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Abstract

Although deep reinforcement learning (DRL) has many success stories, the large-
scale deployment of policies learned through these advanced techniques in safety-
critical scenarios is hindered by their lack of formal guarantees. Variational Markov
Decision Processes (VAE-MDPs) are discrete latent space models that provide
a reliable framework for distilling formally verifiable controllers from any RL
policy. While the related guarantees address relevant practical aspects such as
the satisfaction of performance and safety properties, the VAE approach suffers
from several learning flaws (posterior collapse, slow learning speed, poor dynamics
estimates), primarily due to the absence of abstraction and representation guarantees
to support latent optimization. We introduce the Wasserstein auto-encoded MDP
(WAE-MDP), a latent space model that fixes those issues by minimizing a penalized
form of the optimal transport between the behaviors of the agent executing the
original policy and the distilled policy, for which the formal guarantees apply. Our
approach yields bisimulation guarantees while learning the distilled policy, allowing
concrete optimization of the abstraction and representation model quality. Our
experiments show that, besides distilling policies up to 10 times faster, the latent
model quality is indeed better in general. Moreover, we present experiments from
a simple time-to-failure verification algorithm on the latent space. The fact that our
approach enables such simple verification techniques highlights its applicability.

1 Introduction

Reinforcement learning (RL) is emerging as a solution of choice to address challenging real-word
scenarios such as epidemic mitigation [35], multi-energy management [13], or effective canal control
[43]. RL enables learning high performance controllers by introducing general nonlinear function
approximators (such as neural networks) to scale with high-dimensional and continuous state-action
spaces. This introduction, termed deep-RL, causes the loss of the conventional convergence guarantees
of RL [48] as well as those obtained in some continuous settings [39], and hinders their wide roll-out
in critical settings. This work enables the formal verification of any such policies, learned by agents
interacting with unknown, continuous environments modeled as Markov decision processes (MDPs).
Specifically, we learn a discrete representation of the state-action space of the MDP, which yield both
a (smaller, explicit) latent space model and a distilled version of the RL policy, that are tractable
for model checking [6]. The latter are supported by bisimulation guarantees: intuitively, the agent
behaves similarly in the original and latent models. The strength of our approach is not simply that
we verify that the RL agent meets a predefined set of specifications, but rather provide an abstract
model on which the user can reason and check any desired agent property.

Variational MDPs (VAE-MDPs, [16]) offer a valuable framework for doing so. The distillation is
provided with PAC-verifiable bisimulation bounds guaranteeing that the agent behaves similarly (i)
in the original and latent model (abstraction quality); (ii) from all original states embedded to the
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same discrete state (representation quality). Whilst the bounds offer a confidence metric that enables
the verification of performance and safety properties, VAE-MDPs suffer from several learning flaws.
First, training a VAE-MDP relies on variational proxies to the bisimulation bounds, meaning there
is no learning guarantee on the quality of the latent model via its optimization. Second, variational
autoencoders (VAEs) [32, 27] are known to suffer from posterior collapse (e.g., [2]) resulting in a
deterministic mapping to a unique latent state in VAE-MDPs. Most of the training process focuses on
handling this phenomenon and setting up the stage for the concrete distillation and abstraction, finally
taking place in a second training phase. This requires extra regularizers, setting up annealing schemes
and learning phases, and defining prioritized replay buffers to store transitions. Distillation through
VAE-MDPs is thus a meticulous task, requiring a large step budget and tuning many hyperparameters.

Building upon Wasserstein autoencoders [47] instead of VAEs, we introduce Wasserstein auto-
encoded MDPs (WAE-MDPs), which overcome those limitations. Our WAE relies on the optimal
transport (OT) from trace distributions resulting from the execution of the RL policy in the real
environment to that reconstructed from the latent model operating under the distilled policy. In contrast
to VAEs which rely on variational proxies, we derive a novel objective that directly incorporate the
bisimulation bounds. Furthermore, while VAEs learn stochastic mappings to the latent space which
need be determinized or even entirely reconstructed from data at the deployment time to obtain the
guarantees, our WAE has no such requirements, and learn all the necessary components to obtain the
guarantees during learning, and does not require such post-processing operations.

Those theoretical claims are reflected in our experiments: policies are distilled up to 10 times faster
through WAE- than VAE-MDPs and provide better abstraction quality and performance in general,
without the need for setting up annealing schemes and training phases, nor prioritized buffer and
extra regularizer. Our distilled policies are able to recover (and sometimes even outperform) the
original policy performance, highlighting the representation quality offered by our new framework:
the distillation is able to remove some non-robustness of the input RL policy. Finally, we formally
verified time-to-failure properties (e.g., [41]) to emphasize the applicability of our approach.

Other Related Work. Complementary works approach safe RL via formal methods [31, 3, 30, 45],
aimed at formally ensuring safety during RL, all of which require providing an abstract model of
the safety aspects of the environment. They also include the work of [1], applying synthesis and
model checking on policies distilled from RL, without quality guarantees. Other frameworks share
our goal of verifying deep-RL policies [5, 11] but rely on a known environment model, among other
assumptions (e.g., deterministic or discrete environment). Finally, DeepSynth [25] allows learning a
formal model from execution traces, with the different purpose of guiding the agent towards sparse
and non-Markovian rewards.

On the latent space training side, WWAEs [54] reuse OT as latent regularizer discrepancy (in Gaussian
closed form), whereas we derive two regularizers involving OT. These two are, in contrast, optimized
via the dual formulation of Wasserstein, as in Wassertein-GANs [4]. Similarly to VQ-VAEs [49] and
Latent Bernoulli AEs [18], our latent space model learns discrete spaces via deterministic encoders,
but relies on a smooth approximation instead of using the straight-through gradient estimator.

Works on representation learning for RL [20, 12, 53, 52] consider bisimulation metrics to optimize
the representation quality, and aim at learning representations which capture bisimulation, so that two
states close in the representation are guaranteed to provide close and relevant information to optimize
the performance of the controller. In particular, as in our work, DeepMDPs [20] are learned via local
losses, by assuming a deterministic MDP, without verifiable confidence measurement.

2 Background

In the following, we write ∆pX q for the set of measures over (complete, separable metric space) X .

Markov decision processes (MDPs) are tuples M “ xS,A,P,R, ℓ,AP, sI y where S is a set of
states; A, a set of actions; P : S ˆ A Ñ ∆pSq, a probability transition function that maps the
current state and action to a distribution over the next states; R : S ˆ A Ñ R, a reward function;
ℓ : S Ñ 2AP, a labeling function over a set of atomic propositions AP; and sI P S, the initial
state. If |A| “ 1, M is a fully stochastic process called a Markov chain (MC). We write Ms for
the MDP obtained when replacing the initial state of M by s P S. An agent interacting in M
produces trajectories, i.e., sequences of states and actions τ “ xs0:T , a0:T´1y where s0 “ sI and
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Figure 1: Latent flows: arrows represent (stochastic) mappings, the original (resp. latent) state-action
space is spread along the blue (resp. green) area, and distances are depicted in red. Distilling π into π
via flow (b) by minimizing Wξπ allows closing the gap between flows (a) and (b).

st`1 „ Pp¨ | st, atq for t ă T . The set of infinite trajectories of M is Traj . We assume AP and
labels being respectively one-hot and binary encoded. Given T Ď AP, we write s |ù T if s is labeled
with T, i.e., ℓpsq X T ‰ H, and s |ù ␣T for s |ù T. We refer to MDPs with continuous state or
action spaces as continuous MDPs. In that case, we assume S and A are complete separable metric
spaces equipped with a Borel σ-algebra, and ℓ´1pTq is Borel-measurable for any T Ď AP.

Policies and stationary distributions. A (memoryless) policy π : S Ñ ∆pAq prescribes which
action to choose at each step of the interaction. The set of memoryless policies of M is Π. The
MDP M and π P Π induce an MC Mπ with unique probability measure PM

π on the Borel σ-algebra
over measurable subsets φ Ď Traj [42]. We drop the superscript when the context is clear. Define
ξtπps

1 | sq “ PMs
π pts0:8, a0:8 | st “ s1uq as the distribution giving the probability of being in each

state of Ms after t steps. B Ď S is a bottom strongly connected component (BSCC) of Mπ if
(i) B is a maximal subset satisfying ξtπps

1 | sq ą 0 for any s, s1 P B and some t ě 0, and (ii)
Ea„πp¨|sq PpB | s, aq “ 1 for all s P S. The unique stationary distribution of B is ξπ P ∆pBq. We
write s, a „ ξπ for sampling s from ξπ then a from π. An MDP M is ergodic if for all π P Π, the
state space of Mπ consists of a unique aperiodic BSCC with ξπ “ limtÑ8 ξtπp¨ | sq for all s P S.

Value objectives. Given π P Π, the value of a state s P S is the expected value of a random variable
obtained by running π from s. For a discount factor γ P r0, 1s, we consider the following objectives.
(i) Discounted return: we write Vπpsq “ EMs

π

“
ř8

t“0 γ
tRpst, atq

‰

for the expected discounted
rewards accumulated along trajectories. The typical goal of an RL agent is to learn a policy π‹ that
maximizes Vπ‹psI q through interactions with the (unknown) MDP; (ii) Reachability: let C,T Ď AP,
the (constrained) reachability event is CU T “ t s0:8, a0:8 | Di P N,@j ă i, sj |ù C^ si |ù T u Ď

Traj . We write V φ
π psq “ EMs

π

“

γt
‹

1xs0:8,a0:8y P φ

‰

for the discounted probability of satisfying
φ “ CU T, where t‹ is the length of the shortest trajectory prefix that allows satisfying φ. Intuitively,
this denotes the discounted return of remaining in a region of the MDP where states are labeled with
C, until visiting for the first time a goal state labeled with T, and the return is the binary reward
signal capturing this event. Safety w.r.t. failure states C can be expressed as the safety-constrained
reachability to a destination T through ␣CU T. Notice that V φ

π psq “ PMs
π pφq when γ “ 1.

