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Abstract

Despite the success of contrastive learning (CL) in vision and language, its the-
oretical foundations and mechanisms for building representations remain poorly
understood. In this work, we build connections between noise contrastive estima-
tion losses widely used in CL and distribution alignment with entropic optimal
transport (OT). This connection allows us to develop a family of different losses
and multistep iterative variants for existing CL methods. Intuitively, by using
more information from the distribution of latents, our approach allows a more
distribution-aware manipulation of the relationships within augmented sample
sets. We provide theoretical insights and experimental evidence demonstrating
the benefits of our approach for generalized contrastive alignment. Through this
framework, it is possible to leverage tools in OT to build unbalanced losses to
handle noisy views and customize the representation space by changing the con-
straints on alignment. By reframing contrastive learning as an alignment problem
and leveraging existing optimization tools for OT, our work provides new insights
and connections between different self-supervised learning models in addition to
new tools that can be more easily adapted to incorporate domain knowledge into
learning.

1 Introduction

In machine learning, the availability of vast amounts of unlabeled data has created an opportunity
to learn meaningful representations without relying on costly labeled datasets [26, 52, 27]. Self-
supervised learning has emerged as a powerful solution to this problem, allowing models to leverage
the inherent structure in data to build useful representations. Among self-supervised methods, con-
trastive learning (CL) is widely adopted for its ability to create robust representations by distinguishing
between similar (positive) and dissimilar (negative) data pairs. With success in fields like image
and language processing [8, 46], contrastive learning now also shows promise in domains where
cross-modal, noisy, or structurally complex data make labeling especially challenging [34, 56, 10].

Traditional contrastive learning methods primarily aim to bring positive pairs—often augmentations
of the same sample—closer together in representation space. While effective, this approach often
struggles with real-world challenges such as noise in views, variations in data quality, or shifts
introduced by complex transformations, where positive pairs may not perfectly align. Additionally,
in tasks requiring domain generalization, aligning representations across diverse domains (e.g.,
variations in style or sensor type) is critical but difficult to achieve with standard contrastive learning,
which typically lacks mechanisms for incorporating domain-specific relationships. These limitations
highlight the need for a more flexible approach that can adapt alignment strategies based on the data
structure, allowing for finer control over similarity and dissimilarity among samples.
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To address this challenge, we introduce a novel generalized contrastive alignment (GCA) framework,
which reinterprets contrastive learning as a distributional alignment problem. Our method allows
flexible control over the alignment of samples by defining a target transport plan, Ptgt, that serves as
a customizable alignment guide. For example, setting Ptgt to resemble a diagonal matrix encourages
each positive to align primarily with itself or its augmentations, thereby reducing the effect of noise
between views. Alternatively, we can incorporate more complex constraints, such as weighting
alignments based on view quality or enforcing partial alignment structures where noise or data
heterogeneity is prevalent. This flexibility enables GCA to adapt effectively to a wide range of tasks,
from simple twin view alignments to scenarios with noisy or variably aligned data.

Our approach also bridges connections between GCA and established methods, such as InfoNCE
(INCE) [38], Robust InfoNCE (RINCE) [12], and BYOL [22], demonstrating that these can be
viewed as iterative alignment objectives with Bregman projections [6, 21]. This perspective allows us
to systematically analyze and improve uniformity within the latent space, a property that enhances
representation quality and ultimately boosts downstream classification performance.

We validate our method through extensive experiments on both image classification and noisy
data tasks, demonstrating that GCA’s unbalanced OT (UOT) formulations improve classification
performance by relaxing our constraints on alignment. Our results show that GCA offers a robust
and versatile framework for contrastive learning, providing flexibility and performance gains over
existing methods and presenting a promising approach to addressing different sources of variability
in self-supervised learning.

The contributions of this work include:

• A new framework called generalized contrastive alignment (GCA), which reinterprets
standard contrastive learning as a distributional alignment problem, using optimal transport
to provide flexible control over alignment objectives. This approach allows us to derive a
novel class of contrastive losses and algorithms that adapt effectively to varied data structures
and build customizable transport plans.

• We present GCA-UOT, a contrastive learning method that achieves strong performance on
standard augmentation regimes and excels in scenarios with more extreme augmentations or
data corrupted by transformations. GCA-UOT leverages unbalanced transport to adaptively
weight positive alignments, enhancing robustness against view noise and cross-domain
variations.

• We provide theoretical guarantees for the convergence of our GCA-based methods and
show that our alignment objectives improve representation quality by enhancing the uni-
formity of negatives and strengthening alignment within positive pairs. This leads to more
discriminative and resilient representations, even in challenging data conditions.

• Empirically, we demonstrate the effectiveness of GCA in both image classification and
domain generalization tasks. Through flexible, unbalanced OT-based losses, GCA achieves
superior classification performance and adapts alignment to include domain-specific informa-
tion where relevant, without compromising classification accuracy in domain generalization.

