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Abstract001

Recent advances in natural language process-002
ing have leveraged instruction tuning to en-003
hance Large Language Models (LLMs) for004
table-related tasks. However, previous works005
train different base models with different train-006
ing data, lacking an apples-to-apples compar-007
ison across the result table LLMs. To address008
this, we fine-tune base models from the Mis-009
tral, OLMo, and Phi families on existing pub-010
lic training datasets. Our replication achieves011
performance on par with or surpassing exist-012
ing table LLMs, establishing new state-of-the-013
art performance on Hitab, a table question-014
answering dataset. More importantly, through015
systematic out-of-domain evaluation, we de-016
couple the contributions of training data and017
the base model, providing insight into their in-018
dividual impacts. In addition, we assess the019
effects of table-specific instruction tuning on020
general-purpose benchmarks, revealing trade-021
offs between specialization and generalization.022

1 Introduction023

Researchers have tried to improve table under-024

standing abilities of Large Language Models025

(LLMs) through instruction tuning on table tasks,026

aiming to construct a generalist model for table027

understanding. Existing work adapts table under-028

standing benchmarks for table instruction tuning029

(Zhang et al., 2024a; Zheng et al., 2024) or synthe-030

size instruction-answer pairs using LLMs to fine-031

tune smaller scale models (Li et al., 2023; Zhang032

et al., 2024b; Wu et al., 2024).033

However, these studies utilize different pre-034

trained model architectures, training datasets and035

evaluation benchmarks, making it difficult to de-036

termine the specific sources of their contribu-037

tions. For example, TableLlama (Zhang et al.,038

2024a) is trained from LongLoRA (Chen et al.,039

2024), a variant of Llama 2 (Touvron et al., 2023).040

TableLLM (Zhang et al., 2024b) is based on041

CodeLlama Instruct. TableBenchLLM (Wu et al., 042

2024) employs models such as Llama 3.1 (Dubey 043

et al., 2024) and Qwen2 (Yang et al., 2024), and 044

models such as Table-GPT (Li et al., 2023) are 045

closed-source trained on GPT-3.5 (Ouyang et al., 046

2022). In addition, these models use different 047

training datasets, with some relying on existing 048

benchmarks (e.g., TableLlama) and others intro- 049

ducing proprietary training datasets (e.g., Table- 050

GPT). Furthermore, previous work chooses differ- 051

ent sets of evaluation benchmarks and seldomly 052

compares their models with others, leaving an un- 053

clear image of how much progress researchers 054

have made in building table LLMs. 055

For a fair and comprehensive study, we fine- 056

tune the same base models from the Mistral (Jiang 057

et al., 2023), OLMo (Groeneveld et al., 2024), and 058

Phi (Abdin et al., 2024) families using the respec- 059

tive training data from each work. Our exper- 060

iments demonstrate that these fine-tuned models 061

perform comparably to or outperform current ta- 062

ble LLMs on their respective evaluation datasets. 063

Notably, our models establish new state-of-the- 064

art (SOTA) results on HiTab, a table question an- 065

swering benchmark. Beyond replication, we con- 066

duct systematic evaluations on diverse table tasks, 067

including table question answering (Table QA), 068

table-to-text generation, table fact verification, and 069

beyond. These tasks span real-world datasets (Nan 070

et al., 2022; Cheng et al., 2022) and synthetic data 071

proposed in existing works (Li et al., 2023; Wu 072

et al., 2024). To assess trade-offs, we also evaluate 073

these models on general instruction following and 074

reasoning benchmarks, analyzing how specializ- 075

ing in table tasks affects their general capabilities. 076

Our work disentangles the effects of training data 077

and base models. 078

Specifically, we find that 1) The base mod- 079

els demonstrate competitive performance on table 080

benchmarks compared to the fine-tuned models; 2) 081

Certain training data (e.g. the training data from 082
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TableLLM) consistently outperforms the others on083

the out-of-domain table tasks; 3) SOTA-chasing084

can be meaningless as the model’s performance085

does not generalize to datasets in the same task086

category; 4) Transferability exists across table087

tasks; 5) The effects of the training data depend on088

the choice of base models, and strong base models089

lead to better performance; 6) Proper fine-tuning090

does not necessarily compromise the model’s gen-091

eral capabilities. We hope our findings provide ac-092

tionable insights into model selection and dataset093

construction for building effective table LLMs.094

In summary, our contributions are three fold.095

• We replicate existing table LLMs by fine-tuning096

various base models, achieving comparable or097

superior performance on benchmarks reported098

in the existing works, respectively.099

• We decouple the contributions of the training100

data and base models, revealing that different101

base models perform differently with the same102

set of training data. We provide our findings on103

the effects of training data and base models.104

• We expand the evaluation topology of table105

LLMs to general benchmarks, revealing that106

proper fine-tuning does not necessarily compro-107

mise the model’s general capabilities.108

2 Related Works109

Table-Related Tasks. Earlier work has focused110

on extracting table content from HTML (Chen111

et al., 2000; Tengli et al., 2004). The deep learn-112

ing era has seen more diverse table-related tasks113

such as table question answering (table QA), the114

task of answering a question given the table and115

certain context in the format of multiple-choice116

(Jauhar et al., 2016) and free-form answer (Nan117

et al., 2022); table fact verification, the task of de-118

termining whether a given claim is supported or119

refuted by the table content (Chen et al., 2019;120

Gupta et al., 2020); table-to-text, the task of gen-121

erating a description given the table or some high-122

lighted table cells (Parikh et al., 2020). These pro-123

posed benchmarks cover a diverse set of domains,124

including Wikipedia tables (Parikh et al., 2020), fi-125

nancial tables (Chen et al., 2021), scientific tables126

(Moosavi et al., 2021), which serve as invaluable127

sources for developing and testing general table128

understanding models.129

Methods for Table Understanding. Re-130

searchers have explored various methods for table131

Model Base Model
Data
Size

Data
Source

Open
Model?

Open
Data?

