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ABSTRACT

Existing methods utilize domain information to address the subpopulation shift
issue and enhance model generalization. However, the availability of domain in-
formation is not always guaranteed. In response to this challenge, we introduce a
novel end-to-end method called DISK. DISK discovers the spurious correlations
present in the training and validation sets through KL-divergence and assigns spu-
rious labels (which are also the domain labels) to classify instances based on spuri-
ous features. By combining spurious labels ys with true labels y, DISK effectively
partitions the data into different groups with unique data distributions P(x|y, ys).
The group partition inferred by DISK then can be seamlessly leveraged to design
algorithms to further mitigate the subpopulation shift and improve generalization
on test data. Unlike existing domain inference methods, such as ZIN (Lin et al.,
2022) and DISC (Wu et al., 2023), DISK reliably infers domains without requir-
ing additional information. We extensively evaluated DISK on different datasets,
considering scenarios where validation labels are either available or unavailable,
demonstrating its effectiveness in domain inference and mitigating subpopulation
shift. Furthermore, our results also suggest that for some complex data, the neural
network-based DISK may have the potential to perform more reasonable domain
inferences, which highlights the potential effective integration of DISK and hu-
man decisions when the (human-defined) domain information is available. Codes
of DISK are available at https://anonymous.4open.science/r/DISK-E23A/.

1 INTRODUCTION

Subpopulation shift is a common phenomenon in various real-world machine learning applications
where both training and test share the same subpopulations but differ in subpopulation probabilities
(Barocas & Selbst, 2016; Bickel et al., 2007). This phenomenon poses significant challenges for
Empirical Risk Minimization (ERM) in practical scenarios. When ERM is applied solely based
on the training dataset, it frequently encounters difficulties in generalizing to test sets exhibiting
subpopulation shifts, resulting in substantial performance degradation (Shi et al., 2021; Han et al.,
2022). For example, the CMNIST dataset in Figure 1 has two domains (red and green) and two
classes (0 and 1). In training, the class 0 ratio is 8:2 (red:green) and for class 1, it’s 2:8. In testing,
the ratios shift to 1:9 for class 0 and 9:1 for class 1. This subpopulation shift causes models to learn
spurious correlations, like red-0 and green-1, which don’t apply in the testing set.

Numerous methods have been proposed to encourage models to learn invariant features in order to
mitigate the subpopulation shift issue (Sagawa et al., 2019; Xu et al., 2020; Kirichenko et al., 2022;
Shi et al., 2021; Liu et al., 2021a). These methods rely on the availability of domain information,
which is commonly assumed to correlate with spurious features (Yao et al., 2022). However, practi-
cal acquisition can be challenging due to limited prior knowledge about spurious features (Creager
et al., 2021; Liu et al., 2021b; Lin et al., 2022). For example, whether the color or the digit shape of
the CMNIST data corresponds to the spurious feature cannot be determined.

Existing methods for inferring domain information have notable limitations. For instance, meth-
ods like EIIL (Creager et al., 2021) and LfF (Nam et al., 2020) struggle to reliably infer do-
main information in heterogeneous data without prior invariant information. Consider two datasets
CMNIST (COLOR-MNIST) and MCOLOR (MNIST-COLOR), both containing identical data;

1

https://anonymous.4open.science/r/DISK-E23A/


Under review as a conference paper at ICLR 2024

y = 0 y = 1

R
ed

G
re

en

80% 
10%

20% 
90%

80% 
10%

20% 
90%

Figure 1: CMNIST with two domains.
Digit color is used as domain informa-
tion which is spuriously correlated with
training labels. The varying probabili-
ties in the four groups between training
and testing datasets imply the existence
of subpopulation shift.

however, in CMNIST, color signifies domain informa-
tion, while digits shape remains invariant, whereas in
MCOLOR, the roles are reversed, with shape as the do-
main and color as the invariant. EIIL and LfF rely on
either color or shape as the invariant feature to infer
the domain. However, for datasets like CMNIST and
MCOLOR, where data is the same, and invariant infor-
mation is unknown, EIIL and LfF would fail on at least
one of them (Lin et al., 2022). Approaches like DISC (Wu
et al., 2023) and ZIN (Lin et al., 2022) require extra anno-
tations or the construction of the concept bank with poten-
tial spurious features for domain inference, posing prac-
tical challenges. For example, ZIN ignores color in its
standard annotations, limiting domain inference in CM-
NIST. Both ZIN and DISC require specific data informa-
tion, which makes them less suitable as general frame-
works. Even when general data information exists, collecting additional data details reduces their
efficiency compared to purely data-driven domain inference methods.

