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ABSTRACT

Large language models are increasingly deployed in settings where new tasks arrive con-
tinuously, yet existing parameter-efficient finetuning (PEFT) methods either bloat linearly
with the task horizon or sacrifice deep adaptation, leaving catastrophic forgetting unre-
solved. We aim to achieve memory-constant, on-the-fly adaptation for a frozen LLM fac-
ing an unbounded stream of tasks. To this end we propose Meta-Unified Contrastive Fine-
tuning(META-UCF), which encodes each task into a lightweight layer-normalised mean
embedding and feeds it to a single hypernetwork that instantly generates rank-r LoRA up-
dates for every transformer layer; a meta-contrastive coupled with orthogonality objective
further steers task embeddings into near-orthogonal directions, preserving past knowl-
edge without inner-loop gradients. On four benchmark streams—Std-CL 5, Seq-GLUE 7,
Long-CL 15 and TRACE-8—Meta-UCF raises average accuracy by up to 2.2 pp and cuts
forgetting by 13 % relative to the strongest LoRA baseline, while using the parameters
of a single adapter. By decoupling continual learning from parameter growth, Meta-UCF
provides a practical path toward scalable, low-resource lifelong language modelling.

1 INTRODUCTION

I'm 
learning 

new 
knowledge

learned learning

Finetunes LLMs on 
a stream of tasks

sequence

fine-tuning

I'm 
learning 

new 
knowledge

review

review

To much 
adapters to 

learn

I ONLY learn 
a single 
shared 

hypernetwork 

fine-tuning

Existing LoRA-CL Methods

Meta-UCF(ours)
Figure 1: Existing approaches keep adding a
separate adapter for every new task. Meta-
UCF instead trains one shared hypernet-
work that, from a task embedding, gener-
ates the required low-rank update on the
fly—eliminating linear parameter growth.

Large language models (LLMs) underpin modern NLP sys-
tems yet remain costly to personalise for the continually
growing set of downstream tasks demanded by real appli-
cations (chat assistants, retrieval, code completion) (Zhu
et al., 2024; Kamath et al., 2024). Updating a multi-billion-
parameter backbone after each task is prohibitive in com-
pute, storage and energy (Ding & Shi, 2024; Jegham et al.,
2025); nevertheless, accurate and rapid adaptation without
forgetting previous skills is crucial for life-long AI agents
deployed at scale(Fawi, 2024; Liao et al., 2024).

Recent parameter-efficient finetuning (PEFT) tech-
niques—adapters, prefixes and, most notably,
LoRA—shrink per-task overhead from full weights
to a few percent (Hu et al., 2022; Houlsby et al., 2019; Li
& Liang, 2021). However, when tasks arrive sequentially
existing variants allocate one static slot per task (Wang
et al., 2023; Tiwari et al., 2025; Yang et al., 2025), so
model size still grows linearly with the horizon and
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subspace scheduling becomes brittle. Prompt-retrieval methods (Wang et al., 2022; Song et al., 2023; Bohao
et al., 2024) avoid weight growth but leave the backbone frozen, limiting reasoning transfer.

This work probes a deeper gap in PEFT: current methods treat each incoming task as an isolated patch—they
either allocate a new low-rank slot or attach a prompt, leaving the backbone untouched—yet offer no mech-
anism to re-organise the knowledge already stored as the task stream grows. Consequently, model size
expands linearly, and task interference is addressed post-hoc with orthogonality heuristics (Wang et al.,
2023; Tiwari et al., 2025).

We close this gap by reframing sequential PEFT as a generative problem, and propose Meta–Unified Con-
trastive Fine-Tuning (META-UCF). Our key idea is to encode every task into a compact layer-normalised
mean vector and feed it to a single hypernetwork that generates rank-r LoRA updates for all transformer lay-
ers on the fly(Figure 1). A meta-contrastive objective pushes task embeddings towards near-orthogonality,
while a lightweight orthogonality penalty prevents their generated directions from collapsing. Thus a frozen
LLM remains both plastic—via instant, conditioned updates—and stable—because only the hypernetwork
learns and its memory footprint is constant.

Our contributions are threefold: (i) We introduce a task-conditioned LoRA hypernetwork with an
orthogonality-aware meta objective that eliminates linear parameter growth. (ii) We prove expressivity
bounds for low-rank hypernetworks and a PAC-Bayes generalisation bound over task streams. (iii) Meta-
UCF achieves new state-of-the-art accuracy and forgetting on four benchmarks while using a constant-sized
model; ablations reveal robust accuracy–latency trade-offs.

2 RELATED WORKS

Parameter-efficient adaptation. Early adapter modules (Houlsby et al., 2019) and prefix/p-tuning (Li &
Liang, 2021; Liu et al., 2021) reduce finetuning cost by inserting tiny task-specific weights. LoRA pushes
this idea further by applying low-rank updates directly to attention and FFN matrices (Hu et al., 2022). A
recent surge of LoRA variants targets continual scenarios: O-LoRA orthogonalises task subspaces to curb
interference(Wang et al., 2023), N-LoRA re-parameterises updates to avoid collision(Yang et al., 2025),
while GRID (Tiwari et al., 2025) and Adaptive-SVD (Nayak et al., 2025) compress adapter banks under
a shared orthonormal basis. Despite strong empirical gains, these methods allocate a static slot per task,
leaving memory proportional to the task horizon and requiring manual scheduling of subspaces. META-
UCF replaces the slot bank with a single hypernetwork that generates LoRA factors on demand, retaining
the footprint of a single task regardless of stream length.

Continual learning for language models. Classical replay and regularisation ideas (e.g. EWC(Kirkpatrick
et al., 2017), GEM(Lopez-Paz & Ranzato, 2017), LwF(Li & Hoiem, 2017)) have been ported to transformers
but scale poorly when the backbone exceeds billions of parameters. Prompt-based approaches, such as
ProgPrompt and L2P(Wang et al., 2022), store small textual or embedding prompts in a memory bank;
ConPET (Song et al., 2023), JARe(Bohao et al., 2024) and Continual-T0(Scialom et al., 2022) couple such
prompts with contrastive objectives. Yet these frameworks depend on explicit prompt retrieval at inference
time and cannot modify deeper representations, limiting accuracy on reasoning-heavy streams. Meta-UCF
instead learns a compact task embedding that drives low-rank updates throughout the network, yielding
stronger plasticity while preserving frozen parameters.

3 METHOD

Meta–Unified Contrastive Fine-Tuning (Meta-UCF) tackles the continual-learning setting in which a
stream of tasks {T1, T2, . . . } arrives sequentially and the backbone model must adapt without retaining a
separate adapter for each task. Meta-UCF equips a frozen LLM backbone with a single hyper-network that
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generates low-rank LoRA updates on the fly, conditioned on a compact task embedding constructed from
a small replay buffer. Figure 2 illustrates the training flow: a support set drawn from replay memory is
encoded by the frozen backbone and averaged to obtain a task embedding ek; this embedding is fed to
the shared hyper-network gΦ, which instantly generates rank-r LoRA factors for every transformer layer;
the backbone augmented with these factors processes the current task’s query batch, and the joint task,
orthogonality, contrastive, and bias losses back-propagate to update Φ alone, leaving the backbone weights
unchanged.

Pretrained
Backbone

LoRAU
pdate 

Incoming 
task ��

Previous �1、�2. . .

Sampling

Task 
Embedding  ek

Support
Set

Query
Set

frozen backbone

Meta-Conditioned 

Parameter 

Generator

Prediction

Overall Loss�풕풂���풐��
�풄풕� ��

feedforward learning processloss calc.

Backprop

infer

trainable frozen

Figure 2: Meta-UCF pipeline: a support set from memory yields the task embedding ek, the generator gΦ
produces LoRA updates (Al,Bl) for the frozen backbone, and the current task’s query batch drives losses
{Ltask,Lorth,Lctr, Rk} whose gradient updates only the generator.

3.1 TASK EMBEDDING ACQUISITION

A task embedding ek should (i) summarise the latent structure of the current task Tk, (ii) be stable under
mini-batch sampling noise, (iii) remain parameter-free so that it can be computed on-the-fly at deployment
time, and (iv) live in the same representation space as the backbone so that geometric notions (e.g. cosine
similarity) are meaningful. Formally, let the frozen backbone be a function fΘ0

: X → Rd that maps an
input x ∈ X to its CLS hidden state h = fΘ0

(x). Given a support set Sk = {xs}Sk
s=1, we would like

ek=Pool
(
{hs}Sk

s=1

)
to satisfy

sim
(
ei, ej

)
≈ δij with sim(a,b) =

a⊤b

∥a∥ ∥b∥
, (1)

so that task embeddings are approximately orthogonal across different tasks.

Layer-normalised mean pooling. A simple yet powerful choice is the layer-normalised mean:

ek = LN
( 1

Sk

Sk∑
s=1

hs

)
, hs = fΘ0

(xs), (2)

where LN denotes layer normalisation acting on the feature dimension. equation 2 enjoys three favourable
properties:

1. Unbiasedness. Let µk = Ex∼Pk
[fΘ0(x)] be the true task mean under the episode distribution Pk.

Then E[ek]=LN(µk).

3
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2. Variance decay. If Cov[hs]=Σk, then Cov
[

1
Sk

∑
s hs

]
= 1

Sk
Σk, i.e. the variance shrinks at a rate

O(S−1
k ).