TableGPT (2023) - - - ✗ ✗

Table-GPT (2023) GPT-3.5 66K S ✗ ✓

TableLlama (2024a) LongLoRA 7B† 2M R ✓ ✓

TableLLM (2024b)
CodeLlama 7B
& 13B Instruct

80.5K R + S ✓ ✓

TableBenchLLM
(2024)

Llama 3.1-8B
& others

20K S ✓ ✓

Table 1: Information for current table instruction tuned
models. For the “Data Source”, “S” represents synthe-
sized data, and “R” represents the real data. †: TableL-
lama has adopted the LongLoRA (Chen et al., 2024)
base model, which is a variant based on the Llama 2
7B model with a longer context window.

understanding in the past decade such as adapting 132

the model’s internal structures to align with table 133

structures (Lebret et al., 2016; Liu et al., 2018; 134

Yang et al., 2022), synthesizing a large table 135

pre-training corpus and designing table-specific 136

training objectives (Yin et al., 2020; Herzig et al., 137

2020). Recently, the LLM era has witnessed a 138

paradigm shift for research on tables. As LLMs 139

have inherent abilities on table understanding, 140

researchers employ prompt engineering on these 141

LLMs for better performance on tables (Chang 142

and Fosler-Lussier, 2023; Deng et al., 2024). 143

Another line of research involves instruction 144

tuning LLMs by adapting existing table-related 145

benchmarks. This leads to various table LLMs 146

such as Table-GPT (Li et al., 2023), TableLlama 147

(Zhang et al., 2024a), TableLlava (Zheng et al., 148

2024), and TableLLM (Zhang et al., 2024b). 149

Among them, while TableLlama achieves decent 150

performance on in-domain data, it suffers a 151

significant performance drop on unseen table 152

tasks (Zheng et al., 2024). Su et al. (2024) 153

introduce TableGPT-2, a concurrent work to ours 154

that utilizes synthesized training data for model 155

training. Due to the overlapping timelines, we 156

do not include their model in our study. Though 157

representing tables as images is a promising 158

direction, recent works reveal that its performance 159

still lags behind representing tables as texts (Deng 160

et al., 2024). Therefore, in this paper, we focus on 161

the text representation of tables. 162

3 Replicating Existing Table LLMs 163

Issues with Comparing Existing Table LLMs 164

Table 1 outlines the base models used in existing 165

table LLMs. These base models, ranging from var- 166

ious Llama models to closed-source models such 167
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Base Models
FeTaQA HiTab TabFact FEVEROUS HybridQA KVRET ToTTo WikiSQL WikiTQA
(BLEU) (Acc) (Acc) (Acc) (Acc) (F1Micro) (BLEU) (Acc) (Acc)

Original (Zhang et al., 2024a)
LongLoRA 7B‡ 39.0 64.7 82.5 73.8 39.4 48.7 20.8 50.5 35.0

Ours
Mistral v0.3 7B Instruct 38.7 70.6† 86.8 75.9 27.2 46.6 28.5 64.5 47.4

OLMo 7B Instruct 36.8 67.9 83.8 69.8 20.3 44.6 20.8 56.9 38.8
Phi 3 Small Instruct (7B) 38.1 63.6 86.2 78.3 33.6 56.0 29.6 63.3 47.7

Table 2: Performance comparison between the original TableLlama and our fine-tuned models from different
model families on the in-domain tuned (left three columns) and out-of-domain (right six columns) datasets. The
number is bold if it is the best among the four, and underscored if it is the second. †: we surpass the previous SOTA
performance (64.7 by TableLlama) on HiTab.

as GPT-3.5, differ significantly in their architec-168

ture designs, model sizes, and training recipes.169

In addition, each table LLM introduces its own170

unique training data, making it challenging to dis-171

entangle the impact of the training data from that172

of the base model.173

To explore the contribution of the training data174

used in existing table LLM works, we train the175

same base models on datasets utilized in each of176

the existing works. We first demonstrate that our177

implementation yields comparable or better re-178

sults than the performance reported in the existing179

works in Section 4. We then evaluate our trained180

models across various setups in Sections 5 and 6.181

Foundational LLM Selections. For the train-182

ing data from each existing work, we fine-tune183

Mistral-7B-Instruct-v0.3 (Jiang et al.,184

2023), OLMo 7B Instruct (Groeneveld et al.,185

2024) and Phi 3 Small Instruct (7B) (Abdin et al.,186

2024). Following Zhang et al. (2024a,b); Wu et al.187

(2024), we fine-tune all the models through full188

parameter fine-tuning.189

Experimental Setups. To rule out the effects of190

the learning rate, we train all three models using191

a set of learning rates: 5e-5, 1e-5, 5e-6, 1e-6, 5e-192

7, 1e-7, 5e-8, and 1e-8. Empirically, we find that193

they achieve the best when the learning rate is 5e-194

7. We do not see significant performance changes195

as we increase the training steps. For consistency,196

we fine-tune our models for three epochs across all197

the experiments. More details in Appendix A.198

4 Comparison of Our Models v.s. the199

Original Models200

Here we report the performance of our fine-tuned201

models based on Mistral v0.3 7B Instruct, OLMo202

7B Instruct, and Phi 3 Small Instruct (7B) ver- 203

sus the original models on the datasets reported in 204

each of the original work. 205

4.1 Replicating TableLlama 206

Training Datasets. The original TableLlama 207

(Zhang et al., 2024a) uses 2 million data points in 208

its instruction tuning stage, which can be unnec- 209

essarily large. In addition, we do not have enough 210

computing resources to instruction-tune our model 211

on a dataset of such a scale. Therefore, we rule 212

out the table operation datasets and only maintain 213

the training data for FeTaQA (Nan et al., 2022), 214

HiTab (Cheng et al., 2022), and TabFact (Chen 215

et al., 2019) to fine-tune our model, which results 216

in 107K training instances. 217

Evaluation Datasets. Following Zhang et al. 218

(2024a), we use the FeTaQA (Nan et al., 2022), 219

HiTab (Cheng et al., 2022), and TabFact (Chen 220

et al., 2019) as the in-domain evaluation sets. In 221

addition, we compare our fine-tuned models ver- 222

sus the original TableLlama on FEVEROUS (Aly 223

et al., 2021), HybridQA (Chen et al., 2020b), 224

KVRET (Eric and Manning, 2017), ToTTo (Parikh 225

et al., 2020), WikiSQL (Zhong et al., 2017), and 226

WikiTQ (Pasupat and Liang, 2015). 227

Comparison. Table 2 compares the original 228

TableLlama model (first row) versus our fine- 229

tuned models. Our fine-tuned models yield simi- 230

lar or better performance than the original TableL- 231

lama model in most cases. In addition, we achieve 232

the new SOTA performance on HiTab by fine- 233

tuning the Mistral model. As we only use 107K 234

(5% of the 2M data points used by the origi- 235

nal TableLlama), our results demonstrate that with 236

proper instruction-tuning, we can achieve compet- 237
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Base WikiTQm TATQAm FeTaQAm OTT-QAm

Models (Accp) (Accp) (BLEU) (Accp)

Original (Zhang et al., 2024b)
CodeLlama‡ 72.5 51.1 8.4 57.3

Ours
Mistral 76.0 55.4 10.6 64.3
OLMo 66.8 50.2 10.5 58.1

Phi 75.4 57.8 12.1 63.3

Table 3: Performance comparison between the original
TableLLM and our fine-tuned models. All four models
are 7B and instruction-tuned. We denote the evaluation
datasets with a subscript “m” as they are adapted by
Zhang et al. (2024b).

