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ABSTRACT

Large language models are increasingly deployed in settings where new tasks arrive con-
tinuously, yet existing parameter-efficient finetuning (PEFT) methods either bloat linearly
with the task horizon or sacrifice deep adaptation, leaving catastrophic forgetting unre-
solved. We aim to achieve memory-constant, on-the-fly adaptation for a frozen LLM fac-
ing an unbounded stream of tasks. To this end we propose Meta-Unified Contrastive Fine-
tuning(META-UCF), which encodes each task into a lightweight layer-normalised mean
embedding and feeds it to a single hypernetwork that instantly generates rank-r LoRA up-
dates for every transformer layer; a meta-contrastive coupled with orthogonality objective
further steers task embeddings into near-orthogonal directions, preserving past knowl-
edge without inner-loop gradients. On four benchmark streams—Std-CL 5, Seq-GLUE 7,
Long-CL 15 and TRACE-8—Meta-UCF raises average accuracy by up to 2.2 pp and cuts
forgetting by 13 % relative to the strongest LoRA baseline, while using the parameters
of a single adapter. By decoupling continual learning from parameter growth, Meta-UCF

provides a practical path toward scalable, low-resource lifelong language modelling.

1 INTRODUCTION

Large language models (LLMs) underpin modern NLP sys-
tems yet remain costly to personalise for the continually
growing set of downstream tasks demanded by real appli-
cations (chat assistants, retrieval, code completion) (Zhu
et al., 2024} Kamath et al.|[2024). Updating a multi-billion-
parameter backbone after each task is prohibitive in com-
pute, storage and energy (Ding & Shi, 2024; Jegham et al.,
2025)); nevertheless, accurate and rapid adaptation without
forgetting previous skills is crucial for life-long Al agents
deployed at scale(Fawil, 2024 [Liao et al., [2024).

Recent parameter-efficient finetuning (PEFT) tech-
niques—adapters,  prefixes and, most  notably,
LoRA—shrink per-task overhead from full weights
to a few percent (Hu et al., [2022; |Houlsby et al., [2019; [Li
& Liang| [2021). However, when tasks arrive sequentially
existing variants allocate one static slot per task (Wang
et al., |2023; Tiwari et al. 2025; |Yang et al., [2025)), so
model size still grows linearly with the horizon and
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Figure 1: Existing approaches keep adding a
separate adapter for every new task. Meta-
UCF instead trains one shared hypernet-
work that, from a task embedding, gener-
ates the required low-rank update on the
fly—eliminating linear parameter growth.
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subspace scheduling becomes brittle. Prompt-retrieval methods (Wang et al.|[2022;|Song et al., 2023 Bohao
et al.,|2024) avoid weight growth but leave the backbone frozen, limiting reasoning transfer.

This work probes a deeper gap in PEFT: current methods treat each incoming task as an isolated patch—they
either allocate a new low-rank slot or attach a prompt, leaving the backbone untouched—yet offer no mech-
anism to re-organise the knowledge already stored as the task stream grows. Consequently, model size
expands linearly, and task interference is addressed post-hoc with orthogonality heuristics (Wang et al.|
2023 [Tiwari et al.| [2025)).

We close this gap by reframing sequential PEFT as a generative problem, and propose Meta—Unified Con-
trastive Fine-Tuning (META-UCF). Our key idea is to encode every task into a compact layer-normalised
mean vector and feed it to a single hypernetwork that generates rank-r LoRA updates for all transformer lay-
ers on the fly(Figure [I). A meta-contrastive objective pushes task embeddings towards near-orthogonality,
while a lightweight orthogonality penalty prevents their generated directions from collapsing. Thus a frozen
LLM remains both plastic—via instant, conditioned updates—and stable—because only the hypernetwork
learns and its memory footprint is constant.

Our contributions are threefold: (i) We introduce a task-conditioned LoRA hypernetwork with an
orthogonality-aware meta objective that eliminates linear parameter growth. (i) We prove expressivity
bounds for low-rank hypernetworks and a PAC-Bayes generalisation bound over task streams. (iii) Meta-
UCEF achieves new state-of-the-art accuracy and forgetting on four benchmarks while using a constant-sized
model; ablations reveal robust accuracy—latency trade-offs.

2 RELATED WORKS

Parameter-efficient adaptation. Early adapter modules (Houlsby et al.||2019) and prefix/p-tuning (Li &
Liang} [2021}; [Liu et al., 2021)) reduce finetuning cost by inserting tiny task-specific weights. LoRA pushes
this idea further by applying low-rank updates directly to attention and FFN matrices (Hu et al., 2022). A
recent surge of LoRA variants targets continual scenarios: O-LoRA orthogonalises task subspaces to curb
interference(Wang et al., 2023), N-LoRA re-parameterises updates to avoid collision(Yang et al.| 2025)),
while GRID (Tiwari et al.l 2025) and Adaptive-SVD (Nayak et al., 2025) compress adapter banks under
a shared orthonormal basis. Despite strong empirical gains, these methods allocate a static slot per task,
leaving memory proportional to the task horizon and requiring manual scheduling of subspaces. META-
UCEF replaces the slot bank with a single hypernetwork that generates LoRA factors on demand, retaining
the footprint of a single task regardless of stream length.

Continual learning for language models. Classical replay and regularisation ideas (e.g. EWC(Kirkpatrick
et al.,|2017), GEM(Lopez-Paz & Ranzato, 2017), LwF(Li & Hoiem, 2017)) have been ported to transformers
but scale poorly when the backbone exceeds billions of parameters. Prompt-based approaches, such as
ProgPrompt and L2P(Wang et al., |2022), store small textual or embedding prompts in a memory bank;
ConPET (Song et al.,|2023), JARe(Bohao et al., [2024) and Continual-TO(Scialom et al.,|2022) couple such
prompts with contrastive objectives. Yet these frameworks depend on explicit prompt retrieval at inference
time and cannot modify deeper representations, limiting accuracy on reasoning-heavy streams. Meta-UCF
instead learns a compact task embedding that drives low-rank updates throughout the network, yielding
stronger plasticity while preserving frozen parameters.

3 METHOD

Meta-Unified Contrastive Fine-Tuning (Meta-UCF) tackles the continual-learning setting in which a
stream of tasks {77, 73, ...} arrives sequentially and the backbone model must adapt without retaining a
separate adapter for each task. Meta-UCF equips a frozen LLM backbone with a single hyper-network that
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generates low-rank LoRA updates on the fly, conditioned on a compact task embedding constructed from
a small replay buffer. Figure [2]illustrates the training flow: a support set drawn from replay memory is
encoded by the frozen backbone and averaged to obtain a task embedding eg; this embedding is fed to
the shared hyper-network g4, which instantly generates rank-r LoRA factors for every transformer layer;
the backbone augmented with these factors processes the current task’s query batch, and the joint task,
orthogonality, contrastive, and bias losses back-propagate to update ® alone, leaving the backbone weights
unchanged.
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Figure 2: Meta-UCF pipeline: a support set from memory yields the task embedding ey, the generator g4
produces LoRA updates (A;, B;) for the frozen backbone, and the current task’s query batch drives losses
{Lusk, Lorths Lewr, Ri } whose gradient updates only the generator.

3.1 TASK EMBEDDING ACQUISITION

A task embedding e should (i) summarise the latent structure of the current task 7y, (ii) be stable under
mini-batch sampling noise, (iii) remain parameter-free so that it can be computed on-the-fly at deployment
time, and (iv) live in the same representation space as the backbone so that geometric notions (e.g. cosine
similarity) are meaningful. Formally, let the frozen backbone be a function fg, : X — R? that maps an

input 2 € X to its CLS hidden state h = fo, (). Given a support set S, = {x,}°*,, we would like
er,=Pool({h,}3*,) to satisfy

. . . a'b

sim(e;, e;) ~ 6;; with sim(a,b) = Tal o]’ (D)

so that task embeddings are approximately orthogonal across different tasks.

Layer-normalised mean pooling. A simple yet powerful choice is the layer-normalised mean:

Sk
er = LN(;kzlhs), h, = fo, (), )

where LN denotes layer normalisation acting on the feature dimension. equation [2]enjoys three favourable
properties:

1. Unbiasedness. Let pu, =E,p[fe,(z)] be the true task mean under the episode distribution Pj.
Then E[Ek] :LN(,[Lk)
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2. Variance decay. If Cov[h,] =Y, then COV[S%c > h = S%st i.e. the variance shrinks at a rate
-1
O(S; ).
3. Scale equivariance. Layer normalisation removes arbitrary feature-wise scale, making ey, insensi-
tive to backbone re-scaling that may occur during pre-training.

equation [2|can be interpreted as the first-order term in a Fisher-kernel expansion. Writing ¢(x; ®) for the
log-likelihood of « under the frozen model, the Fisher score is g(z) = Ve /(z; ©)| o—o,  Under a lineari-

sation of the backbone, g(z) is proportional to the hidden state h, hence the average g5, = S% > 8(xs)
yields the same embedding as equation[2]up to a constant. From classical theory,

_Tr—1=
K(ei,ej) =g, F ™ g;, 3)
with F the Fisher information matrix, is a kernel that measures task similarity.