In this paper, we introduce a novel method called Domain Inference for discovering Spurious Corre-
lation with KL-Divergence (DISK). It aims to maximize the difference between the distributions of
the training and validation datasets to detect spurious features and infer domain information that is
highly correlated with these spurious features. DISK assigns spurious labels (also domain labels) to
instances, combines them with true labels for group partitioning, and uses group-based enhancement
techniques to improve generalization on the test set. As an end-to-end approach, DISK seamlessly
integrates its inferred domain information with downstream methods to mitigate subpopulation shift.
Importantly, DISK only requires an additional validation data for stable domain inference, eliminat-
ing the need for collecting extra information. We thoroughly explore scenarios in which validation
labels are either available or unavailable and demonstrate the effectiveness of DISK in domain in-
ference and the alleviation of the subpopulation shift issue through extensive experiments. Our
contributions can be summarized as follows:

1. We propose DISK, a novel and effective end-to-end method for domain inference, that can be ef-
fectively employed to mitigate subpopulation shift and improve generalization in the test domain
in Section 3. In particular, we design a KL-divergence-based objective for training the DISK do-
main classifier, which maximizes the difference between “spurious correlations” of the domain
predictions for training data and (unlabeled) validation data. Notably, DISK only requires (unla-
beled) validation data to perform domain inference, without any additional information, thus can
be performed in a purely data-driven manner.

2. We introduce a simple yet effective metric for assessing the performance of domain partitioning
and demonstrate the effectiveness of DISK on multiple datasets in Section 4. Besides, when
further integrating DISK with the simple subsampling and retraining approach, we can achieve
nearly matching or even slightly better test performance compared with the methods that explic-
itly rely on the true domain information. This justifies the effectiveness of DISK in mitigating
the subpopulation shift when the domain information is absent.

3. We provide new insights on domain inference, illustrating that when spurious features contain
complex information, the neural network-based DISK has greater potential to capture the essence
of the data than human decisions (section 4.2.2). DISK partitions domains more based on the un-
derlying similarities in patterns. This finding underscores the potential for effectively integrating
DISK with human decision-making to achieve accurate domain inference in complex settings.

2 RELATED WORK

Many domain generalization methods utilize domain information to mitigate the issue of data distri-
bution shift. These methods include invariant learning, which aims to boost the correlation between
invariant representations and labels, thereby generating predictors that remain unaffected by differ-
ent domains (Peters et al., 2016; Koyama & Yamaguchi, 2020). For instance, IRM (Arjovsky et al.,
2019) and its variant IB-IRM (Ahuja et al., 2021) try to identify predictors that perform consistently
well across all domains through regularization. LISA (Yao et al., 2022) acquires domain-invariant
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Figure 2: (a) DISK discovers the spurious correlation between the training and validation data,
assigning spurious labels ytrs to training instances. Subsequently, the training set is partitioned into
different groups with distinct distributions P(xs,xv|g) where g = (y, ys). The HCS operation aids
DISK in achieving a more precise inference of minority groups; (b) The training data from different
domains undergo enhancement techniques, such as subsampling, to achieve a balanced training
dataset with equal-sized groups for further training.

predictors by selectively combining samples with matching labels but differing domains or matching
domains but differing labels, using data interpolation. Additionally, a series of Group Robustness
methods are designed to address generalization challenges arising from subpopulation shift. For
example, group DRO (Sagawa et al., 2019) directly optimizes performance in the worst-case group
scenario through distributionally robust optimization. Some works Nam et al. (2022); Sohoni et al.
(2021) proposed semi-supervised methods aimed at improving the test performance in scenarios
where group labels are provided for a small fraction of the training data. Various other methods,
including reweighting (Sagawa et al., 2020), regularization (Cao et al., 2019), and downsampling
(Kirichenko et al., 2022), are employed to achieve a balance in the representation of both majority
and minority groups. Notably, the simple yet effective downsampling method, DFR (Kirichenko
et al., 2022), utilizes domain information to downsample and obtain a small, balanced dataset for
retraining the final layer of the classification model.