itive results on table tasks with much fewer data.238

4.2 Replicating TableLLM239

Training Datasets. We use the original240

instruction-tuning set by Zhang et al. (2024b),241

which includes 80.5K training instances.242

Evaluation Datasets. Following Zhang et al.243

(2024b), we use the modified version of WikiTQ244

(Pasupat and Liang, 2015), TATQA (Zhu et al.,245

2021), and FeTaQA (Nan et al., 2022) as the in-246

domain evaluation sets, and OTT-QA (Chen et al.,247

2020a) as the out-of-domain evaluation set.248

Comparison. Table 3 compares the original249

TableLLM versus our fine-tuned models. We note250

that our evaluation metrics are distinct from what251

Zhang et al. (2024b) have used originally. Zhang252

et al. (2024b) use CritiqueLLM (Ke et al., 2024) as253

a judge to decide the correctness of the answers.254

However, the model judgments are made in Chi-255

nese1, a different language from the language in256

all the training and evaluation datasets. In ad-257

dition, the scores assigned by the CritiqueLLM258

is not consistent for a single evaluation exam-259

ple. Therefore, for WikiTQm, TATQAm, and OTT-260

QAm, we report the Accp scores, where we cal-261

culate whether the gold answer entities appear262

in the model’s response. We find that our fine-263

tuned models based on the Mistral and Phi mod-264

els consistently outperform the original TableLLM265

model on these datasets, and we attribute the per-266

formance improvement to the stronger base model267

1Zhang et al. (2024b)’s inference results are avail-
able at https://github.com/RUCKBReasoning/
TableLLM/blob/main/inference/results/
TableLLM-7b/Grade_fetaqa.jsonl

Base TableBencheval

Models (R-L)

Original (Wu et al., 2024)
Llama 3.1 8B ‡ 27.2

Ours
Mistral v0.3 7B Instruct 27.2

OLMo 7B Instruct 19.3
Phi 3 Small Instruct (7B) 27.8

Table 4: Performance comparison between the original
TablebBenchLLM based on Llama 3.1 8B and our fine-
tuned models. “R-L” denotes the ROUGE-L score.

Base Beer DeepM DI ED C CF Wiki CTA
Models (F1) (Recall) (Acc) (F1) (F1) (Acc) (Acc) (F1)

Original (Li et al., 2023)
GPT-3.5‡ 72.7 100.0 55.8 56.5 29.4 71.3 48.6 88.6

Ours
Mistral 100.0 98.0 46.4 46.0 23.8 25.3 25.5 68.3
OLMo 96.2 100.0 45.4 35.3 19.9 29.3 16.4 62.5

Phi 98.9 98.8 49.4 55.4 24.8 45.2 30.0 68.3

Table 5: Performance comparison between the original
Table-GPT and our fine-tuned models.

(Mistral v0.3 7B Instruct and Phi 3 Small Instruct) 268

we have versus theirs (CodeLlama 7B Instruct). 269

4.3 Replicating TableBenchLLM 270

Training Datasets. We use the original 271

instruction-tuning set by Wu et al. (2024), which 272

includes 20K training instances. 273

Evaluation Datasets. Following Wu et al. 274

(2024), we only evaluate the model on their 275

constructed test set, which we denote as 276

TableBencheval in Table 4. 277

Comparison. Following Wu et al. (2024), we 278

report the ROUGE-L score of our Mistral- 279

TableBenchLLM. In Table 4, we compare our 280

model with the scores reported by Wu et al. (2024) 281

in the original paper, corresponding to the version 282

of TableBenchLLM fine-tuned based on Llama 283

3.1 8B model. Our Mistral-TableBenchLLM and 284

Phi-TableBenchLLM achieve similar performance 285

scores of 27.2 and 27.8, respectively, compared to 286

the original TableBenchLLM’s 27.2. 287

4.4 Replicating Table-GPT 288

Training Dataset. We use the instruction-tuning 289

dataset provided by Li et al. (2023) that contains 290

66K instances. 291
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Beer DeepM DI ED C CF Wiki CTA
(F1) (Recall) (Acc) (F1) (F1) (Acc) (Acc) (F1)

13K 98.9 92.9 45.9 43.8 29.4 21.2 29.2 66.8
66K 100.0 98.0 46.4 46.0 23.8 25.3 29.8 68.3

Table 6: Performance comparison between training
Mistral v0.3 7B Instruct on 13K instances versus 66K
instances provided by Li et al. (2023).