2 Background

2.1 Contrastive learning

Contrastive learning (CL) is a representation learning methodology that uses positive and negative
pairs to define similarity in the latent space. Let D = {xi}Ni=1 denote our dataset. For each sample
xi in a batch of training data with size B, we create two augmented copies x′

i and x′′
i independently,

i.e., x′
i = ψ(xi) where ψ is a randomly drawn augmentation function from some augmentation class

A and likewise for x′′
i . The (x′

i,x
′′
i ) is called a positive pair of xi while (x′

i,x
′′
j ) is treated as a

negative pair for any j ̸= i. One of the most widely used formulations of the CL problem, InfoNCE
(INCE) [8], seeks to maximize the negative log probability that a sample is correctly classified as

LINCE = − log

(
esii

esii +
∑

i̸=j e
sij

)
, (1)

where sij = ε−1fθ(x
′
i)

⊤fθ(x
′′
j )/∥fθ(x′

i)∥∥fθ(x′′
j )∥ is the score between augmented samples.
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Building upon the principles of INCE, SimCLR [8] and MoCo [24] are two representative works that
form the foundation of contrastive learning methods for visual representation tasks. Alternatively,
BYOL [22] and SimSiam [9] discard the use of negative samples to avoid large batch size and instead
use exponential moving average-based updates to avoid representational collapse. Recent contrastive
methods have focused on improving the tolerance to noise in samples to enhance robustness in diverse
scenarios [13]. Among them, Robust INCE (RINCE) is a robust contrastive loss function characterized
by its symmetric properties and theoretical resistance to noisy labels [47, 12]. Specifically, RINCE
provides robustness to noisy views by introducing adjustable parameters λ and q [12] which rebalance
the cost of positive and negative views, resulting in the following loss:

Lλ,q
RINCE =

1

q

(
− eqsii + λq(esii +

∑
i ̸=j

esij )q
)

(2)

By optimizing the above loss functions, the encoder f is trained to construct a semantically coherent
representation space where positive pairs of samples are positioned nearby, while those negative pairs
with divergent semantic attributes are separated [57].

2.2 Proximal Operators and Projections

To make the connections between different CL losses clearer later, we use the notion of proximal
operators. In words, the proximal operator will provide a way to find the closest point in some closed
convex set. Formally, we can define the proximal operator as follows.

Definition 1 (Proximal Operator). Let dΓ(x,v) = Γ(x)− Γ(v)− ⟨∇Γ(v),x− v⟩ be a Bregman
divergence with a convex function Γ. The proximal operator of h : X → R ∪ {+∞} is defined for a
point v ∈ X with a closed convex set B ⊆ X :

ProxdΓ

h,B(v) = argmin
x∈B
{h(x) + dΓ(x,v)} .

Moreover, we can define the concept of a projection as a special case of the proximal operator when
we let h(x) be an indicator function hB(x) = {0, if x ∈ B;∞, if x /∈ B} on constraint set B. See
Appendix A.2 for more details.

2.3 Solving Optimal Transport Through Proximal Point Methods

Optimal transport (OT) is widely used in characterizing the distance between two collections of
samples {xi}Bi=1 and {yj}Bj=1 with associated measures µ =

∑B
i=1 δxi

pi and ν =
∑B

j=1 δyj
qj with

Dirac delta function δx and δy on finite support [43]. Here, p and q are vertices of the RB simplex
defined as ∆B := {v ∈ RB : vi ≥ 0,

∑B
i=1 vi = 1}. OT aims to learn a joint coupling matrix,

or transport plan P ∈ RB×B
+ that minimizes the cost of transporting mass encoded by cost matrix

C ∈ RB×B
+ , from one distribution to another. In practice, entropy regularization is used to solve the

OT objective, resulting in the following entropy-regularized OT (EOT) objective:

min
P∈B

⟨P,C⟩ − εH(P), where H(P) = −
∑
ij

Pij log(Pij), (3)

where ε is a user specified parameter that controls the amount of smoothing in the transport plan, and
C(x,y) = 1− ⟨x,y⟩/∥x∥∥y∥ is often set to encode the cosine similarity between pairs of samples.

The Sinkhorn Algorithm and its Interpretation as a Bregman Projection. Solving Equation (3)
could be interpreted as iterative alignment problem on a Hilbert space generated from the kernel
Kij = exp(−Ci,j/ε). This alignment problem can be solved through iterative Bregman projections
onto the two constraints sets that encode the marginals along the rows and columns [3, 5, 43]:

Cµ
1 := {P : P1B = µ}, Cν

2 := {P : P⊤
1B = ν} (4)

The first step of Bregman projection is to find the minimizer P(1) = argmin{εKL(P∥K) : P1B =
µ} by the proximal operator ProxKL

Cµ
1
(K) with Lagrange multiplier f on the row constraint set Cµ1 ,

and compute its derivatives with respect to P with u = ef/ε > 0:

ε log(P(1)/K)− f1 = 0⇒ P(1) = uK, ⟨P(1),1⟩ = µ⇒ ⟨uK,1⟩ = µ,u =
µ

K1
(5)
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Next, we project P(1) onto the column constraint set Cν
2 , resulting in P(2) := ProxKL

Cν
2
(P(1)) =

P(1)diag( ν
P(1)⊤1B

). The iterative updates can be succinctly expressed as the Sinkhorn iterations:

P(2t+1) = diag(u(t+1))Kdiag(v(t)), P(2t+2) = diag(u(t+1))K diag(v(t+1)), (6)

with the scaling vectors u(t) and v(t) updated according to:

u(t+1) def
=

µ

Kv(t)
, v(t+1) def

=
ν

KTu(t)
. (7)

Here, iterations converge to a stable transport plan P(∞)as the optimal solution of Equation (3), which
provides the minimum cost matching between two distributions. The convergence and dynamics of OT
and its dual formulation have been studied extensively in [4, 43, 19, 1]. Thus, these results guarantee
that the iterates will converge to the optimal solution of the EOT objective, or that P(t) → P(∞) with
t→∞. See Appendix A.3 for more details on both the continuous and discrete formulations of OT.

2.4 Wasserstein Dependency Measure

The Wasserstein Dependency Measure (WDM) is a measure of deviation between two probability
measures. We will use this later and thus provide the formal definition here [39].
Definition 2 (Wasserstein Dependency Measure). Define the WDM as the Wasserstein distance (W1)
between the joint distribution π(x, y) and the product of marginal distributions µ⊗ ν(x, y) of two
random variables x and y. W1(π, µ⊗ ν) = supf∈C(X×Y)

(
Eπ(x,y)[f(x, y)]− Eµ⊗ν(x,y)[f(x, y)]

)
,

where C(X × Y) denotes the set of all 1-Lipschitz functions from X × Y to R.

2.5 Optimal Transport and Alignment in Representation Learning

Distribution alignment and OT have been widely used for domain adaptation [33, 14, 30, 59],
and in generative modeling [2, 55, 49, 58]. The connections between distribution alignment and
contrastive learning, however, are still nascent. In [51], the authors explore the connection between
inverse OT (IOT) [32, 53, 18] and INCE. Our work builds on this connection to OT to build robust
divergences (RINCE) and to build a novel unbalanced optimal transport (UOT) method (Section 3.3).
Additionally, we show how our framework can be used to build flexible methods for encouraging
contrast at multiple levels. We use this concept of hierarchical contrast and show that it can be used
in domain generalization settings (Section 6.2). It is of note that GCA-UOT focuses on relaxing the
hard constraints on the row and columns into the soft penalties, which is different with the idea of
“unbalanced matching” in [51] which considers the case where the encoders may not have the same
weights.

3 Generalized Contrastive Alignment (GCA)

In this section, we will introduce a new framework for generalized contrastive alignment and
demonstrate the connections between contrastive learning and optimal transport.

3.1 Problem Formulation

Traditional contrastive learning methods focus on bringing positive examples, such as augmentations
of the same sample, closer together in representation space. In contrast, our approach reframes
contrastive learning as a distributional alignment problem, allowing flexible control over how pairs
are matched by imposing specific constraints on the target transport plan, Ptgt.

Our objective is to learn an encoder fθ that minimizes the transport cost between positive samples.
By defining Ptgt with specific alignment rules, such as domain-specific or hierarchical constraints,
we can influence how samples are organized in the latent space. For instance, setting Ptgt to resemble
a diagonal matrix encourages each positive to align primarily with itself or its augmentations,
minimizing div(I||P) ≈ 0, where div measures the deviation from an identity matrix (e.g., KL-
divergence).

This flexibility allows us to encode more nuanced forms of similarity, adapting to tasks where
alignment structure varies based on domain, class, or other high-level constraints. By expanding
contrastive learning in this way, our method enhances separation of negatives while addressing
complex relational patterns, making it suitable for a wider range of learning tasks.
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Defining the Kernel Space. Before formally stating our objective, we first need to define the
concept of an augmentation kernel for our positive and negative examples.

Definition 3 (Augmentation Kernel). Let fθ denote an encoder with parameters θ and let (x′
i,x

′′
j ) ∼

A be two views drawn from the family of augmentations A. The augmentation kernel for the encoder
θ is defined as Kθ(x

′
i,x

′′
j ) = exp(−dist(f̃θ(x′

i), f̃θ(x
′′
j ))/ε), where dist(·) can be an arbitrary

distance metric, and f̃θ(x′
i) is the normalized output of fθ, and ε is the regularization parameter.

Main Objective. With this definition in hand, we can now formalize our objective as follows:

min
θ

dM
(
Ptgt||Pθ), with Pθ = argmin

P∈B
{h(P) + dΓ(P||Kθ)}, (8)

where Kθ is the augmentation kernel defined in Definition (3), h(x) is a convex function (typically
an indicator function), B is a closed convex constraint set (i.e. Birkhoff polytope) that defines the
constraints of proximal operators, dΓ is a Bregman divergence that is used to find the nearest points
Pθ on the constraint set B of Kθ, dM is a convex function (e.g., KL-divergence) that measures
divergence between Pθ and the target coupling plan Ptgt.