Latent MDP. Given the original (continuous, possibly unknown) environment model M, a latent
space model is another (smaller, explicit) MDP M “

@

S,A,P,R, ℓ,AP, sI
D

with state-action space
linked to the original one via state and action embedding functions: ϕ : S Ñ S and ψ : S ˆAÑ A.
We refer to

@

M, ϕ, ψ
D

as a latent space model of M and M as its latent MDP. Our goal is to learn
@

M, ϕ, ψ
D

by optimizing an equivalence criterion between the two models. We assume that dS is a
metric on S , and write Π for the set of policies of M and V π for the values of running π P Π in M.
Remark 1 (Latent flow). The latent policy π can be seen as a policy in M (cf. Fig. 1a): states passed to
π are first embedded with ϕ to the latent space, then the actions produced by π are executed via ψ in the
original environment. Let s P S , we write a „ πp¨ | sq for πp¨ | ϕpsqq, then the reward and next state
are respectively given by Rps, aq “ Rps, ψpϕpsq, aqq and s1 „ Pp¨ | s, aq “ Pp¨ | s, ψpϕpsq, aqq.
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Local losses allow quantifying the distance between the original and latent reward/transition functions
in the local setting, i.e., under a given state-action distribution ξ P ∆

`

S ˆA
˘

:

Lξ
R “ E

s,a„ξ

ˇ

ˇRps, aq ´Rpϕpsq, aq
ˇ

ˇ , Lξ
P “ E

s,a„ξ
D

`

ϕPp¨ | s, aq,Pp¨ | ϕpsq, aq
˘

where ϕPp¨ | s, aq is the distribution of drawing s1 „ Pp¨ | s, aq then embedding s1 “ ϕps1q, and
D is a discrepancy measure. Fig 1a depicts the losses when states and actions are drawn from
a stationary distribution ξπ resulting from running π P Π in M. In this work, we focus on the
case where D is the Wasserstein distance WdS

: given two distributions P,Q over a measurable
set X equipped with a metric d, Wd is the solution of the optimal transport (OT) from P to
Q, i.e., the minimum cost of changing P into Q [50]: Wd pP,Qq “ infλPΛpP,Qq Ex,y„λ dpx, yq,
ΛpP,Qq being the set of all couplings of P and Q. The Kantorovich duality yields Wd pP,Qq “
supfPFd

Ex„P fpxq ´ Ex„Q fpyq where Fd is the set of 1-Lipschiz functions. Local losses are
related to a well-established behavioral equivalence between transition systems, called bisimulation.

Bisimulation. A bisimulation B on M is a behavioral equivalence between states s1, s2 P S so that,
s1 B s2 iff (i) PpT | s1, aq “ PpT | s2, aq, (ii) ℓps1q “ ℓps2q, and (iii) Rps1, aq “ Rps2, aq for each
action a P A and (Borel measurable) equivalence class T P S{B. Properties of bisimulation include
trajectory and value equivalence [34, 22]. Requirements (ii) and (iii) can be respectively relaxed
depending on whether we focus only on behaviors formalized through AP or rewards. The relation
can be extended to compare two MDPs (e.g., M and M) by considering the disjoint union of their
state space. We denote the largest bisimulation relation by „.

Characterized by a logical family of functional expressions derived from a logic L, bisimulation
pseudometrics [17] generalize the notion of bisimilariy. More specifically, given a policy π P Π,
we consider a family F of real-valued functions parameterized by a discount factor γ and defining
the semantics of L in Mπ. Such functional expressions allow to formalize discounted properties
such as reachability, safety, as well as general ω-regular specifications [14] and may include rewards
as well [19]. The pseudometric d

„

π is defined as the largest behavioral difference d
„

πps1, s2q “

supfPF |fps1q ´ fps2q|, and its kernel is bisimilarity: d
„

πps1, s2q “ 0 iff s1 „ s2. In particular,
value functions are Lipschitz-continuous w.r.t. d

„

π: |V ¨πps1q ´ V
¨
πps2q| ď Kd

„

πps1, s2q, where K is
1{p1´γq if rewards are included in F and 1 otherwise. Henceforth, we make the following assumptions:

Assumption 2.1. MDP M is ergodic, ImpRq is a bounded space scaled in r´1{2, 1{2s, and the
embedding function preserves the labels, i.e., ϕpsq “ s ùñ ℓpsq “ ℓpsq for s P S, s P S.

Note that the ergodicity assumption is compliant with episodic RL and a wide range of continuous
learning tasks (see [28, 16] for detailed discussions on this setting).

Bisimulation bounds [16]. M being set over continuous spaces with possibly unknown dynamics,
evaluating d

„
can turn out to be particularly arduous, if not intractable. A solution is to evaluate the

original and latent model bisimilarity via local losses: fix π P Π, assume M is discrete, then given
the induced stationary distribution ξπ in M, let s1, s2 P S with ϕps1q “ ϕps2q:

E
s„ξπ

d
„

πps, ϕpsqq ď
Lξπ
R ` γLξπ

P

1´ γ
, d

„

πps1, s2q ď
´Lξπ

R ` γLξπ
P

1´ γ

¯

`

ξ´1
π ps1q ` ξ

´1
π ps2q

˘

. (1)

The two inequalities guarantee respectively the quality of the abstraction and representation: when
local losses are small, (i) states and their embedding are bisimilarly close in average, and (ii) all states
sharing the same discrete representation are bisimilarly close. The local losses and related bounds
can be efficiently PAC-estimated. Our goal is to learn a latent model where the behaviors of the agent
executing π can be formally verified, and the bounds offer a confidence metric allowing to lift the
guarantees obtained this way back to the original model M, when the latter operates under π. We
show in the following how to learn a latent space model by optimizing the aforementioned bounds,
and distill policies π P Π obtained via any RL technique to a latent policy π P Π.

3 Wasserstein Auto-encoded MDPs

Fix Mθ “
@

S,A,Pθ,Rθ, ℓ,AP, sI
D

and
@

Mθ, ϕι, ψθ

D

as a latent space model of M parameter-
ized by ι and θ. Our method relies on learning a behavioral model ξθ of M from which we can
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retrieve the latent space model and distill π. This can be achieved via the minimization of a suitable
discrepancy between ξθ and Mπ. VAE-MDPs optimize a lower bound on the likelihood of the
dynamics of Mπ using the Kullback-Leibler divergence, yielding (i) Mθ, (ii) a distillation πθ of π,
and (iii) ϕι and ψθ. Local losses are not directly minimized, but rather variational proxies that do
not offer theoretical guarantees during the learning process. To control the local losses minimization
and exploit their theoretical guarantees, we present a novel autoencoder that incorporates them in its
objective, derived from the OT. Proofs of the claims made in this Section are provided in Appendix A.

3.1 The Objective Function

Assume that S, A, and ImpRq are respectively equipped with metrics dS , dA, and dR, we
define the raw transition distance metric d⃗ as the component-wise sum of distances between
states, actions, and rewards occurring of along transitions: d⃗pxs1, a1, r1, s1

1y , xs2, a2, r2, s
1
2yq “

dSps1, s2q ` dApa1, a2q ` dRpr1, r2q ` dSps
1
1, s

1
2q. Given Assumption 2.1, we consider the OT be-

tween local distributions, where traces are drawn from episodic RL processes or infinite interactions
(we show in Appendix A.1 that considering the OT between trace-based distributions in the limit
amounts to reasoning about stationary distributions). Our goal is to minimize Wd⃗ pξπ, ξθq so that

ξθ
`

s, a, r, s1
˘

“

ż

SˆAˆS
Pθ

`

s, a, r, s1 | s, a, s1
˘

dξ̄πθ

`

s, a, s1
˘

, (2)

where Pθ is a transition decoder and ξ̄πθ
denotes the stationary distribution of the latent model

Mθ. As proved in [9], this model allows to derive a simpler form of the OT: instead of finding the
optimal coupling of (i) the stationary distribution ξπ of Mπ and (ii) the behavioral model ξθ, in
the primal definition of Wd⃗ pξπ, ξθq, it is sufficient to find an encoder q whose marginal is given by
Qps, a, s1q “ Es,a,s1„ξπ qps, a, s

1 | s, a, s1q and identical to ξπ . This is summarized in the following
Theorem, yielding a particular case of Wasserstein-autoencoder [47]:
Theorem 3.1. Let ξθ and Pθ be respectively a behavioral model and transition decoder as defined in
Eq. 2, Gθ : S Ñ S be a state-wise decoder, and ψθ be an action embedding function. Assume Pθ is
deterministic with Dirac function Gθps, a, s

1q “
@

Gθpsq, ψθps, aq,Rθps, aq,Gθps
1q

D

, then

Wd⃗ pξπ, ξθq “ inf
q:Q“ξ̄πθ

E
s,a,r,s1„ξπ

E
s,a,s1„qp¨|s,a,s1q

d⃗
`@

s, a, r, s1
D

, Gθ

`

s, a, s1
˘˘

.

Henceforth, fix ϕι : S Ñ S and ϕA
ι : S ˆA Ñ ∆

`

A
˘

as parameterized state and action encoders
with ϕιps, a, s1 | s, a, s1q “ 1ϕιpsq“s ¨ ϕ

A
ι pa | s, aq ¨ 1ϕιps1q“s1 , and define the marginal encoder as

Qι “ Es,a,s1„ξπ ϕιp¨ | s, a, s
1q. Training the model components can be achieved via the objective:

min
ι,θ

E
s,a,r,s1„ξπ

E
s,a,s1„ϕιp¨|s,a,s1q

d⃗
`@

s, a, r, s1
D

, Gθ

`

s, a, s1
˘˘

` β ¨D
`

Qι, ξ̄πθ

˘

,

where D is an arbitrary discrepancy metric and β ą 0 a hyperparameter. Intuitively, the encoder ϕι
can be learned by enforcing its marginal distribution Qι to match ξ̄πθ

through this discrepancy.
Remark 2. If M has a discrete action space, then learning A is not necessary. We can set A “ A
using identity functions for the action encoder and decoder (details in Appendix A.2).