Evaluation Datasets. We select four in-domain292

test sets by Li et al. (2023), Beer for entity match-293

ing, DeepM for schema matching, Spreadsheet-294

DI (DI) for data imputation, and Spreadsheet-Real295

(ED) for error detection. Furthermore, we re-296

port the out-of-domain performance on Column-297

No-Separator (C) for missing value identification,298

Spreadsheet-CF (CF) for column finding, Wik-299

iTQ (Wiki) for table question answering, and300

Efthymiou (CTA) for column type annotation.301

Comparison. Table 5 reports the results. We302

note that though the size of our fine-tuned models303

are all 7B, they achieve better performance than304

Table-GPT which is based on GPT-3.5 on Beer,305

and comparable performance on DeepM. How-306

ever, on the out-of-domain datasets, we can see307

that Mistral-TableGPT underperforms the original308

Table-GPT. We attribute such performance differ-309

ences to the differences between the base models.310

Since GPT-3.5 is stronger than these open-source311

7B models, its innate table understanding ability312

as well as its generalization ability leads to better313

performance on these out-of-domain table datasets314

for Table-GPT. This reinforces our motivations of315

conducting the comparisons using the same base316

model, as the performance difference may be be-317

cause of the base model’s capability, therefore we318

need the same base model to conduct an apple-to-319

apple comparison.320

Side Findings. There is a smaller training set321

provided by Li et al. (2023) containing 13K train-322

ing instances. We report the performance compar-323

ison by training the Mistral v0.3 7B Instruct model324

on the two sets in Table 6 We do not find a signif-325

icant performance boost when we use the larger326

66K dataset. And on one of the out-of-domain327

datasets, C, training on 13K instances even yields328

a better score of 29.4 than training on 66K in-329

stances’ 23.8. This echoes with the findings by330

Zhou et al. (2024) that limited instruction tuning331

instances are able to yield a strong model.332

5 Out-of-Domain Table Tasks Evaluation 333

In Sections 5 and 6, we evaluate our fine-tuned 334

models from Section 4. 335

5.1 Datasets 336

We evaluate these models on eight existing real- 337

world datasets covering the tasks of table ques- 338

tion answering (table QA), table fact verifica- 339

tion, and table-to-text generation. FeTaQA (FeT) 340

(Nan et al., 2022) is a free-form table QA dataset 341

sourced from Wikipedia-based tables. HiTab 342

(HiT) (Cheng et al., 2022) is a table QA dataset 343

sourced from statistical reports and Wikipedia 344

pages on hierarchical tables. TabMWP (TabM) 345

(Lu et al., 2022) is an open-domain grade-level 346

table question-answering dataset involving math- 347

ematical reasoning. TATQA (TAT) (Zhu et al., 348

2021) is a table QA dataset sourced from real- 349

world financial reports. WikiTQ (Wiki) (Pa- 350

supat and Liang, 2015) is a table QA dataset 351

sourced from Wikipedia. TabFact (TabF) (Chen 352

et al., 2019) is a table fact verification dataset 353

sourced from Wikipedia. InfoTabs (Inf) (Gupta 354

et al., 2020) is a table fact verification dataset with 355

human-written textual hypotheses based on ta- 356

bles extracted from Wikipedia info-boxes. ToTTo 357

(ToT) (Parikh et al., 2020) is a table-to-text dataset 358

sourced from Wikipedia tables. 359

In addition, we evaluate these models on eight 360

synthesized datasets including Beer, DeepM, 361

Spreadsheet-DI (DI), Spreadsheet-Real (ED), 362

Column-No-Separator (C), Spreadsheet-CF 363

(CF), and Efthymiou (CTA) (Li et al., 2023) 364

on schema reasoning ability (introduced in 365

Section 4.4), and TabBeval (Wu et al., 2024) on 366

miscellaneous table tasks. We include a more de- 367

tailed evaluation setup in Appendix B and provide 368

examples from these datasets in Appendix E. 369

5.2 Results for Same Base Model, Different 370

Training Data 371

Table 7 presents our fine-tuned Mistral mod- 372

els’ performance on various out-of-domain table 373

datasets. Appendix D presents the performance of 374

all the models we have fine-tuned in Section 4. 375

Base model’s performance. We find that the 376

base model is a strong baseline. In Table 7, the 377

original Mistral model maintains the best perfor- 378

mance on five out-of-domain table datasets. For 379

the original OLMo and Phi model in Table 10, 380
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Train
Data

Real Synthesized
Table QA Fact Veri. Tab2T Schema Reasoning Misc.

FeT HiT TabM TAT Wiki TabF Inf ToT Beer DeepM DI ED C CF CTA TabBeval

BLEU Acc Acc Acc Acc Acc Acc BLEU F1 Recall Acc F1 F1 Acc F1 R-L
N/A 20.0 35.5 66.9 18.0 27.9 62.3 42.8 11.5 97.2 42.9 27.9 24.1 30.2 19.1 63.8 18.9

TableLlama 38.7 70.6 71.2 5.6 23.8 86.8 27.7 28.5 25.8 70.0 13.4 25.1 17.4 0.5 34.9 19.6
TableLLM 10.2 44.1 75.0 25.0 32.3 11.9 15.4 6.7 45.0 78.6 33.1 43.1 25.6 15.0 66.9 3.7

TableBench 7.9 44.1 70.6 25.7 37.4 36.5 27.5 3.5 88.5 50.0 32.0 20.3 27.4 13.3 72.2 27.2
TableGPT 19.5 35.8 62.2 14.1 25.5 61.4 35.8 4.5 100.0 98.0 46.4 46.0 23.8 25.3 68.3 13.1

Table 7: Out-of-domain evaluation of Mistral v0.3 7B Instruct model fine-tuned with different training data. “N/A”
denotes the untuned Mistral v0.3 7B Instruct model. The number is in gray if the “train data” includes the training
set for the corresponding dataset. “ ” indicates the training data that leads to the most number of top performance
for these table datasets. Under “Train Data”, names refer to the datasets used in Section 4 for fine-tuning (e.g.
TableLlama refers to the training data in Section 4.1).

Table
Year Name Translated Name Type
1961 Hallaç Carder Short

...

Q How many works did Leyla Erbil publish in total?

Gold
Leyla Erbil published a total of 11 works. This can
be determined by counting the number of entries in
the “Name” column in the provided table.

Table 8: An example of the training example from
TableLLM. The reasoning part is in italics.

they demonstrate competitive performance com-381

pared to the fine-tuned models. For instance, on382

the InfoTabs dataset, the untuned Phi model yields383

62.3 compared to the best performance of 67.0.384

The original OLMo model achieves 50.5 on the385

Beer dataset, outperforming the fine-tuned models386

that are based on OLMo. This demonstrates that387

through pre-training and general instruction tun-388

ing, these models have acquired innate table un-389

derstanding ability, which echos with the findings390

by Li et al. (2023); Deng et al. (2024)391

Table QA tasks. TableLLM’s training data con-392

sistently achieves the best (e.g. on HiTab in Ta-393

ble 7) or competitive performance on table QA394

tasks across all three base models in Table 10. In395

contrast, though the recipe for TableLlama’s train-396

ing data contains table QA tasks, models trained397

with the training data from TableLlama underper-398

form those from TableLLM. We attribute the ef-399

fectiveness of TableLLM’s training data on the ta-400

ble QA task to that when constructing the data,401

Zhang et al. (2024b) leverage LLMs such as GPT-402

3.5 to enhance the reasoning process. For exam-403

ple, in the training instance in Table 8, in addition404

to answering the question, the adjusted gold an- 405

swer incorporates the reasoning of “counting the 406

number of entries”. Such training data teach the 407

base models of the underlying reasoning process 408

to reach to the final answer, therefore benefiting 409

its table QA ability. 410

Table fact verification tasks. When fine-tuned 411

on the Mistral model, TableGPT’s training data, 412

while slightly underperforming the base model, 413

exhibits the least performance decay. In addi- 414

tion, in Table 10, fine-tuning on TableGPT’s train- 415

ing data achieves the best out-of-domain table fact 416

verification performance for both the OLMo and 417

Phi models. Interestingly, despite TableBench 418

and TableLlama’s training data including table fact 419

verification examples, models trained with these 420

datasets still underperform the base model on the 421

InfoTabs dataset, achieving scores of 27.7 and 422

27.5 compared to the base model’s 42.8 (Table 7). 423

This pattern is consistent across all three base 424

models. Notably, TableGPT’s training data do 425

not explicitly include table fact verification exam- 426

ples, yet they yield the most significant improve- 427

ments. We hypothesize that the key to success lies 428

in the reasoning process rather than the superfi- 429

cial similarity of task formats. Although TableL- 430

lama’s training data include tasks like TabFact, 431

which involve table fact verification, the model 432

may rely on domain-specific patterns rather than 433

the authentic reasoning process to output labels 434

such as “entail” or “refute”. In addition, we high- 435

light that the original TableLlama model, as the 436

previous SOTA model on TabFact, yields 2.85 on 437

InfoTabs as reported by Zheng et al. (2024). Our 438

fine-tuned Mistral model, though outperforming 439

the original TableLlama on the TabFact dataset, 440
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Base
Model

Real Synthesized
Table QA Fact Veri. Tab2T Schema Reasoning Misc.

