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Abstract
We reveal that feedforward network (FFN) layers,
rather than attention layers, are the primary con-
tributors to Vision Transformer (ViT) inference
latency, with their impact signifying as model
size increases. This finding highlights a critical
opportunity for optimizing the efficiency of large-
scale ViTs by focusing on FFN layers. In this
work, we propose a novel channel idle mecha-
nism that facilitates post-training structural repa-
rameterization for efficient FFN layers during
testing. Specifically, a set of feature channels
remains idle and bypasses the nonlinear activa-
tion function in each FFN layer, thereby form-
ing a linear pathway that enables structural repa-
rameterization during inference. This mecha-
nism results in a family of ReParameterizable
Vision Transformers (RePaViTs), which achieve
remarkable latency reductions with acceptable
sacrifices (sometimes gains) in accuracy across
various ViTs. The effectiveness of our method
scale consistently with model sizes, demonstrat-
ing greater speed improvements and progressively
narrowing accuracy gaps or even higher accu-
racies on larger models. In particular, RePa-
ViT-Large and RePa-ViT-Huge enjoy 66.8% and
68.7% speed-ups with +1.7% and +1.1% higher
top-1 accuracies under the same training strat-
egy, respectively. RePaViT is the first to employ
structural reparameterization on FFN layers to ex-
pedite ViTs to our best knowledge, and we believe
that it represents an auspicious direction for effi-
cient ViTs. Source code is available at https:
//github.com/Ackesnal/RePaViT.
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Figure 1. RePaViT architecture. (a) represents the vanilla ViT
block. (b) illustrates our channel idle mechanism for FFN layers
during training, where only a subset of channels are activated while
the rest bridge a linear pathway. (c) shows the reparameterized
RePaViT block during testing, where the number of parameters
and computational complexity are significantly reduced.

1. Introduction
Vision Transformer (ViT) (Dosovitskiy et al., 2021) and its
advanced variants (Touvron et al., 2021; Liu et al., 2021;
Ryoo et al., 2021; Yu et al., 2022c; Liu et al., 2022; De-
hghani et al., 2023) have achieved outstanding performance
in various computer vision tasks. However, the high compu-
tational cost and memory demand of ViTs hinder their wide
deployment in real-world scenarios, especially in computing
resource-constrained environments.

To improve efficiency for ViTs, several techniques have been
developed, such as token pruning (Rao et al., 2021; Liang
et al., 2021; Kong et al., 2022a;b; Fayyaz et al., 2022) and
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Figure 2. Performance comparison of RePaViTs and their vanilla backbones. RePaViTs (red circled) consistently achieve greater
accelerations and smaller accuracy gaps when model sizes increase, showing the potential effectiveness in expediting large-scale ViTs. It
is also worth noting that RePa-ViT-Large not only improves inference speed by more than 50% but also raises accuracy by 1.7%.

token merging (Bolya et al., 2023; Zong et al., 2022; Marin
et al., 2023; Xu et al., 2024b; Kim et al., 2024) methods
that gradually reduce the number of image tokens as the
layer goes deep; hybrid architectures (Mehta & Rastegari,
2022a; Chen et al., 2022a; Maaz et al., 2022; Li et al., 2022;
Zhang et al., 2023) that embed efficient convolutional neural
networks (CNNs) into ViTs; and network pruning (Yu et al.,
2022b;a; Yu & Xiang, 2023; Zhang et al., 2024; He & Zhou,
2024) methods that remove less important parameters while
preserving performance. Meanwhile, knowledge distillation
methods (Touvron et al., 2021; Hao et al., 2022; Wu et al.,
2022; Chen et al., 2022b) are introduced to further optimize
efficient ViTs’ performance.

Despite growing interest in efficient ViTs, existing ap-
proaches often overlook structural reparameterization (Ding
et al., 2019; 2021b; Zhu et al., 2023), a powerful network
simplification technique widely used in CNNs. Structural
reparameterization enables networks to adopt different struc-
tures during training and inference by merging multi-branch
convolutions or adjacent BatchNorm (Ioffe & Szegedy,
2015) and convolution via linear algebra operations. This
process allows a complex architecture during training to be
compressed into a simpler structure for inference, thereby
improving efficiency. Some recent research (Vasu et al.,
2023a; Guo et al., 2024) has investigated structural reparam-
eterization for ViTs by integrating elements from CNNs into
ViTs and subsequently reparameterizing only these CNN
components. However, little attention has been given to
directly applying structural reparameterization to the intrin-
sic architecture of ViTs, particularly to their fundamental
building blocks.

Among these building blocks, feedforward network (FFN)
layers represent a promising yet underexplored target for
applying structural reparameterization. A typical FFN layer
consists of two consecutive linear projections with a nonlin-

ear activation function in between (i.e., Figure 1(a)). The
two linear projections can be potentially merged via struc-
tural reparameterization to reduce complexity during testing.
Notably, reducing FFN complexity is particularly critical
for improving the efficiency of ViTs. Despite their straight-
forward structure, FFN layers account for more than 60% of
the total computational complexity in ViT models (Li et al.,
2022; Mehta & Rastegari, 2022b). Furthermore, we observe
that FFN layers contribute a substantial portion of the total
latency in ViTs, with this contribution scaling up as the
model size grows, as shown in Figure 3. These observations
reflect the urgent demand for techniques to optimize FFN
layers, especially for large-scale ViTs.

To facilitate structural reparameterization for FFN layers,
in this work, we propose an innovative channel idle mech-
anism. Specifically, in each FFN layer, only a small sub-
set of feature channels undergo the activation function to
provide necessary nonlinearity while the rest channels re-
main idle, as shown in Figure 1(b). Consequently, these
idle channels bridge a linear pathway through the activation
function, enabling structural reparameterization during infer-
ence. Moreover, inspired by Yao et al. (2021), we substitute
the LayerNorm (Lei Ba et al., 2016) with BatchNorm (Ioffe
& Szegedy, 2015) and add another BatchNorm before the
second linear projection. These BatchNorms can be repa-
rameterized into their adjacent linear projection weights,
which allows further reparameterization of the shortcut.