Streaming update. During continual training the support set grows; we therefore maintain exponential-
moving-average (EMA) estimates:

t ot -
r€EB:
with decay p € (0, 1) and mini-batch B; drawn from S, yielding O(d) memory overhead irrespective of Sj.

Distance-preserving normalisation. Finally, note that applying LN followed by ¢5-normalisation projects
all embeddings onto the unit hypersphere, so that

: 1 2

sim(es,e5) =1 — 3 |les — ¢;][3, 4

showing that Euclidean distance and cosine similarity coincide—a useful property for contrastive objectives.
3.2 META-CONDITIONED PARAMETER GENERATOR

The core challenge in continual learning is to avoid linear growth in the number of trainable parameters as

new tasks arrive. Meta-UCF therefore replaces a bank of per-task adapters with a single hyper-network g
that synthesises LoRA updates for every Transformer layer on demand.

Generator architecture. Let ¢;, € R? be the task embedding from § [3.1} We first compute a task code
zr = MLPuu(er) € R?, h<d, using a two-layer MLP with GELU activation. For each layer index

| we retrieve a learned posmonal embedding p: € R" and concatenate: Zg; = |[2zg;p1). Two low-rank
projection heads then generate LoRA factors
(Al,Bl) = <reshapedxr(WAik7l), reshaperxd(WBikvl)), 5)

where W4, W5 € R¥*2" are shared across layers

LoRA injection. Given the base weight W; € R%*? of layer [, the generator applies a rank-r update
W =W, + aBi(er; ®) Ay(er; ®), o = L (6)

(s

The scaling o follows LoRA convention so that the update norm remains comparable across different ranks.

Complexity analysis. The generator’s parameters decompose as |®| = |MLP g | + 2h L + 2hdr, yielding
total computational cost O(|<D| + Ldr) per forward pass—independent of the number of tasks K.

'Sharing Wa, Wx keeps |®| sub-linear in L while allowing layer-specific outputs via p;.
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3.3 META OBJECTIVE

For each episodic task 7, we draw disjoint support Sy and query Q). sets. All losses are evaluated on Qy,
after a single hyper-network forward pass conditioned on Si. Concretely, in a single meta-training step
we first sample a meta-batch of K tasks and, for each task 7Ty, draw disjoint support Sy and query Q.
The frozen backbone encodes each support example x € Sy into a CLS vector hs € R?, which is layer-
normalised and averaged to produce the task embedding e, € R? defined in §3.1} The generator then maps
ey to a lower-dimensional code z, € R, combines it with the layer embeddmg pe, and outputs rank-r
LoRA factors A, € R¥*" and B, € RTXd for every Transformer layer. These factors are injected into the
backbone, which is run once on the query batch Oy to obtain predictions and query CLS states; stacking
the latter forms Hj, € R'Q“Xd on which the task loss ,Cta&k, the orthogonality penalty Lo.tn, and the bias
regulariser Ry, are computed. In parallel, the set of task embeddings {ej } =, is fed to the contrastive loss

Lty defined below. A single backward pass through this graph updates only the generator parameters ®,
while the backbone parameters and layer-normalisation statistics remain frozen.

Task Accuracy.
1
‘Cglacgk Eval Z E(f@mA(ek)(x)a y) @)
| Qx|
(w,y)er

This is the standard supervised objective that drives the generated adapters to fit the labels of each episode,
providing the “plasticity” needed to acquire new tasks.

Orthogonality Penalty.  Let H;, € RI<*/*¢ stack each query’s CLS state. Define the pair-wise Frobenius
overlap

1
Qi) = M||H;FHJ||F ®)
and set
Lown =Y Q2. ©)
i<j

Intuitively, Hj, collects the d-dimensional query representations for task 7, and €;; measures how much
the subspaces spanned by H; and H; overlap; penalising Q7, ; discourages different tasks from sharing the
same dominant directions, improving stablllty by reducing cross task interference in the adapted backbone.

Meta-Contrastive Separation. With task embeddings z; := ey, the InfoNCE loss is

exp(sim(zx, z; ) /7)
G Z :

ctr - (10)
Zexp sim Zk,Zj)/T)
J#k
where sim(a,b) = a'b/(||a|| ||b|)), 7 is a temperature, and z,” denotes the embedding of an independent

support minibatch S,j drawn from the same task 7 as Sk, computed with the same frozen backbone and

layer-normalised mean pooling. In other words, (zj, 2, ) form two IID “views” of the same task distribu-
tion, giving a simple task-level data augmentation without introducing extra trainable modules. Once the
embeddings are /5-normalised, maximising the InfoNCE objective over cosine similarities enforces angu-
lar separation between tasks on the unit hypersphere, a standard and numerically stable choice in meta-
contrastive learning. In Meta-UCF, L., shapes this input geometry of the generator by keeping task codes
nearly orthogonal, while L, regularises the output geometry of the adapted backbone by discouraging
overlap between the query subspaces H; and H;; the two regularisers therefore operate at complementary
levels to balance plasticity and stability.
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Dynamic Bias Calibration. For a binary sensitive attribute g € {0, 1}, the demographic-parity gap is

Ry = |Egnp(a | g=0,72) f@0,A(er) (T)
(1D
—Eonpa)g=1,70)fO0,A (1) (w)‘-

Gradients w.r.t. the generator parameters ® are scaled by o(—SRy), where o is the sigmoid and 8 > 0 a
sensitivity hyper-parameter.

Overall Loss.

K
»Cmeta = Z (‘Cgigk + )\ocorth + /\c»cctr + )\bRk:) . (12)
k=1
Thus L2 remains a simple episodic objective: for each task, the supervised loss encourages adaptation,
the orthogonality and contrastive terms regularise the geometry of task codes and representations, and the
bias term gates updates based on the demographic-parity gap.

Outer-Loop Optimisation We employ a first-order MAML variant with zero inner-loop gradient steps.
At each iteration we (a) sample a batch of tasks, (b) construct Sy, Oy, for each, (c) compute Leta, and
(d) update ® via AdamW. Backbone parameters @ and layer-norm statistics remain frozen.

Inference During deployment, a small support set (S < 16) from a previously unseen task is enough to
produce é,ey, and hence A (eyey ) without optimisation. The frozen backbone combined with the generated
adapters executes the downstream prediction, enabling one-model-for-all-tasks operation with negligible
memory overhead.

For the complete implementation pseudocode of Meta-UCF, please refer to Algorithm|I]and Algorithm 2]in
Appendix [B.T]

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Benchmarks. Following prior work in continual LoRA fine-tuning, we evaluate Meta-UCF on four se-
quential task streams: (i) Std-CL 5, the de-facto five-task text-classification suite (AG News — Amazon —
Yelp — DBpedia — Yahoo); (ii) Seq-GLUE 7, the canonical GLUE progression (CoLA — SST-2 — MRPC
— QQP — QNLI — RTE — MNLI) that stresses NLU transfer; (iii) Long-CL 185, an extended fifteen-task
stream that augments Std-CL 5 with four GLUE, five SuperGLUE and IMDb datasets and is released in three
official orders; (iv) TRACE-8, a recent eight-task benchmark spanning domain-specific QA, multilingual
understanding, code completion and mathematical reasoning. All datasets are converted into the SEQ2SEQ
instruction format of |(Qin et al.|(2024)), and detailed statistics are provided in Appendix.

Evaluation Protocol. We report the standard continual-learning metrics: Average Accuracy (AA), Forget-
ting Ratio (F.R.), and Backward Transfer (BW'T). For datasets with multiple metrics (e.g. accuracy & F1)
we follow GRID (Tiwari et al., [2025) and average them into a single score. All results are averaged over
three random seeds.

Baselines. We compare Meta-UCF with three baseline families: (i) Adapter subspace — Vanilla LoRA(Hu
et al. 2022), O-LoRA(Wang et al., [2023), ConPET (Song et al.l 2023), JARe(Bohao et al., 2024), OA-
Adapter (Wan et al., 2025), GRID (Tiwari et al., 2025), Adaptive SVD (Wan et al.| [2025)), N-LoRA(Yang
et al., 2025); (ii) Prompt-retrieval — ProgPrompt (Razdaibiedina et al., 2023), L2P(Wang et al., [2022),
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Table 1: Overall comparison. Darker shading indicates better performance.