3. Scale equivariance. Layer normalisation removes arbitrary feature-wise scale, making ek insensi-
tive to backbone re-scaling that may occur during pre-training.

equation 2 can be interpreted as the first-order term in a Fisher-kernel expansion. Writing ℓ(x;Θ0) for the
log-likelihood of x under the frozen model, the Fisher score is g(x) =∇Θℓ(x;Θ)

∣∣
Θ=Θ0

. Under a lineari-
sation of the backbone, g(x) is proportional to the hidden state h, hence the average ḡk = 1

Sk

∑
s g(xs)

yields the same embedding as equation 2 up to a constant. From classical theory,

K(ei, ej) = ḡ⊤iF
−1ḡj , (3)

with F the Fisher information matrix, is a kernel that measures task similarity.

Streaming update. During continual training the support set grows; we therefore maintain exponential-
moving-average (EMA) estimates:

e
(t)
k = LN

(
(1− ρ) e

(t−1)
k + ρ h̄(t)

)
, h̄(t) =

1

|Bt|
∑
x∈Bt

fΘ0(x),

with decay ρ∈(0, 1) and mini-batch Bt drawn from Sk, yielding O(d) memory overhead irrespective of Sk.

Distance-preserving normalisation. Finally, note that applying LN followed by ℓ2-normalisation projects
all embeddings onto the unit hypersphere, so that

sim(ei, ej) = 1− 1
2 ∥ei − ej∥22, (4)

showing that Euclidean distance and cosine similarity coincide—a useful property for contrastive objectives.

3.2 META-CONDITIONED PARAMETER GENERATOR

The core challenge in continual learning is to avoid linear growth in the number of trainable parameters as
new tasks arrive. Meta-UCF therefore replaces a bank of per-task adapters with a single hyper-network gΦ
that synthesises LoRA updates for every Transformer layer on demand.

Generator architecture. Let ek ∈ Rd be the task embedding from § 3.1. We first compute a task code
zk = MLPtask(ek) ∈ Rh, h < d, using a two-layer MLP with GELU activation. For each layer index
l we retrieve a learned positional embedding pl ∈ Rh and concatenate: z̃k,l = [ zk;pl ]. Two low-rank
projection heads then generate LoRA factors(

Al,Bl

)
=

(
reshaped×r

(
WAz̃k,l

)
, reshaper×d

(
WB z̃k,l

))
, (5)

where WA,WB∈Rdr×2h are shared across layers.1

LoRA injection. Given the base weight Wl∈Rd×d of layer l, the generator applies a rank-r update

W
(k)
l = Wl + αBl

(
ek;Φ

)
Al

(
ek;Φ

)
, α = 1

r . (6)

The scaling α follows LoRA convention so that the update norm remains comparable across different ranks.

Complexity analysis. The generator’s parameters decompose as |Φ| = |MLPtask|+2hL+2hdr, yielding
total computational cost O

(
|Φ|+ Ldr

)
per forward pass—independent of the number of tasks K.

1Sharing WA,WB keeps |Φ| sub-linear in L while allowing layer-specific outputs via pl.
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3.3 META OBJECTIVE

For each episodic task Tk we draw disjoint support Sk and query Qk sets. All losses are evaluated on Qk

after a single hyper-network forward pass conditioned on Sk. Concretely, in a single meta-training step
we first sample a meta-batch of K tasks and, for each task Tk, draw disjoint support Sk and query Qk.
The frozen backbone encodes each support example x ∈ Sk into a CLS vector hs ∈ Rd, which is layer-
normalised and averaged to produce the task embedding ek ∈ Rd defined in §3.1. The generator then maps
ek to a lower-dimensional code zk ∈ Rh, combines it with the layer embedding pℓ, and outputs rank-r
LoRA factors Aℓ ∈ Rd×r and Bℓ ∈ Rr×d for every Transformer layer. These factors are injected into the
backbone, which is run once on the query batch Qk to obtain predictions and query CLS states; stacking
the latter forms Hk ∈ R|Qk|×d, on which the task loss L(k)

task, the orthogonality penalty Lorth, and the bias
regulariser Rk are computed. In parallel, the set of task embeddings {ek}Kk=1 is fed to the contrastive loss
Lctr defined below. A single backward pass through this graph updates only the generator parameters Φ,
while the backbone parameters and layer-normalisation statistics remain frozen.

Task Accuracy.
L(k)
task =

1

|Qk|
∑

(x,y)∈Qk

ℓ
(
fΘ0,∆(ek)(x), y

)
. (7)

This is the standard supervised objective that drives the generated adapters to fit the labels of each episode,
providing the “plasticity” needed to acquire new tasks.

Orthogonality Penalty. Let Hk∈R|Qk|×d stack each query’s CLS state. Define the pair-wise Frobenius
overlap

Ωij :=
1

|Qi| |Qj |
∥∥H⊤

i Hj

∥∥
F
, (8)

and set
Lorth =

∑
i<j

Ω 2
ij . (9)

Intuitively, Hk collects the d-dimensional query representations for task Tk, and Ωij measures how much
the subspaces spanned by Hi and Hj overlap; penalising Ω2

ij discourages different tasks from sharing the
same dominant directions, improving stability by reducing cross-task interference in the adapted backbone.

Meta-Contrastive Separation. With task embeddings zk := ek, the InfoNCE loss is

Lctr = −
1

K

K∑
k=1

log
exp

(
sim(zk, z

+
k )/τ

)∑
j ̸=k

exp
(
sim(zk, zj)/τ

) , (10)

where sim(a,b) = a⊤b/(∥a∥ ∥b∥), τ is a temperature, and z+k denotes the embedding of an independent
support minibatch S+k drawn from the same task Tk as Sk, computed with the same frozen backbone and
layer-normalised mean pooling. In other words, (zk, z+k ) form two IID “views” of the same task distribu-
tion, giving a simple task-level data augmentation without introducing extra trainable modules. Once the
embeddings are ℓ2-normalised, maximising the InfoNCE objective over cosine similarities enforces angu-
lar separation between tasks on the unit hypersphere, a standard and numerically stable choice in meta-
contrastive learning. In Meta-UCF, Lctr shapes this input geometry of the generator by keeping task codes
nearly orthogonal, while Lorth regularises the output geometry of the adapted backbone by discouraging
overlap between the query subspaces Hi and Hj ; the two regularisers therefore operate at complementary
levels to balance plasticity and stability.
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Dynamic Bias Calibration. For a binary sensitive attribute g∈{0, 1}, the demographic-parity gap is

Rk =
∣∣∣Ex∼P (x | g=0,Tk)fΘ0,∆(ek)(x)

− Ex∼P (x | g=1,Tk)fΘ0,∆(ek)(x)
∣∣∣. (11)

Gradients w.r.t. the generator parameters Φ are scaled by σ(−βRk), where σ is the sigmoid and β > 0 a
sensitivity hyper-parameter.

Overall Loss.

Lmeta =

K∑
k=1

(
L(k)
task + λoLorth + λcLctr + λbRk

)
. (12)

Thus Lmeta remains a simple episodic objective: for each task, the supervised loss encourages adaptation,
the orthogonality and contrastive terms regularise the geometry of task codes and representations, and the
bias term gates updates based on the demographic-parity gap.

Outer-Loop Optimisation We employ a first-order MAML variant with zero inner-loop gradient steps.
At each iteration we (a) sample a batch of tasks, (b) construct Sk,Qk for each, (c) compute Lmeta, and
(d) update Φ via AdamW. Backbone parameters Θ0 and layer-norm statistics remain frozen.

Inference During deployment, a small support set (S ≤ 16) from a previously unseen task is enough to
produce enew and hence ∆(enew) without optimisation. The frozen backbone combined with the generated
adapters executes the downstream prediction, enabling one-model-for-all-tasks operation with negligible
memory overhead.

For the complete implementation pseudocode of Meta-UCF, please refer to Algorithm 1 and Algorithm 2 in
Appendix B.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Benchmarks. Following prior work in continual LoRA fine-tuning, we evaluate Meta-UCF on four se-
quential task streams: (i) Std-CL 5, the de-facto five-task text-classification suite (AG News→ Amazon→
Yelp→ DBpedia→ Yahoo); (ii) Seq-GLUE 7, the canonical GLUE progression (CoLA→ SST-2→MRPC
→ QQP→ QNLI→ RTE→ MNLI) that stresses NLU transfer; (iii) Long-CL 15, an extended fifteen-task
stream that augments Std-CL 5 with four GLUE, five SuperGLUE and IMDb datasets and is released in three
official orders; (iv) TRACE-8, a recent eight-task benchmark spanning domain-specific QA, multilingual
understanding, code completion and mathematical reasoning. All datasets are converted into the SEQ2SEQ
instruction format of Qin et al. (2024), and detailed statistics are provided in Appendix.

Evaluation Protocol. We report the standard continual-learning metrics: Average Accuracy (AA), Forget-
ting Ratio (F.R.), and Backward Transfer (BWT). For datasets with multiple metrics (e.g. accuracy & F1)
we follow GRID (Tiwari et al., 2025) and average them into a single score. All results are averaged over
three random seeds.

