al. (2024), we evaluate the probes on
benchmarked downstream tasks: secondary structure, subcellular localization, thermostability, as
well as a novel task, mammalian cell line expression prediction. Probes trained on SAE latents offer
comparable performance to their ESM embedding counterparts across layers (subsection A.7).

5.1 SAE PROBES UNCOVER INTERPRETABLE LATENTS CORRESPONDING TO KNOWN
MECHANISMS

To assess the interpretability of linear probes trained on SAE latents, we analyze the distribution
of their coefficients (Figure 9) and manually inspect the latents with the largest coefficients in the
InterProt visualizer 2. We find that those latents often correspond to biological concepts with known
relevance to each task (Figure 4). 3

5.1.1 SECONDARY STRUCTURE

Secondary structure prediction is a task that is known to utilize the features learned during pLM
pre-training (Li et al., 2024). Our analysis of the highest-weighted SAE latents in our secondary
structure probe confirms this and provides an explanation for why early layers perform worse.

Our SAE probes reveal that most layers contain features corresponding to secondary structure
elements. The most positive coefficients for the alpha helix class are typically latents that activate
exclusively on helices (Figure 4a). They range from specific helix residues, to entire helices, to
helix-helix interactions. We observe similar results for the two other classes: beta strand and other,
where other tends to correlate with features that activate on disordered regions.

We find that early layer performance is worse because they do not contain generic features for
secondary structure. For example, the top latent for helix classification in layer 4 (L4/2624) detects
proline (P) residues, which often appear at helix boundaries due to their disruptive effect on hydrogen

2Linear probe coefficients are not comparable across tasks because different tasks may apply different
regularization strengths, optimized via grid search.

3In this section and in Figure 4, we discuss latents from a range of layers. The choice of layers is qualita-
tive––primarily based on latents we find particularly interpretable or notable––and does not imply the lack of
interesting latents in undiscussed layers.
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Figure 4: Linear probes identify predictive SAE latents for downstream tasks. We show the top
5 predictive latents for alpha helix prediction (a), the latents corresponding to the 3 most positive
and 3 most negative coefficients from the linear probe on thermostability ( b), top 5 nucleus and
extracellular latents from the subcellular localization prediction task (c-d).

bonding. This reliance on a weak amino acid-level correlation highlights the absence of a more
generalized helix feature. Similarly, the top latent for the disordered classifier activates on N-terminal
residues, reflecting the spurious correlation that many proteins have disordered regions at their
N-terminus, rather than capturing fundamental structural properties.

5.1.2 SUBCELLULAR LOCALIZATION

Transport mechanisms involving sequence motifs such as transit peptides and localization signals
determine the location of proteins within the cell. We find that linear probes trained on SAE latents
can uncover some of these known mechanisms.

Nuclear localization. The most highly weighted latents for nuclear localization often correspond
to nuclear localization signals (NLS). For example, the top latents in the probe for layer 28 probe
activates on K/R rich sequence motifs (Figure 4c) and on bipartite nuclear localization signals
(L28/2375), which generally follow the pattern R/K(X)10−12KRXK (Lu et al., 2021). The latent
activates strongly on the R/K motifs at each end and can flexibly recognize the variable-length linker
sequence that connects them. These sequence motifs engage cellular mechanisms that enable the
protein to enter the nucleus. As many NLS variants still remain unknown, our SAE-based approach
has the potential to become a novel method to aid their discovery and characterization.

Extracellular localization. The most positive coefficients for the extracellular class relate to signal
peptides (Figure 4d). Signal peptides are short sequences at the N-terminus that trigger the secretory
pathway to transport proteins outside the cell. L28/1541 activates on the signal peptide cleavage site
while L28/1470 and L28/1555 activate across the peptide. The top latents also include a latent that
activates on the extracellular portion of membrane-bound proteins (L28/2111), demonstrating precise
recognition of transmembrane regions, as well as a latent (L28/2472) that only activates on cuticle
proteins, extracellular proteins that support the exoskeleton of insects.