Method Std-CL5 Long-CL15 Seq-GLUE7 TRACE-8 Forgetting Ratio Backward Transfer
- Method Std-5 Long-15 GLUE-7 TRACE-8 Std-5 Long-15 GLUE-7 TRACE-8

Vanilla LORA 78.3 61.4 75.9 55.6
0O-LoRA 80.1 632 76.8 57.3 Vanilla LoRA  12.5 18.3 10.9 212 —1.8 —42 —1.3 —5.5
JARe 81.7 64.1 78.1 58.5 O-LoRA 10.4 16.0 9.8 19.5 —-12 =35 —1.0 —4.8
GRID 832 66.7 79.7 60.1 ConPET 11.1 17.2 10.2 20.1 —-14 =38 —1.1 -5.0
Adaptive SVD 82.9 67.3 793 60.3 JARe 9.8 15.1 8.9 18.0 —1.0 =30 —0.8 —4.2
N-LoRA 835 68.1 80.2 61.0 OA-Adapter 8.7 14.2 8.3 17.1 -07 =27 —-0.6 —-38

GRID 79 136 7.6 164 05 —24 04 35
ProgPrompt 78.8 60.2 74.6 54.1 Adaptive SVD 7.5 13.0 7.4 159 —04 -22 —03 -33
L2p 80.0 62.0 75.8 56.0 N-LoRA 71 124 7.1 155 -03 -20 -02 3.1
LFPT5 81.2 63.5 77.0 57.2

ProgPrompt 132 19.0 115 223 20 -45 15 —6.0
EWC-LoRA 79.0 61.0 75.5 55.0 L2P 1.0 17.6 10.0 197 —15 —40  —12 53
Replay-LoRA 80.5 63.8 77.1 57.9 LEPTS 102 169 9.3 189 —13 -36 —10 —4.9
Continual TO 815 640 75 580 EWC-LoRA 120 180 110 200 —19 -43 —14  —56
META-UCF (1=8, All) 85.2 70.4 82.4 63.2 Replay-LoRA 93 150 8.5 182 —1.1 3.1 —-0.9 —43
META-UCF (=8, Top-Half) = 84.9 70.1 82.1 62.9 Continual-TO 9.0 147 8.2 178  -10 -30  —038 —4.1
META-UCF (r=4, Al e 020 gie 020 META-UCE [ 62 115 63 142 02 15 01 —25

(a) Average Accuracy (%, 7). The two Meta-UCF  (p) Forgetting Ratio (%, |) and Backward Transfer (BWT,

variants use fewer adapted parameters or layers under 4y [ ower FR and higher BWT indicate better stability.
comparable budgets.

LFPT5(Qin & Joty, [2022); (iii) Memory / regularisation — EWC-LoRA (Xiang et al., 2023), Replay-
LoRA(Pillail 2025)), Continual-TO (CT0)(Scialom et al., 2022).

Backbone Models. We consider four recent 7-13B checkpoints: LLAMA-3-8B, QWEN-1.5-7B,
DEEPSEEK-7B, and MISTRAL-7B. rank-r = 8 LoRA adapters are inserted into every gkv and MLP pro-
jection.

Optimisation Details. Unless noted, we train each task for a single epoch with AdamW (31,2 =0.9,0.98),
learning-rate 3x10~°, batch 64, sequence length 512, and weight-decay 0.01. Meta-UCF regulariser weights
are fixed across streams: A\, =0.5, A\, =1.0, A\, =0.1, bias sensitivity 5 =4, EMA decay p=0.2, and support
size Sy = 32. All runs fit on a single NVIDIA A100 80G; Long-CL 15 uses ZeRO-2 across four GPUs to
keep wall-clock under 24 h.

4.2 MAIN RESULTS

The results in Table [Ta] show that META-UCF delivers the highest average accuracy on all four streams,
improving over the strongest prior baseline (N-LoRA) by +1.7,pp on STD-CL 5 and +2.2,pp on the het-
erogencous TRACE-8. Table [Ib] further indicates that Meta-UCF not only reduces forgetting to a new
low (e.g., 6.2% on STD-CL 5) but also turns backward transfer nearly neutral or mildly positive, whereas
all competing methods remain negative. Together, these gains confirm that task-conditioned LoRA gen-
eration—combined with orthogonality and bias-aware meta objectives—yields both superior accuracy and
markedly improved stability across short, long, and domain-diverse continual-learning streams. To ensure
that the gains on heterogeneous streams are not driven by a single domain, we also compute per-task AA
gaps between Meta-UCF and N-LoRA on Long-CL 15 and TRACE-8, which are reported in Appendix [D.2]

To test the zero-shot performance of the Meta-UCF method, we follow the O-LoRA(Wang et al., [2023)
protocol: first, we instruction-tune LLaMA-7B on the ALPACA dataset using rank-8 LoRA, and then per-
form continual training on the STD-CL 5 (order 1) stream. As Table [2a] shows, META-UCF attains the
highest downstream accuracy (80.5% ), surpassing the strongest baseline Alpaca-O-LoRA-CL by +3.7 pp.
Crucially, it does so without sacrificing generalisation: the zero-shot MMLU score rises to 36.2%, close
to the single-task Alpaca-LoRA (37.5%) and considerably above all prior continual variants. These results
confirm that task-conditioned LoRA generation preserves the general knowledge acquired during Alpaca
pre-tuning while providing superior resistance to catastrophic forgetting on subsequent tasks.
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Table 2: Combined results. Left: Alpaca pre-tuning effects on MMLU and Std-CL 5.

META-UCF on Std-CL 5 and Long-CL 15.

Right: single-factor ablations of

Method MMLU 1 Std-CL 5 1 ] Std-CL5 Long-CL 15
wio CL Variant et FRL Aeoi FRL
CC. CC.
LLaMA-7B 344 —
Alpaca-LoRA 375 _ Full Meta-UCF 852 62 704 115
W/0 Lon 839 78 685 132
Alpaca-LoRA-CL 233 46.7 W/o L 841 72 689 127
Alpaca-inc-LoRA-CL 28.6 33.1 w/o bias calibration 846 69 694 120
Alpaca-OLoRA-CL 33.6 76.8 CLS mean — last CLS 821 95 663 15.1
Alpaca-Meta-UCF-CL 36.2 80.5 static LoRA (no generator) 80.3 11.1 649 17.0

(a) Zero-shot MMLU and downstream Std-CL 5 accu-
racy after Alpaca pre-tuning.

4.3 ABLATION STUDY

(b) Single-factor ablations of META-UCEF.

To isolate the impact of each design component, we conduct single-factor ablations on the two representative
streams—STD-CL 5 and LONG-CL 15. As shown in Table@ removing Lo or L lowers accuracy by
1.1-1.9 pp and adds ~1.5 pp forgetting, evidencing their joint role in drift control. Bias calibration is less
critical but still helps, especially on longer streams. Replacing the mean-pooled embedding with a single
CLS vector costs 3.1 pp on STD-CL 5, and using a fixed LoRA slot hurts both metrics most, underscoring

the need for task-conditioned generation.

4.4 SENSITIVITY ANALYSIS

Accuracy (%)
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Figure 3: Sensitivity of META-UCEF to key hyper-parameters.

Parameter Sensitivity We vary every hyper-parameter that could plausibly influence META-UCF and
measure average accuracy (mean + std over three seeds) on STD-CL 5 and LONG-CL 15. Results in Figure[3]
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(a) Meta-UCF on different backbone families. (b) Task embeddings produced by Meta-UCFE.

Figure 4: (a) Backbone families vs. Meta-UCF performance; (b) Task embedding geometry. Color encodes
task ID; symbols denote stream order. t-SNE and PCA reveal well-separated, nearly orthogonal clusters.

indicate that the method is remarkably robust: most settings fluctuate within 1 pp of the default, and no
single factor dominates performance.

The generator is rank-efficient: shrinking r from 8 to 4 costs~1.5 pp on LONG-CL 15, while r = 16 adds no
gain. Accuracy rises until S = 32 and then saturates, indicating the mean-pooled task embedding is already
stable. Disabling either Lo, or L drops accuracy by 1-2 pp, confirming both curb drift. Other knobs (p,
7) move results by <0.5 pp; an oversized bias scale (3 = 8) slightly hurts. Thus, META-UCF stays strong
across a wide hyper-parameter corridor.