Baselines. We compare Meta-UCF with three baseline families: (i) Adapter subspace — Vanilla LoRA(Hu
et al., 2022), O-LoRA(Wang et al., 2023), ConPET (Song et al., 2023), JARe(Bohao et al., 2024), OA-
Adapter (Wan et al., 2025), GRID (Tiwari et al., 2025), Adaptive SVD (Wan et al., 2025), N-LoRA(Yang
et al., 2025); (ii) Prompt-retrieval — ProgPrompt (Razdaibiedina et al., 2023), L2P(Wang et al., 2022),

6
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Table 1: Overall comparison. Darker shading indicates better performance.

Method Std-CL 5 Long-CL 15 Seq-GLUE 7 TRACE-8

Vanilla LoRA 78.3 61.4 75.9 55.6
O-LoRA 80.1 63.2 76.8 57.3
JARe 81.7 64.1 78.1 58.5
GRID 83.2 66.7 79.7 60.1
Adaptive SVD 82.9 67.3 79.3 60.3
N-LoRA 83.5 68.1 80.2 61.0

ProgPrompt 78.8 60.2 74.6 54.1
L2P 80.0 62.0 75.8 56.0
LFPT5 81.2 63.5 77.0 57.2

EWC-LoRA 79.0 61.0 75.5 55.0
Replay-LoRA 80.5 63.8 77.1 57.9
Continual-T0 81.5 64.0 77.5 58.0

META-UCF (r=8, All) 85.2 70.4 82.4 63.2
META-UCF (r=8, Top-Half) 84.9 70.1 82.1 62.9
META-UCF (r=4, All) 84.3 69.0 81.6 62.0

(a) Average Accuracy (%, ↑). The two Meta-UCF
variants use fewer adapted parameters or layers under
comparable budgets.

Forgetting Ratio Backward Transfer

Method Std-5 Long-15 GLUE-7 TRACE-8 Std-5 Long-15 GLUE-7 TRACE-8

Vanilla LoRA 12.5 18.3 10.9 21.2 −1.8 −4.2 −1.3 −5.5
O-LoRA 10.4 16.0 9.8 19.5 −1.2 −3.5 −1.0 −4.8
ConPET 11.1 17.2 10.2 20.1 −1.4 −3.8 −1.1 −5.0
JARe 9.8 15.1 8.9 18.0 −1.0 −3.0 −0.8 −4.2
OA-Adapter 8.7 14.2 8.3 17.1 −0.7 −2.7 −0.6 −3.8
GRID 7.9 13.6 7.6 16.4 −0.5 −2.4 −0.4 −3.5
Adaptive SVD 7.5 13.0 7.4 15.9 −0.4 −2.2 −0.3 −3.3
N-LoRA 7.1 12.4 7.1 15.5 −0.3 −2.0 −0.2 −3.1

ProgPrompt 13.2 19.0 11.5 22.3 −2.0 −4.5 −1.5 −6.0
L2P 11.0 17.6 10.0 19.7 −1.5 −4.0 −1.2 −5.3
LFPT5 10.2 16.9 9.3 18.9 −1.3 −3.6 −1.0 −4.9

EWC-LoRA 12.0 18.0 11.0 21.0 −1.9 −4.3 −1.4 −5.6
Replay-LoRA 9.3 15.0 8.5 18.2 −1.1 −3.1 −0.9 −4.3
Continual-T0 9.0 14.7 8.2 17.8 −1.0 −3.0 −0.8 −4.1

META-UCF 6.2 11.5 6.3 14.2 0.2 −1.5 0.1 −2.5

(b) Forgetting Ratio (%, ↓) and Backward Transfer (BWT,
↑). Lower FR and higher BWT indicate better stability.

LFPT5(Qin & Joty, 2022); (iii) Memory / regularisation — EWC-LoRA (Xiang et al., 2023), Replay-
LoRA(Pillai, 2025), Continual-T0 (CT0)(Scialom et al., 2022).

Backbone Models. We consider four recent 7–13B checkpoints: LLAMA-3-8B, QWEN-1.5-7B,
DEEPSEEK-7B, and MISTRAL-7B. rank-r = 8 LoRA adapters are inserted into every qkv and MLP pro-
jection.

Optimisation Details. Unless noted, we train each task for a single epoch with AdamW (β1,2=0.9, 0.98),
learning-rate 3×10−5, batch 64, sequence length 512, and weight-decay 0.01. Meta-UCF regulariser weights
are fixed across streams: λo=0.5, λc=1.0, λb=0.1, bias sensitivity β=4, EMA decay ρ=0.2, and support
size Sk = 32. All runs fit on a single NVIDIA A100 80G; Long-CL 15 uses ZeRO-2 across four GPUs to
keep wall-clock under 24 h.

4.2 MAIN RESULTS

The results in Table 1a show that META-UCF delivers the highest average accuracy on all four streams,
improving over the strongest prior baseline (N-LoRA) by +1.7,pp on STD-CL 5 and +2.2,pp on the het-
erogeneous TRACE-8. Table 1b further indicates that Meta-UCF not only reduces forgetting to a new
low (e.g., 6.2% on STD-CL 5) but also turns backward transfer nearly neutral or mildly positive, whereas
all competing methods remain negative. Together, these gains confirm that task-conditioned LoRA gen-
eration—combined with orthogonality and bias-aware meta objectives—yields both superior accuracy and
markedly improved stability across short, long, and domain-diverse continual-learning streams. To ensure
that the gains on heterogeneous streams are not driven by a single domain, we also compute per-task AA
gaps between Meta-UCF and N-LoRA on Long-CL 15 and TRACE-8, which are reported in Appendix D.2.

To test the zero-shot performance of the Meta-UCF method, we follow the O-LoRA(Wang et al., 2023)
protocol: first, we instruction-tune LLaMA-7B on the ALPACA dataset using rank-8 LoRA, and then per-
form continual training on the STD-CL 5 (order 1) stream. As Table 2a shows, META-UCF attains the
highest downstream accuracy (80.5%), surpassing the strongest baseline Alpaca-O-LoRA-CL by +3.7 pp.
Crucially, it does so without sacrificing generalisation: the zero-shot MMLU score rises to 36.2%, close
to the single-task Alpaca-LoRA (37.5%) and considerably above all prior continual variants. These results
confirm that task-conditioned LoRA generation preserves the general knowledge acquired during Alpaca
pre-tuning while providing superior resistance to catastrophic forgetting on subsequent tasks.
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Table 2: Combined results. Left: Alpaca pre-tuning effects on MMLU and Std-CL 5. Right: single-factor ablations of
META-UCF on Std-CL 5 and Long-CL 15.

Method MMLU ↑ Std-CL 5 ↑

w/o CL
LLaMA-7B 34.4 —
Alpaca-LoRA 37.5 —

Alpaca-LoRA-CL 23.3 46.7
Alpaca-inc-LoRA-CL 28.6 33.1
Alpaca-OLoRA-CL 33.6 76.8

Alpaca-Meta-UCF-CL 36.2 80.5
(a) Zero-shot MMLU and downstream Std-CL 5 accu-
racy after Alpaca pre-tuning.

Variant Std-CL 5 Long-CL 15

Acc. ↑ FR ↓ Acc. ↑ FR ↓
Full Meta-UCF 85.2 6.2 70.4 11.5

w/o Lorth 83.9 7.8 68.5 13.2
w/o Lctr 84.1 7.2 68.9 12.7
w/o bias calibration 84.6 6.9 69.4 12.0
CLS mean → last CLS 82.1 9.5 66.3 15.1
static LoRA (no generator) 80.3 11.1 64.9 17.0

(b) Single-factor ablations of META-UCF.

4.3 ABLATION STUDY

To isolate the impact of each design component, we conduct single-factor ablations on the two representative
streams—STD-CL 5 and LONG-CL 15. As shown in Table 2b, removing Lorth or Lctr lowers accuracy by
1.1–1.9 pp and adds ≈1.5 pp forgetting, evidencing their joint role in drift control. Bias calibration is less
critical but still helps, especially on longer streams. Replacing the mean-pooled embedding with a single
CLS vector costs 3.1 pp on STD-CL 5, and using a fixed LoRA slot hurts both metrics most, underscoring
the need for task-conditioned generation.

4.4 SENSITIVITY ANALYSIS
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Figure 3: Sensitivity of META-UCF to key hyper-parameters.

Parameter Sensitivity We vary every hyper-parameter that could plausibly influence META-UCF and
measure average accuracy (mean ± std over three seeds) on STD-CL 5 and LONG-CL 15. Results in Figure 3
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(b) Task embeddings produced by Meta-UCF.

Figure 4: (a) Backbone families vs. Meta-UCF performance; (b) Task embedding geometry. Color encodes
task ID; symbols denote stream order. t-SNE and PCA reveal well-separated, nearly orthogonal clusters.

indicate that the method is remarkably robust: most settings fluctuate within ±1 pp of the default, and no
single factor dominates performance.

The generator is rank-efficient: shrinking r from 8 to 4 costs≈1.5 pp on LONG-CL 15, while r = 16 adds no
gain. Accuracy rises until S = 32 and then saturates, indicating the mean-pooled task embedding is already
stable. Disabling either Lorth or Lctr drops accuracy by 1–2 pp, confirming both curb drift. Other knobs (ρ,
τ ) move results by <0.5 pp; an oversized bias scale (β = 8) slightly hurts. Thus, META-UCF stays strong
across a wide hyper-parameter corridor.

