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ABSTRACT

Denoising diffusion models (DDMs) have recently attracted increasing attention
by showing impressive synthesis quality. DDMs are built on a diffusion process
that pushes data to the noise distribution and the models learn to denoise. In this
paper, we establish the interpretation of DDMs in terms of image restoration (IR).
Integrating IR literature allows us to use an alternative objective and diverse forward
processes, not confining to the diffusion process. By imposing prior knowledge
on the loss function grounded on MAP estimation, we eliminate the need for the
expensive sampling of DDMs. Also, we propose a multi-scale training, which
improves the performance compared to the diffusion process, by taking advantage
of the flexibility of the forward process. Our model improves the quality and
efficiency of both training and inference, Furthermore, we show the applicability
of our model to inverse problems. We believe that our framework paves the way
for designing a new type of flexible general generative model.

1 INTRODUCTION
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Figure 1: Comparison of DDMs
and RGMs.

Generative modeling is a prolific machine learning task that the
models learn to describe how a dataset is distributed and gen-
erate new samples from the distribution. The most widely used
generative models primarily differ in their choice of bridging
the data distribution to a tractable latent distribution (Good-
fellow et al., 2020; Kingma & Welling, 2014; Rezende et al.,
2014; Rezende & Mohamed, 2015; Sohl-Dickstein et al., 2015;
Chen et al., 2021a). In recent years, denoising diffusion models
(DDMs) (Ho et al., 2020; Song & Ermon, 2019; Song et al.,
2020b; Dockhorn et al., 2021) have drawn considerable at-
tention by demonstrating remarkable results in terms of both
high sample quality and likelihood. DDMs rely on a forward
diffusion process that progressively transforms the data into
Gaussian noise, and they learn to reverse the noising process.
Albeit their enormous successes, their forward process is fixed
as a diffusion process, which gives rise to a few limitations. To
pull latent variables back to the data distribution, the denoising process requires thousands of network
evaluations to sample a single instance. Many follow-up studies consider enhancing inference speed
(Song et al., 2020a; Jolicoeur-Martineau et al., 2021; Tachibana et al., 2021) or grafting with other
generative models (Xiao et al., 2021a; Vahdat et al., 2021; Zhang & Chen, 2021; Pandey et al., 2022).

In this study, we focus on a different perspective. We interpret the DDMs through the lens of image
restoration (IR), which is a family of inverse problems for recovering the original images from
corrupted ones (Castleman, 1996; Gunturk & Li, 2018). The corruption arises in various forms,
including noising (Buades et al., 2005; Rudin et al., 1992), blurring (Biemond et al., 1990), and
downsampling (Farsiu et al., 2004). IR has been a long-standing problem because of its high practical
value in various applications (Besag et al., 1991; Banham & Katsaggelos, 1997; Lehtinen et al.,
2018; Ma et al., 2011). From an IR point of view, DDMs can be considered as IR models based
on minimum mean square error (MMSE) estimation (Zervakis & Venetsanopoulos, 1991; Laumont
et al., 2022), focusing only on the denoising task. Mathematically, IR is an ill-posed inverse problem
in the sense that it does not admit a unique solution and hence, leads to instability in reconstruction
(Hadamard, 1902). Owing to the ill-posedness of IR, MMSE which only measures data fidelity
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produces impertinent results. DDMs alleviate this problem by leveraging costly Langevin sampling,
and this inefficient inference scheme has been regarded as an indispensable tool in the literature
of DDMs. By casting DRMs as IR models, however, the forward process need not be restricted to
Gaussian noising, and ill-posedness can be detoured in ways other than Langevin dynamics.

Inspired by this observation, we propose a new flexible family of generative models, that we refer
to as restoration-based generative models (RGMs). First, we adopt an alternative objective; a
maximum a posteriori (MAP) (Trussell, 1980; Hunt, 1977), which is predominantly used in IR. The
MAP-based estimator compensates the ill-posedness by regularizing the data fidelity loss by a prior
term. Many advent hand-crafted regularization schemes (Tikhonov, 1963; Donoho, 1995; Mallat,
1999; Baraniuk, 2007) encourage solutions to satisfy certain properties, such as smoothness and
sparsity. However, for the purpose of density estimation, we implicitly parameterize a prior term
as a variational regularization via GAN (Goodfellow et al., 2020) with a newly introduced random
auxiliary variable. Our MAP approach retains the density estimating capability of DDMs at a much
smaller computation cost. Secondly, unlike DDMs, which are buried in a Gaussian noising process,
RGMs can be combined with other general degradation processes. As one instantiation, we design a
multi-scale training that resolves the latent inefficiency of DDMs. Because the behavior of generative
models is significantly affected by how the data distribution is transformed into a simple distribution,
our approach opens the way for designing more flexible generative models. Our comprehensive
empirical studies on image generation and inverse problems demonstrate that RGMs generate samples
rivaling the quality of DDMs. Also, the inference of our model is several orders of magnitude faster
than DDMs. In particular, our model achieve FID 2.47 on CIFAR10, with only seven number of
network function evaluations.

2 BACKGROUND

Image Restoration A common inverse problem arising in image processing, including denoising,
deblurring, super-resolution, and inpainting, is the estimation of an image x given a corrupted image

y = Ax+ ξ, (1)

where A is a matrix that models the degradation process, including blurring and downsampling
kernels, and ξ ∼ N (0,Σ) is an additive noise. A family of such problems are known as image
restoration (IR). The inference of the image x from the noised one y is typically ill-posed, in the
sense that the inverse problem (1) has multiple valid explanations (Hadamard, 1902). In other words,
the noisy y does not have exactly one restoration x. This is further exacerbated when the noise level
is large. To produce consistent results, most methods use the maximum a posteriori (MAP) estimator:

x∗
MAP = argmaxx log p (x | y) = argminx f (x,y) + λg (x), (2)

where f (x,y) = − log p (y | x) = 1
2

∥∥∥(Σ†) 1
2 (Ax− y)

∥∥∥2
2

is the data fidelity term with the pseu-

doinverse (Moore, 1920) Σ†, g is the prior term that encourages the reconstruction to satisfy some
prior assumptions on x, and a scalar λ ≥ 0 controls the strength of the regularization. The reg-
ularization term g is essential because it relieves the ill-posedness nature of the inverse problem
by imposing the assumption about the desirable solution. Therefore, many researchers have been
devoted to designing a proper g (Rudin et al., 1992; Mallat, 1999; Lunz et al., 2018).

Denoising Generative Models Denoising diffusion models (DDMs), such as DDPM (Ho et al.,
2020), and score matching with Langevin dynamics (Song et al., 2020b), have recently emerged as
the forefront of image synthesis research. Starting from the data distribution, they gradually corrupt
the image x0 ∼ pdata into Gaussian noise over time through a forward Markovian diffusion process;

q (x1:T | x0) =

T−1∏
t=0

q(t) (xt+1 | xt) , x0 ∼ pdata. (3)

They pose the data generation as an iterative denoising procedure p
(t)
θ (xt | xt+1), the reverse of the

forward diffusion process:

pθ (x0:T ) = p(T ) (xT )

T−1∏
t=0

p
(t)
θ (xt | xt+1) , xT ∼ N (0, I) . (4)
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As they use linear diffusion process whose diffusion distributions q(t) (xt+1 | xt) are modeled with
conditional Gaussian distributions, we can deduces a tractable evidence lower bound (ELBO) (Sohl-
Dickstein et al., 2015). The ELBO can be further simplified to the following objective (Ho et al.,
2020; Song et al., 2020b):

L (θ) = ΣT
t=0Ex0∼pdata,xt∼qσt (xt|x0)

[
λ (t) ∥Gθ (xt, t)− x0∥22

]
, (5)

where Gθ is a neural network parametrized by θ that learns the noise by minimizing (5), and λ (t) ≥ 0.