With the proposed channel idle mechanism, a family of
ReParameterizable Vision Transformers (RePaViTs) are
developed, whose FFN layers can be reparameterized to
condensed structures during inference as Figure 1(c) shows.
Extensive experiments on various ViTs have validated the
effectiveness of our method, demonstrating its potential to
enhance the applicablity of ViTs in resource-constrained
environments. Moreover, as Figure 2 illustrates, the ex-
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perimental results further indicate that our method delivers
more significant acceleration and narrower performance
disparity as the model complexity increases. In particular,
RePaViT accelerates ViT-Large and ViT-Huge models by
~68% speed gain while even improving accuracy by 1~2%
compared to their vanilla versions. This also demonstrates a
transformative contribution, as many practical large-scale
foundation models for computer vision tasks utilize ViTs as
their backbones, such as CLIP (Radford et al., 2021; Cherti
et al., 2023) and SAM (Kirillov et al., 2023). Moreover, our
RePaViT achieves better trade-offs between speed improve-
ment and accuracy compared to state-of-the-art network
pruning methods.

To our best knowledge, RePaViT is the first method that
successfully applies structural reparameterization on FFN
layers for efficient ViTs, and achieves significant acceler-
ation while having positive gains in accuracy instead of
accuracy drops on large and huge ViTs with the same train-
ing strategies.

2. Related Work
2.1. Efficient Vision Transformer Methods

Vision Transformer (ViT) (Dosovitskiy et al., 2021) adapts
the Transformer (Vaswani et al., 2017) architecture for com-
puter vision, achieving success on various computer vision
tasks. However, ViT suffers a substantial computational
complexity. To alleviate the computational burden, several
techniques that focus on structural design for efficient ViTs
have been proposed. Spatial-wise token reduction methods
are developed to identify less important tokens and subse-
quently prune (Rao et al., 2021; Liang et al., 2021; Kong
et al., 2022a; Fayyaz et al., 2022; Xu et al., 2022; Meng et al.,
2022; Tang et al., 2022; Xu et al., 2023) or merge (Bolya
et al., 2023; Zong et al., 2022; Marin et al., 2023; Xu et al.,
2024b; Kim et al., 2024) them during inference. As a result,
the number of tokens participating in the self-attention com-
putation is reduced. Meanwhile, hybrid architectures that
combine self-attentions with computationally efficient con-
volutions (Graham et al., 2021; Mehta & Rastegari, 2022a;
Chen et al., 2022a; Li et al., 2022; Cai et al., 2023; Vasu
et al., 2023a; Zhang et al., 2023; Shaker et al., 2023) are
introduced to reduce the computationally expensive self-
attention operations while introducing regional biases into
ViTs. In addition to hybrid ViTs, MetaFormer (Yu et al.,
2022c) figures out that ViTs benefit from their architectural
design, which consists of one token mixer layer and one
multi-layer perception layer, and the token mixer can be
replaced by more efficient operations, such as average pool-
ing (Yu et al., 2022c) or linear projection (Tolstikhin et al.,
2021). However, these approaches overlook the structural
reparameterization method, which can effectively compress
a network that contains consecutive linear transformations,

such as FFN layers in ViTs. Our work is the first to apply
structural reparameterization on FFN layers for ViTs.

2.2. Structural Reparameterization

Structural reparameterization is an effective network sim-
plification technique that is typically employed in multi-
branch CNNs (Ding et al., 2019; Guo et al., 2020; Ding
et al., 2021a;b). It converts an over-parameterized network
block into a compressed structure during testing, thereby
reducing the model complexity and increasing the speed for
the inference stage. For instance, after reparameterizing its
multi-branch convolutions and shortcuts into a single branch,
RepVGG-B0 (Ding et al., 2021b) achieves 71% speed-up
with no accuracy loss. Although some recent studies claim
to adopt structural reparameterization for enhancing ViTs’
efficiency (Vasu et al., 2023a; Wang et al., 2024; Tan et al.,
2024), they primarily construct a hybrid architecture con-
sisting of both convolutions and self-attentions and only
perform reparameterization on the convolutional part. A
recent state-of-the-art method, SLAB (Guo et al., 2024),
proposes to progressively substitute LayerNorms in ViTs
with BatchNorms and reparameterize BatchNorms into lin-
ear projection weights. Unlike these methods, we are the
first to apply structural reparameterization on FFN layers.

3. Method
3.1. Latency Analysis

To understand the significance of improving efficiency for
FFN layers, we profile the latencies of major components
in several representative ViT models in Figure 3, including
DeiT (Touvron et al., 2021), Swin Transformer (Liu et al.,
2021) and ViT (Dosovitskiy et al., 2021). Figure 3 illustrates
that FFN layers constitute a substantial portion of the total
processing time, which escalates quickly as the model size
increases. For instance, in the DeiT-Small model, FFN lay-
ers contribute to approximately 32.8% of the inference time,
while in the DeiT-Base model, this proportion increases to
45.1%. Moreover, the percentage of FFN layers’ latency in
the large-scale ViT-Large model rises to 53.8%, more than
half of the total inference time.

This phenomenon arises because scaling up ViTs typically
involves increasing the number of channels, whereas the
number of tokens tends to remain constant. Meanwhile,
the computational complexity of an FFN layer, quantified
as O(2ρNC2), is quadratic to the number of feature chan-
nels. Consequently, as the model expands, the FFN layers
become significantly more computationally expensive. In
conclusion, optimizing FFN layers becomes considerably
important for minimizing the overall computational costs
for large ViTs.
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Figure 3. Latency analysis. Visualization of the runtime latencies of patch embedding, MHSA and FFN layers. Notably, as the model
size increases, the proportion of latency attributed to FFN layers also rises. Our method effectively reduces the latency of FFN layers and
obtains increasingly better performance on larger models, demonstrating a scalable acceleration of FFN layers.