FeT HiT TabM TAT Wiki TabF Inf ToT Beer DeepM DI ED C CF CTA TabBeval

BLEU Acc Acc Acc Acc Acc Acc BLEU F1 Recall Acc F1 F1 Acc F1 R-L
M 10.2 44.1 75.0 25.0 32.3 11.9 15.4 6.7 45.0 78.6 33.1 43.1 25.6 15.0 66.9 3.7
O 9.7 35.5 65.5 17.7 26.7 40.6 16.9 8.9 16.5 42.9 33.0 37.6 13.0 18.7 43.6 6.3
P 18.2 45.3 81.2 24.1 37.7 69.6 44.6 8.1 80.2 50.0 34.0 41.3 27.9 49.5 70.1 27.2

Table 9: Out-of-domain evaluation for different table tasks. Here the models are all trained on the TableLLM
training data. In terms of the base models, “M”, “O”, and “P” represent Mistral v0.3 7B Instruct, OLMo 7B
Instruct, and Phi 3 Small Instruct (7B), respectively. We make the number bold if it is the best among the three.

underperforms the untuned Mistral model on In-441

foTabs. Such results highlight the limitations of442

the SOTA-chasing works as even TableLlama and443

our Mistral-TableLlama achieve competitive per-444

formance on TabFact, these models still do not445

generalize to datasets in the same task category.446

Transferability across table tasks. As afore-447

mentioned, though TableGPT’s training data do448

not explicitly include table fact verification tasks,449

tasks such as error detection and schema matching450

appear to positively contribute to table fact veri-451

fication performance. Moreover, unlike the origi-452

nal TableLlama model, we do not instruction-tune453

the Mistral model on the extensive amount of table454

operation data as described in Section 4.1. Never-455

theless, fine-tuning the model on tasks like table456

QA and table fact verification still results in a sig-457

nificant performance boost on DeepM, a schema-458

matching dataset, with a score of 70.0 compared459

to the base model’s 42.9. Our finding aligns with460

Zhang et al. (2024a)’s observation that training461

solely on HiTab leads to better performance on462

certain table operation datasets, suggesting that463

transferability exists across table tasks.464

5.3 Results for Same Training Data,465

Different Base Models466

Table 9 presents the performance of models467

fine-tuned from three base models, all on the468

TableLLM training data.469

The effects of the training data depend on the470

base model. In Table 9, when all fine-tuned471

on TableLLM’s training data, there is a signif-472

icant performance gap among the three models.473

For instance, on WikiTQ, fine-tuning the OLMo474

model yields 26.7, fine-tuning the Mistral model475

yields 32.3, while fine-tuning the Phi model yields476

37.7. We attribute the performance difference to477

the varying innate capabilities of each model. In478

Table 11 in Appendix D, the original Phi model 479

outperforms both the Mistral and OLMo model 480

on four out of five general benchmarks, which 481

aligns with its superior performance on most ta- 482

ble tasks after fine-tuning. Moreover, as switching 483

to stronger base models can lead to better perfor- 484

mance even with the same training data, it is pos- 485

sible that existing models may not exhaust the po- 486

tential of their corresponding training data in their 487

originally reported results. 488

Strong base model leads to better performance. 489

In Table 10, the best performance for a single 490

dataset is typically achieved by fine-tuning the 491

base model, which outperforms the other two 492

models when untuned. For instance, TabMWP’s 493

overall best performance is achieved by fine- 494

tuning the Phi model with the TableBench train- 495

ing data, and the original Phi model achieves 76.1, 496

outperforming the original Mistral’s 66.9 and the 497

original OLMo’s 54.4. TATQA’s overall best per- 498

formance is achieved by fine-tuning the Mistral 499

model with TableBench training data, and the 500

original Mistral model achieves 18.0, outperform- 501

ing the original OLMo’s 14.3 and the original 502

Phi’s 13.0. This suggests that practitioners can 503

select the base model by comparing their perfor- 504

mance on downstream tasks prior to fine-tuning, 505

which can save the effort of training all candidate 506

base models before deciding which one to use. 507

6 General Tasks Evaluation 508

In this section, we evaluate these models on gen- 509

eral benchmarks to understand how table instruc- 510

tion tuning impacts the models’ general capabili- 511

ties. Ideally, a model should maintain its general 512

capabilities as much as possible after the instruc- 513

tion tuning process, because a model that loses sig- 514

nificant knowledge during tuning may struggle to 515

serve end-users in real-world applications. 516
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(a) Mistral v0.3 7B Instruct.
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(c) Phi 3 Small Instruct (7B).

Figure 1: Performance of fine-tuned models trained on different data (e.g. TableLlama) on general benchmarks.
The green and red hatched bars represent performance gains or losses relative to the base model, respectively. On
IFEval, unlike other models, the Mistral model shows a significant performance drop, underscoring the impact of
innate model capabilities on preserving general performance after domain-specific fine-tuning.

6.1 Datasets517

MMLU (Hendrycks et al., 2021) examines the518

general ability of the model on 57 tasks includ-519

ing elementary mathematics, US history, com-520

puter science, etc. We adopt the 5-shot setup.521

MMLUPro (Wang et al., 2024) is an enhanced522

benchmark evaluating the general ability of the523

model, which contains up to ten options and elim-524

inates the trivial questions in MMLU. We adopt525

the 5-shot setup. AI2ARC (Clark et al., 2018) is526

a reasoning benchmark containing natural, grade-527

school questions. We adopt the 0-shot setup and528

report the accuracy score on the challenging set.529

GPQA (Rein et al., 2023) is a reasoning bench-530

mark containing questions in biology, physics, and531

chemistry written by domain experts. We adopt a532

0-shot setup and report the accuracy score on its533

main set. IFEval (Zhou et al., 2023) is a dataset534

evaluating the general instruction following abil-535

ity of the model containing instructions such as536

“return the answer in JSON format”. We report537

the instance-level strict accuracy defined by Zhou538

et al. (2023). We include a more detailed setup539

in Appendix C for our evaluation process and pro-540

vide examples from these datasets in Appendix E.541

6.2 Results and Analysis542

Figure 1 presents the results of our models on the543

general benchmarks. Table 11 in Appendix D544

presents the complete performance of the base545

model, our fine-tuned models, and the correspond-546

ing difference that we plot in Figure 1. We547

find that on MMLU, MMLUPro, AI2ARC, and548

GPQA, our fine-tuned models do not compromise549

too much of the base models’ general capabilities.550

On AI2ARC, the score for Mistral-TableGPT is551

even slightly higher than the base model. Such552

performance improvement is likely due to the fact 553

that many table tasks involve reasoning over ta- 554

bles, which may enhance the model’s general rea- 555

soning ability. On IFEval, models fine-tuned from 556

the Mistral model suffer a significant performance 557

drop of over 20 points compared to the origi- 558

nal model. However, models fine-tuned from the 559

Phi model even improve the base model’s perfor- 560

mance. We attribute such discrepancy to the dif- 561

ference in the base model’s innate characteristics. 562

For instance, certain base models may be more ro- 563

bust in terms of acquiring new capabilities while 564

maintaining their original capabilities, or the ex- 565

amples of the downstream tasks happen to align 566

well with the examples the model has seen during 567

its general training process. Our finding suggests 568

that domain-specific tuning does not necessarily 569

lead to performance decay on general benchmarks, 570

and it heavily depends on the base model’s in- 571

nate characteristics. We provide additional discus- 572

sion on the effects of model scales for both out- 573

of-domain table tasks evaluation and general tasks 574

evaluation in Appendix D. 575

7 Conclusion 576

To conduct an apples-to-apples comparison, we 577

train three 7B Instruct models based on the ta- 578

ble instruction tuning data proposed in the prior 579

works. As a side product, we achieve the new 580

SOTA performance on HiTab. We are the first to 581

decouple the factors of training data versus base 582

models and provide analysis on each side. In addi- 583

tion, we conduct evaluations on the general bench- 584

marks to investigate how domain-specific fine- 585

tuning may influence the model’s general capabil- 586

ities. We hope our work provides future directions 587

for research on structured data. 588
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Limitations589