3 METHOD

3.1 DDMS ARE RESTORATION MODELS

We open this section by drawing the interpretation of DDMs in terms of restoration. DDMs use
VPSDE or VESDE (Song et al., 2020b) as a forward process, and these two are known to be
exchangeable with each other (Kim et al., 2022). Therefore, the rest of the paper focuses on VESDE.
For a given noise level σt, the forward process of the VESDE is formulated as

xt = x0 + ξ, ξ ∼ N
(
0, σ2

t I
)
,

which is the forward process (1) with identity degradation matrix A = I. As∇xt
log qσt

(xt | x0) =
− (xt − x0) /σ

2
t , the loss (5) for each forward step can be rewritten as the following minimum mean

square error (MMSE) objective:

L(θ) = Ex∼pdata,xt∼N (x,σ2
t I)

[
∥Gθ(xt, t)− x∥22

]
. (6)

Therefore, DDMs are IR models which seek a denoiser Gθ for each σt that minimizes the MMSE (6).
MMSE loss is simple and straightforward to train, however, it confronts some apparent drawbacks.
Since the MMSE only contains the recovery term, the solution is only optimized to ensure accordance
with the degradation process. Therefore, it is affected by the ill-posedness. To be precise, when σt

is large, (1) becomes a highly ill-posed and possess many solutions for a given observation. In this
case, MMSE solution averages all these candidate solutions, resulting in an atypical reconstruction.
Formally, the solution to the MMSE for a corrupted data xt is

x∗
MMSE =

∫
xpdata (x) pσt (xt | x) dx.

Recent works (Laumont et al., 2022; Kawar et al., 2021) have endeavored to resolve this problem by
stochastic sampling, however, they suffer from notoriously low efficiency as they roll out thousands
of trajectories. In a similar manner, DDMs utilize a sampling scheme that requires thousands of steps.
In summary, there are two limitations of DDMs from the IR perspective:

1. The degradation process is restricted to Gaussian noising.

2. The inference efficiency is intrinsically low due to the MMSE estimator.

In the following sections, we show how to cope with these two limitations.

3.2 MAP-BASED ESTIMATION FOR GENERATION

As alluded in Section 3.1, DDMs can be regarded as MMSE grounded IR models, specialized
in denoising. This observation brings us a new perspective on the design of a family of flexible
generative models. As an alternative to MMSE, we propose a new generative model based on the
MAP (2):

Ex∼pdata,y∼N (x,σ2I)

[
1

2σ2
∥Gθ(y)− y∥22 + λg(Gθ(y)))

]
, (7)

where the second term delivers the prior knowledge of data distribution. MAP has been adopted as a
standard approach for high-dimensional imaging problems and is known to be more relevant than
MMSE in many applications (Saha et al., 2009; Bigdeli et al., 2019; Chen, 2016). By leveraging
prior information on the solution, MAP-based approaches alleviate the ill-posedness of the inverse
problem (1), without use of costly sampling of MMSE estimation. Therefore, carefully crafting the
relevant prior term is crucial. We now show how one can execute an appropriate prior term for density
estimation while alleviating the ill-posedness.
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Alleviation of ill-posedness Unlike the general denoising task, it is necessary to bridge the image
to the Gaussian noise to learn the data distribution. As the noise level increases, a single distorted
observation has several solutions, which indicates that the ill-posedness deepens. This in turn
degrades the expressiveness of the model for estimating the distribution. Therefore, it is difficult for
the regularization term to remedy all ill-posedness on its own. We further offload the ill-posedness
by imposing a priori knowledge by introducing a random auxiliary variable z ∼ N (z | 0, I).
Importantly, z enables us to obtain several solutions for a heavily degraded xt through the guidance
provided by z. This eventually helps to pull the noised observations back to the data distribution,
allowing for a rich representation for the density.

Implicit Prior Knowledge For density estimation, the knowledge about the data distribution should
be properly encoded in the prior term g of (7). The explicit density function with determined marginal
distribution is intractable, but it can be learned with the aid of well-developed generative models.
That is, we can design g by integrating various existing generative models. In this paper, we learn an
implicit representation of the data density by adopting generative adversarial network (GAN), which
has shown promising results in many generative tasks, and use generator loss as a relevant prior term
g. For each forward step, our MAP-based objective for our generator in conjunction with the GAN
prior is given by:

L(Gθ) = Ex∼pdata,y∼N (x,σ2I),z∼N (0,I)

[
1

2σ2
∥Gθ(y, z)− y∥22 + λgϕ(Gθ(y, z)))

]
, (8)

where the first term is the data fidelity term, gϕ(x) = log (1−Dϕ (x))− logDϕ (x) is a learnable
prior term that is trained coupled with a discriminator Dϕ, and λ ≥ 0 is a hyperparameter. As
conventional, we train the discriminator Dϕ to minimize Jensen-Shannon divergence. Contrary to
conventional MAP whose prior term is pre-defined, our approach tries to learn the prior term by
coordinating with the denoiser Gθ through the discriminator. This end-to-end training allows our
discriminative learning method to deliver promising performance. Note that when the discriminator
is optimal, i.e. Dϕ(x) =

p(x)
p(x)+qθ(x)

, the loss (8) with λ = 1 agrees with

Ex∼pdata,y∼N (x,σ2I) [DKL(qθ(x|y)||p(x|y))] +H(qθ), (9)

whereH denotes an entropy, which corresponds to training the model to learn the posterior distribution.
The overall training procedure combined with all σ ∈ {σk}Tk=1 is provided in Appendix B.2.

Small Denoising Steps A major downside of DDMs is their slow sampling procedure, which
requires hundreds to thousands of denoising steps to obtain a single image. By adopting MAP
approach and parametrizing the prior distribution through GAN, our model provides an avenue to
offload the time-consuming sampling scheme and enables significantly small denoising steps. For
small degradation we can obtain a restored image in one shot. But, as our restoration starts from
the Gaussian noise, the data distribution is not completely estimated. Therefore, we perform the
generation iteratively. In our experiments on CIFAR10, we generate a high-quality sample in four
denoising steps, whereas most DDMs use hundreds to thousands steps.

3.3 EXTENSION TO GENERAL RESTORATION

In Section 3.2, we proposed a denoising generative model based on MAP-like objective. However,
from the IR perspective, it is not necessary to restrict it to denoising (A = I) and it can be generalized
to any family of degradation matrices A and noise factors Σ in (1). Utilizing the general forward
process, we can learn the generative model by generalizing the loss function (8) as follows:

L(Gθ) = Ex∼pdata,y∼N (Ax,Σ),z∼N (0,I)

[
1

2

∥∥∥(Σ†) 1
2 (A ·Gθ(y, z)− y)

∥∥∥2
2
+ λgϕ(Gθ(y, z)))

]
.

(10)
Therefore, RGM has an flexible structure that can permeate any forward process, and aids in designing
a new generative model. Here, we propose a new model established upon super-resolution (SR).

Multi-scale RGM Most DDMs maintain the image size during the diffusion process by adding
noise to individual pixels. Consequently, they are very inefficient because they require a latent as much
as dimension of pixel space that is much larger than the submanifold of the image space. Motivated by
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1.0

Figure 2: Generated samples on LSUN Church (left) and CelebA-HQ (right).

this, we take A as a block averaging filter that averages out 2×2 pixel values. Halving the image size
at each coarsening step allows us a more expressive generative model with a lower-dimensional latent
distribution. Moreover, multi-scale training has proven to be an effective strategy for synthesizing
large scale images (Denton et al., 2015; Karras et al., 2017b; Reed et al., 2017). Therefore, our model
produces strikingly realistic images by progressively extracting spatial information.

4 EXPERIMENTS

This section evaluates the performance of the proposed RGMs on several benchmark datasets,
including CIFAR10 (Krizhevsky et al., 2009) (32× 32 unconditional), CelebA-HQ (Liu et al., 2015)
(256× 256), and LSUN Church (Yu et al., 2015) (256× 256). We also show the capability of RGMs
for solving inverse problems. We parametrize our generator Gθ based on the UNet-like structure
(Ronneberger et al., 2015) which was successfully used in NCSN++ architecture (Xiao et al., 2021a).
The internal details of the implementation can be found in Appendix B.

Setup We implement two models: RGM-D is a model trained with the diffusion process, which is
mainly used by DDMs. We also consider a multi-scale model whose degradation matrix is a 2× 2
averaging filter. In this case, unlike the diffusion process, the image is corrupted by a downsampling
filter together with additive noise. Therefore, the model (termed by RGM-SR (naive)) is demanded
to conduct upsampling and denoising at the same time. To make it more effective, we explore
another forward schedule that separates the downsampling and noising process and performs them
alternatively. RGM-SR refers to the model to which this schedule is applied. (See Appendix B.1 for
details).

4.1 2D TOY EXAMPLE

MAP wo/ z

MAP

MMSE

Figure 3: Comparison of recovering density
by MMSE versus MAP-based objective.