3.2. Channel Idle Mechanism for FFN Layers

As Figure 1(a) illustrates, a typical FFN layer consists of
two linear projections with a nonlinear activation function
in between. Given an input X ∈ RN×C where N represents
the number of tokens and C denotes the number of feature
channels, the FFN layer process can be formulated as

Y = FFN(LN(X)) + X = Act(LN(X)WIn)WOut + X, (1)

where WIn ∈ RC×ρC ,WOut ∈ RρC×C are the linear projec-
tion weights, LN(·) is LayerNorm (Lei Ba et al., 2016) and
Act(·) is usually the GELU (Hendrycks & Gimpel, 2016)
activation function. ρ is the FFN expansion ratio, which is
usually set to 4. The biases are omitted for simplicity since
they are inherently linear and do not interfere with the repa-
rameterization process. Unfortunately, due to the nonlinear
activation function, the structural reparameterization cannot
directly merge the two linear projection weights WIn and
WOut via linear algebra operations.

Inspired by ShuffleNetv2 (Ma et al., 2018) which keeps a
group of channels idle in grouped convolutions and shuffles
channels for information exchange, we propose a simple yet
effective channel idle mechanism to enable reparameteriza-
tion in FFN layers. Specifically, this mechanism maintains a
large subset of feature channels inactivated in an FFN layer,
thereby bridging a linear pathway through the nonlinear acti-
vation function in the corresponding FFN layer. In addition,
we substitute LayerNorm with BatchNorm (BN) (Ioffe &
Szegedy, 2015) to enable post-training reparameterization
of normalization and shortcut for the FFN layer. As a result,
our channel idle mechanism during the training stage can
be formulated as

XIn = BN(X)WIn,

XAct = Concat(Act(XIn
[:, 1:µC]),XIn

[:, µC+1:ρC]),

Y = BN(XAct)WOut + X,

(2)

where the activation function is only applied on µC (µ < ρ)
feature channels. The (ρ − µ)C idling feature channels
construct a linear route as presented in Figure 1(b).

We further define the channel idle ratio as θ = 1 − µ
ρ ,

which represents the percentage of feature channels keeping
inactivated in the FFN layer. µ is set to 1 by default in the
following experiments unless otherwise noted, leading to
the default θ = 1− 1

ρ (e.g., θ = 0.75 when ρ = 4, indicating
75% channels are idling when the expansion ratio is 4).

3.3. Structural Reparameterization for FFN layers

With the channel idle mechanism defined in Equation 2, we
are able to simplify the FFN layer by structural reparameter-
ization during the testing stage. Firstly, we reparameterize
the BatchNorms into their corresponding linear projection
weights as

W̃In =
γX√

σ2
X + ϵX

WIn,

W̃Out =
γXAct√

σ2
XAct + ϵXAct

WOut,
(3)

where γs, σ2s and ϵs are the empirical means, empirical
variances and constants from the frozen BatchNorm layers,
respectively. With the reparameterized projection weights
W̃In and W̃Out, the output Y in Equation 2 can be reformu-
lated as

Y =Act(XW̃In
[:, 1:µC])W̃Out

[1:µC, :]

+ XW̃In
[:, µC+1:ρC]W̃Out

[µC+1:ρC, :] + X.
(4)

Then, we further reparameterize the weights as

W̃ = W̃In
[:, µC+1:ρC]W̃Out

[µC+1:ρC, :] + I. (5)

By substituting Equation 5 into Equation 4, we obtain the
updating function for the FFN layer during the testing stage
with three reparameterized weights as

Z = Act(YW̃In
[:, 1:µC])W̃Out

[1:µC, :] + YW̃. (6)

As Figure 1(c) shows, after reparameterization, the two
massive linear projections are converted into three smaller
linear transformations with fewer parameters and all the
normalizations are merged into linear projection weights.
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3.4. Computational Complexity Analysis

Number of parameters: The vanilla FFN layer’s param-
eters are mainly derived from the two linear projection
weights WIn ∈ RC×ρC and WOut ∈ RρC×C , totalling
2ρC2. In contrast, with our channel idle mechanism, the
weights are reparameterized into three terms: an input
weight W̃In

[:, 1:µC] ∈ RC×µC , an output weight W̃Out
[1:µC, :] ∈

RµC×C and a reparameterized weight W̃ ∈ RC×C . The to-
tal number of parameters is effectively reduced from 2ρC2

to (2µ+ 1)C2.

Consequently, in the reparameterized FFN layer, the parame-
ter count is diminished to 1−θ+ 1

2ρ of the original parameter
count, where θ is the aforementioned idle ratio. For instance,
when ρ = 4 and θ = 0.75, the number of parameters in an
FFN layer declines to 37.5% post-parameterization. This
reduction significantly simplifies the model, diminishing its
memory consumption.

Computational complexity: The computational complex-
ity of the vanilla FFN layer is O(2ρNC2) while the com-
putational complexity is significantly reduced to O((2µ +
1)NC2) in our reparameterized FFN layer. The computa-
tional complexity reduction ratio for an FFN layer is also
1− θ + 1

2ρ .

It is worth noting that, due to the elimination of normaliza-
tions and shortcuts in the FFN layer, the inference speed
gain is more than the computational complexity reduction.