For the other localization classes, we also find a variety of interpretable latents, including mitochon-
drial transit peptides (L28/3277) and transmembrane regions (L28/2818, L28/1298) (Figure 8c).
Overall, this task uncovered many latents related to signal peptides, consistent with the observations
from (Almagro Armenteros et al., 2017) that the attention maps of their transformer model trained on
this task focus on sequence termini.
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5.1.3 THERMOSTABILITY

Thermostability prediction is a task that does not scale with increased pre-training and larger models
(Li et al., 2024). Our SAE probes reveal why—thermostability prediction relies most on simple
amino acid statistics (Figure 4b).

Unlike the other tasks, the middle layers perform worse than early or late layers. We find that in
the middle layers the most significant latents tend to recognize specific amino acids. For example,
layer 24’s most positive latents correspond to Arginine (R), Tyrosine (Y), and Leucine (L); its most
negative latents recognize Glutamine (Q), Aspartic acid (D), and Threonine (T). Glutamine is known
to correlate with instability (Farias & Bonato, 2003). In contrast, earlier layers seem to contain more
relevant features. For instance, the most positive coefficient in layer 8 (L8/2064) corresponds to a
latent that activates primarily on hydrophobic residues, which are important for stability (Figure 4b).

6 DISCUSSION

In this work, we train sparse autoencoders (SAEs) to extract interpretable features from a protein
language model (pLM). We categorize SAE latents based on their activation patterns and special-
ization across protein families, systematically analyzing how SAE sparsity, width, and layer choice
affect feature extraction. Our work offers a new perspective on previous efforts to understand pLMs,
confirming known results such as the central role of sequence homology (Lin et al., 2022; Gordon
et al., 2024), the use of motifs (Zhang et al., 2024), and the unexpected effectiveness of early layers
on some downstream tasks (Li et al., 2024). To facilitate further exploration, we introduce InterProt,
an open-source visualizer for interpreting SAE latents.

Mechanistic interpretability methods like SAEs hold promise not only for understanding how complex
models function but also for advancing scientific discovery (Donhauser et al., 2024). However,
existing approaches often rely on matching features to concepts already known to the scientific
community, potentially overlooking novel features. To address this gap, we developed a probing
strategy that associates latents with candidate functional roles by training linear probes on SAE latents.
Through this process, we uncover features that align with known sequence determinants, such as
nuclear localization signals, which our probe identified as strongly predictive of nuclear localization.
Had the role of these signals been unknown, our probing results would have provided a strong
hypothesis for subsequent validation. More broadly, probing SAE latents offers a means to explain
how pLMs achieve their performance on downstream tasks. Notably, we find that thermostability
prediction relies heavily on latents which provide simple amino acid composition statistics.

In our probing experiments, we observe that not all predictive latents are easily interpretable. For
instance, a predictor for membrane localization, latent L28/3154, predominantly activates on poly-
alanine motifs, whose function remains unclear. Such hard-to-interpret but predictive features could
result from biases in training data, limitations of our SAE, or ESM. However, another intriguing
possibility is that these features correspond to biological mechanisms that have yet to be discovered.

Limitations. Our study has several limitations. First, we focus exclusively on the 650M-parameter
version of ESM-2, and extending our analysis to other model sizes, checkpoints, and architectures
could yield richer insights into how features vary with pre-training scale and model architecture.
Second, the features uncovered by our SAEs are sensitive to the training data distribution; although
we use a diverse set of sequences from UniRef50, different datasets may produce a distinct feature
set. Third, our probing approach relies on mean-pooling for protein-level tasks, which has known
limitations—alternative pooling methods may better capture functional associations (NaderiAlizadeh
& Singh, 2024). Finally, our interpretations are constrained by current biological knowledge, meaning
some latents with complex activation patterns may be misinterpreted or remain unexplained.

Future directions. The success of our SAE linear probes in uncovering known biological mechanisms
suggests their potential for discovering new ones. A key next step is to formulate and experimentally
test hypotheses around unexplained predictive features. Since SAE-derived features depend on
the dataset (Kissane et al., 2024), investigating how data diversity affects feature emergence could
be valuable–training on task-relevant sequences may yield more function-specific latents. Feature
steering is another promising direction: while Simon & Zou (2024) provides a proof of concept,
further research is needed to determine whether SAEs can be used as a practical tool for protein
engineering.
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MEANINGFULNESS STATEMENT