When π is executed in M, observe that its parallel execution in Mθ is enabled by the action encoder
ϕA
ι : given an original state s P S, π first prescribes the action a „ πp¨ | sq, which is then embedded

in the latent space via a „ ϕA
ι p¨ | ϕιpsq, aq (cf. Fig. 1b). This parallel execution, along with setting

D to Wd⃗, yield an upper bound on the latent regularization, compliant with the bisimulation bounds.
A two-fold regularizer is obtained thereby, defining the foundations of our objective function:

Lemma 3.2. Define T ps, a, s1q “ Es,a„ξπ r1ϕιpsq“s ¨ϕ
A
ι pa | s, aq¨Pθps

1 | s, aqs as the distribution of
drawing state-action pairs from interacting with M, embedding them to the latent spaces, and finally
letting them transition to their successor state in Mθ. Then, Wd⃗

`

Qι, ξ̄πθ

˘

ďWd⃗

`

ξ̄πθ
, T

˘

` Lξπ
P .

We therefore define the W2AE-MDP (Wasserstein-Wasserstein auto-encoded MDP) objective as:

min
ι,θ

E
s,a,s1

„ξπ
s,a,s1

„ϕιp¨|s,a,s1
q

“

dSps,Gθpsqq ` dApa, ψθps, aqq ` dS
`

s1,Gθ

`

s1
˘˘‰

` Lξπ
R ` β ¨ pWξπ ` L

ξπ
P q,

5



Algorithm 1: Wasserstein2 Auto-Encoded MDP
Input: batch size N , max. step T , no. of regularizer updates m, penalty coefficient δ ą 0
for t “ 1 to T do

for i “ 1 to N do
Sample a transition si, ai, ri, s1

i from the original environment via ξπ
Embed the transition into the latent space by drawing si, ai, s1

i from ϕιp¨ | si, ai, s
1
iq

Make the latent space model transition to the next latent state: s‹
i „ Pθp¨ | si, aiq

Sample a latent transition from ξ̄πθ
: zi „ ξ̄πθ

, a1
i „ πθp¨ | ziq, and z1

i „ Pθp¨ | zi, a
1
iq

W Ð
řN

i“1 φ
ξ
ωpsi, ai, s

‹
i q ´ φ

ξ
ωpzi, a

1
i, z

1
iq ` φ

P
ω psi, ai, si, ai, s

1
iq ´ φ

P
ω psi, ai, si, ai, s

‹
i q

P Ð
řN

i“1 GP
`

φξ
ω, xsi, ai, s

‹
i y , xzi, a

1
i, z

1
iy

˘

` GP
`

x ÞÑ φP
ω psi, ai, si, ai,xq, s

1
i, s

‹
i

˘

Update the Lipschitz networks parameters ω by ascending 1{N ¨ pβW ´ δ P q
if t mod m “ 0 then

LÐ
řN

i“1 dSpsi,Gθpsiqq ` dApai, ψθpsi, aiqq ` dR
`

ri,Rθpsi, aiq
˘

` dSps
1
i,Gθps

1
iqq

Update the latent space model parameters xι, θy by descending 1{N ¨ pL` βWq

function GPpφω,x,yq Ź Gradient penalty for φω : Rn Ñ R and x,y P Rn

ϵ „ U p0, 1q; x̃Ð ϵx` p1´ ϵqy Ź random noise; straight lines between x and y

return p}∇x̃ φωpx̃q} ´ 1q
2

where Wξπ “Wd⃗

`

T , ξ̄πθ

˘

and Lξπ
P are respectively called steady-state and transition regularizers.

The former allows to quantify the distance between the stationary distributions respectively induced
by π in M and πθ in Mθ, further enabling the distillation. The latter allows to learn the latent
dynamics. Note that Lξπ

R and Lξπ
P — set over ξπ instead of ξπθ

— are not sufficient to ensure the
bisimulation bounds (Eq. 1): running π in Mθ depends on the parallel execution of π in the original
model, which does not permit its (conventional) verification. Breaking this dependency is enabled by
learning the distillation πθ through Wξπ , as shown in Fig. 1b: minimizing Wξπ allows to make ξπ
and ξ̄πθ

closer together, further bridging the gap of the discrepancy between π and πθ. At any time,
recovering the local losses along with the linked bisimulation bounds in the objective function of the
W2AE-MDP is allowed by considering the latent policy resulting from this distillation:

Theorem 3.3. Assume that traces are generated by running a latent policy π P Π in the original
environment and let dR be the usual Euclidean distance, then the W2AE-MDP objective is

min
ι,θ

E
s,s1„ξπ

“

dSps,Gθpϕιpsqqq ` dS
`

s1,Gθ

`

ϕι
`

s1
˘˘˘‰

` Lξπ
R ` β ¨ pWξπ ` L

ξπ
P q.

Optimizing the regularizers is enabled by the dual form of the OT: we introduce two parameterized
networks, φξ

ω and φP
ω , constrained to be 1-Lipschitz and trained to attain the supremum of the dual:

Wξπ pωq “ max
ω

E
s,a„ξπ

E
a„ϕA

ι p¨|ϕιpsq,aq
E

s‹„Pθp¨|ϕιpsq,aq

φξ
ωpϕιpsq, a, s

‹q ´ E
z,a1,z1„ξ̄πθ

φξ
ω

`

z, a1, z1
˘

Lξπ
P pωq “ max

ω
E

s,a,s1„ξπ
E

s,a,s1„ϕιp¨|s,a,s1q

”

φP
ω

`

s, a, s, a, s1
˘

´ E
s‹„Pθp¨|s,aq

φP
ω ps, a, s, a, s

‹q

ı

Details to derive this tractable form of Lξπ
P pωq are in Appendix A.5. The networks are constrained

via the gradient penalty approach of [23], leveraging that any differentiable function is 1-Lipschitz
iff it has gradients with norm at most 1 everywhere (we show in Appendix A.6 this is still valid for
relaxations of discrete spaces). The final learning process is presented in Algorithm 1.

3.2 Discrete Latent Spaces

To enable the verification of latent models supported by the bisimulation guarantees of Eq. 1, we focus
on the special case of discrete latent space models. Our approach relies on continuous relaxation of
discrete random variables, regulated by some temperature parameter(s) λ: discrete random variables
are retrieved as λ Ñ 0, which amounts to applying a rounding operator. For training, we use the
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Figure 2: W2AE-MDP architecture. Distances are depicted by red dotted lines.

temperature-controlled relaxations to differentiate the objective and let the gradient flow through the
network. When we deploy the latent policy in the environment and formally check the latent model,
the zero-temperature limit is used. An overview of the approach is depticted in Fig. 2.

State encoder. We work with a binary representation of the latent states. First, this induces compact
networks, able to deal with a large discrete space via a tractable number of parameter variables. But
most importantly, this ensures that Assumption 2.1 is satisfied: let n “ log2 |S|, we reserve |AP|
bits in S and each time s P S is passed to ϕι, n´ |AP| bits are produced and concatenated with ℓpsq,
ensuring a perfect reconstruction of the labels and further bisimulation bounds. To produce Bernoulli
variables, ϕι deterministically maps s to a latent code z, passed to the Heaviside Hpzq “ 1zą0. We
train ϕι by using the smooth approximation Hλpzq “ σp2z{λq, satisfying H “ limλÑ0Hλ.

Latent distributions. Besides the discontinuity of their latent image space, a major challenge
of optimizing over discrete distributions is sampling, required to be a differentiable operation.
We circumvent this by using concrete distributions [29, 37]: the idea is to sample reparam-
eterizable random variables from λ-parameterized distributions, and applying a differentiable,
nonlinear operator in downstream. We use the Gumbel softmax trick to sample from distribu-
tions over (one-hot encoded) latent actions (ϕA

ι , πθ). For binary distributions (Pθ, ξ̄πθ
), each

relaxed Bernoulli with logit α is retrieved by drawing a logistic random variable located in
α{λ and scaled to 1{λ, then applying a sigmoid in downstream. We emphasize that this trick
alone (as used by [15, 16]) is not sufficient: it yields independent Bernoullis, being too re-
strictive in general, which prevents from learning sound transition dynamics (cf. Example 1).

s0

s1

tgoalu

s2
tunsafeu

s3

tunsafeu 1{2

1{4

1{4
1

1

1

Figure 3: Markov Chain with four states;
labels are drawn next to their state.

Example 1. Let M be the discrete MC of Fig. 3. In
one-hot, AP “ tgoal : x1, 0y , unsafe : x0, 1yu. We as-
sume that 3 bits are used for the (binary) state space,
with S “ ts0 : x0, 0, 0y , s1 : x1, 0, 0y , s2 : x0, 1, 0y , s3 :
x0, 1, 1yu (the two first bits are reserved for the labels).
Considering each bit as being independent is not suffi-
cient to learn P: the optimal estimation Pθ‹p¨ | s0q is in
that case represented by the independent Bernoulli vector
b “ x1{2, 1{2, 1{4y, giving the probability to go from s0 to
each bit independently. This yields a poor estimation of
the actual transition function: Pθ‹ps0 | s0q “ p1´b1q¨p1´b2q¨p1´b3q “ Pθ‹ps1 | s0q “ b1 ¨p1´
b2q¨p1´b3q “ Pθ‹ps2 | s0q “ p1´b1q¨b2 ¨p1´b3q “ 3{16, Pθ‹ps3 | s0q “ p1´b1q¨b2 ¨b3 “ 1{16.

We consider instead relaxed multivariate Bernoulli distributions by decomposing P P ∆
`

S
˘

as a
product of conditionals: P psq “

śn
i“1 P psi | s1: i´1q where si is the ith entry (bit) of s. We learn
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Figure 4: For each environment, we trained five different instances of the models with different
random seeds: the solid line is the median and the shaded interval the interquartile range.

such distributions by introducing a masked autoregressive flow (MAF, [40]) for relaxed Bernoullis via
the recursion: si “ σpli`αi{λq, where li „ Logisticp0, 1q, αi “ fips1: i´1q, and f is a MADE [21],
a feedforward network implementing the conditional output dependency on the inputs via a mask that
only keeps the necessary connections to enforce the conditional property. We use this MAF to model
Pθ and the dynamics related to the labels in ξ̄πθ

. We fix the logits of the remaining n´ |AP| bits to
0 to allow for a fairly distributed latent space.

