
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

META-UCF: UNIFIED TASK-CONDITIONED LORA GEN-
ERATION FOR CONTINUAL LEARNING IN LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models are increasingly deployed in settings where new tasks arrive con-
tinuously, yet existing parameter-efficient finetuning (PEFT) methods either bloat linearly
with the task horizon or sacrifice deep adaptation, leaving catastrophic forgetting unre-
solved. We aim to achieve memory-constant, on-the-fly adaptation for a frozen LLM fac-
ing an unbounded stream of tasks. To this end we propose Meta-Unified Contrastive Fine-
tuning(META-UCF), which encodes each task into a lightweight layer-normalised mean
embedding and feeds it to a single hypernetwork that instantly generates rank-r LoRA up-
dates for every transformer layer; a meta-contrastive coupled with orthogonality objective
further steers task embeddings into near-orthogonal directions, preserving past knowl-
edge without inner-loop gradients. On four benchmark streams—Std-CL 5, Seq-GLUE 7,
Long-CL 15 and TRACE-8—Meta-UCF raises average accuracy by up to 2.2 pp and cuts
forgetting by 13 % relative to the strongest LoRA baseline, while using the parameters
of a single adapter. By decoupling continual learning from parameter growth, Meta-UCF
provides a practical path toward scalable, low-resource lifelong language modelling.

1 INTRODUCTION

I'm
learning

new
knowledge

learned learning

Finetunes LLMs on
a stream of tasks

sequence

fine-tuning

I'm
learning

new
knowledge

review

review

To much
adapters to

learn

I ONLY learn
a single
shared

hypernetwork

fine-tuning

Existing LoRA-CL Methods

Meta-UCF(ours)
Figure 1: Existing approaches keep adding a
separate adapter for every new task. Meta-
UCF instead trains one shared hypernet-
work that, from a task embedding, gener-
ates the required low-rank update on the
fly—eliminating linear parameter growth.

Large language models (LLMs) underpin modern NLP sys-
tems yet remain costly to personalise for the continually
growing set of downstream tasks demanded by real appli-
cations (chat assistants, retrieval, code completion) (Zhu
et al., 2024; Kamath et al., 2024). Updating a multi-billion-
parameter backbone after each task is prohibitive in com-
pute, storage and energy (Ding & Shi, 2024; Jegham et al.,
2025); nevertheless, accurate and rapid adaptation without
forgetting previous skills is crucial for life-long AI agents
deployed at scale(Fawi, 2024; Liao et al., 2024).

Recent parameter-efficient finetuning (PEFT) tech-
niques—adapters, prefixes and, most notably,
LoRA—shrink per-task overhead from full weights
to a few percent (Hu et al., 2022; Houlsby et al., 2019; Li
& Liang, 2021). However, when tasks arrive sequentially
existing variants allocate one static slot per task (Wang
et al., 2023; Tiwari et al., 2025; Yang et al., 2025), so
model size still grows linearly with the horizon and

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

subspace scheduling becomes brittle. Prompt-retrieval methods (Wang et al., 2022; Song et al., 2023; Bohao
et al., 2024) avoid weight growth but leave the backbone frozen, limiting reasoning transfer.

This work probes a deeper gap in PEFT: current methods treat each incoming task as an isolated patch—they
either allocate a new low-rank slot or attach a prompt, leaving the backbone untouched—yet offer no mech-
anism to re-organise the knowledge already stored as the task stream grows. Consequently, model size
expands linearly, and task interference is addressed post-hoc with orthogonality heuristics (Wang et al.,
2023; Tiwari et al., 2025).

We close this gap by reframing sequential PEFT as a generative problem, and propose Meta–Unified Con-
trastive Fine-Tuning (META-UCF). Our key idea is to encode every task into a compact layer-normalised
mean vector and feed it to a single hypernetwork that generates rank-r LoRA updates for all transformer lay-
ers on the fly(Figure 1). A meta-contrastive objective pushes task embeddings towards near-orthogonality,
while a lightweight orthogonality penalty prevents their generated directions from collapsing. Thus a frozen
LLM remains both plastic—via instant, conditioned updates—and stable—because only the hypernetwork
learns and its memory footprint is constant.

Our contributions are threefold: (i) We introduce a task-conditioned LoRA hypernetwork with an
orthogonality-aware meta objective that eliminates linear parameter growth. (ii) We prove expressivity
bounds for low-rank hypernetworks and a PAC-Bayes generalisation bound over task streams. (iii) Meta-
UCF achieves new state-of-the-art accuracy and forgetting on four benchmarks while using a constant-sized
model; ablations reveal robust accuracy–latency trade-offs.

2 RELATED WORKS

Parameter-efficient adaptation. Early adapter modules (Houlsby et al., 2019) and prefix/p-tuning (Li &
Liang, 2021; Liu et al., 2021) reduce finetuning cost by inserting tiny task-specific weights. LoRA pushes
this idea further by applying low-rank updates directly to attention and FFN matrices (Hu et al., 2022). A
recent surge of LoRA variants targets continual scenarios: O-LoRA orthogonalises task subspaces to curb
interference(Wang et al., 2023), N-LoRA re-parameterises updates to avoid collision(Yang et al., 2025),
while GRID (Tiwari et al., 2025) and Adaptive-SVD (Nayak et al., 2025) compress adapter banks under
a shared orthonormal basis. Despite strong empirical gains, these methods allocate a static slot per task,
leaving memory proportional to the task horizon and requiring manual scheduling of subspaces. META-
UCF replaces the slot bank with a single hypernetwork that generates LoRA factors on demand, retaining
the footprint of a single task regardless of stream length.

Continual learning for language models. Classical replay and regularisation ideas (e.g. EWC(Kirkpatrick
et al., 2017), GEM(Lopez-Paz & Ranzato, 2017), LwF(Li & Hoiem, 2017)) have been ported to transformers
but scale poorly when the backbone exceeds billions of parameters. Prompt-based approaches, such as
ProgPrompt and L2P(Wang et al., 2022), store small textual or embedding prompts in a memory bank;
ConPET (Song et al., 2023), JARe(Bohao et al., 2024) and Continual-T0(Scialom et al., 2022) couple such
prompts with contrastive objectives. Yet these frameworks depend on explicit prompt retrieval at inference
time and cannot modify deeper representations, limiting accuracy on reasoning-heavy streams. Meta-UCF
instead learns a compact task embedding that drives low-rank updates throughout the network, yielding
stronger plasticity while preserving frozen parameters.

3 METHOD

Meta–Unified Contrastive Fine-Tuning (Meta-UCF) tackles the continual-learning setting in which a
stream of tasks {T1, T2, . . . } arrives sequentially and the backbone model must adapt without retaining a
separate adapter for each task. Meta-UCF equips a frozen LLM backbone with a single hyper-network that

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

generates low-rank LoRA updates on the fly, conditioned on a compact task embedding constructed from
a small replay buffer. Figure 2 illustrates the training flow: a support set drawn from replay memory is
encoded by the frozen backbone and averaged to obtain a task embedding ek; this embedding is fed to
the shared hyper-network gΦ, which instantly generates rank-r LoRA factors for every transformer layer;
the backbone augmented with these factors processes the current task’s query batch, and the joint task,
orthogonality, contrastive, and bias losses back-propagate to update Φ alone, leaving the backbone weights
unchanged.

Pretrained
Backbone

LoRAU
pdate

Incoming
task ��

Previous �1、�2. . .

Sampling

Task
Embedding ek

Support
Set

Query
Set

frozen backbone

Meta-Conditioned

Parameter

Generator

Prediction

Overall Loss�풕풂���풐��
�풄풕� ��

feedforward learning processloss calc.

Backprop

infer

trainable frozen

Figure 2: Meta-UCF pipeline: a support set from memory yields the task embedding ek, the generator gΦ
produces LoRA updates (Al,Bl) for the frozen backbone, and the current task’s query batch drives losses
{Ltask,Lorth,Lctr, Rk} whose gradient updates only the generator.

3.1 TASK EMBEDDING ACQUISITION

A task embedding ek should (i) summarise the latent structure of the current task Tk, (ii) be stable under
mini-batch sampling noise, (iii) remain parameter-free so that it can be computed on-the-fly at deployment
time, and (iv) live in the same representation space as the backbone so that geometric notions (e.g. cosine
similarity) are meaningful. Formally, let the frozen backbone be a function fΘ0

: X → Rd that maps an
input x ∈ X to its CLS hidden state h = fΘ0

(x). Given a support set Sk = {xs}Sk
s=1, we would like

ek=Pool
(
{hs}Sk

s=1

)
to satisfy

sim
(
ei, ej

)
≈ δij with sim(a,b) =

a⊤b

∥a∥ ∥b∥
, (1)

so that task embeddings are approximately orthogonal across different tasks.

Layer-normalised mean pooling. A simple yet powerful choice is the layer-normalised mean:

ek = LN
(1

Sk

Sk∑
s=1

hs

)
, hs = fΘ0

(xs), (2)

where LN denotes layer normalisation acting on the feature dimension. equation 2 enjoys three favourable
properties:

1. Unbiasedness. Let µk = Ex∼Pk
[fΘ0(x)] be the true task mean under the episode distribution Pk.

Then E[ek]=LN(µk).

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

2. Variance decay. If Cov[hs]=Σk, then Cov
[

1
Sk

∑
s hs

]
= 1

Sk
Σk, i.e. the variance shrinks at a rate

O(S−1
k).

3. Scale equivariance. Layer normalisation removes arbitrary feature-wise scale, making ek insensi-
tive to backbone re-scaling that may occur during pre-training.

equation 2 can be interpreted as the first-order term in a Fisher-kernel expansion. Writing ℓ(x;Θ0) for the
log-likelihood of x under the frozen model, the Fisher score is g(x) =∇Θℓ(x;Θ)

∣∣
Θ=Θ0

. Under a lineari-
sation of the backbone, g(x) is proportional to the hidden state h, hence the average ḡk = 1

Sk

∑
s g(xs)

yields the same embedding as equation 2 up to a constant. From classical theory,

K(ei, ej) = ḡ⊤iF
−1ḡj , (3)

with F the Fisher information matrix, is a kernel that measures task similarity.