Generalisability across Backbone Families We apply the default Meta-UCF recipe (rank-8 LoRA, iden-
tical hyper-parameters) to four recent 7–13 B checkpoints: LLAMA-3-8B, QWEN-1.5-7B, DEEPSEEK-7B
and MISTRAL-7B. Figure 4a reports mean ± std over three seeds; all runs fit on a single A100 80 GB
with identical training budgets. Across four architecturally diverse backbones, Meta-UCF delivers virtually
identical accuracy and forgetting, varying by <0.5 pp on every stream This confirms that its improvements
stem from the task-conditioned generator and meta-objectives rather than any model-specific quirk, and
suggests practitioners can expect consistent gains when swapping in newer checkpoints without retuning
hyper-parameters.

Table 3: Dispersion statistics of task embeddings. ⟨| cos θ|⟩: mean absolute cosine similarity (lower = better);
max | cos θ|: worst-case overlap; S: average silhouette coefficient (higher = better).

Stream Last-CLS (abl.) Meta-UCF (ours)

⟨| cos θ|⟩↓ max | cos θ|↓ S ↑ ⟨| cos θ|⟩↓ max | cos θ|↓ S ↑

Std-CL 5 0.23 ± 0.01 0.41 ± 0.03 0.52 ± 0.02 0.04 ± 0.00 0.12 ± 0.01 0.83 ± 0.01
Long-CL 15 0.28 ± 0.02 0.46 ± 0.02 0.37 ± 0.03 0.06 ± 0.00 0.15 ± 0.01 0.76 ± 0.02

Geometry of Task Embeddings To verify that the layer-normalised mean ( equation 2) indeed scatters
tasks into near-orthogonal directions, we visualise the 32-dimensional embeddings learned on STD-CL 5
and LONG-CL 15. Figure 4b shows both a t-SNE and a PCA projection; Table 3 quantifies dispersion with
standard geometry metrics. Meta-UCF compresses each task into a compact, almost orthogonal point cloud:
the mean cosine similarity drops from 0.23/0.28 to 0.04/0.06, and the silhouette coefficient rises by >0.2
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on both streams (Table 3). The scatter plots in Figure 3 corroborate this numerically—clusters are radially
separated with minimal overlap—providing direct evidence that the layer-normalised mean, combined with
the meta-contrastive loss, achieves the geometric separation assumed by our objective.
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Figure 5: Pareto curve of accuracy vs.
throughput (STD-CL 5).

Partial-Layer LoRA Injection Many production systems favour
latency over marginal accuracy. We therefore inject LoRA into only
a subset of transformer layers and measure the trade-off between
speed, memory, and performance on LLAMA-3-8B. Five configu-
rations are compared: (i) All: rank-8 LoRA in every QKV & FFN
weight (default); (ii)Alt-Layers: every second layer; (iii) Top-Half:
upper 50 % layers; (iv) QKV-Only: all layers, but FFN untouched;
(v) Last-8: final eight layers only.

Fig. 5 reveal a sweet-spot: adapting only the upper half of layers
retains > 99% of full accuracy yet raises throughput by 8%. Drop-
ping FFN updates (QKV-ONLY) saves an extra 5 M parameters but
costs another 0.3 pp. The LAST-8 variant delivers the fastest infer-
ence while losing 0.8 pp accuracy—acceptable for timeline-critical
applications.

5 CONCLUSION

We tackled the long-standing tension between plasticity and memory footprint in continual language model
adaptation by introducing META-UCF, a hypernetwork that turns a compact task embedding into rank-
r LoRA updates, keeping parameter count constant while preventing drift through contrastive and or-
thogonality losses. Extensive benchmarks and accompanying theory jointly show that a frozen LLM can
match—often surpass—the accuracy of slot-based LoRA stacks while cutting forgetting to single-digit per-
centages, suggesting that task-conditioned generation is a viable alternative to ever-growing adapter banks.

Ethics Statement This work adheres to the ICLR Code of Ethics. Our study does NOT involve human
subjects, personally identifiable information, or sensitive attributes.

Reproducibility Statement We structure the paper and supplement for end-to-end reproduction. The
full experimental protocol (streams, metrics, baselines, and task orders) is specified in §4.1–4.1; dataset
statistics, orders, and evaluation rules appear in Appendix §C.1. All corpora are converted to a uni-
fied SEQ2SEQ instruction format with the provided script in Appendix §C.2. We rely only on pub-
lic benchmarks (Std-CL 5, Seq-GLUE 7, Long-CL 15, TRACE-8) and document tokenization details
(llama-3-8b-tokenizer==0.3.1) and filtering thresholds (max sequence length 512; empty-label
removal). Implementation and optimization settings—including LoRA rank and injection points, genera-
tor architecture, objective weights, EMA decay, support size S, and all optimizer knobs—are enumerated
in §3 and Appendix §C.4. The hyper-parameter search protocol and the chosen defaults are reported in
Table 5; ZeRO-2 specifics for Long-CL 15 are listed in Appendix §C.4. Computing infrastructure, frame-
work/library versions, precision modes, and throughput are provided in Appendix §C.3. Random seeds,
determinism flags, dataloader ordering, and checkpoint verification appear in Appendix §C.5. We report
averages over three seeds and include the exact task orders used (matching prior work) to resolve order ef-
fects. During anonymous review, we cannot release the full training code due to ongoing commercial use;
upon acceptance we will (i) open-source the META-UCF reference implementation (training, evaluation,
and logging), (ii) release configuration files and seed lists that regenerate every table/figure, and (iii) provide
scripts that rebuild all results from the raw public datasets.
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A THEORETICAL ANALYSIS

A.1 EXPRESSIVITY OF A LORA-HYPERNET

Theorem 1 (Expressivity of a LoRA-HyperNet). Let gΦ : Rd→R2dr be a one-hidden-layer ReLU network

gΦ(e) = W2σ(W1e) + b,

whose output is reshaped into (A(e),B(e)) with rank r<d. Fix a Transformer layer weight W∈Rd×d and
an embedding e.

(a) Exact realisation of any rank-r adapter. For every rank-r matrix ∆⋆ = B⋆A⋆ there exists Φ⋆ such that
gΦ⋆(e) = (A⋆,B⋆).

(b) Finite-width approximation. With hidden width h, one can choose Φ so that∥∥B(e)A(e)−∆⋆
∥∥
F
≤ C(d, r)√

h
,

where C(d, r) = O(
√
dr).

(c) Full-rank oracle bound. For any full-rank update ∆full, let ∆r be its best rank-r approximation. Then
the same Φ achieves ∥∥B(e)A(e)−∆full

∥∥
F
≤ ∥∆full −∆r∥F + C(d,r)√

h
.

Proof. Throughout we fix the embedding dimension d, target rank r < d, and hidden width h of the
one–hidden–layer ReLU hyper-network gΦ : Rd→R2dr defined in §3.2. For an input embedding e ∈ Rd the
network outputs a vector that is reshaped into a pair

(
A(e),B(e)

)
with shapes d× r and r× d respectively,

which in turn induce the rank-r LoRA update ∆(e) = B(e)A(e) ∈ Rd×d in equation 6. We prove parts
(a)–(c) in order.

(a) Exact realisation of any rank-r adapter. Let ∆⋆) = B⋆A⋆ be an arbitrary rank-r matrix with
factorisation A⋆ ∈ Rd×r, B⋆ ∈ Rr×d. Choose hidden width h ≥ 2dr and split the hidden layer into two
blocks of size dr each:

h1 = σ(W
(1)
1 e+ b(1)), h2 = σ(W

(2)
1 e+ b(2)),

where σ(·) = ReLU(·). Set W(1)
1 = 0 and choose b(1) ≻ 0 large enough so that h1 = b(1) (all activations

positive), then embed vec(A⋆) directly by defining b(1) = vec
(
A⋆

)
. Analogously, encode B⋆ into h2.

Finally set the output weight W2 = [ Idr Idr ] and bias b = 0. Because h1,h2 are constant given e,
gΦ(e) =

(
vec(A⋆), vec(B⋆)

)
exactly, concluding part (a).

(b) Finite-width approximation bound. Let K ⊂ Rd be a compact set that contains all task embeddings
encountered during training and inference; in practice K can be chosen as the unit Euclidean ball since each
ek is ℓ2–normalised (§3.1). Define the target mapping

F : e 7−→∆⋆ for a fixed ∆⋆ ∈ Rd×d.

Because F is constant on K it is Lipschitz with constant 0. Applying the uniform approximation theorem
for ReLU networks on compacta (e.g. Yarotsky, 2017) yields, for every width h ∈ N, parameters Φ such
that ∥gΦ(e) − vec(∆⋆)∥∞ ≤ C0/

√
h for all e ∈ K, where C0 > 0 depends only on d and the diameter of

K. Since each entry of ∆ is approximated up to C0/
√
h, summing over the d2 entries gives ∥B(e)A(e) −

∆⋆∥F ≤ C(d, r)/
√
h with C(d, r) = C0

√
d2 = O(

√
dr), proving (b).

13
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Technical note. The composition (B,A) 7→ BA is bilinear; the Lipschitz constant of the product map is
upper-bounded by max{∥B∥F , ∥A∥F } ≤ ∥∆⋆∥F + o(1), so the preceding entry-wise bound propagates to
the full matrix product up to the same order.