4 Experiments

We evaluate the quality of latent space models learned and policies distilled through W2AE-MDPs .
To do so, we first trained deep-RL policies (DQN, [38] on discrete, and SAC, [24] on continuous
action spaces) for various OpenAI benchmarks [10], which we then distill via our approach (Figure 4).
We thus evaluate (a) the W2AE-MDP training metrics, (b) the abstraction and representation quality
via PAC local losses upper bounds [16], and (c) the distilled policy performance when deployed
in the original environment. The confidence metrics and performance are compared with those of
VAE-MDPs. Finally, we formally verify properties in the latent model. The exact setting to reproduce
our results is in Appendix B.

Learning metrics. The objective (Fig. 4a) is a weighted sum of the reconstruction loss and the two
Wasserstein regularizers. The choice of β defines the optimization direction. In contrast to VAEs (cf.
Appendix C), WAEs indeed naturally avoid posterior collapse [47], indicating that the latent space is
consistently distributed. Optimizing the objective (Fig. 4a) effectively allows minimizing the local
losses (Fig. 4b) and recovering the performance of the original policy (Fig. 4c).

Local losses. For V- and WAEs, we formally evaluate PAC upper bounds on L
ξπθ

R and L
ξπθ

P via the
algorithm of [16] (Fig 4b). The lower the local losses, the closer M and Mθ are in terms of behaviors
induced by πθ (cf. Eq. 1). In VAEs, the losses are evaluated on a transition function P̂ obtained via
frequency estimation of the latent transition dynamics [16], by reconstructing the transition model a
posteriori and collecting data to estimate the transition probabilities (e.g., [8, 15]). We thus also report
the metrics for P̂. Our bounds quickly converge to close values in general for Pθ and P̂, whereas
for VAEs, the convergence is slow and unstable, with P̂ offering better bounds. We emphasize that
WAEs do not require this additional reconstruction step to obtain losses for assessing the quality of
the model, in contrast to VAEs, where learning Pθ was performed via overly restrictive distributions,
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Table 1: Formal Verification of distilled policies. Values are computed for γ “ 0.99 (lower is better).
Environment step (105) S A

ˇ

ˇS
ˇ

ˇ

ˇ

ˇA
ˇ

ˇ L
ξπθ

R (PAC) L
ξπθ

P (PAC) }Vπθ
} V

φ

πθ
psIq

CartPole 1.2 Ď R4 t 1, 2 u 512 2 0.00499653 0.399636 3.71213 0.0316655
MountainCar 2.32 Ď R2 t 1, 2 u 1024 2 0.0141763 0.382323 2.83714 0
Acrobot 4.3 Ď R6 t 1, 2, 3 u 8192 3 0.0347698 0.649478 2.22006 0.0021911
LunarLander 3.2 Ď R8 r´1, 1s2 16384 3 0.0207205 0.131357 0.0372883 0.0702039
Pendulum 3.7 Ď R3 r´2, 2s 8192 3 0.0266745 0.539508 4.33006 0.0348492

leading to poor estimation in general (cf. Ex. 1). Finally, when the distilled policies offer comparable
performance (Fig. 4c), our bounds are either close to or better than those of VAEs.

Distillation. The bisimulation guarantees (Eq. 1) are only valid for πθ, the policy under which formal
properties can be verified. It is crucial that πθ achieves performance close to π, the original one, when
deployed in the RL environment. We evaluate the performance of πθ via the undiscounted episode
return Rπθ

obtained by running πθ in the original model M. We observe that Rπθ
approaches faster

the original performance Rπ for W- than VAEs: WAEs converge in a few steps for all environments,
whereas the full learning budget is sometimes necessary with VAEs. The success in recovering the
original performance emphasizes the representation quality guarantees (Eq. 1) induced by WAEs:
when local losses are minimized, all original states that are embedded to the same representation are
bisimilarly close. Distilling the policy over the new representation, albeit discrete and hence coarser,
still achieves effective performance since ϕι keeps only what is important to preserve behaviors, and
thus values. Furthermore, the distillation can remove some non-robustness obtained during RL: πθ

prescribes the same actions for bisimilarly close states, whereas this is not necessarily the case for π.

Formal verification. To formally verify Mθ, we implemented a value iteration (VI) engine, handling
the neural network encoding of the latent space for discounted properties, which is one of the
most popular algorithms for checking property probabilities in MDPs (e.g., [6, 26, 33]). We verify
time-to-failure properties φ, often used to check the failure rate of a system [41] by measuring
whether the agent fails before the end of the episode. Although simple, such properties highlight the
applicability of our approach on reachability events, which are building blocks to verify MDPs ([6];
cf. Appendix B.7). In particular, we checked whether the agent reaches an unsafe position or angle
(CartPole, LunarLander), does not reach its goal position (MountainCar, Acrobot), and does not reach
and stay in a safe region of the system (Pendulum). Results are in Table 1: for each environment,
we select the distilled policy which gives the best trade-off between performance (episode return)
and abstraction quality (local losses). As extra confidence metric, we report the value difference
}Vπθ

} “ |Vπθ
psI q ´ V πθ

psIq| obtained by executing πθ in M and Mθ (Vπθ
p¨q is averaged while

V πθ
p¨q is formally computed).

5 Conclusion

We presented WAE-MDPs, a framework for learning formally verifiable distillations of RL policies
with bisimulation guarantees. The latter, along with the learned abstraction of the unknown continuous
environment to a discrete model, enables the verification. Our method overcomes the limitations
of VAE-MDPs and our results show that it outperforms the latter in terms of learning speed, model
quality, and performance, in addition to being supported by stronger learning guarantees. As
mentioned by [16], distillation failure reveals the lack of robustness of original RL policies. In
particular, we found that distilling highly noise-sensitive RL policies (such as robotics simulations,
e.g., [46]) is laborious, even though the result remains formally verifiable.

We demonstrated the feasibility of our approach through the verification of reachability objectives,
which are building blocks for stochastic model-checking [6]. Besides the scope of this work, the
verification of general discounted ω-regular properties is theoretically allowed in our model via the
rechability to components of standard constructions based on automata products (e.g., [7, 44]), and
discounted games algorithms [14]. Beyond distillation, our results, supported by Thm. 3.3, suggest
that our WAE-MDP can be used as a general latent space learner for RL, further opening possibilities
to combine RL and formal methods online when no formal model is a priori known, and address this
way safety in RL with guarantees.
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Reproducibility Statement

We referenced in the main text the Appendix parts presenting the proofs or additional details of
every claim, Assumption, Lemma, and Theorem occurring in the paper. In addition, Appendix B
is dedicated to the presentation of the setup, hyperparameters, and other extra details required for
reproducing the results of Section 4. We provide the source code of the implementation of our
approach in Supplementary material, 1, and we also provide the models saved during training that
we used for model checking (i.e., reproducing the results of Table 1). Additionally, we present
in a notebook (evaluation.html) videos demonstrating how our distilled policies behave in each
environment, and code snippets showing how we formally verified the policies.
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Appendix

A Theoretical Details on WAE-MDPs

A.1 The Discrepancy Measure

We show that reasoning about discrepancy measures between stationary distributions is sound in
the context of infinite interaction and episodic RL processes. Let Pθ be a parameterized behavioral
model that generate finite traces from the original environment (i.e., finite sequences of state, actions,
and rewards of the form xs0:T , a0:T´1, r0:T´1y), our goal is to find the best parameter θ which offers
the most accurate reconstruction of the original traces issued from the original model M operating
under π. We demonstrate that, in the limit, considering the OT between trace-based distributions
is equivalent to considering the OT between the stationary distribution of Mπ and the one of the
behavioral model.

Let us first formally recall the definition of the metric on the transitions of the MDP.

Raw transition distance. Assume that S, A, and ImpRq are respectively equipped with metric dS ,
dA, and dR, let us define the raw transition distance metric over transitions of M, i.e., tuples of the
form xs, a, r, s1y, as d⃗ : S ˆAˆ ImpRq ˆ S,

d⃗
`@

s1, a1, r1, s
1
1

D

,
@

s2, a2, r2, s
1
2

D˘

“ dSps1, s2q ` dApa1, a2q ` dRpr1, r2q ` dS
`

s1
1, s

1
2

˘

.

In a nutshell, d⃗ consists of the sum of the distance of all the transition components. Note that it
is a well defined distance metric since the sum of distances preserves the identity of indiscernible,
symmetry, and triangle inequality.

Trace-based distributions. The raw distance d⃗ allows to reason about transitions, we thus consider
the distribution over transitions which occur along traces of length T to compare the dynamics of the
original and behavioral models:

Dπ rT s
`

s, a, r, s1
˘

“
1

T

T
ÿ

t“1

ξtπps | sI q ¨ πpa | sq ¨P
`

s1 | s, a
˘

¨ 1r“Rps,aq, and

PθrT s
`

s, a, r, s1
˘

“
1

T

T
ÿ

t“1

E
s0:t,a0:t´1,r0:t´1„Pθrts

1xst´1,at´1rt´1,sty“xs,a,r,s1y,

where PθrT s denotes the distribution over traces of length T , generated from Pθ. Intuitively, 1{T ¨
řT

t“1 ξ
t
πps | sI q can be seen as the fraction of the time spent in s along traces of length T , starting

from the initial state [64]. Therefore, drawing xs, a, r, s1y „ Dπ rT s trivially follows: it is equivalent
to drawing s from 1{T ¨

řT
t“1 ξ

t
πp¨ | sI q, then respectively a and s1 from πp¨ | sq and Pp¨ | s, aq, to

finally obtain r “ Rps, aq. Given T P N, our objective is to minimize the Wasserstein distance
between those distributions: Wd⃗ pDπrT s,PθrT sq. The following Lemma enables optimizing the
Wasserstein distance between the original MDP and the behavioral model when traces are drawn
from episodic RL processes or infinite interactions [28].
Lemma A.1. Assume the existence of a stationary behavioral model ξθ “ limTÑ8 PθrT s, then

lim
TÑ8

Wd⃗ pDπrT s,PθrT sq “Wd⃗ pξπ, ξθq .

Proof. First, note that 1{T ¨
řT

t“1 ξ
t
πp¨ | sI q weakly converges to ξπ as T goes to8 [64]. The result

follows then from [50, Corollary 6.9].