Streaming update. During continual training the support set grows; we therefore maintain exponential-
moving-average (EMA) estimates:

e
(t)
k = LN

(
(1− ρ) e

(t−1)
k + ρ h̄(t)

)
, h̄(t) =

1

|Bt|
∑
x∈Bt

fΘ0(x),

with decay ρ∈(0, 1) and mini-batch Bt drawn from Sk, yielding O(d) memory overhead irrespective of Sk.

Distance-preserving normalisation. Finally, note that applying LN followed by ℓ2-normalisation projects
all embeddings onto the unit hypersphere, so that

sim(ei, ej) = 1− 1
2 ∥ei − ej∥22, (4)

showing that Euclidean distance and cosine similarity coincide—a useful property for contrastive objectives.

3.2 META-CONDITIONED PARAMETER GENERATOR

The core challenge in continual learning is to avoid linear growth in the number of trainable parameters as
new tasks arrive. Meta-UCF therefore replaces a bank of per-task adapters with a single hyper-network gΦ
that synthesises LoRA updates for every Transformer layer on demand.

Generator architecture. Let ek ∈ Rd be the task embedding from § 3.1. We first compute a task code
zk = MLPtask(ek) ∈ Rh, h < d, using a two-layer MLP with GELU activation. For each layer index
l we retrieve a learned positional embedding pl ∈ Rh and concatenate: z̃k,l = [zk;pl]. Two low-rank
projection heads then generate LoRA factors(

Al,Bl

)
=

(
reshaped×r

(
WAz̃k,l

)
, reshaper×d

(
WB z̃k,l

))
, (5)

where WA,WB∈Rdr×2h are shared across layers.1

LoRA injection. Given the base weight Wl∈Rd×d of layer l, the generator applies a rank-r update

W
(k)
l = Wl + αBl

(
ek;Φ

)
Al

(
ek;Φ

)
, α = 1

r . (6)

The scaling α follows LoRA convention so that the update norm remains comparable across different ranks.

Complexity analysis. The generator’s parameters decompose as |Φ| = |MLPtask|+2hL+2hdr, yielding
total computational cost O

(
|Φ|+ Ldr

)
per forward pass—independent of the number of tasks K.

1Sharing WA,WB keeps |Φ| sub-linear in L while allowing layer-specific outputs via pl.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

3.3 META OBJECTIVE

For each episodic task Tk we draw disjoint support Sk and query Qk sets. All losses are evaluated on Qk

after a single hyper-network forward pass conditioned on Sk. Concretely, in a single meta-training step
we first sample a meta-batch of K tasks and, for each task Tk, draw disjoint support Sk and query Qk.
The frozen backbone encodes each support example x ∈ Sk into a CLS vector hs ∈ Rd, which is layer-
normalised and averaged to produce the task embedding ek ∈ Rd defined in §3.1. The generator then maps
ek to a lower-dimensional code zk ∈ Rh, combines it with the layer embedding pℓ, and outputs rank-r
LoRA factors Aℓ ∈ Rd×r and Bℓ ∈ Rr×d for every Transformer layer. These factors are injected into the
backbone, which is run once on the query batch Qk to obtain predictions and query CLS states; stacking
the latter forms Hk ∈ R|Qk|×d, on which the task loss L(k)

task, the orthogonality penalty Lorth, and the bias
regulariser Rk are computed. In parallel, the set of task embeddings {ek}Kk=1 is fed to the contrastive loss
Lctr defined below. A single backward pass through this graph updates only the generator parameters Φ,
while the backbone parameters and layer-normalisation statistics remain frozen.

Task Accuracy.
L(k)
task =

1

|Qk|
∑

(x,y)∈Qk

ℓ
(
fΘ0,∆(ek)(x), y

)
. (7)

This is the standard supervised objective that drives the generated adapters to fit the labels of each episode,
providing the “plasticity” needed to acquire new tasks.

Orthogonality Penalty. Let Hk∈R|Qk|×d stack each query’s CLS state. Define the pair-wise Frobenius
overlap

Ωij :=
1

|Qi| |Qj |
∥∥H⊤

i Hj

∥∥
F
, (8)

and set
Lorth =

∑
i<j

Ω 2
ij . (9)

Intuitively, Hk collects the d-dimensional query representations for task Tk, and Ωij measures how much
the subspaces spanned by Hi and Hj overlap; penalising Ω2

ij discourages different tasks from sharing the
same dominant directions, improving stability by reducing cross-task interference in the adapted backbone.

Meta-Contrastive Separation. With task embeddings zk := ek, the InfoNCE loss is

Lctr = −
1

K

K∑
k=1

log
exp

(
sim(zk, z

+
k)/τ

)∑
j ̸=k

exp
(
sim(zk, zj)/τ

) , (10)

where sim(a,b) = a⊤b/(∥a∥ ∥b∥), τ is a temperature, and z+k denotes the embedding of an independent
support minibatch S+k drawn from the same task Tk as Sk, computed with the same frozen backbone and
layer-normalised mean pooling. In other words, (zk, z+k) form two IID “views” of the same task distribu-
tion, giving a simple task-level data augmentation without introducing extra trainable modules. Once the
embeddings are ℓ2-normalised, maximising the InfoNCE objective over cosine similarities enforces angu-
lar separation between tasks on the unit hypersphere, a standard and numerically stable choice in meta-
contrastive learning. In Meta-UCF, Lctr shapes this input geometry of the generator by keeping task codes
nearly orthogonal, while Lorth regularises the output geometry of the adapted backbone by discouraging
overlap between the query subspaces Hi and Hj ; the two regularisers therefore operate at complementary
levels to balance plasticity and stability.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

Dynamic Bias Calibration. For a binary sensitive attribute g∈{0, 1}, the demographic-parity gap is

Rk =
∣∣∣Ex∼P (x | g=0,Tk)fΘ0,∆(ek)(x)

− Ex∼P (x | g=1,Tk)fΘ0,∆(ek)(x)
∣∣∣. (11)

Gradients w.r.t. the generator parameters Φ are scaled by σ(−βRk), where σ is the sigmoid and β > 0 a
sensitivity hyper-parameter.

Overall Loss.

Lmeta =

K∑
k=1

(
L(k)
task + λoLorth + λcLctr + λbRk

)
. (12)

Thus Lmeta remains a simple episodic objective: for each task, the supervised loss encourages adaptation,
the orthogonality and contrastive terms regularise the geometry of task codes and representations, and the
bias term gates updates based on the demographic-parity gap.

Outer-Loop Optimisation We employ a first-order MAML variant with zero inner-loop gradient steps.
At each iteration we (a) sample a batch of tasks, (b) construct Sk,Qk for each, (c) compute Lmeta, and
(d) update Φ via AdamW. Backbone parameters Θ0 and layer-norm statistics remain frozen.

Inference During deployment, a small support set (S ≤ 16) from a previously unseen task is enough to
produce enew and hence ∆(enew) without optimisation. The frozen backbone combined with the generated
adapters executes the downstream prediction, enabling one-model-for-all-tasks operation with negligible
memory overhead.

For the complete implementation pseudocode of Meta-UCF, please refer to Algorithm 1 and Algorithm 2 in
Appendix B.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Benchmarks. Following prior work in continual LoRA fine-tuning, we evaluate Meta-UCF on four se-
quential task streams: (i) Std-CL 5, the de-facto five-task text-classification suite (AG News→ Amazon→
Yelp→ DBpedia→ Yahoo); (ii) Seq-GLUE 7, the canonical GLUE progression (CoLA→ SST-2→MRPC
→ QQP→ QNLI→ RTE→ MNLI) that stresses NLU transfer; (iii) Long-CL 15, an extended fifteen-task
stream that augments Std-CL 5 with four GLUE, five SuperGLUE and IMDb datasets and is released in three
official orders; (iv) TRACE-8, a recent eight-task benchmark spanning domain-specific QA, multilingual
understanding, code completion and mathematical reasoning. All datasets are converted into the SEQ2SEQ
instruction format of Qin et al. (2024), and detailed statistics are provided in Appendix.

Evaluation Protocol. We report the standard continual-learning metrics: Average Accuracy (AA), Forget-
ting Ratio (F.R.), and Backward Transfer (BWT). For datasets with multiple metrics (e.g. accuracy & F1)
we follow GRID (Tiwari et al., 2025) and average them into a single score. All results are averaged over
three random seeds.

Baselines. We compare Meta-UCF with three baseline families: (i) Adapter subspace — Vanilla LoRA(Hu
et al., 2022), O-LoRA(Wang et al., 2023), ConPET (Song et al., 2023), JARe(Bohao et al., 2024), OA-
Adapter (Wan et al., 2025), GRID (Tiwari et al., 2025), Adaptive SVD (Wan et al., 2025), N-LoRA(Yang
et al., 2025); (ii) Prompt-retrieval — ProgPrompt (Razdaibiedina et al., 2023), L2P(Wang et al., 2022),

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Table 1: Overall comparison. Darker shading indicates better performance.

Method Std-CL 5 Long-CL 15 Seq-GLUE 7 TRACE-8

Vanilla LoRA 78.3 61.4 75.9 55.6
O-LoRA 80.1 63.2 76.8 57.3
JARe 81.7 64.1 78.1 58.5
GRID 83.2 66.7 79.7 60.1
Adaptive SVD 82.9 67.3 79.3 60.3
N-LoRA 83.5 68.1 80.2 61.0

ProgPrompt 78.8 60.2 74.6 54.1
L2P 80.0 62.0 75.8 56.0
LFPT5 81.2 63.5 77.0 57.2

EWC-LoRA 79.0 61.0 75.5 55.0
Replay-LoRA 80.5 63.8 77.1 57.9
Continual-T0 81.5 64.0 77.5 58.0

META-UCF (r=8, All) 85.2 70.4 82.4 63.2
META-UCF (r=8, Top-Half) 84.9 70.1 82.1 62.9
META-UCF (r=4, All) 84.3 69.0 81.6 62.0

(a) Average Accuracy (%, ↑). The two Meta-UCF
variants use fewer adapted parameters or layers under
comparable budgets.