We first employ a two-dimensional example to vali-
date the effectiveness of prior knowledge of our MAP
framework. We adopt a mixture of Gaussian with eight
components (Grathwohl et al., 2018) as a target distri-
bution. In Figure 3, we depict the benefits of our MAP
approach over the MMSE approach. As illustrated in
the top row, we diffuse the data distribution through
four different noise levels. Each row from the second
row to the bottom represents the learned distribution
of our RGM, RGM without the auxiliary variable z,
and MMSE. First, the bottom row shows the failure of
MMSE, where the modes of pdata are connected and
then missed. This tendency exacerbates as the noise
level increases. Since the MMSE fails to reconstruct
the data distribution even with a small rise in the noise
level, the MMSE does not yield a satisfactory gener-
ative model with a small number of diffusion steps.
Consequently, MMSE approaches, such as DDMs, require a large number of steps to stably recover
the data distribution. On the other hand, by leveraging the prior term, our model generates samples
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Table 1: Results on unconditional generation of CIFAR10.

Class Model FID (↓) IS (↑) NFE (↓)
RGM RGM-D 3.08 9.14 4

RGM-SR 2.47 9.68 7

DDM DDPM (Ho et al., 2020) 3.21 9.46 1000
NCSN (Song & Ermon, 2019) 25.3 8.87 1000

Score SDE (VE) (Song et al., 2020b) 2.20 9.89 2000
Score SDE (VP) (Song et al., 2020b) 2.41 9.68 2000

Probability Flow (VP) (Song et al., 2020b) 3.08 9.83 140
LSGM (Vahdat et al., 2021) 2.10 9.87 147

DDIM (50 steps) (Song et al., 2020a) 4.67 8.78 50
FastDDPM (T=50) (Kong & Ping, 2021) 3.41 8.98 50

Recovery EBM (Gao et al., 2020) 9.58 8.30 180
VDM (Kingma et al., 2021) 4.00 - 1000

UDM (Kim et al., 2021) 2.33 10.1 2000
Gotta Go Fast (Alexia Jolicoeur-Martineau, 2021) 2.44 - 1000

Subspace Diffusion (Jing et al., 2022) 2.17 9.94 ≥ 1000
CLD (Dockhorn et al., 2021) 2.25 - 2000
DEIS (Zhang & Chen, 2022) 3.37 9.74 15
DDGAN (Xiao et al., 2021a) 3.75 9.63 4

StyleGAN2+ES-DDPM (Lyu et al., 2022) 5.52 - 101
Progressive Distillation (Salimans & Ho, 2022) 3.00 - 4

GAN SNGAN+DGflow (Ansari et al., 2020) 9.62 9.35 25
AutoGAN (Gong et al., 2019) 12.4 8.60 1
TransGAN (Jiang et al., 2021) 9.26 9.02 1

StyleGAN2 w/o ADA (Karras et al., 2020) 8.32 9.18 1
StyleGAN2 w/ ADA (Karras et al., 2020) 2.92 9.83 1

VAE NVAE (Vahdat & Kautz, 2020) 23.5 7.18 1
Glow (Kingma & Dhariwal, 2018) 48.9 3.92 1
PixelCNN (Van Oord et al., 2016) 65.9 4.60 1024

VAEBM (Xiao et al., 2020) 12.2 8.43 16

from the multimodal distribution significantly better. By imposing the prior knowledge, the MAP-
based objective accurately estimates the density, which allows distribution recovery with a much
smaller number of forward processes than the MMSE approach. Furthermore, we can observe the
effect of the auxiliary variable z by comparing the second and third rows in Figure 3. MAP with z
has higher sample quality. The effect of z is further amplified for more complex distributions, such as
image data (See Figure 5 and Table 3). This synthetic experiment validates that our MAP approach in
conjunction with the random auxiliary variable z enables accurate and efficient generative modeling.

4.2 IMAGE GENERATION

We compare the performance of our method with several existing baselines. For quantitative compari-
son, we use Fréchet Inception Distance (FID) and Inception Score (IS) as the evaluation metrics. We
also report the number of network function evaluations (NFE). For DDMs and RGMs, NFE value
and real inference time are proportional. Following Song et al. (2020b); Dockhorn et al. (2021), we
focus on the widely used CIFAR10 unconditional image generation benchmark and also validate
the performance of RGMs on large-scale CelebA-HQ-256 images. Table 1 summarizes the quan-
titative evaluations on CIFAR10, and the results on CelebA-HQ is reported in Table 2. Qualitative
performance is depicted in Figures 2 and 4.

Results We can see that our model achieves the state-of-the-art FID score on CelebA-HQ-256
among restoraion-based models. On CIFAR10, our RGMs are comparable to the best existing DDMs
and GAN models. Although the best denoising models obtain better results than ours on CIFAR10,
they use a much larger number of denoising steps (e.g. ScoreSDE with VESDE requires 2000 steps).
Progressive distillation achieves an FID score comparable to ours with quite reduced sampling cost,
but they require considerable additional cost at training time due to their distillation process. Notably,
our RGM-SR achieves FID 2.47 and IS 9.68 with only seven steps, which is state-of-the-art sampling
FID performance when NFE is limited. The overall results confirm that our MAP-based estimation
immediately eliminates the need for an expensive sampling scheme while still maintaining the density
estimating capability of DDMs. Interestingly, RGM-SR outperforms RGM-D by a large margin even
with far fewer latent variables than RGM-D. This improved performance may be attributed to the
increase in NFE; however, the FID of RGM-D with T = 8 reported in Table 7 confirms that it is
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Table 2: Results on generation of CelebA-HQ-256.

Class Model FID (↓) NFE (↓)
RGM RGM-D 7.15 4

DDM Score SDE (VP) (Song et al., 2020b) 7.23 4000
Probability Flow (Song et al., 2020b) 128.13 335

LSGM (Vahdat et al., 2021) 7.22 23
UDM (Kim et al., 2021) 7.16 2000

DDGAN (Xiao et al., 2021a) 7.64 4

GAN PGGAN (Karras et al., 2017a) 8.03 1
Adv. LAE (Pidhorskyi et al., 2020) 19.2 1

VQ-GAN (Esser et al., 2021) 10.2 1
DC-AE (Parmar et al., 2021) 15.8 1

StyleSwin (Zhang et al., 2022) 3.25 1

VAE NVAE (Vahdat & Kautz, 2020) 29.7 1
VAEBM (Xiao et al., 2020) 20.4 1

NCP-VAE (Aneja et al., 2021) 24.8 1
Figure 4: CIFAR10 generated samples.

not. The overall results indicate that the MAP approach of RGMs is a promising way for generating
high-quality samples in limited steps. More uncurated images can be founded in Appendix C.6.

4.3 ABLATION STUDIES

This section is devoted to ablation analyses which show that all parts of our objective, the data fidelity
term, and the prior term together coupled with the auxiliary variable, and the regularization parameter,
each play an important role in our performance of density estimation.

x0

x1

x2

x3

x4

Figure 5: Study on effect of z.

On the role of z We include experimental results on LSUN,
which demonstrate how the auxilliary variable z alleviates the ill-
posedness of the inverse problem. By noising the upper-left image
x0, we obtain the forward trajectory {xk}4k=1. The figures on
the right are restored images of xk by RGM-D together with four
different z. We can see that a reconstruction is almost unique when
the noise level is small. But, as the noise level increases, a single
xk has various reconstructions. It is evident that assigning z helps
generate different denoised images from a heavily degraded xk

through the guidance provided by z. However, one might think that
the ill-posedness is detoured by multi-step training using multiple
σk rather than through z. This claim can be refuted using the result
of RGM-D without z reported in Table 3. We observe the significant difference in FIDs of RGM-D
with and without z under the same number of denoising steps, which indicates the effectiveness of z.

Figure 6: Study on effect of λ.

On the effect of Varying λ We investigate the sensitivity of the
regularization parameter λ in (8). Since it controls the relative
importance between the fidelity term and the prior term, λ is a
trade-off hyperparameter that determines how much regularizes
the joint distribution of pk and pk+1. In Figure 6, we present FID
scores measured on CIFAR10 with the same number of degrada-
tion steps (T = 4) and varying λ. We can see that our models
are quite robust with respect to λ. An empirically observed sweet
spot of λ is d/10 ≤ λ ≤ d for the image size d, in which FID
is no longer improved outside this threshold. For small λ, the
models put a lot of effort to recover the degradation, which hinders estimating data distribution.
Choosing a large λ also results in performance degeneration. There is another point that draws our
attention. When λ =∞, that is, when there is no fidelity term on the objective, FID scores completely
deteriorate. In this case, the models are trained by the vanilla GAN loss. From the perspective of
GAN, our MAP-based objective adds the fidelity term to the GAN loss function. We further observe
that with the help of the fidelity term, our model enhances the mode-collapsing resiliency of GAN
(See Figure 16). These results validate that the performance of RGMs owes to both fidelity and prior
term, and the reliable regularization parameter is determined to balance these two terms.
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Original Grayscale Ours DDRM Downsampled Ours Bicubic GAN baseline DDRMGAN baseline

Colorization Super-Resolution (× 𝟖)

Figure 7: Colorization (left) and super-resolution (right) results on LSUN and CelebA-HQ datasets.