A.2 Dealing with Discrete Actions

When the policy π executed in M already produces discrete actions, learning a latent action space is,
in many cases, not necessary. We thus make the following assumptions:
Assumption A.2. Let π : S Ñ ∆pA‹q be the policy executed in M and assume that A‹ is a
(tractable) finite set. Then, we take A “ A‹ and ϕA

ι as the identity function, i.e., ϕA
ι : S ˆ A‹ Ñ

A‹, xs, a‹y ÞÑ a‹.
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Assumption A.3. Assume that the action space of the original environment M is a (tractable) finite
set. Then, we take ψθ as the identity function, i.e., ψθ “ ϕA

ι .

Concretely, the premise of Assumption A.2 typically occurs when π is a latent policy (see Rem. 1)
or when M has already a discrete action space. In the latter case, Assumption A.2 and A.3 amount
to setting A “ A and ignoring the action encoder and embedding function. Note that if a discrete
action space is too large, or if the user explicitly aims for a coarser space, then the former is not
considered as tractable, these assumptions do not hold, and the action space is abstracted to a smaller
set of discrete actions.

A.3 Proof of Lemma 3.2

Notation. From now on, we write ϕιps, a | s, aq “ 1ϕιpsq“s ¨ ϕ
A
ι pa | s, aq.

Lemma 3.2. Define T ps, a, s1q “ Es,a„ξπ r1ϕιpsq“s ¨ϕ
A
ι pa | s, aq¨Pθps

1 | s, aqs as the distribution of
drawing state-action pairs from interacting with M, embedding them to the latent spaces, and finally
letting them transition to their successor state in Mθ. Then, Wd⃗

`

Qι, ξ̄πθ

˘

ďWd⃗

`

ξ̄πθ
, T

˘

` Lξπ
P .

Proof. Wasserstein is compliant with the triangular inequality [50], which gives us:
Wd⃗

`

Qι, ξ̄πθ

˘

ďWd⃗ pQι, T q `WdS

`

T , ξ̄πθ

˘

,

where
Wd⃗

`

T , ξ̄πθ

˘

(note that Wd⃗ is reflexive [50])

“ sup
fPF

d⃗

E
s,a„ξπ

E
s,a„ϕιp¨|s,aq

E
s1„Pθp¨|s,aq

f
`

s, a, s1
˘

´ E
s„ξ̄πθ

E
a„πθp¨|sq

E
s1„Pθp¨|s,aq

f
`

s, a, s1
˘

, and

Wd⃗ pQι, T q
“ sup

fPF
d⃗

E
s,a,s1„ξπ

E
s,a,s1„ϕιp¨|s,a,s1q

f
`

s, a, s1
˘

´ E
s,a„ξπ

E
s,a„ϕιp¨|s,aq

E
s1„Pθp¨|s,aq

f
`

s, a, s1
˘

(3)

ď E
s,a„ξπ

E
s,a„ϕιp¨|s,aq

sup
fPF

d⃗

E
s1„Pp¨|s,aq

f
`

s, a, ϕι
`

s1
˘˘

´ E
s1„Pθp¨|s,aq

f
`

s, a, s1
˘

(4)

“ E
s,a„ξπ

E
a„ϕA

ι p¨|ϕιpsq,aq

sup
fPFdS

E
s1„ϕιPp¨|s,aq

f
`

s1
˘

´ E
s1„Pθp¨|ϕιpsq,aq

f
`

s1
˘

(5)

“ E
s,a„ξπ

E
a„ϕA

ι p¨|ϕιpsq,aq

WdS

`

ϕιPp¨ | s, aq,Pθp¨ | ϕιpsq, aq
˘

.

We pass from Eq. 3 to Eq. 4 by the Jensen’s inequality. To see how we pass from Eq. 4 to Eq. 5,
notice that

Fd⃗ “

!

f : f
`

s1, a1, s
1
1

˘

´ f
`

s2, a2, s
1
2

˘

ď d⃗
`@

s1, a1, s
1
1

D

,
@

s2, a2, s
1
2

D˘

)

Fd⃗ “ t f : f
`

s1, a1, s
1
1

˘

´ f
`

s2, a2, s
1
2

˘

ď dSps1, s2q ` dApa1, a2q ` dS
`

s1
1, s

1
2

˘

u

Observe now that s and a are fixed in the supremum computation of Eq. 4: all functions f considered
and taken from Fd⃗ are of the form fps, a, ¨q. It is thus sufficient to consider the supremum over
functions from the following subset of Fd⃗ :

t f : f
`

s, a, s1
1

˘

´ f
`

s, a, s1
2

˘

ď dSps, sq ` dApa, aq ` dS
`

s1
1, s

1
2

˘

u

(for s, a drawn from ϕι)

“t f : f
`

s, a, s1
1

˘

´ f
`

s, a, s1
2

˘

ď dS
`

s1
1, s

1
2

˘

u

“ t f : f
`

s1
1

˘

´ f
`

s1
2

˘

ď dS
`

s1
1, s

1
2

˘

u

“FdS
.

Given a state s P S in the original model, the (parallel) execution of π in Mθ is enabled through
πpa, a | sq “ πpa | sq ¨ ϕA

ι pa | ϕιpsq, aq (cf. Fig. 1b). The local transition loss resulting from this
interaction is:

Lξπ
P “ E

s,xa,ay„ξπ

WdS

`

ϕιPp¨ | s, aq,Pp¨ | ϕιpsq, aq
˘

“ E
s,a„ξπ

E
a„ϕA

ι p¨|ϕιpsq,aq

WdS

`

ϕιPp¨ | s, aq,Pθp¨ | ϕιpsq, aq
˘

,

which finally yields the result.
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A.4 Proof of Theorem 3.3

Before proving Theorem 3.3, let us introduce the following Lemma, that explicitly demonstrates
the link between the transition regularizer of the W2AE-MDP objective and the local transition loss
required to obtain the guarantees related to the bisimulation bounds of Eq. 1.

Lemma A.4. Assume that traces are generated by running π P Π in the original environment, then

E
s,a‹„ξπ

E
a„ϕA

ι p¨|ϕιpsq,a‹q

WdS

`

ϕιPp¨ | s, a
‹q,Pθp¨ | ϕιpsq, aq

˘

“ Lξπ
P .

Proof. Since the latent policy π generates latent actions, Assumption A.2 holds, which means:

E
s,a‹„ξπ

E
a„ϕA

ι p¨|ϕιpsq,a‹q

WdS

`

ϕιPp¨ | s, a
‹q,Pθp¨ | ϕιpsq, aq

˘

“ E
s,a„ξπ

WdS

`

ϕιPp¨ | s, aq,Pθp¨ | ϕιpsq, aq
˘

“Lξπ
P .

Theorem 3.3. Assume that traces are generated by running a latent policy π P Π in the original
environment and let dR be the usual Euclidean distance, then the W2AE-MDP objective is

min
ι,θ

E
s,s1„ξπ

“

dSps,Gθpϕιpsqqq ` dS
`

s1,Gθ

`

ϕι
`

s1
˘˘˘‰

` Lξπ
R ` β ¨ pWξπ ` L

ξπ
P q.

Proof. We distinguish two cases: (i) the case where the original and latent models share the same
discrete action space, i.e., A “ A, and (ii) the case where the two have a different action space
(e.g., when the original action space is continuous), i.e., A ‰ A. In both cases, the local losses
term follows by definition of Lξπ

R and Lemma A.4. When dR is the Euclidean distance (or even
the L1 distance since rewards are scalar values), the expected reward distance occurring in the
expected trace-distance term d⃗ in the W2AE-MDP objective directly translates to the local loss Lξπ

R .
Concerning the local transition loss, in case (i), the result naturally follows from Assumption A.2
and A.3. In case (ii), only Assumption A.2 holds, meaning the action encoder term of the W2AE-
MDP objective is ignored, but not the action embedding term appearing in Gθ. Given s „ ξπ , recall
that executing π in M amounts to embedding the produced latent actions a „ πp¨ | ϕιpsqq back to
the original environment via a “ ψθpϕιpsq, aq (cf. Rem. 1 and Fig. 1a). Therefore, the projection
of d⃗pxs, a, r, s1y , Gθpϕιpsq, a, ϕιps

1qqq on the action space A is dApψθpϕιpsq, aq, ψθpϕιpsq, aqq “ 0,
for r “ Rps, aq and s1 „ Pp¨ | s, aq.

A.5 Optimizing the Transition Regularizer

In the following, we detail how we derive a tractable form of our transition regularizer Lξπ
P pωq. Opti-

mizing the ground Kantorovich-Rubinstein duality is enabled via the introduction of a parameterized,
1-Lipschitz network φP

ω , that need to be trained to attain the supremum of the dual:

Lξπ
P pωq “ E

s,a„ξπ
E

s,a„ϕιp¨|s,aq

max
ω : φP

ω PFdS

E
s1„ϕιPp¨|s,aq

φP
ω

`

s1
˘

´ E
s1„Pθp¨|s,aq

φP
ω

`

s1
˘

.

Under this form, optimizing Lξπ
P pωq is intractable due to the expectation over the maximum. The

following Lemma allows us rewriting Lξπ
P to make the optimization tractable through Monte Carlo

estimation.

Lemma A.5. Let X ,Y be two measurable sets, ξ P ∆pX q, P : X Ñ ∆pYq, Q : X Ñ ∆pYq, and
d : Y ˆ Y Ñ r0,`8r be a metric on Y . Then,

E
x„ξ

Wd pP p¨ | xq, Qp¨ | xqq “ sup
φ : XÑFd

E
x„ξ

„

E
y1„P p¨|xq

φpxqpy1q ´ E
y2„Qp¨|xq

φpxqpy2q

ȷ
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Proof. Our objective is to show that

E
x„ξ

«

sup
fPFd

E
y1„P p¨|xq

φpy1qpxq ´ E
y2„Qp¨|xq

φpy2qpxq

ff

(6)

“ sup
φ : XÑFd

E
x„ξ

„

E
y1„P p¨|xq

φpxqpy1q ´ E
y2„Qp¨|xq

φpxqpy2q

ȷ

(7)

We start with (6) ď (7). Construct φ‹ : X Ñ Fd by setting for all x P X
φ‹pxq “ arg sup

fPFd

E
y1„P p¨|xq

fpy1q ´ E
y2„Qp¨|xq

fpy2q.