Forgetting Ratio Backward Transfer

Method Std-5 Long-15 GLUE-7 TRACE-8 Std-5 Long-15 GLUE-7 TRACE-8

Vanilla LoRA 12.5 18.3 10.9 21.2 −1.8 −4.2 −1.3 −5.5
O-LoRA 10.4 16.0 9.8 19.5 −1.2 −3.5 −1.0 −4.8
ConPET 11.1 17.2 10.2 20.1 −1.4 −3.8 −1.1 −5.0
JARe 9.8 15.1 8.9 18.0 −1.0 −3.0 −0.8 −4.2
OA-Adapter 8.7 14.2 8.3 17.1 −0.7 −2.7 −0.6 −3.8
GRID 7.9 13.6 7.6 16.4 −0.5 −2.4 −0.4 −3.5
Adaptive SVD 7.5 13.0 7.4 15.9 −0.4 −2.2 −0.3 −3.3
N-LoRA 7.1 12.4 7.1 15.5 −0.3 −2.0 −0.2 −3.1

ProgPrompt 13.2 19.0 11.5 22.3 −2.0 −4.5 −1.5 −6.0
L2P 11.0 17.6 10.0 19.7 −1.5 −4.0 −1.2 −5.3
LFPT5 10.2 16.9 9.3 18.9 −1.3 −3.6 −1.0 −4.9

EWC-LoRA 12.0 18.0 11.0 21.0 −1.9 −4.3 −1.4 −5.6
Replay-LoRA 9.3 15.0 8.5 18.2 −1.1 −3.1 −0.9 −4.3
Continual-T0 9.0 14.7 8.2 17.8 −1.0 −3.0 −0.8 −4.1

META-UCF 6.2 11.5 6.3 14.2 0.2 −1.5 0.1 −2.5

(b) Forgetting Ratio (%, ↓) and Backward Transfer (BWT,
↑). Lower FR and higher BWT indicate better stability.

LFPT5(Qin & Joty, 2022); (iii) Memory / regularisation — EWC-LoRA (Xiang et al., 2023), Replay-
LoRA(Pillai, 2025), Continual-T0 (CT0)(Scialom et al., 2022).

Backbone Models. We consider four recent 7–13B checkpoints: LLAMA-3-8B, QWEN-1.5-7B,
DEEPSEEK-7B, and MISTRAL-7B. rank-r = 8 LoRA adapters are inserted into every qkv and MLP pro-
jection.

Optimisation Details. Unless noted, we train each task for a single epoch with AdamW (β1,2=0.9, 0.98),
learning-rate 3×10−5, batch 64, sequence length 512, and weight-decay 0.01. Meta-UCF regulariser weights
are fixed across streams: λo=0.5, λc=1.0, λb=0.1, bias sensitivity β=4, EMA decay ρ=0.2, and support
size Sk = 32. All runs fit on a single NVIDIA A100 80G; Long-CL 15 uses ZeRO-2 across four GPUs to
keep wall-clock under 24 h.

4.2 MAIN RESULTS

The results in Table 1a show that META-UCF delivers the highest average accuracy on all four streams,
improving over the strongest prior baseline (N-LoRA) by +1.7,pp on STD-CL 5 and +2.2,pp on the het-
erogeneous TRACE-8. Table 1b further indicates that Meta-UCF not only reduces forgetting to a new
low (e.g., 6.2% on STD-CL 5) but also turns backward transfer nearly neutral or mildly positive, whereas
all competing methods remain negative. Together, these gains confirm that task-conditioned LoRA gen-
eration—combined with orthogonality and bias-aware meta objectives—yields both superior accuracy and
markedly improved stability across short, long, and domain-diverse continual-learning streams. To ensure
that the gains on heterogeneous streams are not driven by a single domain, we also compute per-task AA
gaps between Meta-UCF and N-LoRA on Long-CL 15 and TRACE-8, which are reported in Appendix D.2.

To test the zero-shot performance of the Meta-UCF method, we follow the O-LoRA(Wang et al., 2023)
protocol: first, we instruction-tune LLaMA-7B on the ALPACA dataset using rank-8 LoRA, and then per-
form continual training on the STD-CL 5 (order 1) stream. As Table 2a shows, META-UCF attains the
highest downstream accuracy (80.5%), surpassing the strongest baseline Alpaca-O-LoRA-CL by +3.7 pp.
Crucially, it does so without sacrificing generalisation: the zero-shot MMLU score rises to 36.2%, close
to the single-task Alpaca-LoRA (37.5%) and considerably above all prior continual variants. These results
confirm that task-conditioned LoRA generation preserves the general knowledge acquired during Alpaca
pre-tuning while providing superior resistance to catastrophic forgetting on subsequent tasks.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Table 2: Combined results. Left: Alpaca pre-tuning effects on MMLU and Std-CL 5. Right: single-factor ablations of
META-UCF on Std-CL 5 and Long-CL 15.

Method MMLU ↑ Std-CL 5 ↑

w/o CL
LLaMA-7B 34.4 —
Alpaca-LoRA 37.5 —

Alpaca-LoRA-CL 23.3 46.7
Alpaca-inc-LoRA-CL 28.6 33.1
Alpaca-OLoRA-CL 33.6 76.8

Alpaca-Meta-UCF-CL 36.2 80.5
(a) Zero-shot MMLU and downstream Std-CL 5 accu-
racy after Alpaca pre-tuning.

Variant Std-CL 5 Long-CL 15

Acc. ↑ FR ↓ Acc. ↑ FR ↓
Full Meta-UCF 85.2 6.2 70.4 11.5

w/o Lorth 83.9 7.8 68.5 13.2
w/o Lctr 84.1 7.2 68.9 12.7
w/o bias calibration 84.6 6.9 69.4 12.0
CLS mean → last CLS 82.1 9.5 66.3 15.1
static LoRA (no generator) 80.3 11.1 64.9 17.0

(b) Single-factor ablations of META-UCF.

4.3 ABLATION STUDY

To isolate the impact of each design component, we conduct single-factor ablations on the two representative
streams—STD-CL 5 and LONG-CL 15. As shown in Table 2b, removing Lorth or Lctr lowers accuracy by
1.1–1.9 pp and adds ≈1.5 pp forgetting, evidencing their joint role in drift control. Bias calibration is less
critical but still helps, especially on longer streams. Replacing the mean-pooled embedding with a single
CLS vector costs 3.1 pp on STD-CL 5, and using a fixed LoRA slot hurts both metrics most, underscoring
the need for task-conditioned generation.

4.4 SENSITIVITY ANALYSIS

5 10 15
Value

70

75

80

85

A
cc

ur
ac

y
(%

)

LoRA Rank (r)

20 40 60
Value

70

75

80

85

Support Size (S)

0.0 0.5 1.0
Value

70

75

80

85

Orth. Weight ()

0 1 2
Value

70

75

80

85

Contr. Weight (c)

0.1 0.2 0.3 0.4
Value

70.0

72.5

75.0

77.5

80.0

82.5

85.0

A
cc

ur
ac

y
(%

)

EMA Decay ()

0.05 0.10 0.15 0.20
Value

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Temperature ()

2 4 6 8
Value

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Bias-Scale ()

Std-CL 5 Acc. Long-CL 15 Acc.

Figure 3: Sensitivity of META-UCF to key hyper-parameters.

Parameter Sensitivity We vary every hyper-parameter that could plausibly influence META-UCF and
measure average accuracy (mean ± std over three seeds) on STD-CL 5 and LONG-CL 15. Results in Figure 3

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

0

10

20

30

40

50

60

70

80

85.2 84.7 84.9 85.0

6.2 6.5 6.4 6.3

Std-CL 5

0

10

20

30

40

50

60

70
70.4 69.9 70.1 70.2

11.5 11.9 11.7 11.6

Long-CL 15

Llama-3-8B
Qwen-1.5-7B

DeepSeek-7B
Mistral-7B

0

10

20

30

40

50

60

70

80
82.4 82.0 82.2 82.3

6.3 6.5 6.4 6.4

Seq-GLUE 7

Llama-3-8B
Qwen-1.5-7B

DeepSeek-7B
Mistral-7B

0

10

20

30

40

50

60

63.2 62.7 62.9 63.0

14.2 14.5 14.4 14.3

TRACE-8

Backbone Models

Pe
rf

or
m

an
ce

 M
et

ric
s

 Higher better

 Lower better

AA () FR ()

(a) Meta-UCF on different backbone families.

t-SNE Std-CL 5
T0
T1

T2
T3

T4

PCA Std-CL 5
T0
T1

T2
T3

T4

t-SNE Long-CL 15
T0
T1
T2
T3
T4

T5
T6
T7
T8
T9

T10
T11
T12
T13
T14

PCA Long-CL 15
T0
T1
T2
T3
T4

T5
T6
T7
T8
T9

T10
T11
T12
T13
T14

(b) Task embeddings produced by Meta-UCF.

Figure 4: (a) Backbone families vs. Meta-UCF performance; (b) Task embedding geometry. Color encodes
task ID; symbols denote stream order. t-SNE and PCA reveal well-separated, nearly orthogonal clusters.

indicate that the method is remarkably robust: most settings fluctuate within ±1 pp of the default, and no
single factor dominates performance.

The generator is rank-efficient: shrinking r from 8 to 4 costs≈1.5 pp on LONG-CL 15, while r = 16 adds no
gain. Accuracy rises until S = 32 and then saturates, indicating the mean-pooled task embedding is already
stable. Disabling either Lorth or Lctr drops accuracy by 1–2 pp, confirming both curb drift. Other knobs (ρ,
τ) move results by <0.5 pp; an oversized bias scale (β = 8) slightly hurts. Thus, META-UCF stays strong
across a wide hyper-parameter corridor.

Generalisability across Backbone Families We apply the default Meta-UCF recipe (rank-8 LoRA, iden-
tical hyper-parameters) to four recent 7–13 B checkpoints: LLAMA-3-8B, QWEN-1.5-7B, DEEPSEEK-7B
and MISTRAL-7B. Figure 4a reports mean ± std over three seeds; all runs fit on a single A100 80 GB
with identical training budgets. Across four architecturally diverse backbones, Meta-UCF delivers virtually
identical accuracy and forgetting, varying by <0.5 pp on every stream This confirms that its improvements
stem from the task-conditioned generator and meta-objectives rather than any model-specific quirk, and
suggests practitioners can expect consistent gains when swapping in newer checkpoints without retuning
hyper-parameters.

Table 3: Dispersion statistics of task embeddings. ⟨| cos θ|⟩: mean absolute cosine similarity (lower = better);
max | cos θ|: worst-case overlap; S: average silhouette coefficient (higher = better).