A meaningful representation of life is one that facilitates scientific discovery. In this work, we
leverage sparse autoencoders (SAEs) to extract interpretable features from protein language models
(pLMs). By probing SAE latents, we recover known sequence determinants for functions such
as nuclear localization, and identify predictive but unexplained features that could correspond to
novel biological mechanisms. Our approach contributes to meaningful biological representations by
bridging learned representations with testable hypotheses, aiding both interpretability and discovery
in protein science.
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A APPENDIX

A.1 DICTIONARY LEARNING FOR FEATURE EXTRACTION FROM MODELS TRAINED ON
BIOLOGICAL DATA

Following the success of extracting interpretable features from LLMs, a number of works have applied
sparse dictionary learning techniques to models trained on scientific data. Donhauser et al. 2024
evaluates the possibility of extracting features from models trained on microscopy data. Interpretable
features have also been uncovered from single cell foundation models (Schuster, 2024; Adam Green,
2024). Associating the extracted features with functional labels via probing, however, has not yet
been explored in this context.

A.2 PROBE DETAILS

Table 1 summarizes the linear probes used in each downstream task.
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Table 1: Summary of downstream tasks for interpretable probing

DATASET TASK TYPE LABEL LEVEL EVALUATION METRIC PROBE IMPLEMENTATION

SECONDARY STRUCTURE CLASSIFICATION RESIDUE ACCURACY PYTORCH LINEAR CLASSIFIER
SUBCELLULAR LOCATION CLASSIFICATION PROTEIN ACCURACY SKLEARN LOGISTIC REGRESSION
THERMOSTABILITY REGRESSION PROTEIN SPEARMAN’S ρ SKLEARN RIDGE REGRESSION
CHO CELL EXPRESSION CLASSIFICATION PROTEIN ACCURACY SKLEARN LOGISTIC REGRESSION

A.3 STEERING FAMILY-SPECIFIC LATENTS

We steer each family-specific latent and measure and analyze the resulting sequence changes. Steering
refers to clamping of the activation of a specific latent to a fixed level–either increasing it to amplify
the feature or decreasing it to suppress it. For each family-specific latent, corresponding to an InterPro
family, we identify the top-activating sequences, conduct protein-protein BLAST (Ye et al., 2006),
and align sequences within the same InterPro category and obtain consensus sequence using Clustal
Omega (Sievers et al., 2011). Finally, we determine the maximum activation of all sequences and
set activation level of all sequences to 0.5×, 1×, 1.5×, 2×, and 4× the maximum value. As shown in
Figure 5, steering tends to keep the residues with high consensus as determined by Clustal Omega,
effectively pushing the different sequences of a family to the consensus sequence.

Figure 5: The fraction of residues that remains unchanged after steering, averaged for 168 family
specific features that fraction of unchanged exceeds 20% for strength=0.5. Clustal Omega determines
the degree of conservation by comparing residues at each position across sequences using a substitu-
tion scoring matrix.
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A.4 CLASSIFYING LATENTS BY FAMILY SPECIFICITY

We evaluate the ability of a single SAE latent to classify a protein as belonging to a specific
InterPro-defined protein family (Paysan-Lafosse et al., 2023). To do this, we determine the optimal
normalized activation threshold that maximizes the F1 score for binary classification of protein
families. Specifically, we sweep threshold values from 0.1 to 0.9 in 0.1 increments and select the
threshold that results in the highest F1 score. Our final evaluation is conducted on a held-out test set.

For our evaluation, we use protein sequences from Swiss-Prot (Boeckmann et al., 2003). To reduce se-
quence redundancy, we cluster all Swiss-Prot sequences with a length of 1022 residues or fewer at 30%
sequence identity using MMseqs2 (mmseqs easy-cluster swissprot.fasta session
tmp --min-seq-id 0.3 -c 0.9 -s 8 --max-seqs 1000000 --cluster-mode
1) (Steinegger & Söding, 2017). Given the low sequence identity between clustered sequences, we
perform a random train-test split for classification evaluation.

To determine which protein family to assess for each latent, we identify the InterPro family of the
sequence that exhibits the highest activation for that latent. The F1 score is then computed for this
family using the thresholding approach described above.

A.5 CLASSIFYING LATENTS BY ACTIVATION PATTERN

Table 2: Activation pattern classification criteria
Category Criteria
Dead Latent If the latent is never activated by any test sequence, it is classified a dead

latent.
Not Enough Data If less than 5 sequences activate the latent then we say there is not enough

data.
Periodic Features that exhibit consistent activation patterns at regular intervals.