This gives us

E
x„ξ

«

sup
fPFd

E
y1„P p¨|xq

fpy1q ´ E
y2„Qp¨|xq

fpy2q

ff

“ E
x„ξ

„

E
y1„P p¨|xq

φ‹pxqpy1q ´ E
y2„Qp¨|xq

φ‹pxqpy2q

ȷ

ď sup
φ : XÑFd

E
x„ξ

„

E
y1„P p¨|xq

φpxqpy1q ´ E
y2„Qp¨|xq

φpxqpy2q

ȷ

.

It remains to show that (6) ě (7). Take

φ‹ “ arg sup
φ : XÑFd

E
x„ξ

„

E
y1„P p¨|xq

φpxqpy1q ´ E
y2„Qp¨|xq

φpxqpy2q

ȷ

.

Then, for all x P X , we have φ‹pxq P Fd which means:

E
y1„P p¨|xq

φ‹pxqpy1q ´ E
y2„Qp¨|xq

φ‹pxqpy2q

ď sup
fPFd

E
y1„P p¨|xq

fpy1q ´ E
y2„Qp¨|xq

fpy2q

This finally yields

E
x„ξ

„

E
y1„P p¨|xq

φ‹pxqpy1q ´ E
y2„Qp¨|xq

φ‹pxqpy2q

ȷ

ď E
x„ξ

«

sup
fPFd

E
y1„P p¨|xq

fpy1q ´ E
y2„Qp¨|xq

fpy2q

ff

.

Corollary A.5.1. Let ξπ be a stationary distribution of Mπ and X “ S ˆAˆ S ˆA, then

Lξπ
P “ sup

φ : XÑFdS

E
s,a,s1„ξπ

E
s,a„ϕιp¨|s,aq

«

φps, a, s, aq
`

ϕι
`

s1
˘˘

´ E
s1„Pθp¨|s,aq

φps, a, s, aq
`

s1
˘

ff

Consequently, we rewrite Lξπ
P pωq as a tractable maximization:

Lξπ
P pωq “ max

ω : φP
ω PFdS

E
s,a,s1„ξπ

E
s,a„ϕιp¨|s,aq

«

φP
ω

`

s, a, s, a, ϕι
`

s1
˘˘

´ E
s1„Pθp¨|s,aq

φP
ω

`

s, a, s, a, s1
˘

ff

.

A.6 The Latent Metric

In the following, we show that considering the Euclidean distance for d⃗ and dS in the latent space
for optimizing the regularizers Wξπ and Lξπ

P is Lipschitz equivalent to considering a continuous
λ-relaxation of the discrete metric 1‰px,yq “ 1x‰y . Consequently, this also means it is consistently
sufficient to enforce 1-Lispchitzness via the gradient penalty approach of [23] during training to
maintain the guarantees linked to the regularizers in the zero-temperature limit, when the spaces are
discrete.
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Lemma A.6. Let d be the usual Euclidean distance and dλ : r0, 1sn ˆ r0, 1sn Ñ r0, 1r, xx,yy ÞÑ
dpx,yq

λ`dpx,yq
for λ P s0, 1s and n P N, then dλ is a distance metric.

Proof. The function dλ is a metric iff it satisfies the following axioms:

1. Identity of indiscernibles: If x “ y, then dλpx,yq “
dpx,yq

λ`dpx,yq
“ 0

λ`0 “ 0 since d is a
distance metric. Assume now that dλpx,yq “ 0 and take α “ dpx,yq, for any x,y. Thus,
α P r0,`8r and 0 “ α

λ`α is only achieved in α “ 0, which only occurs whenever x “ y
since d is a distance metric.

2. Symmetry:

dλpx,yq “
dpx,yq

λ` dpx,yq

“
dpy,xq

λ` dpy,xq
(d is a distance metric)

“ dλpy,xq

3. Triangle inequality: Let x,y, z P r0, 1sn, the triangle inequality holds iff

dλpx,yq ` dλpy, zq ě dλpx, zq (8)

”
dpx,yq

λ` dpx,yq
`

dpy, zq

λ` dpy, zq
ě

dpx, zq

λ` dpx, zq

”
λdpx,yq ` λdpy, zq ` 2dpx,yqdpy, zq

λ2 ` λdpx,yq ` λdpy, zq ` dpx,yqdpy, zq
ě

dpx, zq

λ` dpx, zq

” λ2dpx,yq ` λ2dpy, zq ` 2λdpx,yqdpy, zq`

λdpx,yqdpx, zq ` λdpy, zqdpx, zq ` 2dpx,yqdpy, zqdpx, zq

ěλ2dpx, zq ` λdpx,yqdpx, zq ` λdpy, zqdpx, zq ` dpx,yqdpy, zqdpx, zq
(cross-product, with λ ą 0 and Impdq P r0,8r)

” λ2dpx,yq ` λ2dpy, zq ` 2λdpx,yqdpy, zq ` dpx,yqdpy, zqdpx, zq ě λ2dpx, zq
(9)

Since d is a distance metric, we have

λ2dpx,yq ` λ2dpy, zq ě λ2dpx, zq (10)

and Impdq P r0,8r, meaning

2λdpx,yqdpy, zq ` dpx,yqdpy, zqdpx, zq ě 0 (11)

By Eq. 10 and 11, the inequality of Eq. 9 holds. Furthermore, the fact that Eq. 8 and 9 are equivalent
yields the result.

Lemma A.7. Let d, dλ as defined above, then (i) dλ ÝÝÝÑ
λÑ0

1‰ and (ii) d, dλ are Lipschitz-equivalent.

Proof. Part (i) is straightforward by definition of dλ. Distances d and dλ are Lispchitz equivalent if
and only if Da, b ą 0 such that @x,y P r0, 1sn,

a ¨ dpx,yq ď dλpx,yq ď b ¨ dpx,yq

”a ¨ dpx,yq ď
dpx,yq

λ` dpx,yq
ď b ¨ dpx,yq

” a ď
1

λ` dpx,yq
ď b

Taking a “ 1
λ`

?
n

and b “ 1
λ yields the result.
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Corollary A.7.1. For all β ě 1{λ, s P S, a P A, s P S, and a P A, we have

1. Wdλ

`

T , ξ̄πθ

˘

ď β ¨Wd

`

T , ξ̄πθ

˘

2. Wdλ

`

ϕιPp¨ | s, aq,Pθp¨ | s, aq
˘

ď β ¨Wd

`

ϕιPp¨ | s, aq,Pθp¨ | s, aq
˘

Proof. By Lipschitz equivalence, taking β ě 1{λ ensures that @n P N, @x,y P r0, 1sn, dλpx,yq ď
β ¨ dpx,yq. Moreover, for any distributions P,Q, Wdλ

pP,Qq ď β ¨ Wd pP,Qq (cf., e.g., [20,
Lemma A.4] for details).

In practice, taking the hyperparameter β ě 1{λ in the W2AE-MDP ensures that minimizing the
β-scaled regularizers w.r.t. d also minimizes the regularizers w.r.t. the λ-relaxation dλ, being the
discrete distribution in the zero-temperature limit. Note that optimizing over two different β1, β2
instead of a unique scale factor β is also a good practice to interpolate between the two regularizers.

B Experiment Details

B.1 Setup

We used TENSORFLOW 2.7.0 [55] to implement the neural network architecture of our W2AE-
MDP , TENSORFLOW PROBABILITY 0.15.0 [57] to handle the probabilistic components of the
latent model (e.g., latent distributions with reparameterization tricks, masked autoregressive flows,
etc.), as well as TF-AGENTS 0.11.0 [59] to handle the RL parts of the framework.

Models have been trained on a cluster running under CentOS Linux 7 (Core) composed of a mix
of nodes containing Intel processors with the following CPU microarchitectures: (i) 10-core INTEL
E5-2680v2, (ii) 14-core INTEL E5-2680v4, and (iii) 20-core INTEL Xeon Gold 6148. We
used 8 cores and 32 GB of memory for each run.

B.2 Stationary Distribution

To sample from the stationary distribution ξπ of episodic learning environments operating under
π P Π, we implemented the recursive ϵ-perturbation trick of [28]. In a nutshell, the reset of the
environment is explicitly added to the state space of M, which is entered at the end of each episode
and left with probability 1´ϵ to start a new one. We also added a special atomic proposition reset into
AP to label this reset state and reason about episodic behaviors. For instance, this allows verifying
whether the agent behaves safely during the entire episode, or if it is able to reach a goal before the
end of the episode.

B.3 Environments with initial distribution

Many environments do not necessarily have a single initial state, but rather an initial distribution
over states dI P ∆pSq. In that case, the results presented in this paper remain unchanged: it suffices
to add a dummy state s‹ to the state space S Y t s‹ u so that sI “ s‹ with the transition dynamics
Pps1 | s‹, aq “ dIps

1q for any action a P A. Therefore, each time the reset of the environment is
triggered, we make the MDP entering the initial state s‹, then transitioning to s1 according to dI .

B.4 Latent space distribution

As pointed out in Sect. 4, posterior collapse is naturally avoided when optimizing W2AE-MDP . To
illustrate that, we report the distribution of latent states produced by ϕι during training (Fig. 5). The
plots reveal that the latent space generated by mapping original states drawn from ξπ during training
to S via ϕι is fairly distributed, for each environment.

B.5 Distance Metrics: state, action, and reward reconstruction

The choice of the distance functions dS , dA, and dR, plays a role in the success of our approach.
The usual Euclidean distance is often a good choice for all the transition components, but the scale,
dimensionality, and nature of the inputs sometimes require using scaled, normalized, or other kinds
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Figure 5: Latent space distribution along training steps. The intensity of the blue hue corresponds to
the frequency of latent states produced by ϕι during training.

Figure 6: Absolute value difference }Vπθ
} reported along training steps.

of distances to allow the network to reconstruct each component. While we did not observe such
requirements in our experiments (where we simply used the Euclidean distance), high dimensional
observations (e.g., images) are an example of data which could require tuning the state-distance
function in such a way, to make sure that the optimization of the reward or action reconstruction will
not be disfavored compared to that of the states.