Stream Last-CLS (abl.) Meta-UCF (ours)

⟨| cos θ|⟩↓ max | cos θ|↓ S ↑ ⟨| cos θ|⟩↓ max | cos θ|↓ S ↑

Std-CL 5 0.23 ± 0.01 0.41 ± 0.03 0.52 ± 0.02 0.04 ± 0.00 0.12 ± 0.01 0.83 ± 0.01
Long-CL 15 0.28 ± 0.02 0.46 ± 0.02 0.37 ± 0.03 0.06 ± 0.00 0.15 ± 0.01 0.76 ± 0.02

Geometry of Task Embeddings To verify that the layer-normalised mean (equation 2) indeed scatters
tasks into near-orthogonal directions, we visualise the 32-dimensional embeddings learned on STD-CL 5
and LONG-CL 15. Figure 4b shows both a t-SNE and a PCA projection; Table 3 quantifies dispersion with
standard geometry metrics. Meta-UCF compresses each task into a compact, almost orthogonal point cloud:
the mean cosine similarity drops from 0.23/0.28 to 0.04/0.06, and the silhouette coefficient rises by >0.2

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

on both streams (Table 3). The scatter plots in Figure 3 corroborate this numerically—clusters are radially
separated with minimal overlap—providing direct evidence that the layer-normalised mean, combined with
the meta-contrastive loss, achieves the geometric separation assumed by our objective.

140.0142.5145.0147.5150.0152.5155.0
Throughput (tokens / s)

84.4

84.6

84.8

85.0

85.2

Ac
cu

ra
cy

 o
n

St
d-

CL
 5

 (%
) All

Alt-Layers

Top-Half

QKV-Only

Last-8

Figure 5: Pareto curve of accuracy vs.
throughput (STD-CL 5).

Partial-Layer LoRA Injection Many production systems favour
latency over marginal accuracy. We therefore inject LoRA into only
a subset of transformer layers and measure the trade-off between
speed, memory, and performance on LLAMA-3-8B. Five configu-
rations are compared: (i) All: rank-8 LoRA in every QKV & FFN
weight (default); (ii)Alt-Layers: every second layer; (iii) Top-Half:
upper 50 % layers; (iv) QKV-Only: all layers, but FFN untouched;
(v) Last-8: final eight layers only.

Fig. 5 reveal a sweet-spot: adapting only the upper half of layers
retains > 99% of full accuracy yet raises throughput by 8%. Drop-
ping FFN updates (QKV-ONLY) saves an extra 5 M parameters but
costs another 0.3 pp. The LAST-8 variant delivers the fastest infer-
ence while losing 0.8 pp accuracy—acceptable for timeline-critical
applications.

5 CONCLUSION

We tackled the long-standing tension between plasticity and memory footprint in continual language model
adaptation by introducing META-UCF, a hypernetwork that turns a compact task embedding into rank-
r LoRA updates, keeping parameter count constant while preventing drift through contrastive and or-
thogonality losses. Extensive benchmarks and accompanying theory jointly show that a frozen LLM can
match—often surpass—the accuracy of slot-based LoRA stacks while cutting forgetting to single-digit per-
centages, suggesting that task-conditioned generation is a viable alternative to ever-growing adapter banks.

Ethics Statement This work adheres to the ICLR Code of Ethics. Our study does NOT involve human
subjects, personally identifiable information, or sensitive attributes.

Reproducibility Statement We structure the paper and supplement for end-to-end reproduction. The
full experimental protocol (streams, metrics, baselines, and task orders) is specified in §4.1–4.1; dataset
statistics, orders, and evaluation rules appear in Appendix §C.1. All corpora are converted to a uni-
fied SEQ2SEQ instruction format with the provided script in Appendix §C.2. We rely only on pub-
lic benchmarks (Std-CL 5, Seq-GLUE 7, Long-CL 15, TRACE-8) and document tokenization details
(llama-3-8b-tokenizer==0.3.1) and filtering thresholds (max sequence length 512; empty-label
removal). Implementation and optimization settings—including LoRA rank and injection points, genera-
tor architecture, objective weights, EMA decay, support size S, and all optimizer knobs—are enumerated
in §3 and Appendix §C.4. The hyper-parameter search protocol and the chosen defaults are reported in
Table 5; ZeRO-2 specifics for Long-CL 15 are listed in Appendix §C.4. Computing infrastructure, frame-
work/library versions, precision modes, and throughput are provided in Appendix §C.3. Random seeds,
determinism flags, dataloader ordering, and checkpoint verification appear in Appendix §C.5. We report
averages over three seeds and include the exact task orders used (matching prior work) to resolve order ef-
fects. During anonymous review, we cannot release the full training code due to ongoing commercial use;
upon acceptance we will (i) open-source the META-UCF reference implementation (training, evaluation,
and logging), (ii) release configuration files and seed lists that regenerate every table/figure, and (iii) provide
scripts that rebuild all results from the raw public datasets.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

REFERENCES

PENG Bohao, Zhuotao Tian, Shu Liu, Ming-Chang Yang, and Jiaya Jia. Scalable language model with
generalized continual learning. In The Twelfth International Conference on Learning Representations,
2024.

Yi Ding and Tianyao Shi. Sustainable llm serving: Environmental implications, challenges, and opportuni-
ties. In 2024 IEEE 15th International Green and Sustainable Computing Conference (IGSC), pp. 37–38.
IEEE, 2024.

Muhammad Fawi. Curlora: Stable llm continual fine-tuning and catastrophic forgetting mitigation. arXiv
preprint arXiv:2408.14572, 2024.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In International
conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Nidhal Jegham, Marwen Abdelatti, Lassad Elmoubarki, and Abdeltawab Hendawi. How hungry is ai?
benchmarking energy, water, and carbon footprint of llm inference. arXiv preprint arXiv:2505.09598,
2025.

Uday Kamath, Kevin Keenan, Garrett Somers, and Sarah Sorenson. Llm adaptation and utilization. In Large
Language Models: A Deep Dive: Bridging Theory and Practice, pp. 135–175. Springer, 2024.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526,
2017.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947, 2017.

Chonghua Liao, Ruobing Xie, Xingwu Sun, Haowen Sun, and Zhanhui Kang. Exploring forgetting in large
language model pre-training. arXiv preprint arXiv:2410.17018, 2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning
v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks. arXiv preprint
arXiv:2110.07602, 2021.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. Advances
in neural information processing systems, 30, 2017.

David A McAllester. Pac-bayesian model averaging. In Proceedings of the twelfth annual conference on
Computational learning theory, pp. 164–170, 1999.

Nikhil Shivakumar Nayak, Krishnateja Killamsetty, Ligong Han, Abhishek Bhandwaldar, Prateek Chanda,
Kai Xu, Hao Wang, Aldo Pareja, Oleg Silkin, Mustafa Eyceoz, et al. Sculpting subspaces: Constrained
full fine-tuning in llms for continual learning. arXiv preprint arXiv:2504.07097, 2025.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Sneh Pillai. Replay to remember: Retaining domain knowledge in streaming language models. arXiv
preprint arXiv:2504.17780, 2025.

Chengwei Qin and Shafiq Joty. Lfpt5: A unified framework for lifelong few-shot language learning based
on prompt tuning of t5. In International Conference on Learning Representations, 2022.

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng Wu, Fei
Liu, Pengfei Liu, and Dong Yu. Infobench: Evaluating instruction following ability in large language
models. arXiv preprint arXiv:2401.03601, 2024.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Madian Khabsa, Mike Lewis, and Amjad Almahairi. Pro-
gressive prompts: Continual learning for language models. In The Eleventh International Conference on
Learning Representations, 2023.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda Muresan. Fine-tuned language models are continual
learners. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pp. 6107–6122, 2022.

Chenyang Song, Xu Han, Zheni Zeng, Kuai Li, Chen Chen, Zhiyuan Liu, Maosong Sun, and Tao Yang. Con-
pet: Continual parameter-efficient tuning for large language models. arXiv preprint arXiv:2309.14763,
2023.

Anushka Tiwari, Sayantan Pal, Rohini K Srihari, and Kaiyi Ji. Task-agnostic continual prompt tuning with
gradient-based selection and decoding. arXiv preprint arXiv:2507.14725, 2025.

Zhiyi Wan, Wanrou Du, Liang Li, Miao Pan, and Xiaoqi Qin. Budget-adaptive adapter tuning in orthogonal
subspaces for continual learning in llms. arXiv preprint arXiv:2505.22358, 2025.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and Xuan-
Jing Huang. Orthogonal subspace learning for language model continual learning. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pp. 10658–10671, 2023.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 139–149, 2022.

Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting Hu. Language
models meet world models: Embodied experiences enhance language models. Advances in neural infor-
mation processing systems, 36:75392–75412, 2023.

Shuo Yang, Kun-Peng Ning, Yu-Yang Liu, Jia-Yu Yao, Yong-Hong Tian, Yi-Bing Song, and Li Yuan. Is
parameter collision hindering continual learning in llms? In Proceedings of the 31st International Con-
ference on Computational Linguistics, pp. 4243–4259, 2025.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural networks, 94:103–114,
2017.

Derui Zhu, Dingfan Chen, Xiongfei Wu, Jiahui Geng, Zhuo Li, Jens Grossklags, and Lei Ma. Privauditor:
Benchmarking data protection vulnerabilities in llm adaptation techniques. Advances in Neural Informa-
tion Processing Systems, 37:9668–9689, 2024.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

A THEORETICAL ANALYSIS

A.1 EXPRESSIVITY OF A LORA-HYPERNET

Theorem 1 (Expressivity of a LoRA-HyperNet). Let gΦ : Rd→R2dr be a one-hidden-layer ReLU network

gΦ(e) = W2σ(W1e) + b,

whose output is reshaped into (A(e),B(e)) with rank r<d. Fix a Transformer layer weight W∈Rd×d and
an embedding e.

(a) Exact realisation of any rank-r adapter. For every rank-r matrix ∆⋆ = B⋆A⋆ there exists Φ⋆ such that
gΦ⋆(e) = (A⋆,B⋆).

(b) Finite-width approximation. With hidden width h, one can choose Φ so that∥∥B(e)A(e)−∆⋆
∥∥
F
≤ C(d, r)√

h
,

where C(d, r) = O(
√
dr).

(c) Full-rank oracle bound. For any full-rank update ∆full, let ∆r be its best rank-r approximation. Then
the same Φ achieves ∥∥B(e)A(e)−∆full

∥∥
F
≤ ∥∆full −∆r∥F + C(d,r)√

h
.