Our objective is a bi-level optimization problem which aims to learn a representation that minimizes
the divergence between the transport plan Pθ with the target alignment plan Ptgt that encodes the
matching constraints. When we consider a standard contrastive learning setup where we have pairs
of positive examples the source and target distribution, then the target Ptgt is the identity matrix
I. However, we will show later that other alignment constraints can be considered. Moreover,
when B is the intersection of more constraint sets like Cµ

1 ∩ Cν
2 in Equation (4), a nature way to

get the approximation of the nearest points Pθ of Kθ is to run iterative projections algorithm [3],
which could be extended into the intersection of several constraint sets like {∩ni=1Ci}, resulting in a
multi-marginal problem [41].

3.2 A Proximal Point Algorithm for GCA

In practice, we can solve the alignment problem above by iteratively updating the two main com-
ponents in our bi-level objective. First, for a fixed encoder parameters θ, we obtain the transport
coupling Pθ through our corresponding proximal operator. Second, we measure the deviation be-
tween the transport plan Pθ with the target Ptgt that encodes our matching constraints, which denotes
the ideal alignment plan on the intersection of the constraint sets. We provide pseudocode for this
iterative approach in Algorithm 1, which we refer to as generalized contrastive alignment or GCA.
The implementation of our methods is in https://github.com/nerdslab/gca.

Algorithm 1 Proximal-Point Algorithm for Generalized Contrastive Alignment (GCA)

1: Initialization: Initial encoder parameters θ, target transport plan Ptgt, kernel function Kθ, the
function h(x), divergences dΓ and dM (KL or W1). Initialize transport plan Pθ based on θ.

2: Compute the transport coupling Pθ: Update Pθ using the proximal operator scaling for fixed
θ as described in Eq. (8):

Pθ = argmin
P∈B
{h(P) + dΓ(P||Kθ)}.

3: Calculate the loss: Calculate deviation between the target and current transport plans

LGCA = dM (Pθ,Ptgt).

Update networks fθ (encoder) and gθ (projector) to minimize LGCA.
4: Repeat until convergence: Repeat steps 2 and 3 until convergence.

Computing the transport coupling Pθ
2 (forward-pass) in GCA algorithms could be treated as a

specific type of Dykstra’s projection algorithms [5], which computes the iterative projection on the
intersection of affine convex sets [3, 42]. The proofs of convergence are provided in Appendix B.1.

2With a single constraint set like Cµ
1 in Equation (4), computing the proximal point only involves a single

projection. However, if there are intersecting constraint sets like Cµ
1 ∩ Cν

2 , solving for the proximal point
requires multiple projections before we approach the nearest point on their intersection.
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3.3 GCA-UOT Method

We can also benefit from the rich literature on optimal transport to build different relaxations of our
objective [43, 7, 54, 33, 35]. In particular, we choose to leverage a formulation of unbalanced optimal
transport (UOT) to further relax the marginal constraints [11] in our objective.

In this case, we can add the dual form of dΓ to the Equation (8) and reformulate our objective as:

min
θ

dM (Ptgt∥Pθ) + λ1hF (Pθ1||µ) + λ2hG(P
⊤
θ 1||ν) + εH(Pθ). (9)

Here hF and hG can be different divergence measures (e.g., KL divergence) that penalize deviations
from the desired marginals µ and ν, and λ1 and λ2 are regularization parameters that control the trade-
off between the transport cost and the divergence penalties. This relaxation leads to different types
of proximal operators which we outline in Appendix B.2. The impact of the entropy regularization
parameter ε on the coupling matrix is studied in Figure A5, along with the number of iterations and
corresponding sensitivity is provided in Figure A6.

3.4 Modifying the Target Transport Plan to Encode Matching Constraints

Contrastive learning objectives can be cast as a minimization of the deviations between the transport
plan Pθ and the identity matrix, i.e., Ptgt = I. However, our GCA formulation enables learning
representations that extend beyond this one-to-one matching constraint. This flexibility allows us to
incorporate additional matching constraints informed by domain-specific knowledge. For example, in
domain generalization scenarios [23, 28], where each batch contains samples from multiple domains,
the target alignment plan can be structured as:

Ptgt[i, j] = I[i, j] + α · I(Di = Dj , i ̸= j) + β · I(Di ̸= Dj , i ̸= j),

Where I(·) is the indicator function, which equals 1 if the condition inside is true and 0 otherwise.
Di represents the domain of sample i, where α ≥ 0 and β ≥ 0. In this case, we can improve the
representation by building the block constraints which encode either class information (in supervised
setting) or domain information (in across domain generalization, visualized in Figure 1).

3.5 Computational Complexity

The forward-pass only involves the scaling operations in Equation (7) and doesn’t affect the complex-
ity of the backward-pass. Therefore, GCA methods can be thought of as a form of batch normalization
operations with adaptive scaling. An analysis of the complexity is provided along with experiments
in Appendix B.1. Our results show that GCA iterations only slightly increase the computational
complexity when compared with their single step equivalent (GCA-INCE vs. INCE). However, we
found that GCA-UOT is faster than INCE due to the improved symmetry and smoothness of the loss.
Moreover, we record the floating point operations per second (Flops) of running GCA methods. We
find that GCA-INCE (6.65 MFlops) has 5% more Flops than INCE (6.31 MFlops), while GCA-UOT
saves 30% Flops (4.54 MFlops). These results show that our GCA-UOT method is not only superior
in terms of accuracy but also in speed.