These features must satisfy: (1) a high frequency of activation at specific
positions (over 50% of distances between activations are the same two
values), (2) a large number of activation regions (there are more than 10
activations per sequence), and (3) relatively short contiguous activation
spans (median length of the top activating contig is less than 10).

Point Features that activate in a highly localized manner, defined by a single,
prominent activation site (the median length of the highest activating
region is 1).

Motif (Short: 1-20) Features that activate in short contiguous regions (median length of the
highest activating region is > 1 and < 20) and have an overall mean
activation coverage of less than 80%.

Motif (Medium: 20-50) Features that activate in short contiguous regions (median length of the
highest activating region is ≥ 20 and < 50) and have an overall mean
activation coverage of less than 80%.

Motif (Long: 50-300) Features that activate in short contiguous regions (median length of the
highest activating region is ≥ 50 and < 300) and have an overall mean
activation coverage of less than 80%.

Whole Features that are active across nearly the entire sequence (overall mean
activation coverage of greater than 80%.).

Other Features that do not meet any of the above criteria are classified as
”other.”
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A.6 TESTING SAE HYPERPARAMTERS

Figure 6: Testing SAE hyperparameters. a. k parameter sweep (other hyperparameters held constant,
layer=24, hidden size=8096) showing the number of family specific features (left) and the features
categorized by activation pattern (right). b. SAE hidden size hyperparameter sweep (other hyperpa-
rameters held constant, layer=24, k=64) showing the number of family specific features (left) and the
features categorized by activation pattern (right).
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A.7 ESM VS SAE PROBES

We find that linear probes on SAEs achieve performance similar to their ESM baselines across all
layers (Figure 7). For secondary structure prediction, the SAE probe consistently outperforms the
ESM probe, a result we discuss in the next section and attribute to the abundance of SAE latents that
correspond to secondary structure.

Figure 7: Linear probe performance on ESM vs. SAE embeddings across ESM layers. In all 4
downstream tasks, SAE performs competitively with ESM. For secondary structure prediction, SAE
consistently outperforms ESM in most layers. All classifications tasks are measured using accuracy;
thermostability is measured using Spearman’s rank correlation.
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A.8 THE CHO EXPRESSION TASK & ADDITIONAL VISUALIZATIONS

We were interested to see if our SAE probing method could be used to help interpret a novel task
with relevance to drug development: binary human protein expression in CHO cells. The two latents
most predictive of expression activate on terminus-specific long motifs (Figure 8b). The latent most
predictive of failed expression recognizes an ATP binding site, suggesting that its interactions with
ATP may disrupt essential metabolic processes in the host cell.

While we found many latents hard to interpret, this task demonstrates the potential of our method in a
practical setting. If SAEs can help discover biological mechanisms that affect expression in CHO
cells, then can guide us in designing protein therapeutics with better developability profiles.

Figure 8: Linear probes identify predictive SAE latents for downstream tasks. a. The top 5 beta
sheet latents from the secondary structure prediction task (SAE trained on ESM layer 16). b. The
latents corresponding to the 3 most positive and 3 most negative coefficients from the linear probe
on CHO cell line expression. The most positive latent activates on an unidentified motif; the
most negative latent activates on an ATP binding site (SAE trained on ESM layer 8). c-d. Top 5
mitochondrion and cell membrane latents from the subcellular localization prediction task. The top
nucleus latents identify transit peptides. The top cell membrane latents correlate with signal peptides
and transmembrane regions (SAE trained on ESM layer 28).
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A.9 DISTRIBUTION OF LINEAR PROBE COEFFICIENTS

Figure 9: Example distribution of ESM vs. SAE linear probe coefficients. Shown here are coefficients
for the alpha helix class from the secondary structure prediction task, using layer 16. The SAE
coefficients have higher variance (2.03e−3) than the ESM coefficients (3.24e−4) because more
latents are individually predictive of the label. The SAE coefficients also have a larger negative skew
(−2.05e−1) compared to ESM (−6.51e−2). This can be explained by the SAE latents being more
monosemantic: they sort more distinctly into helix vs. non-helix classes, and there are more non-helix
examples than helix ones.
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