3.5. Comparison against RepVGG-style
Reparameterization

RepVGG (Ding et al., 2021b) introduces structural repa-
rameterization into CNNs, where multi-branch convolutions
are merged into a single-branch convolution through linear
operations on convolution kernels. While RePaViT draws
inspiration from RepVGG, there are significant differences
between our structural reparameterization approach and the
RepVGG-style reparameterization:

• Different targets: Existing works using RepVGG-style
reparameterization for efficient ViTs (Vasu et al., 2023a;b)
introduce CNN components into ViTs and only reparam-
eterize those convolutional components. In contrast, our
method directly targets existing FFN layers in ViTs, aim-
ing to improve the efficiency of standard ViT architectures
rather than designing an entirely new backbone. Thus, the
application objectives are fundamentally distinct.

• Different reparameterization solutions: Another differ-
ence is that RepVGG reparameterizes horizontally across
parallel convolutional kernels, while RePaViT reparame-
terizes vertically on consecutive linear projection weights.
Mathematically, RepVGG reparameterizes two parallel
convolutional branches with kernels WConv

1 and WConv
2 by

summing them:

W̃Conv
Rep = WConv

1 + WConv
2 . (7)

On the contrary, as demonstrated in Equation 5, RePaViT
reparameterizes two consecutive projection weights WFFN

1

and WFFN
2 by multiplying them:

W̃FFN
Rep = WFFN

1 · WFFN
2 . (8)

In the above example, WConv
1 and WConv

2 have been padded
to the same shape, and the reparameterization processes
of BatchNorm and biases are omitted for simplicity.

It is also worth noting that our channel idle mechanism can-
not be regarded as a special case of a dual-branch structure
in RepVGG. In RepVGG, all branches must be linear so
that they can be reparameterized, whereas in our approach,
one branch is linear while the other one is nonlinear.

4. Experiments
4.1. Datasets, Training and Evaluation Settings

We mainly train and test RePaViTs for the image classifica-
tion task on the widely recognized ImageNet-1k (Deng et al.,
2009) dataset, following the data augmentations and training
recipes proposed by Touvron et al. (2021) as the standard
practice. In line with Yao et al. (2021), the maximum learn-
ing rate is set to 4× 10−3 with 20 epochs of warmup from
1× 10−6. The default batch size and total training epochs
are 4096 and 300, respectively. For dense prediction tasks,
we follow the configurations from MMDetection (Chen
et al., 2019) and MMSegmentation (Contributors, 2020)
to finetune RePaViTs on MSCOCO (Lin et al., 2014) and
ADE20K (Zhou et al., 2017) datasets for object detection
and segmentation tasks, respectively. All the models are
trained from scratch on NVIDIA H100 GPUs. To ensure fair
comparisons, we measure the throughput of all the models
on the same NVIDIA A6000 GPU with the same environ-
ments and a fixed batch size of 128. FlashAttention (Dao
et al., 2022) is used for self-attention computation during
inference measurement by default. More implementation
details on the training settings are provided in Appendix A.

4.2. Classification Results

Backbones: We choose four ViT backbones, including a
representative plain-structured ViT (DeiT (Touvron et al.,
2021)), a representative hierarchical-structured ViT (Swin
Transformer (Liu et al., 2021)), a plain ViT trained with
token labelling (LV-ViT (Jiang et al., 2021)), and large-scale
ViT (Dosovitskiy et al., 2021). The FFN layers in these
models are embedded with the channel idle mechanism
and are all trained from scratch solely on the ImageNet-1k
dataset by supervised learning.
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Table 1. Performance comparisons among RePaViTs and their vanilla
backbones. For the "RePa" column, × and

√
stands for the RePaViT model

pre- and post-reparameterization, respectively. The decimals after model
names (i.e., 0.50 and 0.75) represent the channel idle ratios (θ). When
the backbone architecture fixes, our method consistently achieves greater
accelerations and complexity reductions while narrowing the accuracy gap as
the model size grows.

Model RePa #MParam. ↓ Complexity
(GMACs) ↓ Speed

(images/second) ↑
Top-1

accuracy ↑

DeiT-Tiny - 5.7 1.1 3435.1 72.1%
× 5.7 1.1 2397.9RePa-DeiT-Tiny/0.50 √

4.4 (−22.8%) 0.8 (−27.3%) 4001.2 (+16.5%)
69.4% (−2.7%)

DeiT-Small - 22.1 4.3 1410.3 79.8%
× 22.1 4.3 1000.9RePa-DeiT-Small/0.5 √

16.7 (−24.4%) 3.2 (−25.6%) 1734.7 (+23.0%)
78.9% (−0.9%)

DeiT-Base - 86.6 16.9 418.5 81.8%
× 86.6 16.9 336.6RePa-DeiT-Base/0.75 √

51.1 (−41.0%) 9.9 (−41.4%) 660.3 (+57.8%)
81.3% (−0.5%)

ViT-Large - 304.3 59.7 124.2 80.3%
× 304.5 59.8 102.7RePa-ViT-Large/0.75 √

178.4 (−41.4%) 34.9 (−41.5%) 207.2 (+66.8%)
82.0% (+1.7%)

ViT-Huge - 632.2 124.3 61.5 80.3%
× 632.5 124.4 53.0RePa-ViT-Huge/0.75 √

369.9 (−41.5%) 72.6 (−41.6%) 103.8 (+68.7%)
81.4% (+1.1%)

Swin-Tiny - 28.3 4.4 804.4 81.2%
× 28.3 4.4 614.9RePa-Swin-Tiny/0.75 √

17.5 (−38.2%) 2.6 (−40.9%) 1020.4 (+26.9%)
78.4% (−2.8%)

Swin-Small - 49.6 8.6 471.7 83.0%
× 49.7 8.6 363.1RePa-Swin-Small/0.75 √

29.9 (−39.7%) 5.1 (−40.7%) 627.8 (+33.1%)
81.4% (−1.6%)

Swin-Base - 87.8 15.2 326.6 83.5%
× 87.9 15.2 249.4RePa-Swin-Base/0.75 √

52.8 (−39.9%) 9.0 (−40.8%) 467.6 (+43.2%)
82.6% (−0.9%)