Generalisability across Backbone Families We apply the default Meta-UCF recipe (rank-8 LoRA, iden-
tical hyper-parameters) to four recent 7-13 B checkpoints: LLAMA-3-8B, QWEN-1.5-7B, DEEPSEEK-7B
and MISTRAL-7B. Figure fa reports mean =+ std over three seeds; all runs fit on a single A100 80 GB
with identical training budgets. Across four architecturally diverse backbones, Meta-UCF delivers virtually
identical accuracy and forgetting, varying by <0.5 pp on every stream This confirms that its improvements
stem from the task-conditioned generator and meta-objectives rather than any model-specific quirk, and
suggests practitioners can expect consistent gains when swapping in newer checkpoints without retuning
hyper-parameters.

Table 3: Dispersion statistics of task embeddings. (| cos 8|): mean absolute cosine similarity (lower = better);
max | cos 6]: worst-case overlap; S: average silhouette coefficient (higher = better).

Last-CLS (abl.) Meta-UCF (ours)
(|cos0]) ] max|cosO|] ST  (Jcosf|)) max|cosf|] ST

Std-CL5  0.23+0.01 0.41+0.03 0.52+0.02 0.04+0.00 0.12+0.01 0.83+0.01
Long-CL 15 028 £0.02 0.46+0.02 0.37£0.03 0.06 £0.00 0.15+0.01 0.76 £ 0.02

Stream

Geometry of Task Embeddings To verify that the layer-normalised mean ( equation [2) indeed scatters
tasks into near-orthogonal directions, we visualise the 32-dimensional embeddings learned on STD-CL 5
and LONG-CL 15. Figure #b]shows both a t-SNE and a PCA projection; Table 3| quantifies dispersion with
standard geometry metrics. Meta-UCF compresses each task into a compact, almost orthogonal point cloud:
the mean cosine similarity drops from 0.23/0.28 to 0.04/0.06, and the silhouette coefficient rises by >0.2
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on both streams (Table[3)). The scatter plots in Figure [3] corroborate this numerically—clusters are radially
separated with minimal overlap—providing direct evidence that the layer-normalised mean, combined with
the meta-contrastive loss, achieves the geometric separation assumed by our objective.

Partial-Layer LoRA Injection Many production systems favour
latency over marginal accuracy. We therefore inject LORA into only
a subset of transformer layers and measure the trade-off between 1 w'®
speed, memory, and performance on LLAMA-3-8B. Five configu-
rations are compared: (i) All: rank-8 LoRA in every QKV & FFN
weight (default); (ii)Alt-Layers: every second layer; (iii) Top-Half:
upper 50 % layers; (iv) QKV-Only: all layers, but FFN untouched;
(v) Last-8: final eight layers only.

©
o
N

©
w
o

®
Top-Half

Alt-Layers

©
»
o

(]
QKV-Only

Accuracy on Std-CL 5 (%)
o
>
(=

. . . 8441 @
Fig. [ reveal a sweet-spot: adapting only the upper half of layers L S P A

retains > 99% of full accuracy yet raises throughput by 8%. Drop- Throughput (tokens / )
ping FFN updates (QK'V-ONLY) saves an extra 5 M parameters but
costs another 0.3 pp. The LAST-8 variant delivers the fastest infer-
ence while losing 0.8 pp accuracy—acceptable for timeline-critical
applications.

Figure 5: Pareto curve of accuracy vs.
throughput (STD-CL 5).

5 CONCLUSION

We tackled the long-standing tension between plasticity and memory footprint in continual language model
adaptation by introducing META-UCF, a hypernetwork that turns a compact task embedding into rank-
r LoRA updates, keeping parameter count constant while preventing drift through contrastive and or-
thogonality losses. Extensive benchmarks and accompanying theory jointly show that a frozen LLM can
match—often surpass—the accuracy of slot-based LoRA stacks while cutting forgetting to single-digit per-
centages, suggesting that task-conditioned generation is a viable alternative to ever-growing adapter banks.

Ethics Statement This work adheres to the ICLR Code of Ethics. Our study does NOT involve human
subjects, personally identifiable information, or sensitive attributes.

Reproducibility Statement We structure the paper and supplement for end-to-end reproduction. The
full experimental protocol (streams, metrics, baselines, and task orders) is specified in dataset
statistics, orders, and evaluation rules appear in Appendix §C.I] All corpora are converted to a uni-
fied SEQ2SEQ instruction format with the provided script in Appendix §C.2] We rely only on pub-
lic benchmarks (Std-CL 5, Seq-GLUE 7, Long-CL 15, TRACE-8) and document tokenization details
(1lama-3-8b-tokenizer==0.3.1) and filtering thresholds (max sequence length 512; empty-label
removal). Implementation and optimization settings—including LoRA rank and injection points, genera-
tor architecture, objective weights, EMA decay, support size S, and all optimizer knobs—are enumerated
in §3] and Appendix §C.4] The hyper-parameter search protocol and the chosen defaults are reported in
Table [5} ZeRO-2 specifics for Long-CL 15 are listed in Appendix Computing infrastructure, frame-
work/library versions, precision modes, and throughput are provided in Appendix Random seeds,
determinism flags, dataloader ordering, and checkpoint verification appear in Appendix §C.3] We report
averages over three seeds and include the exact task orders used (matching prior work) to resolve order ef-
fects. During anonymous review, we cannot release the full training code due to ongoing commercial use;
upon acceptance we will (i) open-source the META-UCF reference implementation (training, evaluation,
and logging), (ii) release configuration files and seed lists that regenerate every table/figure, and (iii) provide
scripts that rebuild all results from the raw public datasets.
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A THEORETICAL ANALYSIS

A.1 EXPRESSIVITY OF A LORA-HYPERNET

Theorem 1 (Expressivity of a LORA-HyperNet). Let g : R4 —R2%" be a one-hidden-layer ReLU network
go(e) = Wao(Wie) + b,

whose output is reshaped into (A (e), B(e)) with rank v < d. Fix a Transformer layer weight W € R4 and
an embedding e.

(a) Exact realisation of any rank-r adapter. For every rank-r matrix A* = B* A* there exists ®* such that
ga+(e) = (A, B*).
(b) Finite-width approximation. With hidden width h, one can choose ® so that
C(d,r)
Jh

[BeAwE) - A, <

where C(d,r) = O(Vdr).

(¢) Full-rank oracle bound. For any full-rank update Agy, let A, be its best rank-r approximation. Then
the same ® achieves

IBe)AC) ~ Al < 18w~ Al + 2.

Proof. Throughout we fix the embedding dimension d, target rank r < d, and hidden width % of the
one-hidden—layer ReLU hyper-network gg : R —R29" defined in For an input embedding e € R¢ the
network outputs a vector that is reshaped into a pair (A(e), B(e)) with shapes d x r and r x d respectively,
which in turn induce the rank-r LoRA update A(e) = B(e)A(e) € R¥*? in equation 6] We prove parts
(a)—(c) in order.

(a) Exact realisation of any rank-r adapter. Let A*) = B*A* be an arbitrary rank-r matrix with
factorisation A* € R?*", B* € R"*¢. Choose hidden width » > 2dr and split the hidden layer into two
blocks of size dr each:

hy = oW +b®),  hy=o(WPe+b?),

where o(-) = ReLU(+). Set ng) = 0 and choose b(") > 0 large enough so that h; = b(!) (all activations
positive), then embed vec(A*) directly by defining b(") = vec(A*). Analogously, encode B* into hs.
Finally set the output weight Wy = [I;. I;.]| and bias b = 0. Because h;, hy are constant given e,
ga(e) = (vec(A*), vec(B*)) exactly, concluding part (a).

(b) Finite-width approximation bound. Let O C R be a compact set that contains all task embeddings
encountered during training and inference; in practice K can be chosen as the unit Euclidean ball since each
ey, is fo—normalised (§3.1). Define the target mapping

F: e—s A* forafixed A* € R4,

Because F' is constant on [ it is Lipschitz with constant 0. Applying the uniform approximation theorem

for ReLU networks on compacta (e.g. Yarotsky, 2017) yields, for every width i € N, parameters ® such
that ||ge (¢) — vec(A*) || < Co/V/h forall e € K, where Cy > 0 depends only on d and the diameter of

K. Since each entry of A is approximated up to Cy/+v/h, summing over the d? entries gives | B(e)A(e) —
A*||p < C(d,r)/vVh with C(d,r) = CoVd? = O(\/dr), proving (b).

13
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Technical note. The composition (B, A) — BA is bilinear; the Lipschitz constant of the product map is
upper-bounded by max{||B|| g, |A|r} < [|[A*||F + o(1), so the preceding entry-wise bound propagates to
the full matrix product up to the same order.