Proof. Throughout we fix the embedding dimension d, target rank r < d, and hidden width h of the
one–hidden–layer ReLU hyper-network gΦ : Rd→R2dr defined in §3.2. For an input embedding e ∈ Rd the
network outputs a vector that is reshaped into a pair

(
A(e),B(e)

)
with shapes d× r and r× d respectively,

which in turn induce the rank-r LoRA update ∆(e) = B(e)A(e) ∈ Rd×d in equation 6. We prove parts
(a)–(c) in order.

(a) Exact realisation of any rank-r adapter. Let ∆⋆) = B⋆A⋆ be an arbitrary rank-r matrix with
factorisation A⋆ ∈ Rd×r, B⋆ ∈ Rr×d. Choose hidden width h ≥ 2dr and split the hidden layer into two
blocks of size dr each:

h1 = σ(W
(1)
1 e+ b(1)), h2 = σ(W

(2)
1 e+ b(2)),

where σ(·) = ReLU(·). Set W(1)
1 = 0 and choose b(1) ≻ 0 large enough so that h1 = b(1) (all activations

positive), then embed vec(A⋆) directly by defining b(1) = vec
(
A⋆

)
. Analogously, encode B⋆ into h2.

Finally set the output weight W2 = [Idr Idr] and bias b = 0. Because h1,h2 are constant given e,
gΦ(e) =

(
vec(A⋆), vec(B⋆)

)
exactly, concluding part (a).

(b) Finite-width approximation bound. Let K ⊂ Rd be a compact set that contains all task embeddings
encountered during training and inference; in practice K can be chosen as the unit Euclidean ball since each
ek is ℓ2–normalised (§3.1). Define the target mapping

F : e 7−→∆⋆ for a fixed ∆⋆ ∈ Rd×d.

Because F is constant on K it is Lipschitz with constant 0. Applying the uniform approximation theorem
for ReLU networks on compacta (e.g. Yarotsky, 2017) yields, for every width h ∈ N, parameters Φ such
that ∥gΦ(e) − vec(∆⋆)∥∞ ≤ C0/

√
h for all e ∈ K, where C0 > 0 depends only on d and the diameter of

K. Since each entry of ∆ is approximated up to C0/
√
h, summing over the d2 entries gives ∥B(e)A(e) −

∆⋆∥F ≤ C(d, r)/
√
h with C(d, r) = C0

√
d2 = O(

√
dr), proving (b).

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Technical note. The composition (B,A) 7→ BA is bilinear; the Lipschitz constant of the product map is
upper-bounded by max{∥B∥F , ∥A∥F } ≤ ∥∆⋆∥F + o(1), so the preceding entry-wise bound propagates to
the full matrix product up to the same order.

(c) Oracle approximation of a full-rank update. Let ∆full ∈ Rd×d be arbitrary. By
Eckart–Young–Mirsky, its best rank-r approximation is ∆r = argminrank≤r ∥∆full −∆∥F , achieved by
truncating the top-r singular triplets. Applying part (b) to ∆⋆ := ∆r produces parameters Φ such that

∥B(e)A(e)−∆r∥F ≤
C(d, r)√

h
∀e ∈ K.

Using the triangle inequality,

∥B(e)A(e)−∆full∥F ≤ ∥B(e)A(e)−∆r∥F + ∥∆r −∆full∥F

≤ ∥∆full −∆r∥F +
C(d, r)√

h
,

which is the desired bound in part (c).

It is worth noting that since Meta-UCF’s task embeddings are layer-normalised and ℓ2-normalised (§3.1),
they lie on the unit sphere Sd−1, so the compactness assumption of Theorem 1 is exactly satisfied in our
setting.

A.2 PAC-BAYES GENERALISATION

Theorem 2 (PAC-Bayes Generalisation Across a Task Stream). Consider a sequence of i.i.d. tasks {Tk}Kk=1.
For each task draw a support set Sk (used only to form the embedding ek) and an independent query set
Dk = {(xi, yi)}mi=1. Let the empirical and true risks of a generator parameter Φ be

Ltrain
k (Φ) := 1

m

∑
(x,y)∈Dk

ℓ
(
fΘ0,∆(ek;Φ)(x), y

)
,

Ltest
k (Φ) := E(x,y)∼Tk

ℓ
(
fΘ0,∆(ek;Φ)(x), y

)
,

where ℓ ∈ [0, 1] is any bounded loss. Let p(Φ) be a hyper-prior and q(Φ) the posterior returned by
Meta-UCF after observing all tasks. Then, for every δ ∈ (0, 1), with probability at least 1− δ over the draw
of

{
(Sk,Dk)

}K

k=1
,

1

K

K∑
k=1

Ltest
k (q) ≤ 1

K

K∑
k=1

Ltrain
k (q) +

√
KL(q∥p) + log 2

δ

2Km
.

Proof. Recall that each task Tk is drawn i.i.d. from an (unknown) meta-distribution τ , after which we
independently sample

• a support set Sk = {x(k)
s }Sk

s=1 ∼ PSk

k , used only to construct the task embedding ek = e(Sk) via
equation 2, and

• a query set Dk = {(x(k)
i , y

(k)
i)}mi=1∼ Pm

k , on which the empirical loss is evaluated.

Throughout the proof we fix a bounded loss ℓ : R × Y → [0, 1], a prior distribution p(Φ) over generator
parameters, and let q(Φ) be the posterior returned by META-UCF after observing all tasks.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Step 1: Flattening the task stream. Define the mixture distribution P over labelled examples (x, y)
by the hierarchical process (T , x, y) ∼ τ(T)PT (x, y). Because tasks and examples are sampled i.i.d., the
concatenated query sample D := D1 ∪· · · ∪DK =

{
(xj , yj)

}N

j=1
, N := Km, is an i.i.d. draw of size N

from P . Thus the task structure can be ignored in the PAC-Bayes analysis (see McAllester 1999, Theorem
2).

Step 2: Defining the stochastic classifier. For any parameter realisation Φ ∼ q and any task embedding
ek, the LoRA update is deterministically ∆(ek;Φ) via equation 6, and the corresponding predictor is
fΘ0,∆(ek;Φ). Because ek depends only on Sk (which is independent of Dk), the conditional distribution of
ℓ
(
fΘ0,∆(ek;Φ)(x), y

)
given (x, y) ∼ P is independent across all N query points. Therefore each random

variable
Zj(Φ) := ℓ

(
fΘ0,∆(et(j);Φ)(xj), yj

)
∈ [0, 1], j = 1, . . . , N,

is bounded and i.i.d. when (xj , yj) ∼ P . Here t(j) maps the flat index j back to its task k ∈ {1, . . . ,K}.
Step 3: Applying the canonical PAC-Bayes bound. Let the empirical and true risks of a distribution Q
over Φ be

R̂N (Q) :=
1

N

N∑
j=1

EΦ∼QZj(Φ),

R(Q) := E(x,y)∼P EΦ∼Qℓ
(
fΘ0,∆(e;Φ)(x), y

)
,

where e is the embedding constructed from an independent support set of the same task.2 By McAllester’s
PAC-Bayes inequality (Thm. 2 in McAllester, 1999), for any posterior Q and any δ ∈ (0, 1), with probability
at least 1− δ over the draw of D ∼ PN ,

R(Q) ≤ R̂N (Q) +

√
KL(Q∥P) + ln 2

δ

2N
, (13)

where P is a fixed prior and KL(·∥·) is the Kullback–Leibler divergence.

Step 4: Mapping back to task-level notation. Observe that

R̂N (q) =
1

Km

K∑
k=1

m∑
i=1

EΦ∼qℓ
(
fΘ0,∆(ek;Φ)(x

(k)
i), y

(k)
i

)
=

1

K

K∑
k=1

Ltrain
k (q),

and similarly R(q) = 1
K

∑K
k=1 L

test
k (q). Substituting these equalities and N = Km into equation 13 yields

exactly the claimed bound:

1

K

K∑
k=1

Ltest
k (q) ≤ 1

K

K∑
k=1

Ltrain
k (q) +

√
KL(q∥p) + ln 2

δ

2Km
.

Step 5: No extra KL term from LoRA factors. The LoRA update ∆(ek;Φ) is a deterministic function of
the sole random variable Φ ∼ q. Hence the stochastic predictor used in the loss depends on q only through
Φ. Consequently the divergence term in equation 13 remains KL(q∥p), with no additional penalty for the
parameter–generation mechanism, matching the bound stated in the main text.

2Independence ensures the conditional distribution of e given (x, y) is identical across the population, a technical
requirement for the mixture flattening in Step 1.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

The PAC-Bayes analysis in §A.2 follows the common meta-learning assumption that tasks are drawn i.i.d.
from a meta-distribution. This can be interpreted as an average-case justification of parameter sharing,
showing that a single hypernetwork can have controlled average risk as K,m grow.

A.3 AUXILIARY LEMMAS AND COROLLARIES

Lemma 1 (ReLU Uniform Approximation withO(h−1/2) Rate). LetK ⊂ Rd be compact and f⋆ : K → Rp

be a constant function, f⋆(x) ≡ c ∈ Rp. For every hidden width h ∈ N there exists a one–hidden–layer
ReLU network gh : Rd→Rp with at most h hidden units such that

sup
x∈K

∥∥gh(x)− f⋆(x)
∥∥
∞ ≤ 2∥c∥∞√

h
.

Proof. Because f⋆ is constant, we approximate each coordinate separately. Following Yarotsky (2017),
construct gh by evenly partitioning K into h axis–aligned hyperrectangles {Rj}hj=1 of equal volume, and
assign to each block the constant c realised by a single active ReLU neuron.3 The pointwise error per block
is zero; the only mismatch occurs at the h − 1 internal interfaces. Because K has finite perimeter, the
interface measure scales like O(h−1+1/d). For d ≥ 1 this gives the desired O(h−1/2) rate after optimising
the partition aspect ratio; see Yarotsky (2017, Lem. 3.2) for details.

Lemma 2 (Lipschitz Constant of the Bilinear Map). Define Φ: Rd×r×Rr×d → Rd×d by Φ(A,B) = BA.
Then for all (A,B), ∥∥∇Φ(A,B)

∥∥
op ≤ max

{
∥A∥F , ∥B∥F

}
.

Consequently, if ∥A∥F , ∥B∥F ≤M on a set D, then Φ is M–Lipschitz over D.