4 Building Connections to Different CL Objectives

Table 1: Comparison of different contrastive alignment
objectives. Here we have Cµ

1 and Cν
2 as constraint sets

(denoted as B) defined in Equation (4) with their cor-
responding indicator function. "Iter" refers to iterative
methods.

Methods dM dΓ B Iter
INCE KL KL Cµ

1
GCA-INCE KL KL Cµ

1 ∩ Cν
2 ✓

RINCE (q=1) W1 KL Cµ
1

GCA-RINCE (q=1) W1 KL Cµ
1 ∩ Cν

2 ✓
BYOL KL L2 RB×B

In this section, we show how the modifica-
tion of the different parts of our main objec-
tive (dΓ, dM ,B,Kθ) in Equation (8) can be con-
nected to different contrastive losses. See Table 1
for a summary of how different losses can be
mapped back to our formulation.

4.1 Connection to INCE

An interesting connection that we can make be-
tween GCA main objective and contrastive learn-
ing is that we can interpret INCE as a single step
in a iterative GCA objective [51]. This connection can be further summarized through the following
theorem.
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Theorem 1 (INCE Equivalence). Let Kθ denote the augmentation kernel as in Definition (3) with
cosine similarity, dΓ and dM equal to KL-divergence, and constraint set as Cµ

1 in Equation (4). The
INCE objective in Equation (1) can be re-expressed as a GCA problem in Equation (8) as follows:

min
θ

KL
(
I||ProxKL

Cµ
1
(Kθ)). (10)

The proof is contained in Appendix B.3. Theorem (1) shows that the INCE loss can be viewed
as solving the matching problems in Equation (3) with row normalization constraints Cµ

1 . This
connection between GCA and INCE allows us to derive the iterative algorithm for GCA-INCE by
running Bregman projection iteratively on both row and column normalization sets

4.2 Connection to RINCE

We introduce the following result to build the connection between our framework and RINCE [12].
Theorem 2 (RINCE Equivalence). Let Kθ denote the augmentation kernel as in Definition (3). Set
target plan Ptgt = I, dΓ equal to the KL-divergence, dM (I∥P) = − 1

q (
diag(Pθ)

u )q +
(
λI
u

)q
with λ,

q, and u = diag
(

µ
P(0)1

)
, and constraint set Cµ

1 defined in Equation (4). The RINCE objective in
Equation (2) can be re-expressed as a GCA problem as follows:

min
θ
dM (I∥Pθ), with Pθ = ProxKL

Cµ
1
(Kθ), (11)

The proof is provided in Appendix B.4.1. As we can see, RINCE introduces adjustable parameters q
and λ, with λ controlling the weight of negative samples, while q ∈ (0, 1] serves to switch between
KL divergence and Wasserstein discrepancy. When q = 1, we have the following theorem:
Theorem 3 (W1 Equivalence). Let Kθ denote the augmentation kernel as in Definition (3) with
cosine similarity. Set target plan Ptgt = I, dΓ equal to the KL-divergence, dM equal to the 1-
Wasserstein distance (W1) in Definition (2), and the constraint set as Cµ

1 defined in Equation (4).
The RINCE object in Equation (2) with q = 1 can be re-expressed as a GCA problem as follows:

min
θ
W1

(
Ptgt||ProxKL

Cµ
1
(Kθ)). (12)

See Appendix B.5 for the proof.

This connection to RINCE suggests an extended iterative formulation to calculate the coupling plan
as the projection point P(∞) = ProxKL

Cµ
1 ∩Cν

2
(Kθ) of Kθ on the constraint set Cµ

1 ∩ Cν
2 . In this case,

we can write an iterative algorithm for robust alignment called GCA-RINCE as follows:

Lλ,q
GCA-RINCE = min

θ
−q−1(diag(P

(2t−1)
θ )/u(t))q + q−1(λPtgt/u

(t))q, (13)

where λ and q are hyperparameters, P(1) := diag(u(1))Kθ diag(v
(0)), and t is the number of

iterations.

4.3 Connection to BYOL

Our framework also allows us to make connections to BYOL [22]. BYOL learns by encouraging
similarity between positive image pairs, without explicitly conditioning on negative examples. To
build this connection, recall that BYOL has the online network parameterized by θ and target
network parameterized by ξ, where z′θ = f̃θ(x

′) and z′′ξ = f̃ξ(x
′′) are the normalized outputs of the

online and target networks, respectively. A simplified version of the BYOL loss can be written as:
LBYOL = ∥q̃θ(z′θ)− z′′ξ∥22, where q̃θ(z′θ) is the normalized output after online network and qθ is the
predictor.3 In this case, we can provide the following connection between GCAand BYOL as follows.
Theorem 4 (BYOL Equivalence). Let Sθ(x