B.6 Value difference

In addition to reporting the quality guarantees of the model along training steps through local losses
(cf. Figure 4b), our experiments revealed that the absolute value difference }Vπθ

} between the original
and latent models operating under the latent policy quickly decreases and tends to converge to values
in the same range (Figure 6). This is consistent with the fact that minimizing local losses lead to close
behaviors (cf. Eq. 1) and that the value function is Lipschitz-continuous w.r.t. d

„

πθ
(cf. Section 2).

B.7 Remark on formal verification

Recall that our bisimulation guarantees come by construction of the latent space. Essentially, our
learning algorithm spits out a distilled policy and a latent state space which already yields a guaranteed
bisimulation distance between the original MDP and the latent MDP. This is the crux of how we
enable verification techniques like model checking. In particular, bisimulation guarantees mean
that reachability probabilities in the latent MDP compared to those in the original one are close.
Furthermore, the value difference of (omega-regular) properties (formulated through mu-calculus)
obtained in the two models is bounded by this distance (cf. Sect. 2 and [14]).

Reachability is the key ingredient to model-check MDPs. Model-checking properties is in most
cases performed by reduction to the reachability of components or regions of the MDP: it either
consists of (i) iteratively checking the reachability of the parts of the state space satisfying path
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formulae that comprise the specification, through a tree-like decomposition of the latter (e.g., for
(P,R-)CTL properties, cf. [6]), or (ii) checking the reachability to the part of the state space of a
product of the MDP with a memory structure or an automaton that embeds the omega-regular property
— e.g., for LTL [7, 44], LTLf [51], or GLTL [36], among other specification formalisms. The choice
of specification formalism is up to the user and depends on the case study. The scope of this work is
focusing on learning to distill RL policies with bisimulation guarantees so that model checking can
be applied, in order to reason about the behaviors of the agent. That being said, reachability is all we
need to show that model checking can be applied.

B.8 Hyperparameters

W2AE-MDP parameters. All components (e.g., functions or distribution locations and scales, see
Fig. 2) are represented and inferred by neural networks (multilayer perceptrons). All the networks
share the same architecture (i.e., number of layers and neurons per layer). We use a simple uniform
experience replay of size 106 to store the transitions and sample them. The training starts when the
agent has collected 104 transitions in M. We used minibatches of size 128 to optimize the objective
and we applied a minibatch update every time the agent executing π has performed 16 steps in M.
We use the recursive ϵ-perturbation trick of [28] with ϵ “ 3{4: when an episode ends, it restarts
from the initial state with probability 1{4; before re-starting an episode, the time spent in the reset
state labeled with reset follows then the geometric distribution with expectation ϵ{1´ϵ “ 3. We
chose the same latent state-action space size than [16], except for LunarLander that we decreased to
log2

ˇ

ˇS
ˇ

ˇ “ 14 and
ˇ

ˇA
ˇ

ˇ “ 3 to improve the scalability of the verification.

VAE-MDPs parameters. For the comparison of Sect. 4, we used the exact same VAE-MDP hyper-
parameter set as prescribed by [16], except for the state-action space of LunarLander that we also
changed for scalability and fair comparison purpose.2

Hyperparameter search. To evaluate our W2AE-MDP , we realized a search in the parameter space
defined in Table 2. The best parameters found (in terms of trade-off between performance and
latent quality) are reported in Table 3. We used two different optimizers for minimizing the loss
(referred to as the minimizer) and computing the Wasserstein terms (reffered to as the maximizer).
We used ADAM [62] for the two, but we allow for different learning rates ADAMα and exponential
decays ADAMβ1 ,ADAMβ2 . We also found that polynomial decay for ADAMα (e.g., to 10´5 for
4 ¨ 105 steps) is a good practice to stabilize the experiment learning curves, but is not necessary to
obtain high-quality and performing distillation. Concerning the continuous relaxation of discrete
distributions, we used a different temperature for each distribution, as [37] pointed out that doing so
is valuable to improve the results. We further followed the guidelines of [37] to choose the interval of
temperatures and did not schedule any annealing scheme (in contrast to VAE-MDPs). Essentially,
the search reveals that the regularizer scale factors β¨ (defining the optimization direction) as well as
the encoder and latent transition temperatures are important to improve the performance of distilled
policies. For the encoder temperature, we found a nice spot in λϕι

“ 2{3, which provides the best
performance in general, whereas the choice of λPθ

and β¨ are (latent-) environment dependent. The
importance of the temperature parameters for the continuous relaxation of discrete distributions is
consistent with the results of [37], revealing that the success of the relaxation depends on the choice
of the temperature for the different latent space sizes.

Labeling functions. We used the same labeling functions as those described by [16]. For complete-
ness, we recall the labeling function used for each environment in Table 4.

Time to failure properties. Based on the labeling described in Table 4, we formally detail the time
to failure properties checked in Sect. 4 whose results are listed in Table 1 for each environment. Let
Reset “ t reset u “ x0, . . . , 1y (we assume here that the last bit indicates whether the current state is
a reset state or not) and define s |ù L1 ^ L2 iff s |ù L1 and s |ù L2 for any s P S, then

• CartPole: φ “ ␣ResetU Unsafe, where Unsafe “ x1, 1, 0y

• MountainCar: φ “ ␣GoalU Reset, where Goal “ x1, 0, 0, 0y

• Acrobot: φ “ ␣GoalU Reset, where Goal “ x1, 0, . . . , 0y

2The code for conducting the VAE-MDPs experiments is available at https://github.com/
florentdelgrange/vae_mdp (GNU General Public License v3.0).
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Table 2: Hyperparameter search. λX refers to the temperature used for W2AE-MDP component X .

Parameter Range

ADAMα (minimizer) t 0.0001, 0.0002, 0.0003, 0.001 u
ADAMα (maximizer) t 0.0001, 0.0002, 0.0003, 0.001 u
ADAMβ1

t 0, 0.5, 0.9 u
ADAMβ2 t 0.9, 0.999 u
neurons per layer t 64, 128, 256, 512 u
number of hidden layers t 1, 2, 3 u

activation tReLU,Leaky ReLU, tanh, softplusp2x`2q

2 ´ 1 (smooth ELU) u
βWξπ

t 10, 25, 50, 75, 100 u
βLξπ

P
t 10, 25, 50, 75, 100 u

m t 5, 10, 15, 20 u
δ t 10, 20 u
use ε-mimic (cf. [16]) tTrue,False u (if True, a decay rate of 10´5 is used)
λPθ

t 0.1, 1{3, 1{2, 2{3, 3{5, 0.99 u
λϕι t 0.1, 1{3, 1{2, 2{3, 3{5, 0.99 u
λπθ

t 1{|A|´1, 1{p|A|´1q¨1.5 u

λϕA
ι

t 1{|A|´1, 1{p|A|´1q¨1.5 u

Table 3: Final hyperparameters used to evaluate W2AE-MDPs in Sect. 4
CartPole MountainCar Acrobot LunarLander Pendulum

log2
ˇ

ˇS
ˇ

ˇ 9 10 13 14 13
ˇ

ˇA
ˇ

ˇ 2 “ |A| 2 “ |A| 3 “ |A| 3 3
activation tanh ReLU Leaky Relu ReLU ReLU
layers r64, 64, 64s r512, 512s r512, 512s r256s r256, 256, 256s
ADAMα (minimizer) 0.0002 0.0001 0.0002 0.0003 0.0003
ADAMα (maximizer) 0.0002 0.0001 0.0001 0.0003 0.0003
ADAMβ1

0.5 0 0 0 0.5
ADAMβ2

0.999 0.999 0.999 0.999 0.999
βLξπ

P
10 25 10 50 25

βWξπ
75 100 10 100 25

m 5 20 20 15 5
δ 20 10 20 20 10
ε 0 0 0 0 0.5
λPθ

1{3 1{3 0.1 0.75 2{3

λϕι
1{3 2{3 2{3 2{3 2{3

λπθ
2{3 1{3 0.5 0.5 0.5

λϕA
ι

/ / / 1{3 1{3
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Environment S Ď Description, for s P S ℓpsq “ xp1, . . . , pn, presety

CartPole R4

• s1: cart position
• s2: cart velocity
• s3: pole angle (rad)
• s4: pole velocity at tip

• p1 “ 1s1ě1.5: unsafe cart position
• p2 “ 1s3ě0.15: unsafe pole angle

MountainCar R2 • s1: position
• s2: velocity

• p1 “ 1s1ą1.5: target position
• p2 “ 1s1ě´1{2: right-hand side of the mountain
• p3 “ 1s2ě0: car going forward

Acrobot R6

Let θ1, θ2 P r0, 2πs be the angles
of the two rotational joints,
• s1 “ cospθ1q
• s2 “ sinpθ1q
• s3 “ cospθ2q
• s4 “ sinpθ2q
• s5: angular velocity 1
• s6: angular velocity 2

• p1 “ 1´s1´s3¨s1`s4¨s2ą1: RL agent target
• p2 “ 1s1ě0: θ1 P r0, π{2s Y r3π{2, 2πs
• p3 “ 1s2ě0: θ1 P r0, πs
• p4 “ 1s3ě0: θ2 P r0, π{2s Y r3π{2, 2πs
• p5 “ 1s4ě0: θ2 P r0, πs
• p6 “ 1s5ě0: positive angular velocity (1)
• p7 “ 1s6ě0: positive angular velocity (2)

Pendulum R3

Let θ P r0, 2πs be the joint angle
• s1 “ cospθq
• s2 “ sinpθq
• s3: angular velocity

• p1 “ 1s1ěcospπ{3q: safe joint angle
• p2 “ 1s1ě0: θ P r0, π{2s Y r3π{2, 2πs
• p3 “ 1s2ě0: θ P r0, πs
• p4 “ 1s3ě0: positive angular velocity

LunarLander R8

• s1: horizontal coordinates
• s2: vertical coordinates
• s3: horizontal speed
• s4: vertical speed
• s5: ship angle
• s6: angular speed
• s7: left leg contact
• s8: right leg contact

• p1: unsafe angle
• p2: leg ground contact
• p3: lands rapidly
• p4: left inclination
• p5: right inclination
• p6: motors shut down

Table 4: Labeling functions for the OpenAI environments considered in our experiments [16]. We
provide a short description of the state space and the meaning of each atomic proposition. Recall that
labels are binary encoded, for n “ |AP| ´ 1 (one bit is reserved for reset) and preset “ 1 iff s is a
reset state (cf. Appendix B.2).