When domain information is unavailable, EIIL (Creager et al., 2021) incorporates domain inference
to directly identify domains that provide the most valuable information for downstream invariant
learning. However, it relies solely on the training dataset and requires the invariant information,
leading to instability in detecting spurious features. ZIN (Lin et al., 2022), when supplemented
with auxiliary information like timestamps for time-series data, meta-annotations for images, and
geographic data such as latitude and longitude, improves domain information inference. Acquiring
such auxiliary information poses similar challenges to acquiring domain information, and the lack
of prior knowledge limits ZIN’s universal adaptability. Similarly, DISC (Wu et al., 2023) assists in
inferring domain information by constructing a concept bank with potential spurious features, yet it
encounters similar practical challenges as ZIN.

3 METHOD

In this section, we begin by outlining the problem setup and important notations in Section 3.1.
Following that, we provide a formal definition for spurious labels in Section 3.2. Next, we discuss
our method, DISK, including the optimization functions in scenarios with and without validation
labels in Section 3.3. Lastly, Section 3.4 elucidates the seamless integration of DISK’s inferred
domain information into design algorithms to improve model generalization on test data.

3.1 PRELIMINARIES

Consider the dataset D, which comprises n data point-label pairs, denoted as D = {(xi, yi)}ni=1.
The data x can be decomposed into invariant features xv and spurious features xs. Invariant features
xv capture the genuine causal relationship between the data x and the label y, whereas spurious
features xs are typically correlated with the class label but often lack generalizability. To represent
the features extracted from x, we employ a feature extractor denoted as Φ, yielding z = Φ(x). It is
expected that the representation z contains valuable information relevant to y.
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We adopt the unified definition of subpopulation shift proposed by Yang et al. (2023) and consider
group-based spurious correlations as defined by Sagawa et al. (2019), where the subpopulations
(also groups) are defined based on the attribute (domains) and labels. The training distribution is
a mixture of K subpopulations, represented as Ptr =

∑K
k rtrk Pk(xv,xs), where rtrk defines the

mixture probabilities within the training set, and the training subpopulation is defined as Dtr = {k :
rtrk > 0}. Similarly, the test distribution is also a mixture of K subpopulations, given by Pts =∑K

k rtsk Pk(xv,xs), and the test subpopulation is correspondingly defined as Dts = {k : rtsk > 0}.
In subpopulation shift, the test set includes subpopulations observed in the training set, although
with varying proportions of each subpopulation, denoted as Dts ⊆ Dtr, but with {rtsk } ̸= {rtrk }.
Without domain information, it’s impossible to partition the data into different groups, making it
challenging to enhance generalization.

3.2 FORMAL DEFINITION OF SPURIOUS LABELS

In this section, we formally introduce the concept of spurious labels. Given the data x, the label
y, invariant features xv , and spurious features xs, alongside the data representation z, which in-
cludes both the spurious representation zs and the invariant representation zv , we give the following
definition:

Definition 1. (Spurious Labels) The spurious label, denoted as ys, is determined by assigning
labels to instances only based on the spurious representation zs.

For example, in CMNIST, zs represents the color (spurious feature) representation, ys represents
the spurious labels assigned to instances based solely on the color representation. Since domain
information is typically assumed to be spuriously correlated with the true label (Yao et al., 2022),
the spurious representation-based label ys, can be considered as the domain label. Therefore, each
group g is jointly determined by both spurious labels and true labels, i.e., g = (y, ys). In the
case of CMNIST, color (red or green) serves as both the domain information and the spurious fea-
ture, with corresponding labels representing the spurious labels (also the domain labels), denoted
as ys = {red, green}. When combined with the true labels y and ys, CMNIST is categorized into
four groups: {g1, g2, g3, g4} = {(0, red), (0, green), (1, red), (1, green)} as shown in Figure 2.
Dividing these groups allows the application of group-based domain generalization techniques to
address subpopulation shift.

3.3 DOMAIN INFERENCE BASED ON SPURIOUS CORRELATION WITH KL-DIVERGENCE

To obtain the spurious label ys, we introduce a novel method: Domain Inference based on Spurious
Correlation with KL-Divergence (DISK).

Consider three datasets that conform to subpopulation shift: the training set Dtr, the validation set
Dval, and the test set Dts. Spurious correlation (Jackson & Somers, 1991; Haig, 2003; Yao et al.,
2022; Deng et al., 2023) results in a strong association between the spurious label ys and the true
label y in Dtr, whereas this correlation is weak or even absent in Dval. By using KL-divergence
KL(·||·) and mutual information I(·, ·), DISK aims to find the spurious label by (1) maximizing the
correlation between the true label y and spurious label ys in training setDtr; and (2) minimizing such
correlation in validation set Dval. In particular, the first objective can be conducted by maximizing
the mutual information between y and ys (denoted as Correlation Term), and the second objective
will be performed by maximizing the discrepancy between the spurious correlations in the training
set Dtr and the validation set Dval (denoted as Spurious Term). We employ a spurious classifier
fDISK, which is designed to classify instances based on spurious representation to estimate the
spurious label ys, and the detailed design of our training objective is provided as follows:

Correlation Term. In order to encourage the correlation between the true label and spurious label
in the training set, we consider the following optimization objective:

max
w

I(ytr; ŷtrs,w), (1)

where the estimated spurious label ŷtrs,w = fDISK(z
tr;w) and the w denotes the model parameter of

the spurious classifier fDISK. The representation ztr refers to the last-layer output of the pretrained
model (the model trained on the original training dataset).
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Spurious Term. In order to maximize the discrepancy between the correlations (e.g., the correla-
tion between y and ys) in the training and validation set, we consider applying the KL divergence
between their corresponding conditional distributions P(y|ŷs), leading to the following objective for
predicting the spurious label:

max
w

KL(P(ytr|ŷtrs,w)||P(yval|ŷvals,w)), (2)

where the estimated spurious labels ŷtrs,w = fDISK(z
tr;w) and ŷvals,w = fDISK(z

val;w). Like ztr,
zval corresponds to the last linear layer’s output of the pretrained model when given validation data.

Overall Objective. By combining (1) and (2), we derive the overall objective of DISK as follows:

max
w

I(ytr; ŷtrs,w) + γKL(P(ytr|ŷtrs,w)||P(yval|ŷvals,w)), (3)

where γ > 0 is a weighting parameter used to balance the Correlation Term and the Spurious Term.

However, the overall objective of DISK in (3) faces certain issues in practical implementation.
Firstly, the mutual information term is difficult to accurately estimate (Paninski, 2003; Belghazi
et al., 2018). Secondly, the availability of the true label yval for the validation set is not always
guaranteed, thus the KL divergence term cannot be calculated tractably.

To accurately compute the mutual information I(ytr; ŷtrs,w), we demonstrate in Appendix 1 that max-
imizing this mutual information can be transformed into minimizing the cross-entropy H(ytr, ŷtrs,w).
This conclusion aligns with intuition because maximizing mutual information between ytr and ŷtrs,w
essentially encourages a closer alignment of their distributions, which is consistent with the objec-
tive of minimizing cross-entropy H(ytr, ŷtrs,w). Therefore, when we have access to the validation
set labels yval, we can reformulate the overall objective of DISK as follows:

min
w

H(ytr, ŷtrs,w)− γKL(P(ytr|ŷtrs,w)||P(yval|ŷvals,w)). (4)

In more typical scenarios, when the label yval of the validation set are unavailable or when the
validation set is sampled from an unlabeled test set, computing KL(·||·) in (4) becomes impractical.
To address this, we replace yval in KL(·||·) with the representation zval, which strongly correlates
with yval and is always accessible. We present the following theorem:

Theorem 1. [Lower Bound of Spurious Term without Accessible yval] Given representations ztr

and zval, the spurious term is lower bounded by the following expression as:

KL(P(ytr|ŷtrs,w)||P(yval|ŷvals,w) ≥ KL(P(ztr|ŷtrs,w)||P(zval|ŷvals,w)) (5)

As stated in Theorem 1, when the label of the validation data yval is missing,
we resort to maximizing KL(P(ztr|ŷtrs,w)||P(zval|ŷvals,w)) as an alternative for maximizing
KL(P(ytr|ŷtrs,w)||P(yval|ŷvals,w)). We point out that maximizing a lower bound is meaningful as
it provides the worst-case guarantee over the original objective. The detailed proof of Theorem 1
is provided in Appendix A.2. Therefore, when validation labels yval are unavailable, the overall
objective of DISK can be redefined as follows:

min
w

H(ytr, ŷtrs,w)− γKL(P(ztr|ŷtrs,w)||P(zval|ŷvals,w)). (6)

We employ the MINE algorithm (Belghazi et al., 2018) to estimate the KL(·||·) terms in (4) and (6).