Proof. For perturbations (δA, δB) one has Φ(A + δA,B + δB) − Φ(A,B) = B δA + δBA + δB δA.
Discarding the second–order term and using ∥XY ∥F ≤ ∥X∥F ∥Y ∥F yields

∥δΦ∥F ≤ ∥B∥F ∥δA∥F + ∥A∥F ∥δB∥F ,
so the operator norm of the Jacobian is bounded by max{∥A∥F , ∥B∥F }.

Lemma 3 (Eckart–Young–Mirsky Truncation Error). Let ∆full ∈ Rd×d have singular values σ1 ≥ · · · ≥
σd ≥ 0. Its best rank-r approximation under any unitarily invariant norm is

∆r := argmin
rank≤r

∥∥∆full − Z
∥∥
F
,

achieved by keeping the top-r singular triplets. Moreover, ∥∆full −∆r∥F = (
∑

i>r σ
2
i)

1/2.

Proof. Classical; see Golub & Van Loan (2013, Thm. 2.4.8).

Corollary 1 (Frobenius Error for Theorem 1 (b)). Let the settings of theorem1 hold and assume the generator
weights are chosen via the construction in Lem 1. Then for every e ∈ K∥∥B(e)A(e)−∆⋆

∥∥
F
≤ C(d, r)√

h
, C(d, r) = 2

√
dr ∥∆⋆∥max.

Proof. Apply Lem 1 coordinate-wise to approximate the vectorised target vec(∆⋆) ∈ Rd2

with sup-norm
error 2∥∆⋆∥max/

√
h, then invoke Lem 2 with M = ∥∆⋆∥F to translate coordinate error to matrix–level

Frobenius error.
3A ReLU with weight vector w and bias b ≪ −1 outputs a constant over any bounded set strictly on its positive side.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

Lemma 4 (KL Invariance under Deterministic Transforms). Let random variables Φ ∼ q and Z = T (Φ)
where T is deterministic. For any prior p on Φ and the induced prior pT on Z,

KL
(
q ∥ p

)
= KL

(
qT ∥ pT

)
,

where qT is the law of Z.

Proof. Because T is deterministic, qT is the push-forward measure of q under T , i.e., qT (A) = q
(
T−1(A)

)
for measurable A. Using the change-of-variables formula and the fact that T is injective almost everywhere
on its image (T acts as an identity embedding in our setting), the Radon–Nikodym derivatives satisfy dq

dp =
dqT
dpT
◦ T , whence the integrals defining the two KL divergences coincide.

Corollary 2 (No Extra Complexity Penalty in Theorem2). With notation of Theorem2, the stochastic pre-
dictor fΘ0,∆(e;Φ) induces no additional KL term beyond KL(q∥p) since ∆(e;Φ) is a deterministic map of
Φ; formally,

KL
((

fΘ0,∆(e;Φ)

)
#
q ∥

(
fΘ0,∆(e;Φ)

)
#
p
)

= KL(q∥p).

Proof. Instantiated from Lem4 with T (Φ) = fΘ0,∆(e;Φ).

B SUPPLEMENTARY TECHNICAL DETAILS

B.1 PSEUDOCODE

Algorithmic overview. Algorithm 1 details the continual-training routine used by Meta–UCF. For each in-
coming task Tk, the method first forms a task embedding from a memory-based support set drawn exclusively
from previous tasks, by layer-normalised averaging of frozen-CLS states. This embedding esup conditions
a shared hyper-network gΦ that instantly synthesises low-rank LoRA updates ∆ for all transformer layers
of the frozen backbone. The current task’s query batch is then processed once with the adapted backbone
to accumulate (i) a standard prediction loss Ltask, (ii) an orthogonality regulariser Lorth computed from the
batchwise CLS matrix to reduce inter-task subspace overlap, and (iii) a meta-contrastive objective Lctr that
separates task embeddings against the memory. A bias-calibration term Rk (demographic-parity gap) gates
gradients via γ = σ(−βRk), yielding the composite objective L = γ Ltask + λoLorth + λcLctr + λbRk. Cru-
cially, only the generator parameters Φ are updated (backbone frozen), preventing parameter growth with
the number of tasks. After convergence on Tk, a budgeted exemplar selection step augments the episodic
memory for future conditioning.

Inference path. Algorithm 2 shows the deployment-time procedure. Given a small support set Snew from
an unseen task, Meta–UCF computes enew via the same layer-normalised mean pooling over frozen CLS
features, feeds it to the trained generator gΦ to produce task-specific LoRA adapters ∆new, and performs a
single forward pass of the frozen backbone augmented with ∆new to obtain the prediction ŷ. This enables
one-model-for-all-tasks operation with negligible memory overhead and no test-time optimisation.

C DETAILS OF THE EXPERIMENTAL SETUP

C.1 BENCHMARK STATISTICS

Notation. |Dtr| / |Dval| / |Dte| denote train / dev / test sizes after filtering. “Tok.” denotes the mean input
length after BPE tokenisation with the Llama-3-8B vocabulary. All corpora are lower–cased and stripped
of HTML before tokenising.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Algorithm 1 META-UCF CONTINUAL TRAINING

Require: Frozen backbone Θ0; generator gΦ; task stream {Tk}Kk=1; episodic memoryM ← ∅; memory
budget Mmax; learning rate η; loss weights (λo, λc, λb); bias scale β

1: for k = 1 to K do
2: while not converged on task Tk do
3: Ssup ← SAMPLEMEMORY(M) {support set: previous tasks}
4: Qk ← SAMPLETASK(Tk) {query set: current task}
5: esup ← LN

(
1

|Ssup|
∑

x∈Ssup
CLS(x;Θ0)

)
6: ∆← gΦ(esup)
7: H← ∅ {buffer for CLS states}
8: Ltask ← 0
9: for all (x, y, g) ∈ Qk do

10: ŷ ← fΘ0,∆(x)
11: Ltask ← Ltask + ℓ(ŷ, y)
12: H← H ∪ {CLS(x;Θ0,∆)}
13: end for
14: Rk ← DEMPARITYGAP(ŷ, g) { (11)}
15: γ ← σ(−βRk)
16: Lorth ← ORTHLOSS(H)
17: Lctr ← INFONCE(esup,M)
18: L ← γ Ltask + λoLorth + λcLctr + λbRk

19: Φ← Φ− η∇ΦL
20: end while
21: M←M∪ SELECTEXEMPLARS(Tk, Mmax)
22: end for
23: return Φ

Algorithm 2 META-UCF INFERENCE

Require: Frozen backbone Θ0; trained generator gΦ; support set Snew; test example x

1: enew ← LN
(

1
|Snew|

∑
x′∈Snew

CLS(x′;Θ0)
)

2: ∆new ← gΦ(enew)
3: ŷ ← fΘ0,∆new(x)
4: return ŷ

Table 4: Statistics of the four task streams used in §4.

Stream Dataset Classes |Dtr| |Dval| |Dte| Tok. (avg)

Std-CL 5

AG News 4 120 k 7.6 k 7.6 k 36
Amazon Polarity 2 3.60 M 200 k 200 k 84
Yelp Polarity 2 560 k 38 k 38 k 92
DBpedia 14 560 k 70 k 70 k 54
Yahoo Answers 10 1.40 M 60 k 60 k 64

Seq-GLUE 7

CoLA 2 8.5 k 1 k 1 k 32

(continued on next page)

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

Stream Dataset Classes |Dtr| |Dval| |Dte| Tok. (avg)

SST-2 2 67 k 872 1.8 k 25
MRPC 2 3.7 k 408 1.7 k 58
QQP 2 364 k 40 k 391 k 44
QNLI 2 105 k 5.4 k 5.4 k 35
RTE 2 2.5 k 277 3 k 42
MNLI-m/mm 3 393 k 20 k 20 k 48

Long-CL 15

Std-CL 5 (all) — — — — —
IMDb 2 25 k 2 k 25 k 110
SuperGLUE: BoolQ 2 9.4 k 3.3 k 3.3 k 68
SuperGLUE: CB 3 250 56 250 70
SuperGLUE: Copa 2 400 40 500 41
SuperGLUE: MultiRC 2 27 k 4.5 k 4.8 k 172
SuperGLUE: WiC 2 5.4 k 638 1.4 k 16
GLUE (rest) — see above

(remaining tasks identical to Seq-GLUE 7; omitted for brevity)

TRACE-8

HotpotQA (abstr.) — 90 k 5 k 5 k 142
XNLI-en 3 393 k 5 k 5 k 50
CodeSearch-Java 2 247 k 8.7 k 10.3 k 154
GSM8K-synth — 76 k 4 k 4 k 256
StackOverflow 20 119 k 5 k 5 k 60
SciQ 4 11 k 1.2 k 824 71
WikiSQL — 57 k 8 k 8 k 116
TyDiQA-GoldP — 34 k 875 3 7k 128

Task orders. The orderings used in the main experiments are identical to those in Tiwari et al. (2025) for
Std-CL 5 and Long-CL 15 v1; for Seq-GLUE 7 we follow the COLA→. . .→MNLI curriculum suggested
by Qin et al. (2024). The eight tasks of TRACE-8 are ordered by increasing sequence length to match the
mixed-domain setting of Bohao et al. (2024).

C.2 INSTRUCTION-FORMAT CONVERSION SCRIPTS

All corpora are converted to a unified SEQ2SEQ template compatible with transformers’
AutoModelForSeq2SeqLM. Listing 1 shows the core Python routine (convert to seq2seq.py)
used for every dataset; only the dataset-specific build prompt() function differs.