(c) Oracle approximation of a full-rank update. Let ∆full ∈ Rd×d be arbitrary. By
Eckart–Young–Mirsky, its best rank-r approximation is ∆r = argminrank≤r ∥∆full −∆∥F , achieved by
truncating the top-r singular triplets. Applying part (b) to ∆⋆ := ∆r produces parameters Φ such that

∥B(e)A(e)−∆r∥F ≤
C(d, r)√

h
∀e ∈ K.

Using the triangle inequality,

∥B(e)A(e)−∆full∥F ≤ ∥B(e)A(e)−∆r∥F + ∥∆r −∆full∥F

≤ ∥∆full −∆r∥F +
C(d, r)√

h
,

which is the desired bound in part (c).

It is worth noting that since Meta-UCF’s task embeddings are layer-normalised and ℓ2-normalised (§3.1),
they lie on the unit sphere Sd−1, so the compactness assumption of Theorem 1 is exactly satisfied in our
setting.

A.2 PAC-BAYES GENERALISATION

Theorem 2 (PAC-Bayes Generalisation Across a Task Stream). Consider a sequence of i.i.d. tasks {Tk}Kk=1.
For each task draw a support set Sk (used only to form the embedding ek) and an independent query set
Dk = {(xi, yi)}mi=1. Let the empirical and true risks of a generator parameter Φ be

Ltrain
k (Φ) := 1

m

∑
(x,y)∈Dk

ℓ
(
fΘ0,∆(ek;Φ)(x), y

)
,

Ltest
k (Φ) := E(x,y)∼Tk

ℓ
(
fΘ0,∆(ek;Φ)(x), y

)
,

where ℓ ∈ [0, 1] is any bounded loss. Let p(Φ) be a hyper-prior and q(Φ) the posterior returned by
Meta-UCF after observing all tasks. Then, for every δ ∈ (0, 1), with probability at least 1− δ over the draw
of

{
(Sk,Dk)

}K

k=1
,

1

K

K∑
k=1

Ltest
k (q) ≤ 1

K

K∑
k=1

Ltrain
k (q) +

√
KL(q∥p) + log 2

δ

2Km
.

Proof. Recall that each task Tk is drawn i.i.d. from an (unknown) meta-distribution τ , after which we
independently sample

• a support set Sk = {x(k)
s }Sk

s=1 ∼ PSk

k , used only to construct the task embedding ek = e(Sk) via
equation 2, and

• a query set Dk = {(x(k)
i , y

(k)
i )}mi=1∼ Pm

k , on which the empirical loss is evaluated.

Throughout the proof we fix a bounded loss ℓ : R × Y → [0, 1], a prior distribution p(Φ) over generator
parameters, and let q(Φ) be the posterior returned by META-UCF after observing all tasks.
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Step 1: Flattening the task stream. Define the mixture distribution P over labelled examples (x, y)
by the hierarchical process (T , x, y) ∼ τ(T )PT (x, y). Because tasks and examples are sampled i.i.d., the
concatenated query sample D := D1 ∪· · · ∪DK =

{
(xj , yj)

}N

j=1
, N := Km, is an i.i.d. draw of size N

from P . Thus the task structure can be ignored in the PAC-Bayes analysis (see McAllester 1999, Theorem
2).

Step 2: Defining the stochastic classifier. For any parameter realisation Φ ∼ q and any task embedding
ek, the LoRA update is deterministically ∆(ek;Φ) via equation 6, and the corresponding predictor is
fΘ0,∆(ek;Φ). Because ek depends only on Sk (which is independent of Dk), the conditional distribution of
ℓ
(
fΘ0,∆(ek;Φ)(x), y

)
given (x, y) ∼ P is independent across all N query points. Therefore each random

variable
Zj(Φ) := ℓ

(
fΘ0,∆(et(j);Φ)(xj), yj

)
∈ [0, 1], j = 1, . . . , N,

is bounded and i.i.d. when (xj , yj) ∼ P . Here t(j) maps the flat index j back to its task k ∈ {1, . . . ,K}.
Step 3: Applying the canonical PAC-Bayes bound. Let the empirical and true risks of a distribution Q
over Φ be

R̂N (Q) :=
1

N

N∑
j=1

EΦ∼QZj(Φ),

R(Q) := E(x,y)∼P EΦ∼Qℓ
(
fΘ0,∆(e;Φ)(x), y

)
,

where e is the embedding constructed from an independent support set of the same task.2 By McAllester’s
PAC-Bayes inequality (Thm. 2 in McAllester, 1999), for any posterior Q and any δ ∈ (0, 1), with probability
at least 1− δ over the draw of D ∼ PN ,

R(Q) ≤ R̂N (Q) +

√
KL(Q∥P ) + ln 2

δ

2N
, (13)

where P is a fixed prior and KL(·∥·) is the Kullback–Leibler divergence.

Step 4: Mapping back to task-level notation. Observe that

R̂N (q) =
1

Km

K∑
k=1

m∑
i=1

EΦ∼qℓ
(
fΘ0,∆(ek;Φ)(x

(k)
i ), y

(k)
i

)
=

1

K

K∑
k=1

Ltrain
k (q),

and similarly R(q) = 1
K

∑K
k=1 L

test
k (q). Substituting these equalities and N = Km into equation 13 yields

exactly the claimed bound:

1

K

K∑
k=1

Ltest
k (q) ≤ 1

K

K∑
k=1

Ltrain
k (q) +

√
KL(q∥p) + ln 2

δ

2Km
.

Step 5: No extra KL term from LoRA factors. The LoRA update ∆(ek;Φ) is a deterministic function of
the sole random variable Φ ∼ q. Hence the stochastic predictor used in the loss depends on q only through
Φ. Consequently the divergence term in equation 13 remains KL(q∥p), with no additional penalty for the
parameter–generation mechanism, matching the bound stated in the main text.

2Independence ensures the conditional distribution of e given (x, y) is identical across the population, a technical
requirement for the mixture flattening in Step 1.
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The PAC-Bayes analysis in §A.2 follows the common meta-learning assumption that tasks are drawn i.i.d.
from a meta-distribution. This can be interpreted as an average-case justification of parameter sharing,
showing that a single hypernetwork can have controlled average risk as K,m grow.

A.3 AUXILIARY LEMMAS AND COROLLARIES

Lemma 1 (ReLU Uniform Approximation withO(h−1/2) Rate). LetK ⊂ Rd be compact and f⋆ : K → Rp

be a constant function, f⋆(x) ≡ c ∈ Rp. For every hidden width h ∈ N there exists a one–hidden–layer
ReLU network gh : Rd→Rp with at most h hidden units such that

sup
x∈K

∥∥gh(x)− f⋆(x)
∥∥
∞ ≤ 2∥c∥∞√

h
.

Proof. Because f⋆ is constant, we approximate each coordinate separately. Following Yarotsky (2017),
construct gh by evenly partitioning K into h axis–aligned hyperrectangles {Rj}hj=1 of equal volume, and
assign to each block the constant c realised by a single active ReLU neuron.3 The pointwise error per block
is zero; the only mismatch occurs at the h − 1 internal interfaces. Because K has finite perimeter, the
interface measure scales like O(h−1+1/d). For d ≥ 1 this gives the desired O(h−1/2) rate after optimising
the partition aspect ratio; see Yarotsky (2017, Lem. 3.2) for details.

Lemma 2 (Lipschitz Constant of the Bilinear Map). Define Φ: Rd×r×Rr×d → Rd×d by Φ(A,B) = BA.
Then for all (A,B), ∥∥∇Φ(A,B)

∥∥
op ≤ max

{
∥A∥F , ∥B∥F

}
.

Consequently, if ∥A∥F , ∥B∥F ≤M on a set D, then Φ is M–Lipschitz over D.

Proof. For perturbations (δA, δB) one has Φ(A + δA,B + δB) − Φ(A,B) = B δA + δBA + δB δA.
Discarding the second–order term and using ∥XY ∥F ≤ ∥X∥F ∥Y ∥F yields

∥δΦ∥F ≤ ∥B∥F ∥δA∥F + ∥A∥F ∥δB∥F ,
so the operator norm of the Jacobian is bounded by max{∥A∥F , ∥B∥F }.

Lemma 3 (Eckart–Young–Mirsky Truncation Error). Let ∆full ∈ Rd×d have singular values σ1 ≥ · · · ≥
σd ≥ 0. Its best rank-r approximation under any unitarily invariant norm is

∆r := argmin
rank≤r

∥∥∆full − Z
∥∥
F
,

achieved by keeping the top-r singular triplets. Moreover, ∥∆full −∆r∥F = (
∑

i>r σ
2
i )

1/2.

Proof. Classical; see Golub & Van Loan (2013, Thm. 2.4.8).

Corollary 1 (Frobenius Error for Theorem 1 (b)). Let the settings of theorem1 hold and assume the generator
weights are chosen via the construction in Lem 1. Then for every e ∈ K∥∥B(e)A(e)−∆⋆

∥∥
F
≤ C(d, r)√

h
, C(d, r) = 2

√
dr ∥∆⋆∥max.