3.4 MITIGATING SUBPOPULATION SHIFT WITH DISK

In this section, we show how to leverage DISK to mitigate subpopulation shift. As shown in Figure
2, the inferred spurious labels ytrs from DISK and the true labels y divide the data space into multiple
groups, each characterized by a distinct distribution P(xs,xv|y, ys). Based on the predicted group
information from DISK, we are able to apply the existing domain generalization methods, which
require the domain information of the data, to improve the generalization in the test domain. In
this work, we primarily employ the Subsampling strategy (Kirichenko et al., 2022; Wu et al., 2023),
which downsamples the original training dataset according to their group information (predicted
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(b) Validation Acc = 0.69 (c) Test Acc = 0.73
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(i) Test Acc = 0.89

Figure 3: Illustration of the decision boundaries obtained by fvanilla, fDISK, fDISK. True decision
boundaries for spurious features and invariant features are vertical and horizontal respectively. (a-c)
Decision Boundary and Prediction Accuracy for fvanilla. (d-f) DISK with Accessible yval: Decision
Boundary and Prediction Accuracy for fDISK. (g-i) DISK with Subsampling: Decision Boundary
and Prediction Accuracy for fDISK.

by DISK), such that all groups are balanced. Then, we can proceed to retrain a model using the
subsampled dataset 1.

Intuitively, in the subsampled dataset, spurious features are distributed evenly within each group,
so that their correlations with the labels in the training dataset can be eliminated. However, since
the domain inference performance of DISK may not be perfect, directly applying the raw predic-
tions of DISK cannot guarantee balanced spurious features in the subsampled dataset. The reason
behind the imperfect domain inference is that the (true) groups in the original dataset are extremely
unbalanced. For instance, in CMNIST dataset, the sample size of red digits with label 1 (or green
digits with label 0) is much smaller than that of red digits with label 0 and green digits with label
1 (see Figure 1). Such minority groups may be difficult to be perfectly identified by DISK com-
pared to the majority groups, which further affects the balance (with respect to spurious features) of
the constructed subsampled dataset. To address this issue, we introduce a straightforward strategy
called High Confidence Selection (HCS). The intuition is that although the spurious label of some
examples in the minority groups may be misclassified, they are mostly close to the classification
boundary, i.e., falling in the low-confidence region. Therefore, regarding the minority groups iden-
tified by DISK (i.e., the groups with smaller size), we only pick the examples with high-confidence
predictions (parameterized by > α for some α > 0.5, based on the predicted probability) while
ignoring the low-confidence examples. Then, based on the smallest size of the predicted groups
(after performing HCS), we will equally pick the same number of data points from all groups to
form the subsampled dataset, which will be used for mitigating the subpopulation shift and enhance
the generalization performance in the test domain.

4 EXPERIMENTS

In this section, we extensively evaluate DISK on a 2D synthetic dataset and five real-world image
datasets, primarily addressing the following questions:

Q1. Can DISK accurately infer domains and effectively facilitate subpopulation shift mitigation?
Q2. If the inference is inaccurate, why is there inconsistency between DISK and human decisions

in domain inference?

We also address the challenge posed by Lin et al. (2022) in inferring domains for CMNIST and
MCOLOR in Appendix B.3.3 to demonstrate that DISK accurately infers domain information in
heterogeneous data without facing the same difficulties as EIIL and LfF.

1Retraining the model is not mandatory and can also be done as suggested in Kirichenko et al. (2022);
Izmailov et al. (2022), where a pre-trained model is employed, and only the last layer is fine-tuned.
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4.1 SYNTHETIC 2D DATA

We begin with a synthetic 2D dataset to show how DISK partitions domains by learning from spuri-
ous correlations. This dataset comprises three sets: training (Dtr), validation (Dval), and test (Dts).
These sets are generated by blending four two-dimensional Gaussian distributions, each with differ-
ent means, equal variances, and zero correlation coefficients. Varying mixing probabilities across
datasets induce subpopulation shift in Dtr, Dval, and Dts. The first dimension, x1, represents the
spurious feature, while the second dimension, x2, is the invariant feature. More details about the
synthetic data can be found in Appendix B.1. We trained a single-layer neural network, referred to
as fvanilla, on Dtr and visualized its decision boundary in the top row of Figure 3. We observed a
significant accuracy gap between the training and test sets, with fvanilla aligning its decision bound-
ary more closely with the vertical boundary determined by the spurious feature x1 rather than the
horizontal boundary determined by the invariant feature x2. This indicates that fvanilla heavily relied
on x1 for classification, resulting in poor test set generalization.