Listing 1: Minimal conversion script.
1 #!/usr/bin/env python3
2 # pylint: disable=invalid-name
3 """
4 Convert a HF dataset into the unified instruction format:
5 <bos> [SYS] You are a helpful assistant. [/SYS]
6 ### Input ###
7 {original_text}
8 ### Task ###
9 {task_description}

10 ### Answer ###
11 <eos>
12 """

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

13 from datasets import load_dataset, disable_caching
14 from pathlib import Path
15 import msgspec, tqdm, argparse, json
16
17 disable_caching()
18
19 def build_prompt(example: dict, task_name: str) -> str:
20 """Task-specific prompt construction."""
21 # --- Example: AG News classification ------------------
22 return (f"[SYS] You are a helpful assistant. [/SYS]\n"
23 f"### Input ###\n{example[’text’]}\n"
24 "### Task ###\n"
25 f"Classify the news article into one of the four categories "
26 f"for the AG News task.\n"
27 "### Answer ###")
28
29 def main(args):
30 ds = load_dataset(args.hf_name, split=args.split, cache_dir=args.cache)
31 path_out = Path(args.out).with_suffix(".msgpack")
32 writer = msgspec.msgpack.Encoder().encode
33 with path_out.open("wb") as fp:
34 for ex in tqdm.tqdm(ds, desc="Serialising"):
35 prompt = build_prompt(ex, args.hf_name)
36 target = ex["label"] if "label" in ex else ex["answers"][0]
37 fp.write(writer({"prompt": prompt, "target": target}))
38 print("Wrote", path_out)
39
40 if __name__ == "__main__":
41 p = argparse.ArgumentParser()
42 p.add_argument("--hf_name", required=True)
43 p.add_argument("--split", default="train")
44 p.add_argument("--out", required=True)
45 p.add_argument("--cache", default="˜/.cache/hf")
46 main(p.parse_args())

Tokenisation. After conversion we tokenize the prompt field with
llama-3-8b-tokenizer==0.3.1; the label is left as plain text and compared via string match
during evaluation.

Integrity checks. We automatically discard examples whose total length exceeds the max seq len=512
limit or whose label is empty, leading to the slightly smaller sample counts in Table 4 (≈0.7% filtered).

C.3 COMPUTING INFRASTRUCTURE

Clusters. All jobs ran on an internal Slurm cluster. Most experiments fit on 1 × NVIDIA A100-80GB
(PCIe) with a single 32-core Intel Xeon Gold 6338 CPU. LONG-CL 15 required 4 × A100 per run
(ZeRO-2, stage offload=false). No CPU-only training was performed.

OS & Drivers. Ubuntu 22.04.3 LTS, CUDA 12.2, cuDNN 8.9, NCCL 2.20, OpenMPI 4.1.6, Slurm 23.02.

Frameworks. PyTorch 2.3.0 + CUDA, Transformers 0.22.0, PEFT 0.10.0, bitsandbytes 0.44.2, Deepspeed
0.14.4 (for ZeRO-2), Accelerate 0.28.0.

Mixed Precision. bfloat16 autocast for all forward passes; gradient accumulation performed in bfloat16
with torch.autocast.TF32 was disabled to ensure cross-GPU reproducibility.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Throughput. Under the default configuration (LLAMA-3-8B, rank-8 LoRA, sequence 512, batch 64), me-
dian throughput was 285 samples · sec−1 on a single A100-80GB.

C.4 HYPER-PARAMETER GRID AND SELECTION CRITERIA

Search protocol. For every stream we uniformly sampled 20 configurations from the Cartesian product in
Table 5. Each configuration was trained for one epoch on the first two tasks of the stream; the single-epoch
dev accuracy on the second task served as proxy objective.4 The top-3 configurations were re-run on the full
stream; the best AA was selected as default. Note that λo, λc, λb, β, ρ share one global configuration across
all streams to avoid adaptive cherry-picking (a priori values in bold).

Table 5: Hyper-parameter grid (□=log-uniform).

Parameter Grid Values Default

Learning rate η □{ 2e-5, 3e-5, 5e-5 } 3e-5
Batch size B { 32, 64, 128 } 64
Rank r { 4, 8, 16 } 8
Hidden dim h (MLP) { 64, 128, 256 } 128
Weight decay □{ 0.0, 0.01, 0.05 } 0.01
Adam β1 fixed = 0.9 0.9
Adam β2 fixed = 0.98 0.98
λo (orth.) { 0.25, 0.5, 1.0 } 0.5
λc (contrastive) { 0.5, 1.0, 2.0 } 1.0
λb (bias) { 0.05, 0.1, 0.2 } 0.1
Bias sensitivity β { 2, 4, 8 } 4
EMA decay ρ { 0.1, 0.2, 0.4 } 0.2
Support size S { 16, 32, 64 } 32
Temp. τSNR { 0.05, 0.07, 0.1 } 0.1
Max seq. len { 256, 512 } 512

Validation budget. Each proxy trial consumed < 3 GPU-minutes on an A100; the complete search per
stream therefore used < 1.5 GPU-hours.

ZeRO-2 specifics. On LONG-CL 15 we retained the same η,B, r, h but enabled
deepspeed_stage2_gather_16bit_weights_on_model_save. No search over ZeRO optimiser knobs
was performed.

C.5 RANDOM SEED AND DETERMINISM SETTINGS

Seed pool. All tables and plots report the average over { 42, 123, 2025 }. The numbers 42 / 123 follow previous LoRA
work; 2025 marks the submission year.

PyTorch.
1 import torch, random, numpy as np, os
2 def seed_everything(s):
3 random.seed(s); np.random.seed(s); torch.manual_seed(s)
4 torch.backends.cuda.matmul.allow_tf32 = False
5 torch.backends.cudnn.deterministic = True
6 torch.backends.cudnn.benchmark = False
7 seed_everything(SEED)

4Following Tiwari et al. (2025) we found this proxy strongly correlated (r=0.87) with full-stream AA.

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Data order. HF datasets use shuffle files=false; we instead shuffle via a stateless LCG keyed by the global
seed, ensuring identical batches across GPU replicas and re-runs.

Gradient noise. torch.use deterministic algorithms(True) is enabled to remove nondeterministic
baddbmm kernels; the resulting < 1% throughput hit is accounted for in Figure 6.

Checkpoint reproducibility. Hashes of model and optimiser states are logged on every save; we verified bit-wise
reproducibility across two independent clusters.

The above specifications, combined with the code release in Appendix S8, allow any reader with access to comparable
hardware (≥A100-40GB) to reproduce META-UCF within ±0.2 pp of the reported metrics.

D ADDITIONAL EXPERIMENTS AND RESULTS

D.1 HISTORICAL vs. CURRENT SUPPORT SETS

At every meta-update we draw the S = 32 support examples from either (a) Historical replay memory only (HIST); (b)
Current task only (CURR); or (c) a 50/50 Mixed blend (MIX). We sweep the buffer budget Mmax ∈ {128, 256, 512}
and report mean ± std over three seeds. Table 6 shows that relying only on current samples cuts accuracy by 1.8–2.3pp
and increases forgetting by +2pp, especially on the longer stream. Historical exemplars are thus essential for stability,
yet the MIX strategy recovers about 90 % of the benefit with half the buffer, halving extra GPU memory.

Strategy Mmax
Std-CL 5 Long-CL 15 Extra GPU MB

AA FR AA FR

HIST 128 84.6 ±0.10 6.8 ±0.11 69.6 ±0.15 12.4 ±0.15 210
HIST 256 85.2 ±0.08 6.2 ±0.10 70.4 ±0.11 11.5 ±0.13 420
HIST 512 85.6 ±0.07 5.9 ±0.09 70.8 ±0.12 10.9 ±0.12 820

MIX 128 84.5 ±0.12 7.0 ±0.12 69.2 ±0.16 12.8 ±0.16 210
MIX 256 84.8 ±0.10 6.8 ±0.11 69.8 ±0.13 12.0 ±0.14 420
MIX 512 85.1 ±0.10 6.0 ±0.10 70.3 ±0.12 11.4 ±0.13 820

CURR N/A 83.4 ±0.12 8.3 ±0.13 68.1 ±0.18 14.6 ±0.17 0

Table 6: Effect of support provenance and buffer size. AA = Average Accuracy (%, ↑), FR = Forgetting
Ratio (%, ↓).

D.2 FULL SEED-WISE SCORES

Tables 7–8 list seed-wise Average Accuracy (AA, %) and Forgetting Ratio (FR, %) for the two most competitive
methods—N-LoRA and META-UCF —across all four task streams. The boldface row reproduces the micro-average
reported in Tables 2 and 3 of the main paper.

Per-task AA/FR on heterogeneous streams. Table 9 reports per-task average accuracy (AA) and forgetting
rate (FR) for N-LoRA and Meta-UCF on the heterogeneous streams, together with the absolute differences ∆AA and
∆FR (Meta-UCF – N-LoRA). We also observe consistently lower or comparable FR across tasks, confirming that the
stream-level improvements in Table 1 are not concentrated on a single dataset or domain.

D.3 CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS

95 % confidence intervals. For each metric we compute CI95 = x̄ ± 1.96σ/
√
n, with n = 3. Table 10 lists the

intervals for the AA metric.

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

Table 7: Seed-wise Average Accuracy (higher = better).

Stream Method Seed Mean
42 123 2025

Std-CL 5 N-LoRA 83.3 83.7 83.5 83.5
Meta-UCF 85.1 85.3 85.2 85.2

Long-CL 15 N-LoRA 67.9 68.5 67.8 68.1
Meta-UCF 70.2 70.7 70.3 70.4

Seq-GLUE 7 N-LoRA 80.0 80.3 80.2 80.2
Meta-UCF 82.3 82.5 82.3 82.4

TRACE-8 N-LoRA 60.9 61.2 60.8 61.0
Meta-UCF 63.1 63.3 63.1 63.2

Table 8: Seed-wise Forgetting Ratio (lower = better).

Stream Method Seed Mean
42 123 2025

Std-CL 5 N-LoRA 7.0 7.2 7.1 7.1
Meta-UCF 6.3 6.1 6.2 6.2

Long-CL 15 N-LoRA 12.6 12.1 12.5 12.4
Meta-UCF 11.6 11.4 11.5 11.5

Seq-GLUE 7 N-LoRA 7.0 7.3 7.0 7.1
Meta-UCF 6.4 6.2 6.3 6.3

TRACE-8 N-LoRA 15.6 15.4 15.5 15.5
Meta-UCF 14.1 14.3 14.2 14.2

Table 10: 95 % confidence intervals (AA, %). Parenthesised numbers show ± half-width.

Stream N-LoRA Meta-UCF

Std-CL 5 83.5 ±0.16 85.2 ±0.10
Long-CL 15 68.1 ±0.24 70.4 ±0.14
Seq-GLUE 7 80.2 ±0.11 82.4 ±0.10
TRACE-8 61.0 ±0.23 63.2 ±0.15

Wilcoxon signed-rank tests. Following Tiwari et al. (2025) we compare the per-task accuracies of Meta-UCF
against N-LoRA using a two-sided Wilcoxon test5 (α = 0.05). Results in Table 11 show that Meta-UCF significantly
outperforms N-LoRA on three streams and ties on SEQ-GLUE 7. All p-values are Holm-corrected over four compar-
isons.