LV-ViT-S - 26.2 6.1 866.6 81.4%
× 26.2 6.1 725.4RePa-LV-ViT-S/0.75 √

19.1 (−27.1%) 4.7 (−23.0%) 1110.9 (+28.2%)
81.6% (+0.2%)

LV-ViT-M - 55.8 11.9 457.6 83.6%
× 55.9 11.9 396.6RePa-LV-ViT-M/0.75 √

40.1 (−28.1%) 8.8 (−26.1%) 640.6 (+40.0%)
83.5% (−0.1%)

Table 2. Comparison with state-of-the-art network
pruning methods for efficient ViTs. "-" indicates that the
statistic is either missing or irreproducible. Our method
demonstrates significantly higher speed-ups compared to
pruning methods while achieving competitive or even
higher top-1 accuracies across various ViT backbones.

Backbone Method #MParam. ↓ Compl.
(GMACs) ↓

Speed
improv. ↑

Top-1
acc. ↑

WDPruning 13.3 2.6 +18.3% 78.4%
X-pruner - 2.4 - 78.9%
DC-ViT 16.6 3.2 +20.0% 78.6%
LPViT 22.1 2.3 +16.3% 80.7%
RePaViT/0.50 16.7 3.2 +23.0% 78.9%

DeiT-Small

RePaViT/0.75 13.2 2.5 +42.1% 77.0%
WDPruning 55.3 9.9 +18.2% 80.8%
X-pruner - 8.5 - 81.0%
DC-ViT 65.1 12.7 +18.4% 81.3%
LPViT 86.6 8.8 +18.8% 80.8%
RePaViT/0.50 65.3 12.7 +28.6% 81.4%

DeiT-Base

RePaViT/0.75 51.1 10.6 +57.8% 81.3%
WDPruning 32.8 6.3 +15.3% 81.8%
X-pruner - 6.0 - 82.0%
RePaViT/0.50 37.8 6.4 +20.7% 82.8%Swin-Small

RePaViT/0.75 29.9 5.1 +33.1% 81.4%
DC-ViT 66.4 11.5 +14.9% 83.8%
LPViT 87.8 11.2 +8.9% 81.7%
RePaViT/0.50 66.8 11.5 +19.6% 83.4%Swin-Base

RePaViT/0.75 52.8 9.0 +42.4% 82.6%

Table 3. Comparison against the state-of-the-art repa-
rameterization method for ViTs. With a similar num-
ber of parameters, RePaViT obtains both faster inference
speeds and higher accuracies than SLAB (Guo et al., 2024).

Model #MParam. ↓ Compl.
(GMACs) ↓

Speed
(img/s) ↑

Top-1
acc. ↑

SLAB-DeiT-Base 86.6 17.1 387.0 78.9%
RePa-DeiT-Base/0.25 79.5 15.5 452.3 81.1%
SLAB-Swin-Base 87.7 15.4 299.9 83.6%
RePa-Swin-Base/0.25 80.8 14.0 356.3 83.7%

Reparameterization results: Table 1 presents the image
classification performance of RePaViTs before and after
reparameterization, and compares with their vanilla back-
bones. Due to the nature of linear algebra operations, the
pre- and post-reparameterization accuracies are the same.

In general, our innovative channel idle mechanism remark-
ably enhances these models’ computational efficiency and
throughput while preserving their accuracy. We observe that
with the same backbone architecture, RePaViT achieves
more substantial acceleration with a narrowing accuracy
gap when the model size increases. For example, employ-
ing DeiT as the backbone, the smaller DeiT-Tiny model
witnesses a 16.5% speed-up at the cost of a 2.7% accuracy
loss. However, when scaled up to the DeiT-Base model,
our approach delivers a 57.8% throughput improvement,
with only a marginal 0.5% drop in accuracy. This pattern
is consistent across various models. In cases where the
backbones include additional regularizations during train-
ing, our method not only accelerates performance but also

preserves accuracy to a remarkable extent. In particular, on
the LV-ViT-M model, we facilitate a 40.0% increase in the
inference speed with a negligible 0.1% decrease in accuracy.

Notably, RePaViT yields ~68% speed-up and even 1~2%
higher accuracy on ViT-Large and ViT-Huge models,
indicating its potential on large-scale foundation models.
This insight demonstrates the practical value of RePaViT
in accelerating large-scale models without compromising
performance, making it an effective solution for large-scale
real-world applications requiring both speed and precision.

4.3. Comparison Against Network Pruning

While several network pruning methods for efficient ViTs fo-
cus on reducing the number of parameters and the theoretical
computational complexity during inference, our approach
differs fundamentally from these methods. We provide
a comparison with state-of-the-art and representative net-
work pruning techniques in Table 2, including WDPruning
(Yu et al., 2022a), X-Pruner (Yu & Xiang, 2023), DC-ViT
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Table 4. Sensitivity of channel idle ratio θ. The performance of
RePaViT on plain (DeiT (Touvron et al., 2021)) and hierarchical (Swin
(Liu et al., 2021)) ViTs with various θ is reported. θ=* represents the
vanilla backbone. θ=1.00 implies the nonlinear activation being re-
moved from the model. The results show a significant accuracy drop
when θ surpasses 0.75.

Backbone
Idle

ratio θ
#MParam. ↓ Compl.