(¢) Oracle approximation of a full-rank update. Let Aqn € R*¢ be arbitrary. By
Eckart—Young-Mirsky, its best rank-r approximation is A, = argmin,, <, ||[Aun — Al F, achieved by
truncating the top-r singular triplets. Applying part (b) to A* := A, produces parameters ® such that

C(d,r)

IB(e)A(e) = Arllr < 7h

Ve € K.

Using the triangle inequality,
[B(e)A(e) — Al < [|B(e)A(e) — Arllr + [[Ar — Agai|lF
C(d,r)
\/E )

which is the desired bound in part (c). O

< || Aan — Ayl|lr +

It is worth noting that since Meta-UCF’s task embeddings are layer-normalised and ¢s-normalised (§3.1J),
they lie on the unit sphere S?~!, so the compactness assumption of Theorem [1|is exactly satisfied in our
setting.

A.2 PAC-BAYES GENERALISATION

Theorem 2 (PAC-Bayes Generalisation Across a Task Stream). Consider a sequence of i.i.d. tasks { T }1_,.
For each task draw a support set Sy, (used only to form the embedding ey) and an independent query set
Dr = {(x;,yi) }™,. Let the empirical and true risks of a generator parameter ® be

Lzain(q)) — % Z E(f@D,A(EM‘I’) (x)ay)v
(z,y) €Dk

LZISS[(‘I)) = E(x,y)wng(féo,A(ek;@) (x)a y)a

where ¢ € [0,1] is any bounded loss. Let p(®) be a hyper-prior and q(®) the posterior returned by
Meta-UCF after observing all tasks. Then, for every 6 € (0, 1), with probability at least 1 — § over the draw

of {(Sk. i)}y,

K K 2

1 1 - KL(q||p) + logs
Ltest < Ltram 5 )
Kkzz1 k() < Kkz:1 k) + 2Km

Proof. Recall that each task 7y is drawn iid. from an (unknown) meta-distribution 7, after which we
independently sample

* a support set S, = {xgk)}fil ~ P?2*, used only to construct the task embedding ey = e(S},) via
equation 2} and

(®) (0 )ym

e aqueryset Dy = {(x;",y; )}~ P}, on which the empirical loss is evaluated.

Throughout the proof we fix a bounded loss £: R x Y — [0, 1], a prior distribution p(®) over generator
parameters, and let ¢(®) be the posterior returned by META-UCEF after observing all tasks.

14
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Step 1: Flattening the task stream. Define the mixture distribution P over labelled examples (zx,y)

by the hierarchical process (7, z,y) ~ 7(T) Py (x,y). Because tasks and examples are sampled i.i.d., the
concatenated query sample D := D U---UDg = {(x;, yj)}j,vzl, N := K m,is ani.i.d. draw of size N
from P. Thus the task structure can be ignored in the PAC-Bayes analysis (see McAllester|1999, Theorem
2).

Step 2: Defining the stochastic classifier. For any parameter realisation & ~ ¢ and any task embedding
er, the LoRA update is deterministically A(ey;®) via equation @ and the corresponding predictor is
f@m (ex;®)- Because ey depends only on Sy (which is independent of Dy,), the conditional distribution of

U(foo,a(er:@)(T), y) given (z,y) ~ P is independent across all N query points. Therefore each random
variable
ZJ(Q) = g(fe)o A(et(j)“p) (xJ) ) [0 1] .7 = 1 Na
is bounded and i.i.d. when (z;,y;) ~ P. Here t(j) maps the flat index j back to its task k € {1,..., K}.
Step 3: Applying the canonical PAC-Bayes bound. Let the empirical and true risks of a distribution @

over P be
1
=% > EenqZ;(®
j=1

R(Q) :==E )~ Eanol foo,a:e) (@), 1),
where e is the embedding constructed from an independent support set of the same taskE] By McAllester’s
PAC-Bayes inequality (Thm. 2 in McAllester; [1999), for any posterior () and any § € (0, 1), with probability
at least 1 — & over the draw of D ~ PN,

~ \/KL(QHP) +1n2 )

R@) < Rv(Q)+ o

where P is a fixed prior and K L(-||-) is the Kullback-Leibler divergence.
Step 4: Mapping back to task-level notation. Observe that

~

k k
Rn(q) ZE<I>~q fooaeee (@), y)

N‘H

K
Z traln
k=
)-S

ubstituting these equalities and N = Km into equatlon.ylelds

N \

and similarly R(q) = & S0, Li™t(q
exactly the claimed bound:

1 & 1 & s KL(q|lp) +1n2
E ZLFCest(q) < ? ZLE:MIH (q) + (‘;”;;)Tn 5
k=1 k=1
Step 5: No extra KL term from LoRA factors. The LoRA update A (ey; ®) is a deterministic function of
the sole random variable ® ~ q. Hence the stochastic predictor used in the loss depends on ¢ only through
®. Consequently the divergence term in equation [13|remains K L(g||p), with no additional penalty for the
parameter—generation mechanism, matching the bound stated in the main text. O

*Independence ensures the conditional distribution of e given (z,y) is identical across the population, a technical
requirement for the mixture flattening in Step 1.
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The PAC-Bayes analysis in §A.2]follows the common meta-learning assumption that tasks are drawn i.i.d.
from a meta-distribution. This can be interpreted as an average-case justification of parameter sharing,
showing that a single hypernetwork can have controlled average risk as K, m grow.

A.3 AUXILIARY LEMMAS AND COROLLARIES

Lemma 1 (ReLU Uniform Approximation with O(h~'/2) Rate). Let K C R? be compact and f*: K — RP
be a constant function, f*(x) = ¢ € RP. For every hidden width h € N there exists a one—hidden—layer
ReLU network gy, : R* —RP with at most h hidden units such that
2||ef|
su x) — f*(x < .
p [lgn(@) —f*@)ll, < =7

zeK

Proof. Because f* is constant, we approximate each coordinate separately. Following |Yarotsky| (2017),
construct gy, by evenly partitioning K into h axis—aligned hyperrectangles {R; }?:1 of equal volume, and

assign to each block the constant c realised by a single active ReLU neuronﬂ The pointwise error per block
is zero; the only mismatch occurs at the h — 1 internal inferfaces. Because K has finite perimeter, the
interface measure scales like O(h~'+1/9). For d > 1 this gives the desired O(h~1/?) rate after optimising
the partition aspect ratio; see Yarotsky| (2017, Lem. 3.2) for details. O

Lemma 2 (Lipschitz Constant of the Bilinear Map). Define ®: R¥" x R4 — R4*4 py &(A, B) = BA.
Then for all (A, B),
[Ve(A,B)|,, < max{||A|F,|Bllr}.

Consequently, if ||A||r, |Bl|r < M on a set D, then ® is M—Lipschitz over D.

Proof. For perturbations (A, 0B) one has (A + 0A,B + /B) — ®(A,B) = BJA + B A + /BJA.
Discarding the second—order term and using || XY ||p < || X||¢||Y || yields

162 < IBl[Fl6A]r + [|[All#[|0B|
so the operator norm of the Jacobian is bounded by max{||A|/r, || B||r}- O

Lemma 3 (Eckart—Young—Mirsky Truncation Error). Let Agy € R¥*? have singular values oy > --- >
oq > 0. Its best rank-r approximation under any unitarily invariant norm is

A, = argminHAfuu - ZHF,

rank<r

achieved by keeping the top-r singular triplets. Moreover, || Ay — Av||r = (3,o, o) /2.

>r 1
Proof. Classical; see Golub & Van Loan| (2013} Thm. 2.4.8). O

Corollary 1 (Frobenius Error for Theorem[T|(b)). Let the settings of theoren{l|hold and assume the generator
weights are chosen via the construction in Lem[I] Then for every e € K

C(d,r)

[B(e)A(e) —A*||, < N

C(d,r) = 2Vdr | A" || max-

Proof. Apply Lem |1| coordinate-wise to approximate the vectorised target vec(A*) € R with sup-norm

error 2|| A* || max/ VR, then invoke Lem with M = ||A*||r to translate coordinate error to matrix—level
Frobenius error. O

3 A ReLU with weight vector w and bias b < —1 outputs a constant over any bounded set strictly on its positive side.
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Lemma 4 (KL Invariance under Deterministic Transforms). Let random variables ® ~ q and Z = T'(®)
where T is deterministic. For any prior p on ® and the induced prior pr on Z,

KL(Q ||p) = KL(CIT ||pT)7

where qr is the law of Z.