We believe our work presents a comprehensive590

evaluation over a diverse set of table benchmarks591

and the general benchmarks. In addition, we want592

to stress the massive training effort we have in-593

vested in, as the training data provided in the exist-594

ing works can be as large as 100K. As a side prod-595

uct, we have achieved the new SOTA performance596

on HiTab dataset, and provide the first open-source597

model replication of existing closed-source table598

LLMs such as Table-GPT. However, there exists599

other datasets proposed by the researchers which600

can be further used to evaluate these models’ ca-601

pabilities, and by no means we can exhaust all of602

them in this paper. We encourage future efforts603

in comprehensively evaluating these table LLMs’604

capabilities, and we believe our work has laid a605

solid foundation to decoupling the contributions of606

training data and base models, and further enhanc-607

ing our understanding of table instruction tuning.608

Ethical Considerations609

In this work, we isolate the contributions of train-610

ing data proposed by the existing table LLMs by611

training the same base models and comparing their612

performance. The base models we have used in613

this work include Mistral v0.3 7B Instruct model614

(Jiang et al., 2023), OLMo 7B Instruct (Groen-615

eveld et al., 2024), and Phi 3 Small Instruct (7B)616

(Abdin et al., 2024). We conduct additional stud-617

ies on Phi 3 Mini Instruct (4B) in Appendix D.618

Foundational models like Mistral v0.3 7B Instruct619

model are susceptible to jail-breaking instructions620

(Wei et al., 2024) and may lead to harmful be-621

haviors. Our objective in this work is to under-622

stand the limitations of the existing table instruc-623

tion tuning, and we urge practitioners to stick to624

the good purpose when developing or using our625

models. Our replicated models can serve as base-626

line models for future research on structured data,627

and we provide a holistic evaluation of these mod-628

els on both table tasks and how they compromise629

their general capabilities. Our results lead to vari-630

ous findings on what training data helps the mod-631

els most on these table tasks, and how to construct632

LLMs specialized in tables efficiently.633
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A Experimental Setup 937

We run our experiments on 1 server node with 8 938

A100, each with 48 GB GPU memory. We set the 939

batch size to 16 in our training process. 940

B Out-of-Domain Evaluation Setup 941

For FeTaQA, we use the BLEU4 score following 942

Nan et al. (2022). For ToTTo, we follow Xie et al. 943

(2022) to report the BLEU4 scores over multiple 944

references. We adopt the evaluation script from 945

the original HiTab, TabMWP, TATQA, and Wik- 946

iTQ repository on GitHub. For these table QA 947

tasks, we notice that since the fine-tuned models 948

may not follow instructions such as “generate in 949

the JSON format”, we do not pose any constraints 950

to these models in terms of the generation format. 951

Instead, we use Haiku 3.52 to extract the answer 952

entity from the model generation. For TabFact and 953

InfoTabs, we report the accuracy by checking if 954

only the gold answer appears in the prediction. 955

In terms of the test set format, we use the ex- 956

act same test set for FeTaQA, HiTab, TATQA, and 957

ToTTo as Zhang et al. (2024a) with the Mark- 958

down table format. For TabMWP, WikiTQ, and 959

InfoTabs, etc., we follow the original data for- 960

mat. Specifically, TabMWP uses ‘|’ to separate 961

columns, and WikiTQ and InfoTabs use HTML 962

format to represent tables. 963

C General Evaluation Setup 964

For MMLU, MMLUPro, AI2ARC, and GPQA, 965

as they are all multi-choice question-answering 966

datasets, our objective is to select the most ap- 967

propriate completion among a set of given options 968

based on the provided context. Following Touvron 969

et al. (2023), we select the completion with the 970

highest likelihood given the provided context. As 971

we evaluate the model based on their selection of 972

the letter choice of “A”, “B”, etc., we do not nor- 973

malize the likelihood by the number of characters 974

in the completion. 975

D More Results 976

D.1 Out-of-domain Table Tasks Evaluation 977

Comparison across 7B models. Table 10 978

presents performance scores for our fine-tuned 979

models from Section 4 and their corresponding 980

2https://www.anthropic.com/claude/
haiku
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Train
Data

Real Synthesized
Table QA Fact Veri. Tab2Text Schema Reasoning Misc.

FeT HiT TabM TAT Wiki TabF Inf ToT Beer DeepM DI ED C CF CTA TabBeval

BLEU Acc Acc Acc Acc Acc Acc BLEU F1 Recall Acc F1 F1 Acc F1 ROUGE-L
Mistral v0.3 7B Instruct

N/A 20.0 35.5 66.9 18.0 27.9 62.3 42.8 11.5 97.2 42.9 27.9 24.1 30.2 19.1 63.8 18.9
TableLlama 38.7 70.6 71.2 5.6 23.8 86.8 27.7 28.5 25.8 70.0 13.4 25.1 17.4 0.5 34.9 19.6
TableLLM 10.2 44.1 75.0 25.0 32.3 11.9 15.4 6.7 45.0 78.6 33.1 43.1 25.6 15.0 66.9 3.7

TableBenchLLM 7.9 44.1 70.6 25.7 37.4 36.5 27.5 3.5 88.5 50.0 32.0 20.3 27.4 13.3 72.2 27.2
TableGPT 19.5 35.8 62.2 14.1 25.5 61.4 35.8 4.5 100.0 98.0 46.4 46.0 23.8 25.3 68.3 13.1

OLMo 7B Instruct
N/A 6.0 27.3 54.4 14.3 19.4 38.2 21.4 5.1 50.5 35.7 28.9 14.1 15.0 16.2 54.5 7.6

TableLlama 36.8 67.9 72.9 9.9 6.7 83.8 15.0 20.8 0.0 7.1 21.2 14.6 14.8 10.7 23.5 17.1
TableLLM 9.7 35.5 65.5 17.7 26.7 40.6 16.9 8.9 16.5 42.9 33.0 37.6 13.0 18.7 43.6 6.3

TableBenchLLM 3.8 28.3 62.6 15.6 34.0 30.9 6.5 7.5 43.4 16.6 36.6 28.6 18.1 21.2 46.5 19.3
TableGPT 9.3 27.2 65.6 14.6 16.4 44.9 33.0 11.4 96.2 100.0 45.4 35.3 19.9 29.3 62.5 13.7