′
i,x

′′
j ) = exp(−∥q̃θ(z′i)− z′′j ∥) denote the augmentation

kernel. Set the target plan Ptgt = I, dΓ equal to the L2-distance, dM equal to the KL-divergence,
and constraint set as RB×B . The BYOL objective can be re-expressed as a GCA problem as follows:

min
θ

KL
(
I||Sθ), with Sθ = Prox∥·∥

RB×B (Sθ). (14)

See the proof in Appendix B.6.
3In practice, BYOL also switches the order of views to symmetrize the loss. For ease of discussion, we

consider just one pair of views but the same could be argued for the full symmetric version.
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5 Theoretical Analysis

In this section, we aim to show how the GCA-methods can improve alignment and uniformity in
the latent space [57]. Here, alignment means that the features of the positive samples are as close
as possible, while uniformity means that the features of negative samples are uniformly distributed
on latent space (see Appendix C.1 for formal definitions). These quantities have been studied in a
number of related works [57, 45], where one can show that improved alignment and uniformity can
lead to different benefits in representation learning.

5.1 Improved alignment with GCA

Contrastive learning minimizes the deviation between the target alignment plan with the transport
plan in Definition 3 through empirical risk minimization (ERM). Therefore, a tighter bound on the
empirical risk corresponds to a smaller difference between the ideal alignment with the coupling
matrix. We show that this in turn leads to better alignment of the positive views.

Analysis of INCE vs GCA-INCE. GCA-INCE ensures that the final transport plan P(∞) is closer
to the ideal identity matrix compared to the INCE, as we show in the following theorem.
Theorem 5 (Improved Alignment with INCE). Let Kθ denote the augmentation kernel as in Defini-
tion (3). Set dM and dΓ to the KL-divergence, and Ptgt = I. The GCA-INCE loss with converged
plan P

(∞)
θ is lower than the GCA-INCE loss with P

(t)
θ in Equation (6) for all t.

The full proof is provided in Appendix C.1.1. The above theorem tells us that solving Equation (8)
with iterative projection will converge to a transport plans P(∞)

θ with lower KL divergence than the
one-step solution provided by INCE. We can establish the convergence of the P(t) → P(∞), based
on the convergence of Bregman projection.

Analysis of RINCE vs GCA-RINCE. GCA also benefits from other Bregman divergences,
like the WDM in RINCE, which provides robustness against distribution shift compared to the
KL-divergence in INCE. GCA-RINCE provides a lower bound on the RINCE loss in Equation (2),
which allows us to develop a tighter bound with P(∞) obtained by several proximal steps with GCA.

Theorem 6 (Improved Alignment with RINCE). GCA-RINCE loss with P
(t)
θ in Equation (13) is

lower than the loss in the Theorem (2) as Lλ,q=1
GCA-RINCE(P

(t)
θ ) ≤ Lλ,q=1

RINCE (P
(1)
θ ).

See Appendix C.1.1 for the full proof and an analysis of GCA methods for different choices of dM .

5.2 Improved Uniformity of Representations Through GCA

The improved alignment of GCA-methods comes from maximization of the uniformity under the
constraint of intersection Cµ

1 ∩ Cν
2 in Equation (4), rather than the constraint set Cµ

1 in INCE (see
Table 1). Finding the projection of Kθ on set of Cµ

1 ∩ Cν
2 through proximal steps is equivalent to

solving the dual problem of EOT, which can be summarized through the following theorem.
Theorem 7 (Improved Uniformity). Given the constraint sets in Equation (4), the optimal transport
coupling upon convergence of Equation (6), denoted as P(∞), achieves a higher uniformity loss
compared to the single-step transport plan P(1) obtained by INCE.

The proof is provided in the Appendix C.2. Through loss propagation, we show that the alignment
plan offered by P(∞) will guide the subsequent iterations towards more uniform representations.

5.3 Impacts of GCA on a downstream classification task

We take this one step further and examine the impact of GCA on a downstream classification task.
For a classification task, using a labeled dataset D = {(x̄i,yi)} ∈ X̄ × Y where Y = [1, . . . ,M ]
with M classes, we consider a fixed, pre-trained encoder fθ ∈ F : X → S . Assume that positive and
negative views of n original samples (x̄i)i∈[1..n] ⊂ X̄ are sampled from the data distribution p(x̄).

In this case, the uniformity loss is equivalent to optimizing the downstream supervised classification
tasks with cross-entropy (CE) loss when the following two assumptions are satisfied [16].
Assumption 1 (Expressivity of the Encoder). Let us defineHX̄ is the RKHS associated with the kernel
KX̄ defined on X̄ , and (Hfθ ,Kθ) defined on X with augmentation kernel Kθ = ⟨fθ(·), fθ(·)⟩Rd in
Definition 3. And we assume that ∀g ∈ Hfθ , EA(x|·)g(x) ∈ HX̄ .
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Standard Setting Noisy Setting
Method CIFAR-10 CIFAR-100 SVHN ImageNet100 CIFAR-10 (Ex) CIFAR-100 (Ex) CIFAR-10C CIFAR-10C (Ex)