Table 3: Ablation Studies.

Model FID (↓)
RGM-D (λ =∞) 32.5
RGM-D (T = 1) 14.6
RGM-D (T = 4) 3.04
RGM-D (wo / z) 3.87

RGM-SR (naive) 3.17
RGM-SR 2.47

On the forward process schedule Since the forward process de-
termines the way of connecting the data and latent distributions, it
significantly affects the performance of models. The first important
factor is the number of forward steps T , which is directly related to
NFE. In Table 3, we ablate the effect of T . When T = 1, it may be
difficult for the model to directly approximate the data distribution
from the Gaussian noise. This is reflected in the poor FID score. We
also study the forward process schedule of the SR model. We can ob-
serve that the separation of the same forward process into two steps
makes the model easier to learn, and this brings the performance
enhancement of RGM-SR compared to RGM-SR (naive).

4.4 INVERSE PROBLEMS

While our model was originally devised to generate images, we further show the applicability of
RGMs to inverse problems. Recently, a promising approach in imaging inverse problems is to
leverage a learned denoiser as an alternative to the proximal operator of splitting algorithms (Romano
et al., 2017; Hurault et al., 2021). Such methodology is referred to as Plug-and-Play (PnP) algorithms
(Venkatakrishnan et al., 2013). In a similar spirit, we utilize the trained RGMs as a modular part of
the PnP algorithms to solve various inverse problems. In this section, we testify our RGM-D for two
inverse problems; super-resolution and colorization, by plugging our model into Douglas-Rachford
Splitting algorithm (Lions & Mercier, 1979). Details can be found in Appendix B.3.

Results We compare the performance of our model with current-leading models: We compare our
model with DDRM (Kawar et al., 2022), which solves inverse problems with a pre-trained DDPM
by a posterior sampling scheme. As a GAN baseline, we adopt StyleSwin (Zhang et al., 2022)
and reconstruct the image by optimizing over the latent vector (Pan et al., 2021). We also consider
bicubic interpolation as a baseline for super-resolution. We observe that our model is capable of
reconstructing faithful and realistic images, as evident in Figure 7. Compared with baselines, our
model produces high-quality reconstructions across all the datasets. In particular, our model shows
promising performance for colorization. These results show the applicability of RGMs to PnP prior,
and this will bring a range of potential applications, including image segmentation, conditional
generation, and other imaging inverse problems. Additional quantitative and qualitative results are
provided in Appendix C.4.

Comparison of RGM-D and RGM-SR We investigate the effect of the degradation process used
during training on the performance of solving inverse problems. We compare the reconstruction
performance of RGM-D and RGM-SR that are trained on different degradation processes by applying
both models to denoising and super-resolution (SR) tasks on CIFAR10. Quantitative results are
presented in Table 4. We can see that the RGM-SR that is trained based on SR actually performs the
SR task better. Also, we can observe a similar tendency for denoising. The results confirm that the
degradation process used in training actually helps in solving the corresponding inverse problem.
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Table 4: Quantitative comparison of RGM-D and RGM-SR on image reconstruction.

Model Super-Resolution Denoising

(×2) (×4) (σ = 10/255) (σ = 20/255) (σ = 40/255)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RGM-D 26.63 0.88 20.84 0.58 30.11 0.93 26.57 0.86 24.23 0.80
RGM-SR 27.42 0.90 21.14 0.59 29.41 0.92 25.87 0.84 23.53 0.77

5 RELATED WORK

In recent years, denoising-based generative models (Ho et al., 2020; Song & Ermon, 2019; Song
et al., 2020b) have emerged as a class of density estimation models, first sparked by (Sohl-Dickstein
et al., 2015). They define a sampling process as the reverse of a forward diffusion process that maps
data to Gaussian noise by consecutively adding a small portion of the noise to the input data. As
they faithfully estimate the data distribution and generate high-fidelity samples, they have rapidly
been applied to various domains such as conditional generation (Lee et al., 2022; Ho et al., 2022a),
audio synthesis(Kong et al., 2021; Popov et al., 2021), medical imaging (Song et al., 2021; Chung
& Ye, 2022), video generation (Ho et al., 2022b; Yang et al., 2022), and 3D point cloud generation
(Lyu et al., 2021). Their major drawback is slow and expensive inference. Many studies have been
dedicated to circumventing this downside by developing a fast numerical solver (Jolicoeur-Martineau
et al., 2021; Zhang & Chen, 2022; Tachibana et al., 2021; Liu et al., 2022) or using an alternative
noising process such as non-Markovian (Song et al., 2020a), a second-order Langevin dynamics
(Dockhorn et al., 2021), and non-linear diffusion processes (De Bortoli et al., 2021; Chen et al.,
2021b). Another line of work improves sampling efficiency by incorporating it into other generative
models, including GAN (Xiao et al., 2021a; Lyu et al., 2022), and VAE (Vahdat & Kautz, 2020). Xiao
et al. (2021a) which enjoys small sampling steps by using GAN is one of our related work. However,
they did not introduce GAN from a MAP perspective and our model requires less training iteration to
achieve the same performance. (See Appendix A for details.) Moreover, there have been distillation
approaches (Salimans & Ho, 2022; Meng et al., 2022). On a side note, all the aforementioned models
use the Gaussian noising process as the forward process.

Recently, the literature has begun to replace the additive Gaussian noising process with other
transforms. Breaking away from the diffusion process, (Rissanen et al., 2022) proposed a forward
blurring process inspired by heat dissipation. They suggest a new generation process, but they
specialize in the proposed blurring process and cannot be incompatible with other degradation
processes. Possibly the closest study to our work is Cold Diffusion (Bansal et al., 2022) which
generalizes the diffusion process to arbitrary image transformations. It seems to use a general
transform similar to our models, but Cold Diffusion only uses deterministic degradation processes
by entirely removing additive Gaussian noise, which hinders its density estimation performance.
Also, they use the MMSE objective, still requiring an array of several forward steps. We include a
comparison with these related works in Appendix C.3.

6 CONCLUSION AND FUTURE WORK

In this study, we presented a general framework for modeling efficient generative models through the
lens of IR. Compared to DDMs whose both forward and reverse processes are fixed to thousands
of Gaussian steps, our approach provides more flexible models that eliminate expensive sampling
and can enjoy versatile forward processes. We eliminated the usage of slow sampling by taking on
MAP approach and incorporating implicit prior information through GAN. In addition,we propose a
multi-scale method as an example of the usability of various forward processes. The experimental
results showed that the image quality obtained was on par with the leading DDMs, and we achieved
state-or-the-art performance using a limited number of forward steps. We hope that this work provides
a broad view of modeling useful generative models.

Our model has two degrees of freedom: One is how to parametrize the prior knowledge, and the
other is the choice of the forward process. This opens up interesting directions for future research.
In addition to the GAN we used, the prior term can be constructed in different ways. It could also
be interesting to explore other degradation transformations. Moreover, analyzing the effect of the
random auxiliary variable would be an worthwhile direction for future research. Future work could
include the comprehensive design of a convergence guaranteed PnP algorithm for application to
various inverse problems. We leave these further extensions to future work.
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A MORE RELATED WORKS

DDMs have been pertinent generative models by showing promising results on various generation
tasks. DDMs degrade the data with a reference diffusion process and learn the data distribution by
restoring it. We have arranged DDMs in the context of restoration, and DDMs can be interpreted as
an MMSE estimator for a denoising task.