Phi 3 Small Instruct (7B)
N/A 5.0 39.6 76.1 13.0 29.7 65.3 62.3 1.4 95.0 42.9 31.9 49.7 30.6 43.4 71.5 8.3

TableLlama 38.1 63.6 74.8 18.3 46.3 86.2 54.3 29.6 95.6 35.7 4.3 19.4 27.9 36.5 43.9 22.4
TableLLM 18.2 45.3 81.2 24.1 37.7 69.6 44.6 8.1 80.2 50.0 34.0 41.3 27.9 49.5 70.1 27.2

TableBenchLLM 10.0 3.5 83.0 20.5 34.6 68.0 65.3 0.9 95.0 28.6 35.9 53.8 31.1 46.2 76.7 27.8
TableGPT 24.8 45.1 76.8 15.6 30.0 71.0 67.0 14.0 98.9 98.8 49.4 55.4 24.8 45.2 68.3 26.1

Table 10: Out-of-domain evaluation for different table tasks. The number is in gray if the model’s training data
contains the training set corresponding to the dataset. We make the number bold if it is the best among the same
model, and the number red if it is the best across all the models. Mistral v0.3 7B Instruct, OLMo 7B Instruct, and
Phi 3 Small Instruct (7B) indicate the base model on which we apply the training data, respectively. “ ” indicates
the model has the most number of top performance across all the datasets with respect to the same base model.

base models. We find that when training with dif-981

ferent base models in Table 10, TableLLM’s train-982

ing data consistently yield the best performance on983

the most out-of-domain table datasets.984

Comparison across different model sizes. Fig-985

ures 2 and 3 provide performance comparison be-986

tween Phi 3 Mini Instruct (4B) versus Phi 3 Small987

Instruct (7B). We find that the larger sized model988

often leads to better performance for both the orig-989

inal model and the model after training on the990

same set of data.991

D.2 General Tasks Evaluation992

Comparison across 7B models. Table 11993

presents the performance of the base model, our994

fine-tuned models, and the corresponding per-995

formance difference (also plotted in Figure 1).996

We find that the original model’s capability typ-997

ically decides the fine-tuned models’ capability.998

With proper training, the original models’ capa-999

bility can be largely preserved even after domain-1000

specific fine-tuning.1001

Comparison across different model sizes. Fig-1002

ure 4 provides the performance comparison be-1003

tween the Phi 3 Mini Instruct (4B) versus the Phi 1004

3 Small Instruct (7B) model on the five general 1005

benchmarks. On most datasets, the 7B model out- 1006

performs the 4B model. However, on AI2ARC, 1007

the 4B model performs better, and on GPQA, the 1008

two models perform comparably. We note that 1009

on AI2ARC, we adopt a zero-shot setup, where 1010

we do not provide any examples to the models. 1011

The 7B model in this case may not prefer to an- 1012

swer their question at the very beginning, lead- 1013

ing to an incorrect probability distribution over the 1014

four choices. For GPQA, as the task itself is chal- 1015

lenging, both the 4B and 7B models cannot an- 1016

swer most of them, leading to a comparable per- 1017

formance. 1018

E Dataset Examples 1019

E.1 FeTaQA 1020

Input: 1021

[TLE] The Wikipedia page title of this 1022
table is Gerhard Bigalk. The Wikipedia 1023
section title of this table is Ships 1024
attacked. [TAB] | Date | Name | 1025
Nationality | Tonnage (GRT) | Fate | [ 1026
SEP] | 14 June 1941 | St. Lindsay | 1027
United Kingdom | 5,370 | Sunk | [SEP] | 1028
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Method
MMLU MMLUPro AI2ARC GPQA IFEval

Acc Acc Acc Acc Acc
M 61.2 31.4 73.3 28.6 58.8

M-TableLlama 59.4 29.5 69.6 23.7 38.0
∆ ↓ 1.9 ↓ 1.9 ↓ 3.4 ↓ 4.9 ↓ 20.7

M-TableLLM 61.4 29.3 74.2 25.9 29.6
∆ ↑ 0.2 ↓ 2.0 ↑ 0.9 ↓ 2.7 ↓ 29.1

M-TableBenchLLM 62.0 31.0 73.6 28.1 31.8
∆ ↑ 0.7 ↓ 0.4 ↑ 0.3 ↓ 0.5 ↓ 27.0

M-TableGPT 61.3 31.3 74.6 26.1 31.4
∆ ↑ 0.1 ↓ 0.1 ↑ 1.3 ↓ 2.4 ↓ 27.3

O 52.6 22.5 67.6 27.9 45.6
O-TableLlama 53.7 23.1 66.2 29.7 46.8

∆ ↑ 1.1 ↑ 0.6 ↓ 1.4 ↑ 2.0 ↑ 1.2
O-TableLLM 53.3 22.3 66.0 29.0 42.8

∆ ↑ 0.7 ↓ 0.3 ↓ 1.6 ↑ 1.9 ↓ 2.8
O-TableBenchLLM 53.1 21.9 67.7 28.6 45.2

∆ ↑ 0.5 ↓ 0.7 ↑ 0.1 ↑ 0.9 ↓ 0.4
O-TableGPT 52.9 21.9 66.8 28.8 48.9

∆ ↑ 0.3 ↓ 0.6 ↓ 0.8 ↑ 0.8 ↑ 3.4

P 75.7 41.2 73.1 31.0 60.7
P-TableLlama 75.5 45.1 73.5 31.5 70.1

∆ ↓ 0.2 ↑ 3.9 ↑ 0.3 ↑ 0.4 ↑ 9.9
P-TableLLM 75.0 42.6 73.1 30.4 64.8

∆ ↓ 0.7 ↑ 1.3 ↑ 0.0 ↓ 0.8 ↑ 4.1
P-TableBenchLLM 75.7 43.3 60.8 28.8 63.3

∆ ↑ 0.0 ↑ 2.0 ↓ 1.5 ↓ 2.1 ↑ 2.6
P-TableGPT 75.1 40.1 72.6 32.4 70.0

∆ ↓ 0.5 ↓ 1.2 ↓ 0.3 ↑ 1.4 ↑ 9.4

Table 11: Evaluation of the models on general bench-
marks. “M-”, “O-”, and “P-” represent Mistral v0.3
7B Instruct, OLMo 7B Instruct, Phi 3 Small Instruct
(7B), respectively. “∆” denotes the performance differ-
ence between the instruction-tuned model and its base
model.