• LunarLander: φ “ ␣SafeLandingU Reset, where SafeLanding “ GroundContact ^
MotorsOff, GroundContact “ x0, 1, 0, 0, 0, 0, 0y, and MotorsOff “ x0, 0, 0, 0, 0, 1, 0y

• Pendulum: φ “ ♢p␣Safe^⃝Resetq, where Safe “ x1, 0, 0, 0, 0y, ♢T “ ␣HU T, and
si |ù ⃝T iff si`1 |ù T, for any T Ď AP, si:8, ai:8 P Traj . Intuitively, φ denotes the
event of ending an episode in an unsafe state, just before resetting the environment, which
means that either the agent never reached the safe region or it reached and left it at some
point. Formally, φ “ t s0:8, a0:8 | Di P N, si |ù Safe ^ si`1 |ù Reset u Ď Traj .

C On the curse of Variational Modeling

Posterior collapse is a well known issue occurring in variational models (see, e.g., [2, 47, 60, 58])
which intuitively results in a degenerate local optimum where the model learns to ignore the latent
space and use only the reconstruction functions (i.e., the decoding distribution) to optimize the
objective. VAE-MDPs are no exception, as pointed out in the original paper (16, Section 4.3 and
Appendix C.2).

Formally, VAE- and WAE-MDPs optimize their objective by minimizing two losses: a reconstruction
cost plus a regularizer term which penalizes a discrepancy between the encoding distribution and
the dynamics of the latent space model. In VAE-MDPs, the former corresponds to the the distortion,
and the later to the rate of the variational model (further details are given in [2, 16]), while in our
WAE-MDPs, the former corresponds to the raw transition distance and the later to both the steady-
state and transition regularizers. Notably, the rate minimization of VAE-MDPs involves regularizing
a stochastic embedding function ϕιp¨ | sq point-wise, i.e., for all different input states s P S drawn
from the interaction with the original environment. In contrast, the latent space regularization of the
WAE-MDP involves the marginal embedding distribution Qι where the embedding function ϕι is
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Figure 7: Comparison of the VAE-MDP in the CartPole environment (i) when the distortion and the
rate are minimized as is (vanilla model) and (ii) when it makes use of annealing schemes, entropy
regularization, and prioritized experience replay to avoid posterior collapse (cf. [16]). While the
former clearly fails to learn a useful latent representation, the later does so meticulously and smoothly
in two distinguishable phases: first, ϕι focuses on fairly distributing the latent space, setting up the
stage to the concrete optimization occurring from step 4 ¨ 105, where the entropy of ϕι is lowered,
which allows to get the rate of the variational model away from zero. Five instances of the models
are trained with different random seeds, with the same hyperparameters than in Sect. 4.

not required to be stochastic. [2] showed that posterior collapse occurs in VAEs when the rate of the
variational model is close to zero, leading to low-quality representation.

Posterior collapse in VAE-MDPs. We illustrate the sensitivity of VAE-MDPs to the posterior
collapse problem in Fig. 7, through the CartPole environment3: minimizing the distortion and the
rate as is yields an embedding function which maps deterministically every input state to the same
sink latent state (cf. Fig. 7a). Precisely, there is a latent state s P S so that ϕιps | sq « 1 and
Pθps | s, aq « 1 whatever the state s P S and action a P A. This is a form of posterior collapse,
the resulting rate quickly drops to zero (cf. Fig 7b), and the resulting latent representation yields no
information at all. This phenomenon is handled in VAE-MDPs by using (i) prioritized replay buffers
that allow to focus on inputs that led to bad representation, and (ii) modifying the objective function
for learning the latent space model — the so-called evidence lower bound [27, 32], or ELBO for
short — and set up annealing schemes to eventually recover the ELBO at the end of the training
process. Consequently, the resulting learning procedure focuses primarily on fairly distributing the
latent space, to avoid it to collapse to a single latent state, to the detriment of learning the dynamics
of the environment and the distillation of the RL policy. Then, the annealing scheme allows to
make the model learn to finally smoothly use the latent space to maximize the ELBO, and achieve
consequently a lower distortion at the “price” of a higher rate.

Impact of the resulting learning procedure. The aforementioned annealing process, used to avoid
that every state collapses to the same representation, possibly induces a high entropy embedding

3In fact, the phenomenon of collapsing to few state occurs for all the environments considered in this paper
when their prioritized experience replay is not used, as illustrated in 16, Appendix C.2.

25



function (Fig. 7d), which further complicates the learning of the model dynamics and the distillation
in the first stage of the training process. In fact, in this particular case, one can observe that the
entropy reaches its maximal value, which yields a fully random state embedding function. Recall
that the VAE-MDP latent space is learned through independent Bernoulli distributions. Fig. 7d
reports values centered around 4.188 in the first training phase, which corresponds to the entropy
of the state embedding function when ϕιp¨ | sq is uniformly distributed over S for any state s P S:

Hpϕιp¨ | sqq “
řlog2|S|´|AP|“6

i“0 ´pi log pi ´ p1´ piq logp1´ piq “ 4.188, where pi “ 1{2 for all
i. The rate (Fig. 7b) drops to zero since the divergence pulls the latent dynamics towards this high
entropy (yet another form of posterior collapse), which hinders the latent space model to learn a
useful representation. However, the annealing scheme increases the rate importance along training
steps, which enables the optimization to eventually leave this local optimum (here around 4 ¨ 105

training steps). This allows the learning procedure to leave the zero-rate spot, reduce the distortion
(Fig. 7c), and finally distill the original policy (Fig. 7e).

As a result, the whole engineering required to mitigate posterior collapse slows down the training
procedure. This phenomenon is reflected in Fig. 4: VAE-MDPs need several steps to stabilize and set
up the stage to the concrete optimization, whereas WAE-MDPs have no such requirements since they
naturally do not suffer from collapsing issues (cf. Fig. 5), and are consequently faster to train.

Lack of representation guarantees. On the theoretical side, since VAE-MDPs are optimized via
the ELBO and the local losses via the related variational proxies, VAE-MDPs do not leverage the
representation quality guarantees induced by local losses (Eq. 1) during the learning procedure (as
explicitly pointed out by 16, Sect. 4.1.): in contrast to WAE-MDPs, when two original states are
embedded to the same latent, abstract state, the former are not guaranteed to be bisimilarly close (i.e.,
the agent is not guaranteed to behave the same way from those two states by executing the policy),
meaning those proxies do not prevent original states having distant values collapsing together to the
same latent representation.

Index of Notations

1rconds indicator function: 1 if the statement [cond] is true, and 0 otherwise

Fd Set of 1-Lipschitz functions w.r.t. the distance metric d

σ Sigmoid function, with σpxq “ 1{1`expp´xq

fθ A function fθ : X Ñ R modeled by a neural network, parameterized by θ, where X is any
measurable set

Latent Space Model
M “

@

S,A,P,R, ℓ,AP, sI
D

Latent MDP with state space S , action space A, reward function R,
labeling function ℓ, atomic proposition space AP, and initial state sI .

@

M, ϕ, ψ
D

Latent space model of M

a Latent action in A
π Latent policy π : S Ñ A; can be executed in M via ϕ: πp¨ | ϕpsqq

dS Distance metric over S

ϕ State embedding function, from S to S
ψ Action embedding function, from S ˆA to A
ϕP Distribution of drawing s1 „ Pp¨ | s, aq, then embedding s1 “ ϕps1q, for any state s P S and

action a P A
Lξ
R Local reward loss under distribution ξ

Lξ
P Local transition loss under distribution ξ

Π Set of (memoryless) latent policies

s Latent state in S
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V
¨

π Latent value function
Markov Decision Processes
M “ xS,A,P,R, ℓ,AP, sI y MDP M with state space S, action space A, transition function P,

labeling function ℓ, atomic proposition space AP, and initial state sI .
a Action in A
d
„

π Bisimulation pseudometric
γ Discount factor in r0, 1s
dA Metric over the action space
dR Metric over ImpRq
dS Metric over the state space

ξtπ Limiting distribution of the MDP defined as ξtπps
1 | sq “ PMs

π

`

t s0:8, a0:8 | st “ s1 u
˘

, for
any source state s P S

Π Set of memoryless policies of M
π Memoryless policy π : S Ñ ∆pAq
PM
π Unique probability measure induced by the policy π in M on the Borel σ-algebra over

measurable subsets of Traj
CU T Constrained reachability event
Ms MDP obtained by replacing the initial state of M by s P S
s State in S
ξπ Stationary distribution of M induced by the policy π

d⃗ Raw transition distance, i.e., metric over S ˆAˆ ImpRq ˆ S
Traj Set of infinite trajectories of M
τ “ xs0:T , a0:T´1y Trajectory

V ¨
π Value function for the policy π

Probability / Measure Theory
D Discrepancy measure; DpP,Qq is the discrepancy between distributions P,Q P ∆pX q
∆pX q Set of measures over a complete, separable metric space X
Logisticpµ, sq Logistic distribution with location parameter µ and scale parameter s
Wd Wasserstein distance w.r.t. the metric d; Wd pP,Qq is the Wasserstein distance between

distributions P,Q P ∆pX q
Wasserstein Auto-encoded MDP

ξθ Behavioral model: distribution over S ˆAˆ ImpRq ˆ S
Gθ Mapping xs, a, s1y ÞÑ

@

Gθpsq, ψθps, aq,Rθps, aq,Gθps
1q

D

ϕAι Action encoder mapping S ˆA to ∆
`

A
˘

Gθ State-wise decoder, from S to S
Qι Marginal encoding distribution over S ˆAˆ S : Es,a,s1„ξπ ϕιp¨ | s, a, s

1q

ξ̄πθ
Stationary distribution of the latent model Mθ, parameterized by θ

Wξπ Steady-state regularizer

φξ
ω Steady-state Lipschitz network

λ Temperature parameter
T Distribution of drawing state-action pairs from interacting with M, embedding them to

the latent spaces, and finally letting them transition to their successor state in Mθ, in
∆

`

S ˆAˆ S
˘

φP
ω Transition Lipschitz network
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