(GMACs) ↓
Speed
(img/s) ↑

Top-1
acc. ↑

DeiT-Tiny

1.00 2.6 0.5 5810.1 48.6%
0.75 3.5 0.6 4470.8 64.2%
0.50 4.4 0.8 4001.2 69.4%
0.25 5.3 1.0 3575.6 71.9%

* 5.7 1.1 3435.1 72.1%

DeiT-Small

1.00 9.6 1.8 2612.9 63.9%
0.75 13.2 2.5 2003.7 77.0%
0.50 16.7 3.2 1734.7 78.9%
0.25 20.3 3.9 1489.7 80.3%

* 22.1 4.3 1410.3 79.8%

DeiT-Base

1.00 37.0 7.1 878.7 73.7%
0.75 51.1 9.9 660.3 81.3%
0.50 65.3 12.7 538.0 81.4%
0.25 79.5 15.5 452.3 81.1%

* 86.6 16.9 418.5 81.8%

Swin-Tiny

1.00 13.2 1.9 1180.1 67.6%
0.75 17.5 2.6 1020.4 78.4%
0.50 21.8 3.3 905.9 80.5%
0.25 26.1 4.0 844.8 81.4%

* 28.3 4.4 804.4 81.2%

Swin-Small

1.00 22.1 3.7 745.0 72.5%
0.75 29.9 5.1 627.8 81.4%
0.50 37.8 6.5 569.2 82.8%
0.25 45.7 7.9 514.5 83.1%

* 49.6 8.6 471.7 83.0%

Swin-Base

1.00 38.8 6.5 539.0 75.5%
0.75 52.8 9.0 467.6 82.6%
0.50 66.8 11.5 390.6 83.4%
0.25 80.8 14.0 356.3 83.7%

* 87.8 15.2 326.6 83.5%

Table 5. Ablation study on train-time reparameterization.
√

for "Training RePa" stands for reparameterizing the model before
training.

√
for "BatchNorm RePa" represents that the Batch-

Norm before a linear projection is reparameterized into the pro-
jection weight. "-" under top-1 accuracy means training failure.
Overall, training with full parameters and reparameterizing dur-
ing testing yields better performance.

Model
Training

RePa
BatchNorm

RePa
Training

#MParam.
Top-1

accuracy ↑

RePa-DeiT-Tiny/0.75

√ √
3.5 59.6%√

× 3.5 64.3%
× × 5.7 64.2%

RePa-DeiT-Small/0.75

√ √
13.2 75.0%√

× 13.2 75.7%
× × 22.1 77.0%

RePa-DeiT-Base/0.75

√ √
51.1 -√

× 51.1 80.6%
× × 86.6 81.3%

RePa-ViT-Large/0.75

√ √
178.4 -√

× 178.5 80.6%
× × 304.5 82.0%

RePa-Swin-Tiny/0.75

√ √
17.5 77.1%√

× 17.5 78.0%
× × 28.3 78.4%

RePa-Swin-Small/0.75

√ √
29.9 79.3%√

× 30.0 79.1%
× × 49.7 81.4%

RePa-Swin-Base/0.75

√ √
52.8 79.6%√

× 52.9 80.3%
× × 87.9 82.6%

RePa-LV-ViT-S/0.75

√ √
19.1 -√

× 19.1 81.3%
× × 26.2 81.6%

RePa-LV-ViT-M/0.75

√ √
40.1 -√

× 40.2 -
× × 55.9 83.6%

(Zhang et al., 2024), and LPViT (Xu et al., 2024a). Due to
unavailable or incomplete code repositories of certain state-
of-the-art pruning methods, we rely on the performance
statistics reported in the original papers and align efficiency
optimization using speed improvements for fairness.

Table 2 shows that the structural reparameterization ap-
proach of RePaViT achieves significantly greater inference
acceleration compared to network pruning methods. More-
over, the effectiveness of our method increases as model
size grows. For example, while the state-of-the-art DC-ViT
achieves speed improvements of approximately 15~20%
across all backbones, RePaViT provides 19.6% to 57.8%
speed improvements when the model scales up. These re-
sults highlight two key advantages of our method:

• Computing environment friendly: Our reparameterized
model is dense and structurally regular, making it efficient
to run on general-purpose hardware without requiring spe-

cialized hardware and software support for sparse matrix
operations. So our method can bring more speed-ups in
general computing environments.

• Scaling effectiveness on larger models: Compared with
network pruning methods, RePaVit yields more accelera-
tions and smaller performance gaps on larger models even
with the same channel idle ratio θ. This underscores the
important practical value of RePaViT on large foundation
models for vision tasks.

4.4. Comparison Against State-of-The-Art Method

Table 3 compares our RePaViT approach against SLAB
(Guo et al., 2024), a recent state-of-the-art method introduc-
ing progressive reparameterized BatchNorms for ViTs. For
fair comparisons with similar model sizes, the performance
of RePaViTs with θ=0.25 is used. The results indicate that
our reparameterization strategy offers a better trade-off be-
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Table 6. Performance on dense prediction tasks. Results on the 1× training schedule are presented. The latencies (ms) per image are
reported for throughput comparisons.

Model
RetinaNet Mask R-CNN UperNet

Latency
(ms) ↓ AP↑ AP50↑ AP75↑ APS↑ APM↑ APL↑

Latency
(ms) ↓ AP↑ AP50↑ AP75↑ APS↑ APM↑ APL↑

Latency
(ms) ↓ mIoU↑

Swin-Small 61.7 37.2 56.9 39.6 22.4 40.5 49.4 62.5 45.5 67.8 49.9 28.6 49.2 60.4 36.3 47.6
RePa-Swin-Small 53.8 (−12.8%) 38.3 57.9 40.7 21.8 42.0 51.6 53.8 (−13.9%) 43.6 65.8 47.8 27.1 47.0 57.3 32.1 (−11.6%) 45.7

Swin-Base 82.0 38.9 59.5 41.3 24.3 43.6 54.4 82.6 45.8 67.6 50.3 28.7 48.9 61.7 45.6 48.1
RePa-Swin-Base 66.7 (−18.7%) 39.8 60.0 42.1 25.3 43.7 53.8 69.4 (−16.0%) 44.8 67.0 49.4 29.0 48.5 58.4 38.6 (−15.4%) 46.9

tween efficiency and accuracy. For example, when utilizing
DeiT-Base as the backbone, our method not only achieves a
higher speed and fewer parameters but also surpasses SLAB
by a 2.2% higher accuracy.