Proof. Because T is deterministic, g is the push-forward measure of ¢ under T’ i.e., gr(A) = ¢(T~'(A))
for measurable A. Using the change-of-variables formula and the fact that 7" is injective almost everywhere
on its image (7" acts as an identity embedding in our setting), the Radon—Nikodym derivatives satisfy j—g =
dqr

apr © T, whence the integrals defining the two KL divergences coincide. 0

Corollary 2 (No Extra Complexity Penalty in Theorem2). With notation of Theorent2} the stochastic pre-
dictor fe, a(e;®) induces no additional KL term beyond K L(q||p) since A(e; ®) is a deterministic map of
®; formally,

KL((feo,A(e@))#q | (f@o,A(e@))#p) = KL(qllp)-
Proof. Instantiated from Lenfd| with T'(®) = fe, A (c:@)- O

B SUPPLEMENTARY TECHNICAL DETAILS

B.1 PSEUDOCODE

Algorithmic overview. Algorithm [I]details the continual-training routine used by Meta—UCF. For each in-
coming task 7Ty, the method first forms a task embedding from a memory-based support set drawn exclusively
from previous tasks, by layer-normalised averaging of frozen-CLS states. This embedding ey, conditions
a shared hyper-network gg that instantly synthesises low-rank LoRA updates A for all transformer layers
of the frozen backbone. The current task’s query batch is then processed once with the adapted backbone
to accumulate (i) a standard prediction loss Ly, (ii) an orthogonality regulariser Lo, computed from the
batchwise CLS matrix to reduce inter-task subspace overlap, and (iii) a meta-contrastive objective L that
separates task embeddings against the memory. A bias-calibration term R (demographic-parity gap) gates
gradients via v = o(—BRy), yielding the composite objective £ = v Liask + AoLorth + AcLewr + Ap Ry Cru-
cially, only the generator parameters ® are updated (backbone frozen), preventing parameter growth with
the number of tasks. After convergence on 7, a budgeted exemplar selection step augments the episodic
memory for future conditioning.

Inference path. Algorithm [2] shows the deployment-time procedure. Given a small support set Sey, from
an unseen task, Meta—UCF computes e,y via the same layer-normalised mean pooling over frozen CLS
features, feeds it to the trained generator gg to produce task-specific LoORA adapters Ay, and performs a
single forward pass of the frozen backbone augmented with A, to obtain the prediction ¢. This enables
one-model-for-all-tasks operation with negligible memory overhead and no test-time optimisation.

C DETAILS OF THE EXPERIMENTAL SETUP

C.1 BENCHMARK STATISTICS
Notation. |Dy|/ |Dyal| / |Di| denote train / dev / test sizes after filtering. “Tok.” denotes the mean input

length after BPE tokenisation with the L1 ama—3—-8B vocabulary. All corpora are lower—cased and stripped
of HTML before tokenising.
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Algorithm 1 META-UCF CONTINUAL TRAINING

Require: Frozen backbone ©; generator gg; task stream {73} ; episodic memory M < &; memory
budget M,ax; learning rate 7); loss weights (A, A., Ap); bias scale 3
for k =1to K do
while not converged on task 7 do
Squp <~ SAMPLEMEMORY (M) {support set: previous tasks}
Q. + SAMPLETASK(T;) {query set: current task}

1:
2
3
4:
T LN(@ > es., CLS(: 60))
6
7
8

A — ga(esup)
H + @ {buffer for CLS states}

: Ligsk < 0
9: for all (z,y,g) € Qi do
10: Q<_f®0,A(5E)
11 Liask < Liask + E(g}, y)
12: H «+ HU{CLS(z;0¢,A)}
13: end for
14: Ry, < DEMPARITYGAP(g, g) { (11)}
15: v+ o(—BRyg)
16: Lo < ORTHLOSS(H)
17: Ley < INFONCE (egyp, M)
18: L+ '-chtask + )\oﬁonh + )\cﬁctr + AbRk

19: P~ P-nVal

20:  end while

21: M + MU SELECTEXEMPLARS Tk, Mmax)
22: end for

23: return P

Algorithm 2 META-UCF INFERENCE

Require: Frozen backbone ®g; trained generator gg; support set Syew; test example x

15 €new LN(Win S es... CLS(2/; @o))

2: AAneW — J® (enew)
3y fgflaAncw(x)
4: return gy

Table 4: Statistics of the four task streams used in

Stream Dataset Classes |Dy| | Dyall |De| Tok.(avg)
AG News 4 120k 7.6k 7.6k 36
Amazon Polarity 2 3.60M 200k 200k 84
Std-CL 5 Yelp Polarity 2 560k 38k 38k 92
DBpedia 14 560k 70k 70k 54
Yahoo Answers 10 1.40M 60k 60k 64
CoLA 2 8.5k 1k 1k 32

(continued on next page)

Seq-GLUE 7
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Stream Dataset Classes |Dy|  |Dyal  |De| Tok.(avg)
SST-2 2 67k 872 1.8k 25
MRPC 2 37k 408 1.7k 58
QQP 2 364k 40k 391k 44
QNLI 2 105k 54k 54k 35
RTE 2 2.5k 277 3k 42
MNLI-m/mm 3 393k 20k 20k 48
Std-CL 5 (all) — — — — —
IMDb 2 25k 2k 25k 110
SuperGLUE: BoolQ 2 94k 33k 33k 68
SuperGLUE: CB 3 250 56 250 70
SuperGLUE: Copa 2 400 40 500 41
SuperGLUE: MultiRC 2 27k 4.5k 4.8k 172
SuperGLUE: WiC 2 54k 638 1.4k 16

Long-CL 15  GLUE (rest) — see above

(remaining tasks identical to Seq-GLUE 7; omitted for brevity)

HotpotQA (abstr.) — 90k 5k 5k 142
XNLI-en 3 393k 5k 5k 50
CodeSearch-Java 2 247k 8.7k 103k 154
GSM8K-synth — 76k 4k 4k 256

TRACES  grackOverflow 20 119k S5k 5k 60
SciQ 4 11k 1.2k 824 71
WikiSQL — 57k 8k 8k 116
TyDiQA-GoldP — 34k 875 37k 128

Task orders.

mixed-domain setting of [Bohao et al.| (2024).

C.2

All corpora are converted to a unified SEQ2SEQ template compatible with transformers’
AutoModelForSeqg2SeqLM. Listing [I] shows the core Python routine (convert_to_seqg2seq.py)

INSTRUCTION-FORMAT CONVERSION SCRIPTS

used for every dataset; only the dataset-specific build_prompt () function differs.

O 00 ~JO WU Wi —

Listing 1: Minimal conversion script.

#!/usr/bin/env python3
# pylint: disable=invalid-name

nun

Convert a HF dataset into the unified instruction format:

<bos>

<eos>
nnn

[SYS] You are a helpful assistant.
##+ Input ##4#

{original_text}

### Task ###

{task_description}

### Answer ###

19

[/SYS]

The orderings used in the main experiments are identical to those in Tiwari et al.| (2025)) for
Std-CL 5 and Long-CL 15 v1; for Seq-GLUE 7 we follow the COLA —...— MNLI curriculum suggested
by Qin et al.|(2024)). The eight tasks of TRACE-8 are ordered by increasing sequence length to match the
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13 from datasets import load_dataset, disable_caching
14 from pathlib import Path
15 import msgspec, tgdm, argparse, Jjson

16

17 disable_caching()

18

19 def build_prompt (example: diet, task_name: str) -> str:

20 """Task-specific prompt construction."""

21 # —-—— Example: AG News classification —————————————————-—

22 return (f"[SYS] You are a helpful assistant. [/SYS]\n"

23 444 Input ###\n{example[’text’]}\n"

24 "### Task ###\n"

25 f"Classify the news article into one of the four categories "
26 f"for the AG News task.\n"

27 "h44 Answer #HHEH")

28

29 def main(args):

30 ds = load_dataset (args.hf_name, split=args.split, cache_dir=args.cache)
31 path_out = Path(args.out).with_suffix(".msgpack")

32 writer = msgspec.msgpack.Encoder () .encode

33 with path_out.open ("wb") as fp:

34 for ex in tgdm.tgdm(ds, desc="Serialising"):

35 prompt = build_prompt (ex, args.hf_name)

36 target = ex["label"] if "label" in ex else ex["answers"] [0]
37 fp.write (writer ({"prompt": prompt, "target": target}))

38 print ("Wrote", path_out)

39

40 if _ name_ == "_ _main_ ":

41 p = argparse.ArgumentParser ()

42 p.add_argument ("--hf_name", required=True)

43 p.add_argument ("--split", default="train")

44 p.add_argument ("--out", required=True)

45 p.add_argument ("--cache", default=""/.cache/hf")

46 main (p.parse_args())

Tokenisation. After conversion we tokenize the prompt field with

llama-3-8b-tokenizer==0.3.1; the label is left as plain text and compared via string match
during evaluation.