• Energy-based models (EBMs) are another line of generative models that learn the unnormalized
data distribution by giving low energy to high-density regions in the data space. As DDMs have
demonstrated that recovery of sequence of noisy data is more effective than directly approximating
the data density, Gao et al. (2020) recently proposed a recovery energy-based model (REBM) by
using a diffusion process. Inspired by DDMs, REBM learns a sequence of energy functions for
the marginal distributions of the diffusion process. More precisely, from the noisy observation
x̃ = x+ ξ, ξ ∼ N

(
0, σ2I

)
, they estimate the conditional likelihood pθ (x | x̃) ∝ exp−Eθ(x|x̃) by

learning the energy function

Eθ =
1

2σ2
∥x− x̃∥2 − fθ (x) . (11)

They indeed learn the marginal density fθ and inference the data through the recovery likelihood.
The marginal density fθ is adversarially trained by assigning low energy to high-probability regions
in the data space and high energy values outside these regions. Since direct sampling from pθ (x | x̃)
is intractable, samples are usually drawn by leveraging Langevin dynamics (LD) (Neal, 1993),
which is a conventional sampling method of EBMs. Therefore, REBM trains marginal density
fθ using a kind of adversarial loss, but REBM is actually a MAP estimator implicitly defined
by the sampling dynamics. In other words, REBM learns the posterior distribution using the
reference diffusion process, but it does not deviate from the traditional sampling method of EBM,
still generating samples through inefficient LD. There are two difficulties of such a Markov Chain
Monte Carlo (MCMC) sampling: Applying MCMC in pixel space to sample one instance from
the model is impractical due to the high dimensionality and long inference time. As reported in
(Xiao et al., 2021b), the estimated density of EBMs can sometimes differ significantly from the
data distribution, even if the model with the short-run LD produces relevant samples. It is also
known that the convergence of LD is very difficult when the energy function is complicated.

• Another related work is a denoising diffusion GAN (DDGAN) (Xiao et al., 2021a), which enjoys
small sampling steps by using GAN. DDGAN focuses on improving the sampling efficiency while
maintaining the sample quality and mode coverage of DDMs. The reason why DDMs adhere to
the heavy sampling scheme is their common assumption that the true posterior is approximated by
Gaussian distributions. This assumption holds only with small denoising steps. When the number
of denoising steps is reduced, the denoising distribution is no longer a Gaussian distribution, but a
non-Gaussian multi-modal, which is usually intractable. DDGAN breaks the Gaussian assumption
by reducing the number of denoising steps, and then approximates the non-Gaussian multimodal
posterior distribution with the help of GAN. DDGAN enhances the sampling efficiency of DDMs
and also resolves the mode collapse problem of GANs by using a couple of denoising steps from
the perspective of GAN literature. The architecture of DDGAN is somewhat similar to that of
our RGM-D. However, there is a difference in a way of estimating MAP. DDGAN assigns all
responsibility for MAP estimation to the discriminator. On the other hand, our models learn the
MAP-based estimator by separating the posterior distribution into the fidelity term and the prior
term. Therefore, the model is much easier to learn than DDGAN. As a consequence, RGM-D
obtains substantial savings in terms of training iterations than DDGAN. Specifically, in CIFAR10
experiments, DDGAN takes 400K iterations to achieve FID of 3.75. In comparison, our RGM-D
only uses 150K iterations to achieve the same performance as DDGAN, and takes 200K iterations
for FID of 3.08. For the CelebA dataset, DDGAN requires 750K iterations to attain FID 7.64,
while RGM-D obtains the same FID score using only 450K iterations and FID 7.15 even with
much less 500K iterations.

As such, there have been various density estimation models based on denoising. Diffusion models,
such as DDPM and score matching with Langevin dynamics and its variants, are MMSE-based
estimators. The model of REBM itself approximates the marginal density as we do, but our model
is trained with MAP-based loss, whereas REBM generates samples from the posterior distribution
through the sampling method. Diffusion models and REBM train different estimators, but both
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models use a Langevin sampling scheme that requires thousands of network evaluations. On the other
hand, DDGAN is a model that can perform one-shot sampling with the help of GAN (away from the
Langevin sampling), just like our RGMs. However, since DDGAN learns the whole posterior density
through the discriminator, it is more inefficient in terms of learning than our models, which separate
the fidelity and the prior term. Consequently, our RGMs achieve better performance than DDGAN
with much fewer iterations. All these models are restricted to the diffusion process. Otherwise,
our RGMs can enjoy flexible forward processes and are also given a degree of freedom in how to
parametrize the prior term. In other words, our approach does not need to restrict to the diffusion
process and unlike DDGAN, which is limited to the GAN structure, it is possible to design the prior
term by leveraging different generation models. This is further discussed in Appendix C.2.

B IMPLEMENTATION DETAILS

B.1 DEGRADATION SCHEDULE

Let Ak and Σk be a degradation matrix and a noise variance on the k-th degradation step, respectively.
Then, given a data x sampled from the real data distribution pdata, a degraded data yk on the k-th
forward step is sampled from

p (yk | x) = N (yk;Akx,Σk) .

We denote the marginal distribution at the T -th degradation step as pT . Because our primary goal is
to bridge pdata to an easy to sample distribution pT , (especially to a zero mean Gaussian distribution),
we gradually decrease the norm of Ak to zero as k increases. In Section 4, we introduced two

families of models based on the degradation schedule {(Ak,Σk)}Tk=1 with the corner cases: RGM-D
for Ak = I and RGM-SR for Ak = Pk a 2 × 2 averaging filter. Roughly speaking, we consider
three models based on different forward processes designed as follows:

• RGM-D: noise→ noise→ noise→ noise→ · · · ,
• RGM-SR (naive): downsample + noise→ downsample + noise→ · · · ,
• RGM-SR: noise→ downsample→ noise→ downsample→ · · · .

With the following notations

βk =
1

4
(βmax − βmin)

(
k

T

)2

+
1

2
βmin

k

T
, (12)

β̃k =
1

4
(βmax − βmin)

(
k

T

)4

+
1

2
βmin

(
k

T

)2

, (13)

where βmax = 20 and βmin = 0.1. Table 5 details the explicit form of the forward processes used for
each models.

Table 5: The choice of schedule Ak and Σk and the corresponding latent distribution pT for RGM-D,
RGM-SR (naive), and RGM-SR. Pk is a projection matrix that downscale the images by block
averaging in a factor of 2k. For RGM-SR, we set T in (12) be a half of the total steps added by one.

RGM-D RGM-SR (naive) RGM-SR

Ak e−βkI e−β̃kPk e−β⌈k/2⌉P⌊k/2⌋

Σk

(
1− e−2βk

)2
I

(
1− e−2β̃k

)2

P⊤
k Pk

(
2⌈k/2⌉

(
1− e−2β⌈k/2⌉

))2
P⊤

⌊k/2⌋P⌊k/2⌋

pT N (0, I) N
(
0, 1

64I
)

N (0, 4I)

The noise schedule of RGM-D follows the Variance Preserving SDE provided by Song et al. (2020b),
and others are implemented with a slight modification of them.

When we use the degradation matrix Ak as the averaging filter, the corresponding forward process
downsamples the image while adding Gaussian noise. RGM according to this forward process,
referred to as RGM-SR (naive), is demanded to super-resolve the degraded data while simultaneously
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denoising it. It is considerably more difficult than the denoising task when the noise level is the
same. To address this difficulty, we consider a newly scheduled degradation scheme that decomposes
the forward process into downsampling and noising operations. We name the RGM designed in
conjunction with this forward schedule as RGM-SR. As provided in Table 5, when the step k is odd,
the difference from the (k + 1)-th step is only the projection matrix. Namley, only downsample
is performed when sampling the (k + 1)-th degraded data from the k-th degraded observation.
Conversely, when k is an even number, the forward process produces the (k + 1)-th degraded image
by adding the Gaussian noise. In summary, RGM-SR focuses on denoising the data in odd steps and
super-resolving the data in even steps. Provably due to the difficulty of performing super-resolution
and denoising simultaneouly, RGM-SR (naive) has the worst performance. Whereas RGM-SR, which
uses the decomposed forward process, outperforms both RGM-D and RGM-SR by a large margin as
reported in Section 4.2.

B.2 TRAINING RGMS

In this section, we unambiguously elucidate how we train our RGMs. In Algorithm 1 and 2, we
summarize the two training procedures that are suited to different situations. Moreover, the generation
process is provided in Algorithm 3.