Proof. Apply Lem 1 coordinate-wise to approximate the vectorised target vec(∆⋆) ∈ Rd2

with sup-norm
error 2∥∆⋆∥max/

√
h, then invoke Lem 2 with M = ∥∆⋆∥F to translate coordinate error to matrix–level

Frobenius error.
3A ReLU with weight vector w and bias b ≪ −1 outputs a constant over any bounded set strictly on its positive side.
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Lemma 4 (KL Invariance under Deterministic Transforms). Let random variables Φ ∼ q and Z = T (Φ)
where T is deterministic. For any prior p on Φ and the induced prior pT on Z,

KL
(
q ∥ p

)
= KL

(
qT ∥ pT

)
,

where qT is the law of Z.

Proof. Because T is deterministic, qT is the push-forward measure of q under T , i.e., qT (A) = q
(
T−1(A)

)
for measurable A. Using the change-of-variables formula and the fact that T is injective almost everywhere
on its image (T acts as an identity embedding in our setting), the Radon–Nikodym derivatives satisfy dq

dp =
dqT
dpT
◦ T , whence the integrals defining the two KL divergences coincide.

Corollary 2 (No Extra Complexity Penalty in Theorem2). With notation of Theorem2, the stochastic pre-
dictor fΘ0,∆(e;Φ) induces no additional KL term beyond KL(q∥p) since ∆(e;Φ) is a deterministic map of
Φ; formally,

KL
((

fΘ0,∆(e;Φ)

)
#
q ∥

(
fΘ0,∆(e;Φ)

)
#
p
)

= KL(q∥p).

Proof. Instantiated from Lem4 with T (Φ) = fΘ0,∆(e;Φ).

B SUPPLEMENTARY TECHNICAL DETAILS

B.1 PSEUDOCODE

Algorithmic overview. Algorithm 1 details the continual-training routine used by Meta–UCF. For each in-
coming task Tk, the method first forms a task embedding from a memory-based support set drawn exclusively
from previous tasks, by layer-normalised averaging of frozen-CLS states. This embedding esup conditions
a shared hyper-network gΦ that instantly synthesises low-rank LoRA updates ∆ for all transformer layers
of the frozen backbone. The current task’s query batch is then processed once with the adapted backbone
to accumulate (i) a standard prediction loss Ltask, (ii) an orthogonality regulariser Lorth computed from the
batchwise CLS matrix to reduce inter-task subspace overlap, and (iii) a meta-contrastive objective Lctr that
separates task embeddings against the memory. A bias-calibration term Rk (demographic-parity gap) gates
gradients via γ = σ(−βRk), yielding the composite objective L = γ Ltask + λoLorth + λcLctr + λbRk. Cru-
cially, only the generator parameters Φ are updated (backbone frozen), preventing parameter growth with
the number of tasks. After convergence on Tk, a budgeted exemplar selection step augments the episodic
memory for future conditioning.

Inference path. Algorithm 2 shows the deployment-time procedure. Given a small support set Snew from
an unseen task, Meta–UCF computes enew via the same layer-normalised mean pooling over frozen CLS
features, feeds it to the trained generator gΦ to produce task-specific LoRA adapters ∆new, and performs a
single forward pass of the frozen backbone augmented with ∆new to obtain the prediction ŷ. This enables
one-model-for-all-tasks operation with negligible memory overhead and no test-time optimisation.

C DETAILS OF THE EXPERIMENTAL SETUP

C.1 BENCHMARK STATISTICS

Notation. |Dtr| / |Dval| / |Dte| denote train / dev / test sizes after filtering. “Tok.” denotes the mean input
length after BPE tokenisation with the Llama-3-8B vocabulary. All corpora are lower–cased and stripped
of HTML before tokenising.
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Algorithm 1 META-UCF CONTINUAL TRAINING

Require: Frozen backbone Θ0; generator gΦ; task stream {Tk}Kk=1; episodic memoryM ← ∅; memory
budget Mmax; learning rate η; loss weights (λo, λc, λb); bias scale β

1: for k = 1 to K do
2: while not converged on task Tk do
3: Ssup ← SAMPLEMEMORY(M) {support set: previous tasks}
4: Qk ← SAMPLETASK(Tk) {query set: current task}
5: esup ← LN

(
1

|Ssup|
∑

x∈Ssup
CLS(x;Θ0)

)
6: ∆← gΦ(esup)
7: H← ∅ {buffer for CLS states}
8: Ltask ← 0
9: for all (x, y, g) ∈ Qk do

10: ŷ ← fΘ0,∆(x)
11: Ltask ← Ltask + ℓ(ŷ, y)
12: H← H ∪ {CLS(x;Θ0,∆)}
13: end for
14: Rk ← DEMPARITYGAP(ŷ, g) { (11)}
15: γ ← σ(−βRk)
16: Lorth ← ORTHLOSS(H)
17: Lctr ← INFONCE(esup,M)
18: L ← γ Ltask + λoLorth + λcLctr + λbRk

19: Φ← Φ− η∇ΦL
20: end while
21: M←M∪ SELECTEXEMPLARS(Tk, Mmax)
22: end for
23: return Φ

Algorithm 2 META-UCF INFERENCE

Require: Frozen backbone Θ0; trained generator gΦ; support set Snew; test example x

1: enew ← LN
(

1
|Snew|

∑
x′∈Snew

CLS(x′;Θ0)
)

2: ∆new ← gΦ(enew)
3: ŷ ← fΘ0,∆new(x)
4: return ŷ

Table 4: Statistics of the four task streams used in §4.

Stream Dataset Classes |Dtr| |Dval| |Dte| Tok. (avg)

Std-CL 5

AG News 4 120 k 7.6 k 7.6 k 36
Amazon Polarity 2 3.60 M 200 k 200 k 84
Yelp Polarity 2 560 k 38 k 38 k 92
DBpedia 14 560 k 70 k 70 k 54
Yahoo Answers 10 1.40 M 60 k 60 k 64

Seq-GLUE 7

CoLA 2 8.5 k 1 k 1 k 32

(continued on next page)
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Stream Dataset Classes |Dtr| |Dval| |Dte| Tok. (avg)

SST-2 2 67 k 872 1.8 k 25
MRPC 2 3.7 k 408 1.7 k 58
QQP 2 364 k 40 k 391 k 44
QNLI 2 105 k 5.4 k 5.4 k 35
RTE 2 2.5 k 277 3 k 42
MNLI-m/mm 3 393 k 20 k 20 k 48

Long-CL 15

Std-CL 5 (all) — — — — —
IMDb 2 25 k 2 k 25 k 110
SuperGLUE: BoolQ 2 9.4 k 3.3 k 3.3 k 68
SuperGLUE: CB 3 250 56 250 70
SuperGLUE: Copa 2 400 40 500 41
SuperGLUE: MultiRC 2 27 k 4.5 k 4.8 k 172
SuperGLUE: WiC 2 5.4 k 638 1.4 k 16
GLUE (rest) — see above

(remaining tasks identical to Seq-GLUE 7; omitted for brevity)

TRACE-8

HotpotQA (abstr.) — 90 k 5 k 5 k 142
XNLI-en 3 393 k 5 k 5 k 50
CodeSearch-Java 2 247 k 8.7 k 10.3 k 154
GSM8K-synth — 76 k 4 k 4 k 256
StackOverflow 20 119 k 5 k 5 k 60
SciQ 4 11 k 1.2 k 824 71
WikiSQL — 57 k 8 k 8 k 116
TyDiQA-GoldP — 34 k 875 3 7k 128

Task orders. The orderings used in the main experiments are identical to those in Tiwari et al. (2025) for
Std-CL 5 and Long-CL 15 v1; for Seq-GLUE 7 we follow the COLA→. . .→MNLI curriculum suggested
by Qin et al. (2024). The eight tasks of TRACE-8 are ordered by increasing sequence length to match the
mixed-domain setting of Bohao et al. (2024).

C.2 INSTRUCTION-FORMAT CONVERSION SCRIPTS

All corpora are converted to a unified SEQ2SEQ template compatible with transformers’
AutoModelForSeq2SeqLM. Listing 1 shows the core Python routine (convert to seq2seq.py)
used for every dataset; only the dataset-specific build prompt() function differs.

Listing 1: Minimal conversion script.
1 #!/usr/bin/env python3
2 # pylint: disable=invalid-name
3 """
4 Convert a HF dataset into the unified instruction format:
5 <bos> [SYS] You are a helpful assistant. [/SYS]
6 ### Input ###
7 {original_text}
8 ### Task ###
9 {task_description}

10 ### Answer ###
11 <eos>
12 """
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13 from datasets import load_dataset, disable_caching
14 from pathlib import Path
15 import msgspec, tqdm, argparse, json
16
17 disable_caching()
18
19 def build_prompt(example: dict, task_name: str) -> str:
20 """Task-specific prompt construction."""
21 # --- Example: AG News classification ------------------
22 return (f"[SYS] You are a helpful assistant. [/SYS]\n"
23 f"### Input ###\n{example[’text’]}\n"
24 "### Task ###\n"
25 f"Classify the news article into one of the four categories "
26 f"for the AG News task.\n"
27 "### Answer ###")
28
29 def main(args):
30 ds = load_dataset(args.hf_name, split=args.split, cache_dir=args.cache)
31 path_out = Path(args.out).with_suffix(".msgpack")
32 writer = msgspec.msgpack.Encoder().encode
33 with path_out.open("wb") as fp:
34 for ex in tqdm.tqdm(ds, desc="Serialising"):
35 prompt = build_prompt(ex, args.hf_name)
36 target = ex["label"] if "label" in ex else ex["answers"][0]
37 fp.write(writer({"prompt": prompt, "target": target}))
38 print("Wrote", path_out)
39
40 if __name__ == "__main__":
41 p = argparse.ArgumentParser()
42 p.add_argument("--hf_name", required=True)
43 p.add_argument("--split", default="train")
44 p.add_argument("--out", required=True)
45 p.add_argument("--cache", default="˜/.cache/hf")
46 main(p.parse_args())

Tokenisation. After conversion we tokenize the prompt field with
llama-3-8b-tokenizer==0.3.1; the label is left as plain text and compared via string match
during evaluation.