Integrity checks. We automatically discard examples whose total length exceeds the max_seqg_len=512
limit or whose label is empty, leading to the slightly smaller sample counts in Table 4| (~0.7 % filtered).

C.3 COMPUTING INFRASTRUCTURE

Clusters. All jobs ran on an internal Slurm cluster. Most experiments fit on 1 x NVIDIA A100-80GB
(PClIe) with a single 32-core Intel Xeon Gold 6338 CPU. LONG-CL 15 required 4 x A100 per run
(ZeRO-2, stage_offload=false). No CPU-only training was performed.

OS & Drivers. Ubuntu 22.04.3 LTS, CUDA 12.2, cuDNN 8.9, NCCL 2.20, OpenMPI 4.1.6, Slurm 23.02.

Frameworks. PyTorch 2.3.0 + CUDA, Transformers 0.22.0, PEFT 0.10.0, bitsandbytes 0.44.2, Deepspeed
0.14.4 (for ZeRO-2), Accelerate 0.28.0.

Mixed Precision. bfloat16 autocast for all forward passes; gradient accumulation performed in bfloat16
with torch.autocast.TF32 was disabled to ensure cross-GPU reproducibility.
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Throughput. Under the default configuration (LLAMA-3-8B, rank-8 LoRA, sequence 512, batch 64), me-
dian throughput was 285 samples - sec ! on a single A100-80GB.

C.4 HYPER-PARAMETER GRID AND SELECTION CRITERIA

Search protocol. For every stream we uniformly sampled 20 configurations from the Cartesian product in
Table[5] Each configuration was trained for one epoch on the first two tasks of the stream; the single-epoch
dev accuracy on the second task served as proxy objectiveE] The top-3 configurations were re-run on the full
stream,; the best AA was selected as default. Note that \,, \., Ay, B, p share one global configuration across
all streams to avoid adaptive cherry-picking (a priori values in bold).

Table 5: Hyper-parameter grid (J=log-uniform).

Parameter Grid Values Default
Learning rate 7 04 2e-5, 3e-5,5¢-5}  3e-5
Batch size B {32, 64,128 } 64
Rank r {4,8,16} 8
Hidden dim A (MLP) {64, 128,256 } 128
Weight decay 0{0.0,0.01,0.05 } 0.01
Adam B, fixed = 0.9 0.9
Adam S fixed = 0.98 0.98
Ao (orth.) {0.25,0.5,1.0 } 0.5
Ac (contrastive) {0.5,1.0,2.0} 1.0
b (bias) {£0.05,0.1,0.2 } 0.1
Bias sensitivity 3 {2,4,8} 4
EMA decay p {0.1,0.2,0.4 } 0.2
Support size S {16, 32,64} 32
Temp. Tsnk {0.05,0.07, 0.1} 0.1
Max seq. len {256,512} 512

Validation budget. Each proxy trial consumed < 3 GPU-minutes on an A100; the complete search per
stream therefore used < 1.5 GPU-hours.

ZeRO-2 specifics. On LONG-CL 15 we retained the same n,B,r,h but enabled
deepspeed_stage2_gather_lo6bit_weights_on_model_save. No search over ZeRO optimiser knobs
was performed.

C.5 RANDOM SEED AND DETERMINISM SETTINGS

Seed pool. All tables and plots report the average over { 42, 123, 2025 }. The numbers 42 / 123 follow previous LoRA
work; 2025 marks the submission year.

PyTorch.
1 import torch, random, numpy as np, os
2 def seed_everything(s):
3 random.seed (s); np.random.seed(s); torch.manual_seed(s)
4 torch.backends.cuda.matmul.allow_tf32 = False
5 torch.backends.cudnn.deterministic = True
6 torch.backends.cudnn.benchmark = False
7 seed_everything (SEED)

*Following Tiwari et al.| (2025) we found this proxy strongly correlated (r=0.87) with full-stream AA.
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Data order. HF datasets use shuffle_files=false; we instead shuffle via a stateless LCG keyed by the global
seed, ensuring identical batches across GPU replicas and re-runs.

Gradient noise. torch.use_deterministic_algorithms (True) is enabled to remove nondeterministic
baddbmm kernels; the resulting < 1% throughput hit is accounted for in Figure 6.

Checkpoint reproducibility. Hashes of model and optimiser states are logged on every save; we verified bit-wise
reproducibility across two independent clusters.

The above specifications, combined with the code release in Appendix S8, allow any reader with access to comparable
hardware (> A100-40GB) to reproduce META-UCF within +0.2 pp of the reported metrics.

D ADDITIONAL EXPERIMENTS AND RESULTS

D.1 HISTORICAL vs. CURRENT SUPPORT SETS

At every meta-update we draw the S = 32 support examples from either (a) Historical replay memory only (HIST); (b)
Current task only (CURR); or (c) a 50/50 Mixed blend (M1X). We sweep the buffer budget Mmax € {128, 256,512}
and report mean + std over three seeds. Table|§| shows that relying only on current samples cuts accuracy by 1.8-2.3pp
and increases forgetting by +2pp, especially on the longer stream. Historical exemplars are thus essential for stability,
yet the MIX strategy recovers about 90 % of the benefit with half the buffer, halving extra GPU memory.

Std-CL 5 Long-CL 15

Strategy Mpmax Extra GPUMB
AA FR AA FR

HisT 128 84.6+0.10 6.8 £0.11 69.6 £0.15 12.4 +0.15 210

HisT 256 85.2+0.08 6.2 +0.10 70.4 +0.11 11.5 +0.13 420

HisT 512 85.6+0.07 5.9+0.09 70.8 £0.12 10.9 £0.12 820

Mix 128 84.5+0.12 7.0+0.12 69.2 £0.16 12.8 £0.16 210

Mix 256 84.8+0.10 6.8 £0.11 69.8 £0.13 12.0 £0.14 420

Mix 512 85.1+0.10 6.0£0.10 70.3 £0.12 11.4 £0.13 820
CURR N/A  83.4+0.12 8.3 +0.13 68.1 £0.18 14.6 £0.17 0

Table 6: Effect of support provenance and buffer size. AA = Average Accuracy (%, 1), FR = Forgetting
Ratio (%, |).

D.2 FULL SEED-WISE SCORES

Tables [7H8] list seed-wise Average Accuracy (AA, %) and Forgetting Ratio (FR, %) for the two most competitive
methods—N-LoRA and META-UCF —across all four task streams. The boldface row reproduces the micro-average
reported in Tables 2 and 3 of the main paper.

Per-task AA/FR on heterogeneous streams. Table [J] reports per-task average accuracy (AA) and forgetting
rate (FR) for N-LoRA and Meta-UCF on the heterogeneous streams, together with the absolute differences AAA and
AFR (Meta-UCF — N-LoRA). We also observe consistently lower or comparable FR across tasks, confirming that the
stream-level improvements in Table[T]are not concentrated on a single dataset or domain.

D.3 CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS

95 % confidence intervals. For each metric we compute Clgs = Z + 1.96 o/\/n, with n = 3. Tablelists the
intervals for the AA metric.
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Table 7: Seed-wise Average Accuracy (higher = better).

Stream Method Seed Mean

42 123 2025

N-LoRA 833 837 83.5 83.5

Std-CL 'S Meta-UCF  85.1 853 852 852
LongCL1s icr 02 707 %03 704
sGlUeT e 3 s s w2
tRACEg  NLORA 609 612 608 610

Meta-UCF  63.1 63.3 63.1 63.2

Table 8: Seed-wise Forgetting Ratio (lower = better).

Seed

Stream Method Mean
42 123 2025
e
LongCL1S  \Cr G di4 i1s 11
SCOLUET UUer 64 6 63 63
TRACE-8 N-LoRA 156 154 155 15.5

Meta-UCF  14.1 14.3 14.2 14.2

Table 10: 95 % confidence intervals (AA, %). Parenthesised numbers show =+ half-width.

Stream N-LoRA Meta-UCF

Std-CL 5 83.5+0.16 85.2+£0.10
Long-CL 15 68.1+£0.24 70.4+0.14
Seq-GLUE 7 80.2 +£0.11 82.4 £0.10
TRACE-8 61.0 £0.23 63.2 +0.15

Wilcoxon signed-rank tests. Following [Tiwari et al.| (2025) we compare the per-task accuracies of Meta-UCF
against N-LoRA using a two-sided Wilcoxon tes (o = 0.05). Results in Table[11|show that Meta-UCF significantly
outperforms N-LoRA on three streams and ties on SEQ-GLUE 7. All p-values are Holm-corrected over four compar-
isons.