INCE 92.01 ± 0.40 70.07 ± 0.42 90.60 ± 0.17 73.01 ± 0.61 82.03 ± 0.32 54.70 ± 0.43 87.20 ± 0.37 74.84 ± 0.21
GCA-INCE 92.36 ± 0.24 70.11 ± 0.45 90.40 ± 0.16 73.04 ± 0.76 82.18 ± 0.69 54.91 ± 0.56 87.34 ± 0.34 76.00 ± 0.17

∆ +0.35 +0.04 -0.20 +0.03 +0.15 +0.21 +0.14 +1.16
RINCE 91.05 ± 0.50 69.06 ± 0.64 90.97 ± 0.19 71.91 ± 0.43 82.60 ± 0.63 55.43 ± 0.48 88.62 ± 1.33 77.05 ± 0.82

GCA-RINCE 92.09 ± 0.22 69.72 ± 0.27 91.45 ± 0.41 73.44 ± 0.55 82.76 ± 0.49 55.90 ± 0.41 88.76 ± 0.72 77.23 ± 0.76
∆ +1.04 +0.66 +0.48 +1.53 +0.16 +0.47 +0.14 +0.18

SimCLR 92.16 ± 0.16 69.95 ± 0.14 90.24 ± 0.24 72.20 ± 0.78 81.87 ± 0.53 54.54 ± 0.79 86.98 ± 1.59 73.79 ± 0.32
BYOL 90.56 ± 0.59 69.75 ± 0.37 89.50 ± 0.46 69.75 ± 0.83 81.55 ± 0.50 54.18 ± 0.46 87.88 ± 1.02 69.40 ± 1.11

IOT [51] 90.99 ± 0.54 67.19 ± 0.21 90.15 ± 0.21 72.27 ± 0.53 80.59 ± 0.64 52.40 ± 0.48 67.36 ± 1.97 58.75 ± 1.96
IOT-uni [51] 90.89 ± 0.57 67.03 ± 0.40 90.54 ± 0.20 72.88 ± 0.71 80.79 ± 0.24 53.04 ± 0.52 69.58 ± 1.25 59.05 ± 1.86

GCA-UOT 92.61 ± 0.32 71.45 ± 0.37 91.96 ± 0.15 74.09 ± 0.40 83.18 ± 0.44 56.30 ± 0.51 89.61 ± 0.30 77.60 ± 0.54

Table 2: Test accuracy (%) on a downstream classification task after pretraining. Results are provided for
CIFAR-10 (ResNet18), CIFAR-100 (ResNet18), SVHN (ResNet50), and ImageNet100 (ResNet50) under
standard and extreme (Ex) augmentation conditions (averaged over 5 seeds). The top model is bold and the
second-place model is underlined. For INCE and RINCE, we also provide the improvement ∆ by adding GCA
to each method.

Assumption 2 (Small Intra-Class Variance). For y ̸= y′, the intra-class variance δi, δj are negligible
compared to the distance among different class centroids, µy, µy′ as ∥µy − µy′∥ ≫ ∥δi − δj∥.
Claim 1. If Assumption 1 and Assumption 2 hold, then maximizing the uniformity is equivalent to
minimizing the downstream CE loss.

The proof is provided in Appendix C.2. Optimizing the self-supervised loss under ideal conditions
improves downstream CE tasks and helps to explain why maximizing uniformity aids classification.

Remark.. Maximizing uniformity can enhance downstream classification but risks “feature suppres-
sion” by encouraging shortcut features that harm generalization [48]. In GCA-UOT, adding penalties
modifies the transport plan from that of a pure uniformity loss, helping to avoid feature suppres-
sion. We find empirical evidence that UOT provides a more robust transport plan which appears to
circumvent some of these shortcut features from being learned (Figure A4 in Appendix C.3).

6 Experiments

In this section, we conduct empirical evaluations to study the performance of our approach in both
handling noisy and corrupted views and in domain generalization tasks.

6.1 Comparison with CL Baselines

Experiment setup. To examine the robustness of our framework, we trained INCE and RINCE
as baselines, and developed their GCA-based alternatives (+GCA). In addition, we also compared
with our novel GCA-UOT method, two variants of IOT established in [51], and other CL baselines,
including BYOL and SimCLR. For experiments with SVHN [36] and ImageNet100 [15] we use the
ResNet-50 encoder as the backbone and use a ResNet-18 encoder as the backbone for CIFAR-10,
CIFAR-100 [29] and a corrupted version of CIFAR called CIFAR-10C [25].