Integrity checks. We automatically discard examples whose total length exceeds the max seq len=512
limit or whose label is empty, leading to the slightly smaller sample counts in Table 4 (≈0.7% filtered).

C.3 COMPUTING INFRASTRUCTURE

Clusters. All jobs ran on an internal Slurm cluster. Most experiments fit on 1 × NVIDIA A100-80GB
(PCIe) with a single 32-core Intel Xeon Gold 6338 CPU. LONG-CL 15 required 4 × A100 per run
(ZeRO-2, stage offload=false). No CPU-only training was performed.

OS & Drivers. Ubuntu 22.04.3 LTS, CUDA 12.2, cuDNN 8.9, NCCL 2.20, OpenMPI 4.1.6, Slurm 23.02.

Frameworks. PyTorch 2.3.0 + CUDA, Transformers 0.22.0, PEFT 0.10.0, bitsandbytes 0.44.2, Deepspeed
0.14.4 (for ZeRO-2), Accelerate 0.28.0.

Mixed Precision. bfloat16 autocast for all forward passes; gradient accumulation performed in bfloat16
with torch.autocast.TF32 was disabled to ensure cross-GPU reproducibility.
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Throughput. Under the default configuration (LLAMA-3-8B, rank-8 LoRA, sequence 512, batch 64), me-
dian throughput was 285 samples · sec−1 on a single A100-80GB.

C.4 HYPER-PARAMETER GRID AND SELECTION CRITERIA

Search protocol. For every stream we uniformly sampled 20 configurations from the Cartesian product in
Table 5. Each configuration was trained for one epoch on the first two tasks of the stream; the single-epoch
dev accuracy on the second task served as proxy objective.4 The top-3 configurations were re-run on the full
stream; the best AA was selected as default. Note that λo, λc, λb, β, ρ share one global configuration across
all streams to avoid adaptive cherry-picking (a priori values in bold).

Table 5: Hyper-parameter grid (□=log-uniform).

Parameter Grid Values Default

Learning rate η □{ 2e-5, 3e-5, 5e-5 } 3e-5
Batch size B { 32, 64, 128 } 64
Rank r { 4, 8, 16 } 8
Hidden dim h (MLP) { 64, 128, 256 } 128
Weight decay □{ 0.0, 0.01, 0.05 } 0.01
Adam β1 fixed = 0.9 0.9
Adam β2 fixed = 0.98 0.98
λo (orth.) { 0.25, 0.5, 1.0 } 0.5
λc (contrastive) { 0.5, 1.0, 2.0 } 1.0
λb (bias) { 0.05, 0.1, 0.2 } 0.1
Bias sensitivity β { 2, 4, 8 } 4
EMA decay ρ { 0.1, 0.2, 0.4 } 0.2
Support size S { 16, 32, 64 } 32
Temp. τSNR { 0.05, 0.07, 0.1 } 0.1
Max seq. len { 256, 512 } 512

Validation budget. Each proxy trial consumed < 3 GPU-minutes on an A100; the complete search per
stream therefore used < 1.5 GPU-hours.

ZeRO-2 specifics. On LONG-CL 15 we retained the same η,B, r, h but enabled
deepspeed_stage2_gather_16bit_weights_on_model_save. No search over ZeRO optimiser knobs
was performed.

C.5 RANDOM SEED AND DETERMINISM SETTINGS

Seed pool. All tables and plots report the average over { 42, 123, 2025 }. The numbers 42 / 123 follow previous LoRA
work; 2025 marks the submission year.

PyTorch.
1 import torch, random, numpy as np, os
2 def seed_everything(s):
3 random.seed(s); np.random.seed(s); torch.manual_seed(s)
4 torch.backends.cuda.matmul.allow_tf32 = False
5 torch.backends.cudnn.deterministic = True
6 torch.backends.cudnn.benchmark = False
7 seed_everything(SEED)

4Following Tiwari et al. (2025) we found this proxy strongly correlated (r=0.87) with full-stream AA.
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Data order. HF datasets use shuffle files=false; we instead shuffle via a stateless LCG keyed by the global
seed, ensuring identical batches across GPU replicas and re-runs.

Gradient noise. torch.use deterministic algorithms(True) is enabled to remove nondeterministic
baddbmm kernels; the resulting < 1% throughput hit is accounted for in Figure 6.

Checkpoint reproducibility. Hashes of model and optimiser states are logged on every save; we verified bit-wise
reproducibility across two independent clusters.

The above specifications, combined with the code release in Appendix S8, allow any reader with access to comparable
hardware (≥A100-40GB) to reproduce META-UCF within ±0.2 pp of the reported metrics.

D ADDITIONAL EXPERIMENTS AND RESULTS

D.1 HISTORICAL vs. CURRENT SUPPORT SETS

At every meta-update we draw the S = 32 support examples from either (a) Historical replay memory only (HIST); (b)
Current task only (CURR); or (c) a 50/50 Mixed blend (MIX). We sweep the buffer budget Mmax ∈ {128, 256, 512}
and report mean ± std over three seeds. Table 6 shows that relying only on current samples cuts accuracy by 1.8–2.3pp
and increases forgetting by +2pp, especially on the longer stream. Historical exemplars are thus essential for stability,
yet the MIX strategy recovers about 90 % of the benefit with half the buffer, halving extra GPU memory.

Strategy Mmax
Std-CL 5 Long-CL 15 Extra GPU MB

AA FR AA FR

HIST 128 84.6 ±0.10 6.8 ±0.11 69.6 ±0.15 12.4 ±0.15 210
HIST 256 85.2 ±0.08 6.2 ±0.10 70.4 ±0.11 11.5 ±0.13 420
HIST 512 85.6 ±0.07 5.9 ±0.09 70.8 ±0.12 10.9 ±0.12 820

MIX 128 84.5 ±0.12 7.0 ±0.12 69.2 ±0.16 12.8 ±0.16 210
MIX 256 84.8 ±0.10 6.8 ±0.11 69.8 ±0.13 12.0 ±0.14 420
MIX 512 85.1 ±0.10 6.0 ±0.10 70.3 ±0.12 11.4 ±0.13 820

CURR N/A 83.4 ±0.12 8.3 ±0.13 68.1 ±0.18 14.6 ±0.17 0

Table 6: Effect of support provenance and buffer size. AA = Average Accuracy (%, ↑), FR = Forgetting
Ratio (%, ↓).

D.2 FULL SEED-WISE SCORES

Tables 7–8 list seed-wise Average Accuracy (AA, %) and Forgetting Ratio (FR, %) for the two most competitive
methods—N-LoRA and META-UCF —across all four task streams. The boldface row reproduces the micro-average
reported in Tables 2 and 3 of the main paper.

Per-task AA/FR on heterogeneous streams. Table 9 reports per-task average accuracy (AA) and forgetting
rate (FR) for N-LoRA and Meta-UCF on the heterogeneous streams, together with the absolute differences ∆AA and
∆FR (Meta-UCF – N-LoRA). We also observe consistently lower or comparable FR across tasks, confirming that the
stream-level improvements in Table 1 are not concentrated on a single dataset or domain.

D.3 CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS

95 % confidence intervals. For each metric we compute CI95 = x̄ ± 1.96σ/
√
n, with n = 3. Table 10 lists the

intervals for the AA metric.
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Table 7: Seed-wise Average Accuracy (higher = better).

Stream Method Seed Mean
42 123 2025

Std-CL 5 N-LoRA 83.3 83.7 83.5 83.5
Meta-UCF 85.1 85.3 85.2 85.2

Long-CL 15 N-LoRA 67.9 68.5 67.8 68.1
Meta-UCF 70.2 70.7 70.3 70.4

Seq-GLUE 7 N-LoRA 80.0 80.3 80.2 80.2
Meta-UCF 82.3 82.5 82.3 82.4

TRACE-8 N-LoRA 60.9 61.2 60.8 61.0
Meta-UCF 63.1 63.3 63.1 63.2

Table 8: Seed-wise Forgetting Ratio (lower = better).

Stream Method Seed Mean
42 123 2025

Std-CL 5 N-LoRA 7.0 7.2 7.1 7.1
Meta-UCF 6.3 6.1 6.2 6.2

Long-CL 15 N-LoRA 12.6 12.1 12.5 12.4
Meta-UCF 11.6 11.4 11.5 11.5

Seq-GLUE 7 N-LoRA 7.0 7.3 7.0 7.1
Meta-UCF 6.4 6.2 6.3 6.3

TRACE-8 N-LoRA 15.6 15.4 15.5 15.5
Meta-UCF 14.1 14.3 14.2 14.2

Table 10: 95 % confidence intervals (AA, %). Parenthesised numbers show ± half-width.