4.5. Sensitivty of Channel Idle Ratio θ

In Section 3.2, we define the channel idle ratio θ as the
percentage of feature channels keeping idle in the activation.
Table 4 illustrates the influence of θ on the performance
of RePaViTs. Overall, a larger θ represents more channels
idling in the FFN layer, leading to a smaller number of
parameters, a lower computational complexity, and a higher
inference speed post-reparameterization.

Remarkably, when θ exceeds 0.75, which is the default idle
ratio for RePaViTs, there is an obvious decline in the top-
1 accuracies. For instance, when setting θ to 1.0 (i.e., no
channels being activated), the RePa-DeiT-Base’s accuracy
drops from 81.8% to 73.7%. Similarly, the RePa-Swin-
Base model witnesses its accuracy decline from 83.5% to
75.5% with θ = 1.0. For smaller models, such performance
collapse can be more severe. This outcome demonstrates
that while reducing the proportion of nonlinear components
can significantly enhance the model’s efficiency, preserving
sufficient nonlinearities is also crucial for performance.

It is noteworthy that, with a proper θ, ViTs can achieve
even better performance with fewer parameters and faster
inference speeds. For example, DeiT-Small, Swin-Tiny,
Swin-Small and Swin-Base models all enjoy higher top-1
accuracy when θ=0.25.

4.6. Ablation Study

We ablate the structural reparameterization process during
training. Instead of training the full 2ρC2 linear project
weights and then reparameterizing them during testing, we
directly train the reparameterized weights with a reduced
size of (2µ + 1)C2. Specifically, in our experiments, the
numbers of parameters for a single FFN layer before and
after reparameterization are 8C2 (i.e., ρ=4) and 3C2 (i.e.,
µ=1), respectively. Table 5 indicates that training with more
parameters (i.e., train-time overparameterization) generally

achieves better performance than training with less parame-
ters for ViTs, which aligns with the findings in Vasu et al.
(2023a;b). Meanwhile, train-time overparameterization also
helps to stabilize the training process for large models. For
instance, when trained with reparameterized structure, RePa-
DeiT-Base, RePa-ViT-Large, RePa-LV-ViT-S and RePa-LV-
ViT-M all suffer training collapse and fail to converge.

4.7. Dense Predictions

Table 6 presents the results of two downstream tasks. Firstly,
the ImageNet-1k pre-trained RePa-Swin models are inte-
grated with a one-stage detector RetinaNet (Lin et al., 2017)
and a two-stage detector Mask R-CNN (He et al., 2017)
for the object detection task on the MSCOCO dataset with
1× training schedule (i.e., 12 epochs). Remarkably, our
RePa-Swin-Base model achieves up to 18.7% latency re-
duction at even a higher average precision (AP) with Reti-
naNet when compared to its vanilla backbone. RePA-Swin-
Base also obtains a similar performance with 16.0% less
latency with Mask R-CNN. Secondly, UperNet (Xiao et al.,
2018) is leveraged for the semantic segmentation task on
the ADE20K dataset with RePa-Swin models as backbones.
Similarly, RePa-Swin-Base achieves 15.4% latency reduc-
tion with merely 1.2% mIoU loss.

Overall, the experimental results on downstream tasks re-
flect a consistent trend that the performance disparities are
narrowing and the acceleration gains are escalating as the
backbone model sizes grow. This aligns with the observa-
tions in Section 4.2 well, which further proves the scalable
acceleration capability of our channel idle mechanism.

4.8. Self-supervised Learning Experiments and Others

Given that large foundation models are typically trained us-
ing self-supervised learning strategies, we evaluate RePaViT
under self-supervised training (i.e., DINO (Caron et al.,
2021)) and language-guided contrastive learning (i.e., CLIP
(Radford et al., 2021)). The experimental results are pro-
vided in Appendix B. Notably, when applied to CLIP mod-
els, RePaViT improves zero-shot top-1 accuracy by 0.8%
while achieving a 24.7% speed improvement, demonstrating
its effectiveness in optimizing large foundation models.
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5. Conclusion
In this paper, we investigate the latency compositions of
ViTs and observe that FFN layers significantly contribute to
the overall latency. The observations highlight the critical
need for accelerating FFN layers to enhance the efficiency
of ViTs, where structural reparameterization emerges as a
potential solution. We introduce a novel channel idle mech-
anism to facilitate the reparameterization of FFN layers
during inference. The proposed mechanism is employed on
various ViT backbones, resulting in a family of RePaViTs.
RePaViTs demonstrate consistent scalability with more ac-
celerations and narrower accuracy disparities as the back-
bone model size escalates. Notably, RePaViT achieves ac-
curacy gains while improving the inference speed on large-
scale ViT backbones. These unprecedented results mark a
disruptive and timely contribution to the community and
establish RePaViT as a significant addition to the toolkit
for accelerating large foundation models. We believe that
RePaViT presents a promising direction for expediting ViTs
and we invite the community to further explore its effective-
ness on even larger foundation models.
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A. Training Settings
All RePaViTs are rigorously trained on the ImageNet-1k dataset (Deng et al., 2009), following the same data augmentations
proposed by DeiT (Touvron et al., 2021). Consistently, the total number of training epochs is standardized at 300. In an effort
to accommodate the substitution of LayerNorm with BatchNorm, we have increased the batch size to 4096. Additionally,
the Lamb optimizer (You et al., 2020) has been selected to ensure stable training with a large batch size. Learning rates are
dedicatedly configured for different backbone architectures, and a cosine scheduler (Loshchilov & Hutter, 2017) is utilized
for learning rate adjustment throughout the training period. Detailed training settings are provided in Table 7.