21 December 1941 | HMS Audacity | Royal1029
Navy | 11,000 | Sunk | [SEP] | 21030
February 1942 | Corilla | Netherlands |1031
8,096 | Damaged | [SEP] | 4 February1032
1942 | Silveray | United Kingdom | 4,5351033
| Sunk | [SEP] | 7 February 1942 |1034

Empire Sun | United Kingdom | 6,952 |1035
Sunk | [SEP] | 16 May 1942 | Nicarao |1036
United States | 1,445 | Sunk | [SEP] |1037
19 May 1942 | Isabela | United States |1038
3,110 | Sunk |\n\nThe highlighted cells1039
of the table are: [HIGHLIGHTED_BEGIN]1040
[11,000], [Sunk], [8,096], [Damaged] [1041
HIGHLIGHTED_END] What happened to the1042
two heaviest ships Gerhard Bigalk1043
attacked?1044

Instruction:1045

This is a free-form table question1046
answering task. The goal for this task1047
is to answer the given question based on1048
the given table and the highlighted1049

cells.1050

Output: 1051

Gerhard Bigalk damaged one ship of 8,096 1052
GRT, and sunk one warship of 11,000 1053

tons. 1054

E.2 TabFact 1055

Input: 1056

[TLE] The table caption is about tony 1057
lema. [TAB] | tournament | wins | top - 1058
5 | top - 10 | top - 25 | events | cuts 1059
made [SEP] | masters tournament | 0 | 1 1060
| 2 | 4 | 4 | 4 | [SEP] | us open | 0 | 1061
2 | 3 | 4 | 6 | 5 | [SEP] | the open 1062
championship | 1 | 2 | 2 | 2 | 3 | 3 | [ 1063
SEP] | pga championship | 0 | 0 | 1 | 2 1064
| 5 | 4 | [SEP] | totals | 1 | 5 | 8 | 1065
12 | 18 | 16 |\n\nThe statement is: < 1066
tony lema be in the top 5 for the master 1067
tournament , the us open , and the open 1068
championship>. Is it entailed or 1069

refuted by the table above? 1070

Instruction: 1071

This is a table fact verification task. 1072
The goal of this task is to distinguish 1073
whether the given statement is entailed 1074
or refuted by the given table. 1075

Output: 1076

entailed 1077

E.3 ToTTo 1078

Input: 1079

<page_title> List of Governors of South 1080
Carolina </page_title> <section_title> 1081
Governors under the Constitution of 1868 1082
</section_title> <table> <cell> 76 < 1083

col_header> # </col_header> <col_header> 1084
74 </col_header> <col_header> 75 </ 1085

col_header> </cell> <cell> Daniel Henry 1086
Chamberlain <col_header> Governor </ 1087
col_header> <row_header> 76 </row_header 1088
> </cell> <cell> December 1, 1874 < 1089
col_header> Took Office </col_header> < 1090
row_header> 76 </row_header> </cell> </ 1091
table> 1092

Instruction: 1093

This is a highlighted cells description 1094
task. The goal of this task is to 1095
generate the language description given 1096
table cells. 1097

Output: 1098

Daniel Henry Chamberlain was the 76th 1099
Governor of South Carolina from 1874. 1100

E.4 Beer 1101

Input: 1102
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Beer A is:\n|name|factory|\n|---|---|\n|1103
Sierra Amber Ale|Silver Peak Restaurant1104
\& Brewery|\n\nBeer B is:\n|name|factory1105
|\n|---|---|\n|Sierra Andina Alpamayo1106
Amber Ale|Sierra Andina|1107
\# Task Description: Please determine1108
whether Beer A and Beer B refer to the1109
same entity or not.1110

Instruction:1111

You are a helpful assistant that1112
specializes in tables.\n Your final1113
answer should be \’Yes\’ or \’No\’.1114
Return the final result as JSON in the1115
format \{"answer": "<Yes or No>"\}. Let’1116
s think step by step and show your1117
reasoning before showing the final1118
result.1119

Output:1120

\{"answer": "No"\}1121

E.5 TabBeval1122

Input:1123

Read the table below in JSON format:\n[1124
TABLE] \n\{"columns": ["index", "1125
organization", "year", "rank", "out of1126
"], "data": [["bribe payers index", "1127
transparency international", 2011, 19,1128
28], ["corruption perceptions index", "1129
transparency international", 2012, 37,1130
176], ["democracy index", "economist1131
intelligence unit", 2010, 36, 167], ["1132
ease of doing business index", "world1133
bank", 2012, 16, 185], ["economic1134
freedom index", "fraser institute",1135
2010, 15, 144], ["economic freedom index1136
", "the heritage foundation", 2013, 20,1137
177], ["global competitiveness report",1138
"world economic forum", 20122013, 13,1139
144], ["global peace index", "institute1140
for economics and peace", 2011, 27,1141
153], ["globalization index", "at1142
kearney / foreign policy magazine",1143
2006, 35, 62], ["press freedom index", "1144
reporters without borders", 2013, 47,1145
179], ["property rights index", "1146
property rights alliance", 2008, 28,1147
115]]\}\n\nLet\’s get start!\nQuestion:1148
What is the average rank of the indices1149
published by Transparency International?1150

Instruction:1151

You are a helpful assistant that1152
specializes in tables.\nYou are a table1153
analyst. Your task is to answer1154
questions based on the table content.\n\1155
n\nThe answer should follow the format1156
below:\n[Answer Format]\nFinal Answer:1157
AnswerName1, AnswerName2...\n\nEnsure1158
the final answer format is the last1159
output line and can only be in the "1160
Final Answer: AnswerName1, AnswerName21161
..." form, no other form. Ensure the "1162
AnswerName" is a number or entity name,1163
as short as possible, without any1164

explanation.\n\n\nGive the final answer 1165
to the question directly without any 1166
explanation. 1167

Output: 1168

28 1169

E.6 MMLU 1170

Input: 1171

{5-shot examples} 1172
Find the degree for the given field 1173
extension Q(sqrt(2), sqrt(3), sqrt(18)) 1174
over Q. 1175
\nA. 0\nB. 4\nC. 2\nD. 6\nAnswer: 1176

Instruction: 1177

The following are multiple choice 1178
questions (with answers) about abstract 1179
algebra.\n\n 1180

Output: 1181

B 1182

E.7 IFEval 1183

Input: 1184

Can you help me make an advertisement 1185
for a new product? It’s a diaper that’s 1186
designed to be more comfortable for 1187
babies and I want the entire output in 1188
JSON format. 1189

Instruction: 1190

You are a helpful assistant. 1191

Output: 1192

[JSON formatted answer] 1193
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(a) No training data, the original model.
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(b) Training data for TableLlama.
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(c) Training data for TableLLM.

Figure 2: Performance of Phi 3 Mini Instruct (4B) versus Phi 3 Small Instruct (7B) model on different table tasks
with different training data. In most cases, the 7B model outperforms the 4B model.
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(a) Training data for TableBench.
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(b) Training data for TableGPT.

Figure 3: Performance of Phi 3 Mini Instruct (4B) versus Phi 3 Small Instruct (7B) model on different table tasks
with different training data. In most cases, the 7B model outperforms the 4B model.
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Figure 4: Performance difference between Phi 3 Mini Instruct (4B) versus Phi 3 Small Instruct (7B) model. On
MMLU, MMLUPro, IFEval, the Small (7B) version yields better performance both before and after fine-tuning.
On GPQA, the two models perform comparably. On AI2ARC, the Mini (4B) version yields better performance.
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