In all of these cases, we follow the standard self-supervised learning evaluation protocol [8], where
we train the encoder on the training set in an unsupervised manner and then train a linear layer on
top of the frozen representations to obtain the final accuracy on the test set. In addition to standard
data augmentation policies commonly used [12], we also apply three different extreme augmentation
policies to examine the robustness of GCA towards noisy views (details in Appendix D.2). Learning
rates and other training details for CIFAR-10, CIFAR-100, SVHN, and ImageNet100 are provided in
Appendix D.1, while specific training details for CIFAR-10C are included in Appendix D.2.
Results on Standard Augmentations. First, we performed experiments on CIFAR-10, CIFAR-
100, SVHN, and ImageNet100 using standard sets of augmentations that are applied to achieve
state-of-the-art performance (Table 2, Standard Setting). We found the +GCA versions of INCE and
RINCE exhibit performance gains in almost all settings except for SVHN, with bigger gains observed
when adding GCA to RINCE. Additionally, we find that our unbalanced OT method, GCA-UOT,
achieves the top performance across the board, on all four datasets tested. The transport plans
obtained by each methods are provided in Figure A4 along with a study of the sensitivity of the
methods to hyperparameters (Appendix A7).
Results on Corrupted Data and Extreme Augmentations. Next, we tested the methods in two
noisy settings. In the first set of experiments, we apply extreme augmentations to CIFAR-10 (Ex) and
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CIFAR-100 (Ex) (see Appendix D.2) to introduce noisy views during training. In the second set of
experiments, we used the CIFAR-10C to further test the ability of our method to work in noisy settings.
Our experimental results demonstrate that the GCA-based strategy effectively enhances the model’s
generalization ability and adaptability to aggressive data augmentations. In addition to improving
classification accuracy, the GCA-based methods also improve the representational alignment and
uniformity, as shown in Appendix E.2. This observation is in line with our theoretical analysis in
Section 5.2, where we show that the obtained representations provide better overall alignment of
positive views and better spread in terms of uniformity [57].

6.2 Block Diagonal Transport in Domain Generalization

Figure 1: Incorporating different priors
into learning across multiple domains. (A)
Example target alignment plan Ptgt, where
the target over all samples from the same
domain are set to α, the diagonal values
are set to 1, and across-domain samples
are set to β. (B) The domain classification
accuracy (red) and overall class accuracy
(blue) with (α− β) increases.

In a final experiment, we aimed to demonstrate the flexi-
bility and robustness of our framework by applying it to a
domain generalization task, where samples originate from
different domains (e.g., Photo, Cartoon, Sketch, Art). We
explored the effects of introducing domain-specific align-
ment constraints in our transport plan, hypothesizing that
this could enhance the latent space organization to capture
more nuanced domain similarities.

Our approach enables additional contextual information to
be seamlessly integrated into the transport process. In this
case, domain information was incorporated to distinguish
the alignment of samples from the same versus different do-
mains. To achieve this, we adjusted the target transport plan
Ptgt, selectively modifying parameters (α, β) to vary the
influence of domain-based alignment constraints as shown
in Figure 1(A). Specifically, we set {α = 0, β > 0} to prior-
itize cross-domain alignment and {α > 0, β = 0} to focus
on intra-domain alignment.

The training was conducted on the PACS dataset [31] using
a ResNet-18 encoder with the GCA-INCE objective. After
training the encoder in an unsupervised manner, we freeze
the encoder and then train a linear readout layer to predict
either the sample’s class or the domain it belonged to. This
setup allowed us to isolate the effect of our transport adjustments on the latent space’s capacity to
encode both class and domain information.

The results, displayed in Figure 1(B), revealed that increasing the domain alignment weight enhances
the accuracy of domain classification (from 72.11% to 95.16%) without diminishing classification
performance. This outcome suggests that GCA can effectively encode both domain and class
information in a single latent representation. The ability to adjust alignment constraints provides
a powerful tool for domain generalization tasks, enabling multiple types of similarity to be jointly
encoded. This flexibility can potentially alleviate issues related to information loss from data
augmentation, especially in fine-grained classification settings, by retaining essential domain-specific
characteristics across transformations.

7 Conclusion

In this work, we introduced generalized contrastive alignment (GCA), a flexible framework that
redefines contrastive learning as a distributional alignment problem using optimal transport to
control alignment. By allowing targeted control over alignment objectives, GCA demonstrates
strong performance across both standard and challenging settings, such as noisy views and domain
generalization tasks. This work opens up broader possibilities for learning robust representations in
real-world scenarios, where data is often diverse, noisy, or comes from multiple domains.

Future work includes applications of GCA to graphs and time series data, as well as multi-modal
settings where our approach can integrate various forms of similarity. As alignment strategies become
integral to contrastive learning, GCA offers a promising foundation for more adaptive and expressive
self-supervised models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper is a theoretical paper which discusses the a generalized framework
for contrastive learning, which involves to convert them into a series of proximal algorithms.
The abstract and instruction illustrate this point properly.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Contrastive learning is still used in an ad hoc manner, with augmentations
often causing harmful effects. This in turn can introduce bias or hallucinations which can
negative societal impacts. We will expand on these topics in a future revision. Since we
disscuss the limitations and will introduce future works in the conclusion, the answer should
be yes.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Please check the theoretical part in the main text, which is mainly contained in
section 3, 4 and 5. Their proofs are provided in the Appendix, where each theory has its
corresponding proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please check Section 6 and Appendix for experimental details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release all codes after review.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please check Section 6 and Appendix for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Please check Section 6 and Appendix for details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide GPU information in Appendix D along with experimental details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This is a theoretical work and fullfills the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: By providing more provable and robust methods for representation learning,
this work can have impact in fairness and help to reduce uncertainty in decision making.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This theoretical paper has no risk that we are aware of.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Please check references.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not include crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not include human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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