Training As proposed in Section 3.2, RGMs learn the data distribution pdata through the process of
degrading the image through a forward process and then restoring it using the MAP-based objective
(8). However, since it is too difficult to restore the image directly from the Gaussian distribution in
one shot, we use a handful of forward steps and train RGMs with the MAP estimation that recovers
the distribution between each step. (We also include an ablation study on this in Appendix C.1) In
other words, at each step k, we first sample a degraded image yk of a given image x ∼ pdata. The
generator Gθ generates the restored image x̂, and then, we degrade it by the posterior distribution
ŷk−1 ∼ p (ŷk−1 | yk, x̂). We train our MAP-based loss function so that ŷk−1 becomes a restoration
of yk. The discriminator loss is also imposed on the (k − 1)-th step. Through the overall process, we
ultimately learn the model that restores the distribution of the previous (k − 1)-th step at each k-th
step. The training procedure is articulated in Algorithm 1.

Algorithm 1 Training of RGMs with Posterior sampling

Input: Dataset D, degradation schedule {(Ak,Σk)}Tk=0 with (A0,Σ0) = (I,0), posterior distribu-

tion pk|k−1 (yk−1,yk) = N
(
Ãkyk, Σ̃k

)
, generator Gθ, discriminator Dϕ, and regularization

parameter λ ≥ 0.
1: for i = 0, 1, 2, . . . do
2: Sample data x ∈ D.
3: Sample k ∼ Uniform({1, 2, . . . , T}).
4: Sample z ∼ N (0, I).
5: Sample degraded data yk ∼ N (Akx,Σk) and yk−1 ∼ N (Ak−1x,Σk−1).
6: Generate an image x̂ = Gθ(yk, k, z).
7: Degrade data by posterior sampling ŷk−1 ∼ p (ŷk−1 | yk, x̂).
8: Update ϕ by the following loss:

log (1−Dϕ (ŷk−1, k − 1)) + logDϕ (yk−1, k − 1) .

9: Update θ by the following loss:

log (1−Dϕ (ŷk−1, k − 1))− logDϕ (ŷk−1, k − 1) +
1

2λ

∥∥∥∥(Σ̃†
k

) 1
2
(
Ãkŷk−1 − yk

)∥∥∥∥2
2

.

10: end for

However, we can exactly formulate the posterior distribution only when the forward process satisfies
certain conditions. For all k = 1, · · · , T , if there exists

(
Ãk, Σ̃k

)
satisfying

Ak = ÃkAk−1, Σ̃k := Σk − ÃkΣkÃ
⊤
k ≻ 0, (14)
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we can explicitly construct a conditional distribution pk|k−1(yk|yk−1) = N (Ãkyk−1, Σ̃k) and a
posterior distribution (Ho et al., 2020; Kingma et al., 2021; Xiao et al., 2021a). For example, the
forward process of RGM-D falls under this condition (14), but that of RGM-SR does not. Therefore,
the Algorithm 1 does not fit with RGM-SR. To unravel such a problem, we propose a prevalent
algorithm that is applicable to forward processes that are in discord with the condition (14). See
Algorithm 2. The only difference from the Algorithm 1 is the replacement of the posterior sampling
by the prior sampling in Line 5 and the data fidelity term in Line 9. When the posterior distribution
is unavailable, we corrupt the image x̂ restored by the generator Gθ to the (k − 1)-th degraded
distribution using the k-th forward process rather than posterior sampling. Moreover, since the
conditional distribution between k and (k − 1) steps is unknown, we adopt the fidelity term of the
image x̂ reconstructed by the generator. This algorithm is universally applicable to general forward
processes. One notable fact is that RGM-D, whose posterior distribution is tractable, learns the
data distribution better when using this algorithm than Algorithm 1. This is discussed in detail in
Appendix C.1.

Algorithm 2 Relaxed training algorithm of RGMs

Input: Dataset D, degradation schedule {(Ak,Σk)}Tk=0 with (A0,Σ0) = (I,0), discriminator Dϕ,
generator Gθ, and regularization parameter λ ≥ 0.

1: for i = 0, 1, 2, . . . do
2: Sample x ∈ D.
3: Sample k ∼ Uniform({1, 2, . . . , T}).
4: Sample z ∼ N (0, I).
5: Sample degraded data yk ∼ N (Akx,Σk) and yk−1 ∼ N (Ak−1x,Σk−1).
6: Generate an image x̂ = Gθ(yk, k, z).
7: Degrade x̂ by ŷk−1 ∼ N (Ak−1x̂,Σk−1).
8: Update ϕ by the following loss:

log (1−Dϕ (ŷk−1, k − 1)) + logDϕ (yk−1, k − 1) .

9: Update θ by the following loss:

log (1−Dϕ (ŷk−1, k − 1))− logDϕ (ŷk−1, k − 1) +
1

2λ

∥∥∥∥(Σ†
k

) 1
2

(Akx̂− yk)

∥∥∥∥2
2

.

10: end for

Algorithm 3 Sampling Procedure of RGMs

Input: Trained generator Gθ and degradation schedule
{Ak,Σk}Tk=1.

1: Sample initial state yT ∼ N (0,ΣT ).
2: for k = T − 1, T − 2, . . . , 0 do
3: Sample z ∼ N (0, I).
4: Restore image x̂k by x̂k = Gθ (yk+1, k + 1, z).
5: Sample yk ∼ N (Akx̂k,Σk).
6: end for
7: return x̂0

Sampling The sampling algorithm
is summarized in Algorithm 3. Start-
ing from a latent variable yT ∼ pT ,
the trained Gθ generates the restored
image x̃ = Gθ (yk+1, k, z) with a
randomly selected auxiliary variable z
from the (k + 1)-the degraded image
yk+1, and then corrupt it by passing
the k-th forward process. Continue
this procedure until k = 0. When we
train our model with Algorithm 1, the
line 5 should be replaced by the pos-
terior sampling.

Hyperparameters To optimize our RGMs, we are mostly following the previous literature (Xiao
et al., 2021a), including network architectures, R1 regularization, and optimizer settings. Note that
our code is largely built on top of DDGAN 1 (MIT License). We vary the discriminator by simply
changing input channels into three. Moreover, we use a learning rate of 2 × 10−4 for generator
update in all experiments and a learning rate of 10−4 for discriminator update. We use λ−1 = 10−3

for image size of 32, and λ−1 = 5 × 10−5 for image size of 256. The models are trained with

1https://github.com/NVlabs/denoising-diffusion-gan
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Adam (Kingma & Ba, 2014) in all experiments. In CIFAR10 experiments, we train RGM-D and
RGM-SR (naive) for 200K iterations and RGM-SR for 230K iterations. For CelebA-HQ, we train
RGM-D for 500K iterations, and use 300K iterations in LSUN experiments. In the implementation
of the two-dimensional Gaussian Mixture, we use 3-layered MLP of 32 hidden dimension for both
generator and discriminator with Tanh activation. We concatenated all the inputs and passed through
the network. They are trained for 100K iterations with a learning rate of 10−4, batch size of 1000.

Other details We train our models on CIFAR-10 using 4 V100 GPUs. The training takes approx-
imately 40 hours on CIFAR-10. Moreover, the sampling 100 samples takes approximately 0.25
seconds for RGM-D on single V100 GPUs. For evaluation on CIFAR10, we use 50K generated
samples to measure IS and FID. For CelebA-HQ-256, we use 30K samples to compute FID.

B.3 SOLVING INVERSE PROBLEMS

Modern image processing algorithms reconstruct the groundtruth image by solving the following
minimization problem:

minimize
x

fy (x) + λg (x),

where f measures the fidelity to a corrupted observation y, and g constrains the solution space
by measuring the complexity or noisiness of the image. Many imaging inverse problems, such as
colorization, super-resolution (SR), and deblurring, fall under this form. Since the above optimization
problem does not have a closed-form solution in general, first-order proximal splitting algorithms,
including half-quadratic splitting (HQS) (Geman & Yang, 1995), alternating direction method of
multipliers (ADMM) (Boyd et al., 2011), solve the problem by operating individually on f and g
via the proximal operator (Parikh et al., 2014). With the aid of the emergence of deep learning,
Plug-and-Play (PnP) algorithms (Venkatakrishnan et al., 2013) have recently begun to connect
proximal splitting algorithms and deep neural networks by replacing the proximity operator of the
regularization term g with a generic denoiser (Romano et al., 2017; Reehorst & Schniter, 2018).