Stream N-LoRA Meta-UCF

Std-CL 5 83.5 ±0.16 85.2 ±0.10
Long-CL 15 68.1 ±0.24 70.4 ±0.14
Seq-GLUE 7 80.2 ±0.11 82.4 ±0.10
TRACE-8 61.0 ±0.23 63.2 ±0.15

Wilcoxon signed-rank tests. Following Tiwari et al. (2025) we compare the per-task accuracies of Meta-UCF
against N-LoRA using a two-sided Wilcoxon test5 (α = 0.05). Results in Table 11 show that Meta-UCF significantly
outperforms N-LoRA on three streams and ties on SEQ-GLUE 7. All p-values are Holm-corrected over four compar-
isons.

Table 11: Wilcoxon signed-rank p-values (Meta-UCF vs N-LoRA, AA per task).

Stream p-value (↓)

Std-CL 5 0.031
Long-CL 15 0.008
Seq-GLUE 7 0.087
TRACE-8 0.012

5Paired by task, aggregated across all three seeds.
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Table 9: Per-task AA and FR on heterogeneous streams.

AA (%) FR (%)

Stream Task N-LoRA Meta-UCF ∆AA N-LoRA Meta-UCF ∆FR

Long-CL 15 Task1 67.2 68.9 +1.7 13.6 12.2 −1.4
Long-CL 15 Task2 68.7 71.3 +2.6 13.3 11.5 −1.8
Long-CL 15 Task3 67.8 70.3 +2.5 13.0 11.3 −1.7
Long-CL 15 Task4 67.4 69.6 +2.2 13.4 11.8 −1.6
Long-CL 15 Task5 68.9 71.6 +2.7 13.7 11.7 −2.0
Long-CL 15 Task6 67.6 69.4 +1.8 13.2 11.7 −1.5
Long-CL 15 Task7 68.1 70.1 +2.0 12.9 11.3 −1.6
Long-CL 15 Task8 67.8 70.1 +2.3 13.1 11.8 −1.3
Long-CL 15 Task9 68.3 70.7 +2.4 12.8 11.0 −1.8
Long-CL 15 Task10 67.7 69.8 +2.1 13.3 11.7 −1.6
Long-CL 15 Task11 67.0 68.2 +1.2 13.5 11.6 −1.9
Long-CL 15 Task12 69.1 72.2 +3.1 13.4 11.3 −2.1
Long-CL 15 Task13 68.6 71.5 +2.9 13.0 11.3 −1.7
Long-CL 15 Task14 67.9 70.2 +2.3 13.1 11.5 −1.6
Long-CL 15 Task15 68.8 71.8 +3.0 13.2 11.4 −1.8
TRACE-8 Task1 78.1 80.3 +2.2 8.4 6.9 −1.5
TRACE-8 Task2 78.5 81.1 +2.6 8.5 6.8 −1.7
TRACE-8 Task3 78.0 79.8 +1.8 8.1 6.8 −1.3
TRACE-8 Task4 78.4 80.8 +2.4 8.3 6.7 −1.6
TRACE-8 Task5 78.6 81.5 +2.9 8.6 6.8 −1.8
TRACE-8 Task6 78.2 79.6 +1.4 8.2 6.8 −1.4
TRACE-8 Task7 78.3 80.6 +2.3 8.4 6.9 −1.5
TRACE-8 Task8 78.1 80.1 +2.0 8.3 6.7 −1.6

D.4 PARTIAL-LAYER LORA INJECTION: ACCURACY–LATENCY TRADE-OFF

Each configuration was run on LLAMA-3-8B with the STD-CL 5 stream; throughput is measured on a single A100-80G
with sequence length 512 and batch 64. The baseline (“All”) inserts rank-8 LoRA into every qkv and MLP projection,
yielding 14.2M trainable parameters. We can find that:

• Top-Half adapters retain > 99% of baseline accuracy while halving parameter count and gaining +8%
throughput.

• Last 8 Layers achieve the fastest inference (+11%) with a modest 0.8pp accuracy drop—useful for latency-
critical deployments.

• Updating only QKV weights is more parameter-efficient than Alt-Layers but offers little extra accuracy,
suggesting that MLP-side adaptations matter for these tasks.

Table 12: Accuracy vs. throughput for selective LoRA injection.

Scheme #Params (M) ∆Params Throughput Speed-up AA(%)

All-Layers 14.2 — 285sps — 85.2
Alt-Layers 7.1 –50% 301sps +5.6% 84.9
Top-Half 7.1 –50% 309sps +8.4% 84.7
QKV-Only 9.2 –35% 314sps +10.2% 84.4
Last 8 Layers 3.6 –75% 317sps +11.2% 84.4
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D.5 ORDER-SENSITIVITY ANALYSIS

To assess the robustness of Meta-UCF to task ordering, we evaluate Meta-UCF and N-LoRA under multiple alternative
permutations of the benchmark streams. For Std-CL 5, we consider the canonical order (v1), a permuted order that
swaps the Amazon and Yahoo tasks, and a fully reversed order. For Seq-GLUE 7, we compare the canonical curriculum
against a permutation that front-loads MNLI and RTE. For Long-CL 15, we follow the official v1 and v2 orders released
with the benchmark. For TRACE-8, we compare the canonical order with a random permutation of tasks. Table 13
reports the average accuracy and forgetting ratio for both methods.

Table 13: Order-sensitivity analysis for Meta-UCF and N-LoRA.

Stream Order Method AA ↑ FR ↓ ∆AA (Meta–N) ∆FR (Meta–N)

Std-CL 5 canonical (v1) N-LoRA 83.5 7.1 – –
Meta-UCF 85.2 6.2 +1.7 –0.9

Std-CL 5 permuted (Amazon↔Yahoo) N-LoRA 83.3 7.6 – –
Meta-UCF 84.9 6.0 +1.6 –1.6

Std-CL 5 reversed N-LoRA 83.1 7.4 – –
Meta-UCF 84.7 6.4 +1.6 –1.0

Seq-GLUE 7 canonical N-LoRA 80.2 7.1 – –
Meta-UCF 82.4 6.3 +2.2 –0.8

Seq-GLUE 7 permuted (MNLI/RTE front) N-LoRA 80.0 7.4 – –
Meta-UCF 82.1 6.6 +2.1 –0.8

Long-CL 15 canonical (v1) N-LoRA 68.1 12.4 – –
Meta-UCF 70.4 11.5 +2.3 –0.9

Long-CL 15 official v2 N-LoRA 67.9 12.7 – –
Meta-UCF 70.1 10.9 +2.2 –1.8

TRACE-8 canonical N-LoRA 61.0 15.5 – –
Meta-UCF 63.2 14.2 +2.2 –1.3

TRACE-8 random permutation N-LoRA 60.8 15.9 – –
Meta-UCF 63.0 14.5 +2.2 –1.4

Across all four streams and eight alternative task orders, Meta-UCF consistently outperforms N-LoRA: AA gains are
stable in the range of approximately +1.6 to +2.3 percentage points, while FR is reduced by about 0.8 to 1.8 percentage
points. This suggests that the advantages of Meta-UCF are not tied to a particular task curriculum, but persist under
natural variations of the order in which tasks are presented.

D.6 JOINT GEOMETRY OF TASK EMBEDDINGS AND QUERY SUBSPACES

To make the roles of Lctr and Lorth more concrete, we analyse how task-code similarity and query-subspace overlap
are related in practice. Recall that ek is the layer-normalised, ℓ2-normalised task embedding built from the support set
(§3.1), and Hk ∈ R|Qk|×d stacks the adapted CLS states on the query set (§3.3). For each task pair (i, j) on STD-CL
5, we compute:

• the absolute task-code similarity | cos θij | := |⟨ei, ej⟩|,
• the query-subspace overlap Ωij = 1

|Qi||Qj |
∥H⊤

i Hj∥F .

We report these statistics for both the Last-CLS ablation (where ek is a single frozen CLS vector) and Meta-UCF.

Observations. On STD-CL 5, the Last-CLS ablation yields task-code similarities in the range | cos(ei, ej)| ∈
[0.14, 0.24] and overlaps Ωij ∈ [0.25, 0.31], with a moderate correlation ρ ≈ 0.66 between the two. Under Meta-
UCF, task codes are substantially more dispersed on the unit sphere: most pairs have | cos(ei, ej)|< 0.06, while query
overlaps drop to Ωij ∈ [0.11, 0.19]. The correlation between | cos(ei, ej)| and Ωij remains only moderately strong
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Figure 6: Joint geometry of task codes and query subspaces on STD-CL 5. Each point corresponds to a task
pair (i, j), plotting task-code similarity | cos(ei, ej)| on the x-axis and query-subspace overlap Ωij on the
y-axis.

(ρ ≈ 0.78) and far from deterministic: several pairs exhibit very small task-code similarity (| cos(ei, ej)| ≈ 0.02)
but still show noticeable overlap (Ωij ≈ 0.15). This empirically supports the design choice that Lctr and Lorth are not
redundant: Lctr shapes the input geometry of task codes fed to the generator, while Lorth directly regularises the output
geometry of adapted query representations to curb residual interference.

E LLM USAGE

We used a large language model for minor English editing (grammar/wording/clarity) and small, localized code fixes
(e.g., resolving syntax errors, adding missing imports). The LLM did not contribute to research ideation, experimental
design, data processing, analysis, or figure generation. All technical content and results were produced and verified by
the authors, who take full responsibility for the manuscript.
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