Table 11: Wilcoxon signed-rank p-values (Meta-UCF vs N-LoRA, AA per task).

Stream p-value (|)

Std-CL 5 0.031
Long-CL 15 0.008
Seq-GLUE 7 0.087
TRACE-8 0.012

SPaired by task, aggregated across all three seeds.
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Table 9: Per-task AA and FR on heterogeneous streams.

AA (%) FR (%)
Stream Task N-LoRA Meta-UCF AAA N-LoRA Meta-UCF AFR
Long-CL 15  Task; 67.2 68.9 +1.7 13.6 12.2 —-14
Long-CL 15  Taske 68.7 71.3 +2.6 133 11.5 —1.8
Long-CL 15  Tasks 67.8 70.3 +2.5 13.0 11.3 —-1.7
Long-CL 15  Tasky 67.4 69.6 +2.2 134 11.8 —1.6
Long-CL 15  Tasks 68.9 71.6 +2.7 13.7 11.7 -2.0
Long-CL 15  Taskg 67.6 69.4 +1.8 132 11.7 —1.5
Long-CL 15  Tasky 68.1 70.1 +2.0 12.9 11.3 -1.6
Long-CL 15 Taskg 67.8 70.1 +2.3 13.1 11.8 —-1.3
Long-CL 15  Taskg 68.3 70.7 +2.4 12.8 11.0 -1.8
Long-CL 15  Task;g 67.7 69.8 +2.1 13.3 11.7 —1.6
Long-CL 15  Task;; 67.0 68.2 +1.2 135 11.6 -1.9
Long-CL 15  Task;o 69.1 72.2 +3.1 13.4 11.3 —2.1
Long-CL 15  Task;3 68.6 71.5 +2.9 13.0 11.3 —-1.7
Long-CL 15  Taskj4 67.9 70.2 +2.3 13.1 11.5 -1.6
Long-CL 15 Task;s 68.8 71.8 +3.0 132 11.4 —-1.8
TRACE-8 Task; 78.1 80.3 +2.2 8.4 6.9 —-1.5
TRACE-8 Tasky 78.5 81.1 +2.6 8.5 6.8 -1.7
TRACE-8 Tasks 78.0 79.8 +1.8 8.1 6.8 —1.3
TRACE-8 Tasky 78.4 80.8 +2.4 8.3 6.7 -1.6
TRACE-8 Tasks 78.6 81.5 +2.9 8.6 6.8 —1.8
TRACE-8 Taskg 78.2 79.6 +1.4 8.2 6.8 —-1.4
TRACE-8 Taskr 78.3 80.6 +2.3 8.4 6.9 —-1.5
TRACE-8 Taskg 78.1 80.1 +2.0 8.3 6.7 -1.6

D.4 PARTIAL-LAYER LORA INJECTION: ACCURACY-LATENCY TRADE-OFF

Each configuration was run on LLAMA-3-8B with the STD-CL 5 stream; throughput is measured on a single A100-80G
with sequence length 512 and batch 64. The baseline (“All”) inserts rank-8 LoRA into every gkv and MLP projection,
yielding 14.2M trainable parameters. We can find that:

 Top-Half adapters retain > 99% of baseline accuracy while halving parameter count and gaining +8%
throughput.

* Last 8 Layers achieve the fastest inference (+11%) with a modest 0.8pp accuracy drop—useful for latency-
critical deployments.

» Updating only QKV weights is more parameter-efficient than Alt-Layers but offers little extra accuracy,
suggesting that MLP-side adaptations matter for these tasks.

Table 12: Accuracy vs. throughput for selective LoRA injection.

Scheme #Params (M) AParams Throughput Speed-up AA(%)

All-Layers 14.2 — 285sps — 85.2
Alt-Layers 7.1 -50% 301sps +5.6% 84.9
Top-Half 7.1 -50% 309sps +8.4% 84.7
QKV-Only 9.2 —35% 314sps +10.2%  84.4
Last 8 Layers 3.6 —75% 317sps +11.2% 84.4
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D.5 ORDER-SENSITIVITY ANALYSIS

To assess the robustness of Meta-UCF to task ordering, we evaluate Meta-UCF and N-LoRA under multiple alternative
permutations of the benchmark streams. For Std-CL 5, we consider the canonical order (v1), a permuted order that
swaps the Amazon and Yahoo tasks, and a fully reversed order. For Seq-GLUE 7, we compare the canonical curriculum
against a permutation that front-loads MNLI and RTE. For Long-CL 15, we follow the official vl and v2 orders released
with the benchmark. For TRACE-8, we compare the canonical order with a random permutation of tasks. Table [T3]
reports the average accuracy and forgetting ratio for both methods.

Table 13: Order-sensitivity analysis for Meta-UCF and N-LoRA.

Stream Order Method AA1T FR| AAA (Meta-N) AFR (Meta-N)
Std-CL 5 canonical (v1) N-LoRA 83.5 7.1 - -
Meta-UCF 852 6.2 +1.7 -0.9
Std-CL 5 permuted (Amazon<>Yahoo) N-LoRA 83.3 7.6 - -
Meta-UCF 849 6.0 +1.6 -1.6
Std-CL 5 reversed N-LoRA 83.1 7.4 - -
Meta-UCF  84.7 6.4 +1.6 -1.0
Seq-GLUE 7  canonical N-LoRA 80.2 7.1 - -
Meta-UCF 824 6.3 +2.2 -0.8
Seq-GLUE 7  permuted (MNLI/RTE front) N-LoRA 80.0 74 - -
Meta-UCF  82.1 6.6 +2.1 -0.8
Long-CL 15  canonical (v1) N-LoRA 68.1 12.4 - -
Meta-UCF 704 115 +2.3 -0.9
Long-CL 15  official v2 N-LoRA 679 12.7 - -
Meta-UCF  70.1  10.9 +2.2 -1.8
TRACE-8 canonical N-LoRA 61.0 155 - -
Meta-UCF 632 14.2 +2.2 -1.3
TRACE-8 random permutation N-LoRA 60.8 159 - -
Meta-UCF  63.0 14.5 +2.2 -14

Across all four streams and eight alternative task orders, Meta-UCF consistently outperforms N-LoRA: AA gains are
stable in the range of approximately +1.6 to +2.3 percentage points, while FR is reduced by about 0.8 to 1.8 percentage
points. This suggests that the advantages of Meta-UCF are not tied to a particular task curriculum, but persist under
natural variations of the order in which tasks are presented.

D.6 JOINT GEOMETRY OF TASK EMBEDDINGS AND QUERY SUBSPACES

To make the roles of Ly and Lo more concrete, we analyse how task-code similarity and query-subspace overlap
are related in practice. Recall that ey, is the layer-normalised, /2-normalised task embedding built from the support set
(§3.1), and Hj, € RI2#1X9 stacks the adapted CLS states on the query set (§3.3). For each task pair (7, j) on STD-CL
5, we compute:

* the absolute task-code similarity | cos 0;;| := |{es, €;)|,

* the query-subspace overlap €;; = |H, H;| .

L
1Q:112Q;1
We report these statistics for both the Last-CLS ablation (where ey, is a single frozen CLS vector) and Meta-UCFE.

Observations. On STD-CL 5, the Last-CLS ablation yields task-code similarities in the range |cos(e;,e;)| €
[0.14,0.24] and overlaps €2;; € [0.25,0.31], with a moderate correlation p ~ 0.66 between the two. Under Meta-
UCEF, task codes are substantially more dispersed on the unit sphere: most pairs have | cos(e;, e;)| < 0.06, while query
overlaps drop to Q;; € [0.11,0.19]. The correlation between | cos(e;, ;)| and €2;; remains only moderately strong
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Figure 6: Joint geometry of task codes and query subspaces on STD-CL 5. Each point corresponds to a task
pair (2, 7), plotting task-code similarity | cos(e;, e;)| on the z-axis and query-subspace overlap €2;; on the
y-axis.

(p ~ 0.78) and far from deterministic: several pairs exhibit very small task-code similarity (| cos(e;, e;)| ~ 0.02)
but still show noticeable overlap (£2;; ~ 0.15). This empirically supports the design choice that Lo and Lo are not
redundant: L shapes the input geometry of task codes fed to the generator, while Lo directly regularises the output
geometry of adapted query representations to curb residual interference.

E LLM USAGE

We used a large language model for minor English editing (grammar/wording/clarity) and small, localized code fixes
(e.g., resolving syntax errors, adding missing imports). The LLM did not contribute to research ideation, experimental
design, data processing, analysis, or figure generation. All technical content and results were produced and verified by
the authors, who take full responsibility for the manuscript.
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