Similarly, our trained RGMs can be used as PnP priors. In Section 4.4 we solved two inverse problems,
colorization and super-resolution, by plugging the trained RGMs into Douglas-Rachford Splitting
(DRS) algorithm (Lions & Mercier, 1979), following (Hurault et al., 2022). This is summarized in
Algorithm 4. Starting from the degraded observation y, the DRS algorithm updates the solution by
alternatively utilizing proximal operations for both f and g. By iteratively updating the solution, the
solution lies far outside the distribution on which our denoiser Gθ trained. For this out-distribution
data, Gθ cannot recover the original image distribution, which in turn prevents the DRS algorithm
from convergence. To remedy this problem, the input of Gθ should always be within the trained
distribution. Therefore, we push the updated solution into the learned distribution through the
forward process. Note that the proximal operation is calculated by utilizing efficient singular value
decomposition proposed in Kawar et al. (2022).

Algorithm 4 Solving Inverse Problems by RGM

Input: A degraded observation y, fidelity loss function fy, repeat number M , update rate α ∈ (0, 1],
regularization parameter λ ≥ 0, trained generator Gθ, and degradation schedule {Ak,Σk}Ti=1.

1: xK = y
2: for 0, 1, . . . ,M do
3: for i = K,K − 1, . . . , 1 do
4: Sample ŷ ∼ N (Axi,Σi) and z ∼ N (0, I).
5: x̂← Gθ(ŷ, i− 1, z).
6: x̂← (1− α)xi + αx̂.
7: ∆x← proxλfy(2x̂− xi)− x̂.
8: xi−1 ← xi +∆x.
9: end for

10: end for
11: return x0

Settings & Hyperparameters In SR experiments, we downscale images by using a block averaging
filter by r in each axis. The filter is applied for stride of r. We experiment on r = 4 and r = 8 for
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LSUN and CelebA-HQ datasets. In CIFAR10 experiment, we use r = 2 and r = 4. In colorization
experiments, we simply degrade color images to gray by averaging images along channels of each
pixel. All tasks are evaluated on hundred samples which are sampled from evaluation dataset.

Table 6 reports the exact set of hyperparameters that we used in our experiments. We set K = 2 for
colorization and K = 1 for denoising and SR tasks.

On CIFAR10 experiments, to fairly compare RGM-D and vanilla version of RGM-SR, we train
both models with same degradation steps of three (T = 3). For RGM-D, we used Ak = e−β̃kI and

Σk =
(
1− e−2β̃k

)2

I. For RGM-SR, we used Ak = e−β̃kPk and Σk =
(
1− e−2β̃k

)2

P⊤
k Pk.

Table 6: Hyperparameters used for solving inverse problems.

CIFAR10 LSUN/CelebA-HQ

SR2 SR4 σ = 10/255 σ = 20/255 σ = 40/255 SR4 SR8 Color

M 5 10 10 20 10 40 40 20
λ 0.2 0.1 0.01 5 5 10 10 5
α 0.2 0.2 0.2 0.1 0.1 0.05 0.05 0.5

Baselines We employed two main comparison models, namely DDRM (Kawar et al., 2022) and
GAN baseline, which is close to our work. Similar to our method, both comparison models assume
that a degradation matrix is given and they iteratively update degraded images by using their knowl-
edge obtained from pretrained network and degradation matrix. Moreover, our model and these
comparisons does not require heavy additional training. The implementation DDRM follows its
original implementation. The implementation of GAN baseline mainly follows the implementation
of DGP (Pan et al., 2021), however, instead of using BigGAN (Brock et al., 2019), we replaced it
with a pretrained model of StyleSwin (Zhang et al., 2022), which is one of the state-of-the-art. For
discriminator loss of DGP, we used last feature vector of StyleSwin discriminator. We additionally
adjusted the weights of the losses. For experiments in SR, we use MSE loss weight of 1.0 and
discriminator loss weight of 1.0. For colorization, we use MSE loss weight of 1.0 and discriminator
loss of 1.0 for previous 400 iterations and 0.1 after that. Other hyperparameters of GAN baseline
implementation follows Pan et al. (2021). We also compare our model with SDEdit Meng et al.
(2021), a stroke-based diffusion model. In the implementation of SDEdit, we use total denoising
steps of 200 with the number of repeats of three.

C ADDITIONAL RESULTS

C.1 ADDITIONAL ABLATION STUDIES

In this section, we include additional ablation studies on our training procedure and the forward
process schedule. All experiments are conducted on the CIFAR10 dataset and focused on RGM-D.

Table 7: Additional ablation studies
on CIFAR10 experiments.

Model FID (↓)
Directly matching data 21.2
RGM-D w/ posterior 3.52

RGM-D (T = 8) 6.50

RGM-D (T = 4) 3.04

Directly restoring the data distribution Given a k-th de-
graded image yk, the generator is trained to restore the original
image in one shot. Therefore, we can train RGMs to directly
restore the real image distribution from each degraded step k.
RGM-D trained in this say is denoted by Directly matching
data in the Table 7. This model was trained in the same forward
process as RGM-D (T = 4). The FID score shows that the
model has difficulties in learning the data distribution, falling
short of FID score by 21.2. It seems that it is still difficult to
directly restore the image of the real data distribution from a
severely degraded image yk (k ≈ T ) even with the help of auxiliary variable z.

Training with posterior sampling As introduced in B.2, there are two ways to push the image,
reconstructed by the generator, to the (k − 1)-th degraded distribution; prior sampling and posterior
sampling. The posterior sampling is theoretically well-grounded since it minimizes the statistical
MAP loss of the posterior distribution. However, to obtain an explicit form of posterior sampling,
the forward process should be constrained to satisfy the conditions (14). Since the noising forward
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process of RGM-D satisfies these conditions, we trained RGM-D with both posterior sampling
(Algorithm 1) and prior sampling (Algorithm 2) under the same setup. In Table 7, RGM-D (T = 4)
and RGM-D w/ posterior refer the model trained with prior and posterior sampling, respectively. As
shown in Table 7, both models achieve similar results in terms of FID score, where RGM-D with
prior sampling slightly precedes posterior sampling. This verifies that two training objectives of
Algorithm 1 and 2 are somewhat consistent. Because the performance is a bit better, we adopt the
prior sampling in all our experimental studies.

Effect of the number of forward steps The number of forward steps is one of the important
factors affecting the performance of the model. We investigated this in Section 4.3 by comparing a
four-step model RGM-D (T = 4) with the RGM-D (T = 1), where we use only one degradation step.
As reported in Table 3, RGM-D (T = 1) struggles to learn the data distribution because it needs to
recover the real data distribution directly from Gaussian noise with one chance. On the other hand,
RGM-D (T = 4) estimates the data density well. Besides, what happens when we use more steps?
Since our RGMs learn the data distribution in a way that restores the distribution of the previous
degradation step (k − 1) distribution from the k-th degraded distribution, one may expect that the
models will be easier to estimate the density as the distribution between the two steps is closer by
dividing the forward process with more steps. However, the opposite results are presented in the
Table 7. The results show that RGM-D (T = 8) attains a higher FID score. In other words, dividing
the forward process into smaller pieces does not enhance the model performance. In addition, this
phenomenon is also observed for Directly matching data. RGM-D (T = 1) can actually be regarded
as a Directly matching data (T = 1), whereas the Directly matching data presented in the table uses
T = 4. Comparing these two, we can observe that that the model using fewer degradation steps
performs better. Xiao et al. (2021a) reported a similar tendency. Choosing appropriate T is crucial
for algorithmic performance, but not straightforward how many steps are optimal.

Reducing mode collapse using data fidelity Lastly, we examine the influence of the data fidelity
term in our MAP-based estimation. To quantify the contribution of the fidelity term, we trained
RGM-D by the loss function without the data fidelity loss (termed by RGM-D (λ =∞)) in Section
4.3, and we reached an FID score of 32.5 (See Table 3). This result clearly motivates our objective.
Moreover, we observe the mode collapse for RGM-D (λ =∞), which is the one of common failure
modes of GAN. As evidence, generated samples are presented in Figure 16. Comparing samples
generated by our RGM-D (see Figure 2) to Figure 16, it is clear that images generated by RGM-D
have higher diversity and better quality. The results verify that it is beneficial to train our RGMs
together with the data fidelity term.