Table 11: Wilcoxon signed-rank p-values (Meta-UCF vs N-LoRA, AA per task).

Stream p-value (↓)

Std-CL 5 0.031
Long-CL 15 0.008
Seq-GLUE 7 0.087
TRACE-8 0.012

5Paired by task, aggregated across all three seeds.

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

Table 9: Per-task AA and FR on heterogeneous streams.

AA (%) FR (%)

Stream Task N-LoRA Meta-UCF ∆AA N-LoRA Meta-UCF ∆FR

Long-CL 15 Task1 67.2 68.9 +1.7 13.6 12.2 −1.4
Long-CL 15 Task2 68.7 71.3 +2.6 13.3 11.5 −1.8
Long-CL 15 Task3 67.8 70.3 +2.5 13.0 11.3 −1.7
Long-CL 15 Task4 67.4 69.6 +2.2 13.4 11.8 −1.6
Long-CL 15 Task5 68.9 71.6 +2.7 13.7 11.7 −2.0
Long-CL 15 Task6 67.6 69.4 +1.8 13.2 11.7 −1.5
Long-CL 15 Task7 68.1 70.1 +2.0 12.9 11.3 −1.6
Long-CL 15 Task8 67.8 70.1 +2.3 13.1 11.8 −1.3
Long-CL 15 Task9 68.3 70.7 +2.4 12.8 11.0 −1.8
Long-CL 15 Task10 67.7 69.8 +2.1 13.3 11.7 −1.6
Long-CL 15 Task11 67.0 68.2 +1.2 13.5 11.6 −1.9
Long-CL 15 Task12 69.1 72.2 +3.1 13.4 11.3 −2.1
Long-CL 15 Task13 68.6 71.5 +2.9 13.0 11.3 −1.7
Long-CL 15 Task14 67.9 70.2 +2.3 13.1 11.5 −1.6
Long-CL 15 Task15 68.8 71.8 +3.0 13.2 11.4 −1.8
TRACE-8 Task1 78.1 80.3 +2.2 8.4 6.9 −1.5
TRACE-8 Task2 78.5 81.1 +2.6 8.5 6.8 −1.7
TRACE-8 Task3 78.0 79.8 +1.8 8.1 6.8 −1.3
TRACE-8 Task4 78.4 80.8 +2.4 8.3 6.7 −1.6
TRACE-8 Task5 78.6 81.5 +2.9 8.6 6.8 −1.8
TRACE-8 Task6 78.2 79.6 +1.4 8.2 6.8 −1.4
TRACE-8 Task7 78.3 80.6 +2.3 8.4 6.9 −1.5
TRACE-8 Task8 78.1 80.1 +2.0 8.3 6.7 −1.6

D.4 PARTIAL-LAYER LORA INJECTION: ACCURACY–LATENCY TRADE-OFF

Each configuration was run on LLAMA-3-8B with the STD-CL 5 stream; throughput is measured on a single A100-80G
with sequence length 512 and batch 64. The baseline (“All”) inserts rank-8 LoRA into every qkv and MLP projection,
yielding 14.2M trainable parameters. We can find that:

• Top-Half adapters retain > 99% of baseline accuracy while halving parameter count and gaining +8%
throughput.

• Last 8 Layers achieve the fastest inference (+11%) with a modest 0.8pp accuracy drop—useful for latency-
critical deployments.

• Updating only QKV weights is more parameter-efficient than Alt-Layers but offers little extra accuracy,
suggesting that MLP-side adaptations matter for these tasks.

Table 12: Accuracy vs. throughput for selective LoRA injection.

Scheme #Params (M) ∆Params Throughput Speed-up AA(%)

All-Layers 14.2 — 285sps — 85.2
Alt-Layers 7.1 –50% 301sps +5.6% 84.9
Top-Half 7.1 –50% 309sps +8.4% 84.7
QKV-Only 9.2 –35% 314sps +10.2% 84.4
Last 8 Layers 3.6 –75% 317sps +11.2% 84.4

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

D.5 ORDER-SENSITIVITY ANALYSIS

To assess the robustness of Meta-UCF to task ordering, we evaluate Meta-UCF and N-LoRA under multiple alternative
permutations of the benchmark streams. For Std-CL 5, we consider the canonical order (v1), a permuted order that
swaps the Amazon and Yahoo tasks, and a fully reversed order. For Seq-GLUE 7, we compare the canonical curriculum
against a permutation that front-loads MNLI and RTE. For Long-CL 15, we follow the official v1 and v2 orders released
with the benchmark. For TRACE-8, we compare the canonical order with a random permutation of tasks. Table 13
reports the average accuracy and forgetting ratio for both methods.

Table 13: Order-sensitivity analysis for Meta-UCF and N-LoRA.

Stream Order Method AA ↑ FR ↓ ∆AA (Meta–N) ∆FR (Meta–N)

Std-CL 5 canonical (v1) N-LoRA 83.5 7.1 – –
Meta-UCF 85.2 6.2 +1.7 –0.9

Std-CL 5 permuted (Amazon↔Yahoo) N-LoRA 83.3 7.6 – –
Meta-UCF 84.9 6.0 +1.6 –1.6

Std-CL 5 reversed N-LoRA 83.1 7.4 – –
Meta-UCF 84.7 6.4 +1.6 –1.0

Seq-GLUE 7 canonical N-LoRA 80.2 7.1 – –
Meta-UCF 82.4 6.3 +2.2 –0.8

Seq-GLUE 7 permuted (MNLI/RTE front) N-LoRA 80.0 7.4 – –
Meta-UCF 82.1 6.6 +2.1 –0.8

Long-CL 15 canonical (v1) N-LoRA 68.1 12.4 – –
Meta-UCF 70.4 11.5 +2.3 –0.9

Long-CL 15 official v2 N-LoRA 67.9 12.7 – –
Meta-UCF 70.1 10.9 +2.2 –1.8

TRACE-8 canonical N-LoRA 61.0 15.5 – –
Meta-UCF 63.2 14.2 +2.2 –1.3

TRACE-8 random permutation N-LoRA 60.8 15.9 – –
Meta-UCF 63.0 14.5 +2.2 –1.4

Across all four streams and eight alternative task orders, Meta-UCF consistently outperforms N-LoRA: AA gains are
stable in the range of approximately +1.6 to +2.3 percentage points, while FR is reduced by about 0.8 to 1.8 percentage
points. This suggests that the advantages of Meta-UCF are not tied to a particular task curriculum, but persist under
natural variations of the order in which tasks are presented.

D.6 JOINT GEOMETRY OF TASK EMBEDDINGS AND QUERY SUBSPACES

To make the roles of Lctr and Lorth more concrete, we analyse how task-code similarity and query-subspace overlap
are related in practice. Recall that ek is the layer-normalised, ℓ2-normalised task embedding built from the support set
(§3.1), and Hk ∈ R|Qk|×d stacks the adapted CLS states on the query set (§3.3). For each task pair (i, j) on STD-CL
5, we compute:

• the absolute task-code similarity | cos θij | := |⟨ei, ej⟩|,
• the query-subspace overlap Ωij = 1

|Qi||Qj |
∥H⊤

i Hj∥F .

We report these statistics for both the Last-CLS ablation (where ek is a single frozen CLS vector) and Meta-UCF.

Observations. On STD-CL 5, the Last-CLS ablation yields task-code similarities in the range | cos(ei, ej)| ∈
[0.14, 0.24] and overlaps Ωij ∈ [0.25, 0.31], with a moderate correlation ρ ≈ 0.66 between the two. Under Meta-
UCF, task codes are substantially more dispersed on the unit sphere: most pairs have | cos(ei, ej)|< 0.06, while query
overlaps drop to Ωij ∈ [0.11, 0.19]. The correlation between | cos(ei, ej)| and Ωij remains only moderately strong

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

0.00 0.05 0.10 0.15 0.20 0.25
|cos(ei, ej)| (task-code similarity)

0.15

0.20

0.25

0.30

ij (
qu

er
y

su
bs

pa
ce

 o
ve

rla
p)

AG Amazon

AG Yelp

AG DBpediaAG Yahoo

Amazon Yelp

Amazon DBpedia

Amazon Yahoo
Yelp DBpedia

Yelp Yahoo
DBpedia Yahoo

Last-CLS ablation (=0.66)
Meta-UCF (=0.78)

Figure 6: Joint geometry of task codes and query subspaces on STD-CL 5. Each point corresponds to a task
pair (i, j), plotting task-code similarity | cos(ei, ej)| on the x-axis and query-subspace overlap Ωij on the
y-axis.

(ρ ≈ 0.78) and far from deterministic: several pairs exhibit very small task-code similarity (| cos(ei, ej)| ≈ 0.02)
but still show noticeable overlap (Ωij ≈ 0.15). This empirically supports the design choice that Lctr and Lorth are not
redundant: Lctr shapes the input geometry of task codes fed to the generator, while Lorth directly regularises the output
geometry of adapted query representations to curb residual interference.

E LLM USAGE

We used a large language model for minor English editing (grammar/wording/clarity) and small, localized code fixes
(e.g., resolving syntax errors, adding missing imports). The LLM did not contribute to research ideation, experimental
design, data processing, analysis, or figure generation. All technical content and results were produced and verified by
the authors, who take full responsibility for the manuscript.

26

	Introduction
	Related Works
	Method
	Task Embedding Acquisition
	Meta-Conditioned Parameter Generator
	Meta Objective

	Experiments
	Experimental Settings
	Main Results
	Ablation Study
	Sensitivity Analysis

	Conclusion
	Theoretical analysis
	Expressivity of a LoRA-HyperNet
	PAC-Bayes Generalisation
	Auxiliary Lemmas and Corollaries

	Supplementary technical details
	Pseudocode

	Details of the experimental setup
	Benchmark Statistics
	Instruction-Format Conversion Scripts
	Computing Infrastructure
	Hyper-parameter Grid and Selection Criteria
	Random Seed and Determinism Settings

	Additional Experiments and Results
	Historical vs. Current Support Sets
	Full Seed-wise Scores
	Confidence Intervals and Significance Tests
	Partial-Layer LoRA Injection: Accuracy–Latency Trade-off
	Order-sensitivity analysis
	Joint geometry of task embeddings and query subspaces

	LLM Usage