When yval is available, we used DISK to train fDISK with the same model architecture as fvanilla,
assigning distinct spurious labels to each instance, representing different domains. As shown in
the second row of Figure 3, DISK indeed caused the decision boundary of fDISK to align more
closely with the vertical boundary, leading to a more significant difference in prediction accuracy
between the training and validation sets. Spurious labels and true labels divided the data space into
four groups. We then applied a subsampling strategy to obtain an equal number of instances from
each group, creating a balanced subsampled dataset. Subsequently, we trained the same single-layer
neural network, denoted as fDISKS, on this subsampled data and obtained its decision boundary and
accuracy, as depicted in the third row of Figure 3. Compared to fvanilla, the decision boundary of
fDISK is noticeably more horizontal, and the test accuracy improved from 0.73 to 0.89, indicating
reduced reliance on spurious features and enhanced model generalization. Additional experimental
results without yval in Appendix B.1 yield similar outcomes.

4.2 REAL-WORLD DATA

To address Q1 in Section 4, we report the test prediction accuracy of DISK with Subsampling
(abbreviated as DISKS) and baselines on five public real-world datasets, along with a metric to
clarify domain inference effectiveness. To address Q2, we then conduct dataset-specific analysis
based on the results from Q1. This analysis aims to explain the sources of discrepancies between
the domain information inferred by DISK and by humans (oracle). Additionally, we showcase
DISK’s effectiveness when combined with other enhanced techniques, such as Mixup (abbreviated
as DISKM), in Appendix B.3.4.

4.2.1 EXPERIMENTAL SETUP

Datasets. We consider image classification tasks with various spurious correlations. Specifically,
the CMNIST dataset (Arjovsky et al., 2019) involves noisy digit recognition where digit colors (red
or green) are spurious features linked to digit values. MNIST-FashionMNIST and MNIST-CIFAR
(Shah et al., 2020; Kirichenko et al., 2022) are both synthetic datasets combining MNIST (spurious
features) with FashionMNIST and CIFAR datasets, respectively. Additionally, we consider the Wa-
terbirds dataset (Sagawa et al., 2019), which associates bird types with spurious background (water
or land). Moreover, the CelebA dataset (Liu et al., 2015) focuses on hair color recognition, influ-
enced by spurious gender-related features. More details of datasets are available in Appendix B.2.1.

Baselines. As discussed in Section 2, existing domain inference methods have limitations, including
instability (as seen in EIIL and LfF) and data-specific applicability (as seen in ZIN and DISC), which
restricts their usefulness as reliable baselines. Therefore, except for vanilla ERM (Vapnik, 1991), we
consider domain generalization models that directly leverage oracle domain information, including
IRM (Arjovsky et al., 2019), GroupDRO (Sagawa et al., 2019), LISA (Yao et al., 2022), and DFR
(Kirichenko et al., 2022) as our baseline methods. Importantly, DFR uses oracle domain information
for subsampling which makes comparing DISKS to DFR a direct validation of DISKS’ effectiveness.
Especially when the oracle domain information accurately represents spurious features, DFR sets the
upper limit for DISKS’ performance.
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Table 1: Average and worst accuracy comparison (%). DISKS outperforms ERM, effectively mit-
igating the subpopulation shift issue without relying on domain information. The experimental
results for LISA, GroupDRO, and IRM are directly sourced from (Yao et al., 2022).

Method Domain
Info

CMNIST MNIST
FashionMNIST

MNIST
CIFAR WaterBirds CelebA

Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst

ERM × 37.8±1.1 32.4±1.2 71.1±2.0 69.6±2.0 9.8±0.3 9.6±6.0 63.4±4.0 34.4±8.2 94.7±0.8 38.0±3.4

IRM ✓ 72.2±1.1 70.3±0.8 - - - - 87.5±0.7 75.6±3.1 94.0±0.4 77.8±3.9

GroupDRO ✓ 72.3±1.2 68.6±0.8 - - - - 91.8±0.3 90.6±1.1 91.2±0.4 87.2±1.6

LISA ✓ 74.0±0.1 73.3±0.2 92.9±0.7 92.6±0.8 - - 91.8±0.3 89.2±0.6 92.4±0.4 89.3±1.1

DFR ✓ 64.1±1.5 67.9±1.8 95.8±0.4 95.5±0.5 69.3±0.9 70.0±1.2 79.3±2.2 78.2±3.6 91.1±0.1 85.0±2.1

DISKS w/ yval × 65.1±1.7 67.6±2.0 92.3±0.8 92.6±0.9 69.0±0.4 69.2±0.6 91.1±1.4 85.5±3.0 88.8±0.3 64.8±1.3

DISKS w/o yval × 62.5±4.4 65.5±3.0 91.8±2.8 93.0±2.7 68.1±1.2 68.4±1.2 80.8±1.5 81.1±0.4 87.9±0.4 63.0±4.6

Model Training. We adopt the neural network architectures and hyperparameters from Yao et al.
(2022), employing ResNet (He et al., 2016) models as the feature extractor Φ(x), which updates
during training. We conduct three repetitions for each model, reporting mean and standard deviation
following Yao et al. (2022). Further training specifics are in Appendix B.2.2.