Table 7. Training settings of RePaViTs for the image classification task.

Model Epochs
Batch
size Optimizer

Base
learning rate

Min
learning rate

Warmup
learning rate Scheduler

Weight
decay

Drop path
rate

RePa-DeiT-Tiny

300 4096 Lamb

4× 10−3

5× 10−5

1× 10−6 Cosine
scheduler 0.05

0.10RePa-DeiT-Small
RePa-DeiT-Base
RePa-ViT-Large

1× 10−3 0.30RePa-ViT-Huge
RePa-Swin-Tiny

4× 10−3

0.10
RePa-Swin-Small
RePa-Swin-Base
RePa-LV-ViT-S 1024 1× 10−3 1× 10−5

RePa-LV-ViT-M

B. Self-Supervised Learning Performance
Large foundation models with superior performance are usually trained with self-supervised learning techniques. To
demonstrate the potential applicability of RePaViT with self-supervised learning, we first validate our method using DINO
(Caron et al., 2021) and report the performance in Table 8. We adopt the same training settings as outlined in DINO. Even
with self-supervised learning, RePaViTs still exhibit substantial efficiency enhancement.

Notably, there is a consistent trend as observed in Section 4.2 that when the model size increases, our method yields greater
speed improvements and a smaller accuracy gap. For example, RePa-ViT-Small achieves a 39.4% increase in speed (1779.6
image/second vs 1277.0 image/second) with a 2.6% drop in accuracy (74.4% vs 77.0%) when using a linear classifier. In
the case of employing a larger backbone model, RePa-ViT-Base realizes a more significant acceleration of 57.2% (623.0
image/second vs 396.2 image/second) with a smaller accuracy loss of 1.2% (77.0% vs 78.2%). These results indicate a high
adaptability of our RePaViT using different learning paradigms.

Table 8. RePaViT performance on DINO models (Caron et al., 2021).

Model #MParam. ↓ Compl.
(GMACs) ↓ Speed

(img/s) ↑ k-NN
top-1 acc. ↑

Linear
top-1 acc. ↑

ViT-Small 21.7 4.3 1277.0 72.8% 77.0%
RePa-ViT-Small/0.75 12.8 (−41.1%) 2.5 (−41.9%) 1779.6 (+39.4%) 69.6% 74.4%

ViT-Base 85.8 16.9 396.2 76.1% 78.2%
RePa-ViT-Base/0.75 50.4 (−41.3%) 9.9 (−41.4%) 623.0 (+57.2%) 74.1% 77.0%

Next, we evaluate RePaViT on a more advanced language-guided contrastive learning framework, specifically CLIP (Radford
et al., 2021). We adopt the open-source OpenCLIP framework (Cherti et al., 2023) and train all models on the LAION-400M
dataset (Schuhmann et al., 2021), with a total of 3B seen data points. All training configurations strictly follow the default
settings of OpenCLIP. The zero-shot classification performance on the ImageNet-1K validation set is presented in Table 9.

For the smaller CLIP-ViT-B/32 model, our RePa-CLIP-ViT-B/32 achieves a 26.8% speed increase with a negligible 0.3%
accuracy drop. On the larger CLIP-ViT-B/16 model, our method improves inference speed by 24.7% while achieving a 0.8%
gain in zero-shot classification top-1 accuracy. These results demonstrate the effectiveness of RePaViT in enhancing the
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Table 9. RePaViT performance on CLIP models (Radford et al., 2021). All the models are trained on LAION-400M dataset with 3B
seen samples in total.

Model Idle ratio θ #MParam. ↓ Complexity (GFLOPs) ↓ Speed (image/second) ↑ Top-1 accuracy ↑

CLIP-ViT-B/32 - 87.9 4.4 3860.2 57.1%
RePa-CLIP-ViT-B/32 0.50 66.6 (−24.2%) 3.4 (−22.7%) 4893.5 (+26.8%) 56.8% (−0.3%)
RePa-CLIP-ViT-B/32 0.75 52.4 (−40.4%) 2.6 (−40.9%) 5812.3 (+50.6%) 53.2% (−3.9%)

CLIP-ViT-B/16 - 86.2 17.6 824.2 62.7%
RePa-CLIP-ViT-B/16 0.50 64.9 (−24.7%) 13.4 (−23.9%) 1027.9 (+24.7%) 63.5% (+0.8%)
RePa-CLIP-ViT-B/16 0.75 50.8 (−41.1%) 10.6 (−39.8%) 1161.5 (+40.9%) 61.0% (−1.7%)

efficiency of large foundation models trained with language-guided contrastive learning. We anticipate our method to be
applied to large foundational vision models in future work.

C. Limitations
Despite the exceptional performance of RePaFormers on large backbone models, there is a notable decrease in accuracy as
the model size shrinks. For example, as demonstrated in Table 4, the accuracy of RePa-DeiT-Tiny decreases significantly
from 72.1% to 64.2%. This performance drop is primarily attributed to the reduced nonlinearity in the backbone, which is a
consequence of keeping channels idle. In smaller models, both the number of layers and the number of feature channels
are limited, resulting in substantially fewer activated channels compared to larger models. After applying the channel idle
mechanism with a high idle ratio (e.g., 75%), tiny models would lack sufficient non-linear transformations. However, as
the model size increases, both the number of layers and feature channels expand, enhancing the model’s robustness and
mitigating the impact of reduced nonlinearity.

In conclusion, while our method may not be optimally suited for tiny models, it significantly enhances the performance of
large ViT models. We sincerely invite the research community to further investigate and validate the effectiveness of our
approach on large foundational models, such as SAM (Kirillov et al., 2023) or GPT (Radford et al., 2019; Brown et al.,
2020). This exploration could provide valuable insights into the scalability and adaptability of our method across various
advanced computational frameworks.
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