C.2 EXPERIMENTS ON THE FLEXIBILITY OF THE PRIOR TERM

Without being tied by the GAN structure presented in Section 3.2, our RGMs have the freedom to
parametrize the prior term g of regularizer (8) in any other way. To demonstrate that RGM framework
universally works for variously parametrized prior terms, we design the prior term in two additional
ways: maximum mean discrepancy (MMD) (Dziugaite et al., 2015) and distributed sliced Wasserstein
distance (DSWD) (Nguyen et al., 2020):

• Different to GAN, the MMD-based generative model replaces the discriminator in GAN with
a two-sample test based on kernel maximum mean discrepancy (MMD) (Li et al., 2017). For
given two sets of data X = {x1, x2 . . . , xM} and Y = {y1, y2 . . . , yM}, the MMD prior g(X,Y ),
which estimates the MMD distance, is defined as follows;

g (X,Y ) =
1(
M
2

)
∑

i ̸=j

k (xi, xj)− 2
∑
i ̸=j

k (xi, yj) +
∑
i̸=j

k (yi, yj)

 , (15)

where k is a positive definite kernel. Following the prior works (Dziugaite et al., 2015; Li et al.,
2015; 2017), we use a mixture of RBF kernels k(x, x′) =

∑n
i=1 kσi

(x, x′) where kσ is a Gaussian
kernel with bandwidth parameter of σ.

• To measure the distance of two datasets X = {x1, x2 . . . , xM} and Y = {y1, y2 . . . , yM}, sliced
Wasserstein-based framework (SW) projects the data into a one dimensional vector then explicitly
calculates the Wasserstein distance on the projected space. In such an explicit calculation, SW
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Figure 8: Efficiency of MAP-based approach compared to MMSE. The prior term of our objective is
variously parametrized with GAN, MMD, and DSWD. All three MAP-based approaches are much
more efficient than MMSE approach, which shows the flexibility of how to parameterize the prior
term of the RGMs.

can be freed from unstable adversarial framework. Recently, Nguyen et al. (2020) has proposed
a novel and efficient method to obtain the useful projection samples, hence, we followed the
implementation of this prior work in our experiments.

The results on the 2D syntehtic example discussed in Section 4.1 are depicted in Figure 8. The results
validate that RGMs parametrized in three different ways show consistent performance, where they
are all more efficient than the MMSE estimator. In particular, MMD measures the distance between
two distributions based on a kernel. Because the kernel is not trained, the prior term in the objective
of RGM is fixed rather than learned like GAN. Also, despite this simple structure, Figure 3 confirms
that our RGM with MMD is more efficient than MMSE.

Furthermore, we also carry out the experiment of RGM-D with the DSWD prior, termed RGM-
D-DSWD, on CIFAR10. RGM-D-DSWD achieves an FID score of 3.14 retaining comparable
performance with RGM-D with GAN prior. The overall results verify that our MAP approach works
universally well even when the prior term is parametrized in a way other than the GAN structure.

Implementation details For both 2D toy and CIFAR10 experiments, we use the same architecture
and hyperparameters with RGM-D unless stated. We use the number of iterations of 150K, the number
of projections of 1000, 10 DSW iterations and λC = 10. For RGM-D-DSWD implementation on
CIFAR10, we use the output of fifth convolutional layer of the discriminator as a feature vector. For
the DSWD experiment on the 2D data, we use the number of iterations of 100K, the number of
projections of 10, 10 DSW iterations and λC = 10. We refer to (Nguyen et al., 2020) for the precise
definition of hyperparameters. For the MMD experiment, we applied kernel bandwidths of 0.1, 0.5,
1, 2, and 10.

C.3 COMPARISON WITH EXISTING MODELS USING VARIOUS DESTRUCTION

Recently, several works introduce various degradation processes as an alternative to the diffusion
process. Rissanen et al. (2022) proposed an inverse heat dissipation model (IHDM) with a forward
blurring process inspired by heat equation. Afterwards, Hoogeboom & Salimans (2022) established
a theoretical bridge between diffusion models and IHDM using Fourier transform. Based on this
insight, they built a blurring diffusion model. Daras et al. (2022) proposed a general framework for
learning the score function for any linear corruption process. Moreover, Cold Diffusion (Bansal
et al., 2022) proposed a new family of models using deterministic degradation processes. Similarly,
the proposed RGMs can leverage general linear degradation processes. Therefore, we compare the
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performance of RGMs with the aforementioned related works in Table 8. In comparison with our
model itself, the change in the forward process brings FID improvement. But compared to other
models, we can observe how efficiently our MAP-based approach produces high-quality images.

Table 8: Comparison with restoration-based models with various forward
processes. Sample quality on CIFAR10 is measured by FID score.

Model FID (↓) NFE

Cold Diffusion (SR) (Bansal et al., 2022) 152.76 3
Cold Diffusion (Blur) (Bansal et al., 2022) 80.08 50

IHDM (Rissanen et al., 2022) 18.96 200
Soft Diffusion (Daras et al., 2022) 3.86 ≤ 100

Soft Diffusion (Blur) (Daras et al., 2022) 4.64 ≤ 100
Blurring Diffusion (Hoogeboom & Salimans, 2022) 3.17 1000

RGM-D 3.04 4
RGM-SR 2.47 7

C.4 ADDITIONAL RESULTS ON INVERSE PROBLEMS

To quantify the performance of our RGM, we report signal-to-noise ratio (PSNR), which measures
faithfulness to the ground-truth image. Also, as a perceptual metric, we include structural similarity
index measure (SSIM) (Wang et al., 2004) that quantifies image. Table 9 summarizes the PSNR and
SSIM performances of colorization and super-resolution (SR) on CelebA-HQ and LSUN datasets.
Since the primary goal of SDEdit is to generate a realistic and faithful image in the absence of
paired data, we did not make a quantitative comparison with SDEdit. But we include qualitative
comparisons.

Colorization The goal of image colorization is to restore a gray-scale image to a colorful image
with RGB channels. We present more colorization results on CelebA-HQ and LSUN church in Figure
10 and 11, respectively. Results reported in Table 9 show that our RGM achieves comparable and
sometimes even better performance than baselines. From the qualitative results, we can observe that
our RGM is able to reconstruct more faithful and realistic images than other models.

Super-resolution Super-resolution aims at recovering high-resolution image the corresponding to a
given low-resolution image. We consider downsampled images with two scale scale factors 4 and
8. We also compare SR results with bicubic interpolation. Figure 12 and 13 present the qualitative
comparisons. Compared against bicubic upsampling, bicubic attains higher PSNR and SSIM values.
However, we can observe from Figure 12 and 13 that bicubic interpolation results in blurry images
and RGM super-resolves more plausible images. Also, visual differences between RGM and DDRM
are qualitatively not large.

Table 9: Colorization and super-resolution results of different methods.

Model Colorization Super-Resolution
LSUN CelebA-HQ LSUN CelebA-HQ

(×4) (×8) (×4) (×8)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RGM 23.78 0.93 25.57 0.93 22.74 0.65 19.96 0.48 28.51 0.81 24.86 0.70
DDRM 23.68 0.94 23.94 0.93 23.22 0.67 20.61 0.51 29.32 0.83 26.23 0.73

GAN baseline 20.02 0.81 24.79 0.88 20.32 0.48 18.06 0.34 26.77 0.71 23.92 0.59
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C.5 ADDITIONAL RESULTS OF VARYING z

We investigated the influence of the auxiliary variable z in Section 4.3. Here, we include more
observations in Figure 9.

C.6 ADDITIONAL QUALITATIVE RESULTS ON GENERATION

We present more generated image samples in Figure 14, 15, 17, and 18.
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Figure 9: Illustration of the effect of varying z on CelebA-HQ (top) and LSUN (bottom). The images
in the leftmost column depict the selected trajectory {xk}4k=1 degraded from an image x0. Each row
on the right presents restored images of xt using four different random auxiliary values z. When
the noise level is small, they generate almost identical images, which means that the restoration
problem is almost well-posed. As the noise level increases, however, each degraded observation
xk estimates diverse images depending on the z. In other words, the larger the noise, the more
severe the ill-posedness, and the results validate that a much wider restoration is possible through the
introduction of z.
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Figure 10: Colorization. Qualitative comparison on CelebA-HQ.
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Figure 11: Colorization. Qualitative comparison on LSUN church.
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Figure 12: Super-resolution. Qualitative comparison on CelebA-HQ.
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Figure 13: Super-resolution. Qualitative comparison on LSUN church.
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Figure 14: Generated samples of RGM-D on CIFAR10.

Figure 15: Generated samples of RGM-SR on CIFAR10.

Figure 16: Mode collapse of RGM-D trained without the data fidelity term. Sampled images of
RGM-D (λ =∞) seem repetitive.

30



Under review as a conference paper at ICLR 2023

Figure 17: Additional qualitative results of RGM-D trained on CelebA-HQ-256.
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Figure 18: More qualitative results of RGM-D trained on LSUN Church.
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