Evaluation. For all datasets, we evaluate average-group and worst-group prediction accuracies.
Additionally, we introduce a new metric, Minority Domain Inference Precision (PM), to showcase
DISK’s ability to identify challenging minority groups. This metric is defined as follows:
Definition 2 (Minority Domain Inference Precision). The index set of instances from minority
groups inferred by oracle domain information is denoted as Ioracle, while those inferred by DISK are
denoted as IDISK. We define Minority Domain Inference Precision (PM) as P

M
= |Ioracle∩IDISK|

|IDISK| .

4.2.2 RESULTS

Can DISK accurately infer domains and effectively facilitate subpopulation shift mitigation?

Table 1 presents a performance comparison of DISKS with baseline models across five datasets.
DISKS consistently achieves significantly improved average and worst accuracy compared to tradi-
tional ERM, regardless of the availability of yval. On some datasets, DISKS nearly matches or even
surpasses the performance of models like DFR, which utilize oracle domain information directly.
We also observed that in most datasets, DISKS without yval exhibits slightly lower average/worst
accuracy compared to those with yval. This might be attributed to the challenges associated with op-
timizing the KL-divergence of high-dimensional inputs (i.e., the representation z) by DISKS without
yval (Belghazi et al., 2018). Furthermore, it’s worth noting that DISK’s performance improvements
are less pronounced on the CelebA dataset, possibly due to the limited introduction of additional
domain information resulting from the close alignment between the training and validation set dis-
tributions. Table 2 further summarizes DISK’s accuracy in identifying minority groups. Across all

Table 2: Average PM. DISK maintains high precision in recognizing minority groups.

Method CMNIST MNIST
FashionMNIST

MNIST
CIFAR

WaterBirds CelebA

DISK w/ yval 99.1±0.2 91.8±1.7 99.2±0.1 70.3±3.1 71.3±2.0
DISK w/o yval 98.5±0.5 94.9±2.4 98.3±1.3 76.7±3.0 69.7±2.2

datasets, the average precision (PM) for minority groups consistently exceeds 70%, and in some
cases, even reaches as high as 90%. Furthermore, Figure 4 visualizes the distribution of spurious
features in the subsampled data. DISK enables the creation of subsampled data with more balanced
spurious feature distributions within each class, facilitating models in learning invariant features
and improving generalization. In Appendix B.3.2, we also show the ablation experiment results
to demonstrate that DISK, without performing HCS, still accurately infers domains and effectively
mitigates subpopulation shift.

Why is there inconsistency between DISK and human decisions in domain inference?

We noticed an interesting phenomenon in Table 1 and Table 2: in the Waterbirds dataset, DISK only
achieves around 70% precision on minority groups, yet its performance approaches or even exceeds
that of DFR. To explain this, Figure 5 displays ten random instances from the minority groups
identified by DISK. We observe two main categories of misclassified images: (1) Land images with

8
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Figure 4: Subsampled data visualization. The x-axis shows the spurious feature ratio P(xs=0|y=0)
P(xs=1|y=0) in

class 0 , the y-axis shows the ratio P(xs=0|y=1)
P(xs=1|y=1) in class 1 , and bubble size represents sample size.

Compared to the original data, subsampled data by DISK exhibits improved balance of spurious
features within each class, approaching closer to the perfectly balanced data (closer to (1,1)).

Figure 5: Comparing DISK-inferred and oracle minority groups. Each image has labels from both
DISK and the oracle, with “waterbird/landbird” as true labels and “water/land” as spurious (domain)
labels. Red highlights the DISK and oracle mismatch in domain classification.

typical water features, like extensive blue regions (Figure 2), often lead DISK to misclassify land as
water. (2) Water images with typical land features, such as abundant tree branches (Figure 8), ponds
with lush green vegetation (Figure 9), or large tree reflections (Figure 10), frequently cause DISK
to misclassify water as land. Specifically, in Figure 2 of Figure 5, DISK misclassifies it as water
when it is actually land. We notice that it shares nearly identical background structures with Figures
1, 3, and 4 in Figure 5: vast blue areas (ocean or sky) and yellow/green land. It’s reasonable for
DISK to group them due to similar backgrounds. Unlike Figures 8 and 9 in Figure 5, which were
misclassified as land because their main content directly includes many land elements, such as green
foliage and tree branches, Figure 10 is classified as land by DISK, despite its water background, due
to the abundance of vertical linear structures resembling typical land features (tree branches).

Appendix B.3.5 includes additional visualizations that support our conclusion: for the Waterbirds
dataset, DISK achieves more coherent domain partitioning than human decisions by grouping spu-
rious features (backgrounds) with similar underlying patterns into the same category. For instance,
DISK identifies similarities between tree branches and water reflections, recognizes scenes resem-
bling vast blue skies and oceans, and groups them accordingly. And DISK provides domain infer-
ence that is entirely based on the neural network perspective. This maintains perspective consistency
with subsequent neural networks trained on datasets without domain interference, thereby creating
an end-to-end process that can mitigate the adverse effects arising from differences in cognition
between humans and neural networks.

5 CONCLUSION

To address subpopulation shift without domain information, we introduce DISK, a novel method
for inferring domain labels. We evaluate its effectiveness across various datasets, emphasizing its
domain inference capabilities. In the WaterBirds dataset, DISK outperforms human decisions, sug-
gesting its potential in capturing the essence of data and demonstrating DISK’s value even when
domain information is available. However, limitations become evident in datasets like CelebA,
where closely aligned distributions challenge the recognition of spurious correlations.
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A PROOF DETAILS

A.1 PROOF OF THE TRANSFORMATION OF I(ytr; ytrs,w)

Given ytr, the maximization of mutual information I(ytr; ytrs,w) can be transformed into the mini-
mization of cross-entropy H(ytr, ytrs,w).

To demonstrate this assertion, we establish the following lemma:

Lemma 1. Given ytr, the correlation term is lower bounded by the difference between the entropy
of ytr and the cross-entropy between ytr and ytrs,w:

I(ytr; ytrs,w) ≥ H(ytr)−H(y
tr, ytrs,w).

Proof. First, we expand the mutual information term:

I(ytr; ytrs,w) = H(ytr)−H(ytr|ytrs,w)

Since, the cross-entropy can be expanded as:

H(ytr, ytrs,w) = −
∑

P(ytr) logP(ytrs,w)

=
∑

P(ytr) log
P(ytr)
P(ytrs,w)

−
∑

P(ytr) logP(ytr)

= DKL(y
tr||ytrs,w) +H(ytr)

≥ DKL(y
tr||ytrs,w) +H(ytr|ytrs,w)

≥ H(ytr|ytrs,w)

Then we have,

I(ytr; ytrs,w) = H(ytr)−H(y|ytrs,w)

≥ H(ytr)−H(ytr, ytrs,w)

According to Lemma 1, when ytr is given, maximizing the mutual information I(ytr; ytrs,w) can be
equivalently transformed into minimizing H(ytr, ytrs,w), which is more computationally tractable in
practice.

A.2 PROOF OF THEOREM 1

To prove Theorem 1, we first show the causal structure between ys , z and y. Definition 1 describes
the following causal relationships: ys ← zs and zv → y. This relationship is reasonable and further
complements the research by Li et al. (2022). In their work, they assume D ← z → y, where the
variable D represents the domain, which corresponds to the spurious labels ys. Here, z = (zs, zv),
and we provide a detailed description of how z determines both the domain label and the true label
through zs and zv . The fork causal structure (Lagnado & Sloman, 2019) between ys , z and y
exhibits the following properties:

Property 1. The fork causal relationship ys ← z→ y adheres to the following properties:

1. ys ̸⊥ y means the true label y and the spurious label ys are dependent.

2. y ⊥ ys | z means given the representation z, the true label y and the spurious label ys are
conditionally independent.

Then, we establish the following two lemmas:
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Lemma 2. Given representations ztr and zval, maximizing the spurious term is equivalent to max-
imizing the following expression:

max
w

KL(P(ytr|ytrs,w)||P(yval|yvals,w))

⇔max
w

KL(P(ytr, ztr|ytrs,w)||P(yval, zval|yvals,w))
(7)

Proof. According to the properties of KL divergence (Cover, 1999), we have the following:

KL(P(ytr, ztr|ytrs,w)||P(yval, zval|yvals,w))−KL(P(ztr|ytr, ytrs,w)||P(zval|yval, yvals,w))

= E(ytr,ztr,ytr
s,w)[log

P(ytr, ztr|ytrs,w)

P(yval, zval|yvals,w)
]− E(ytr,ztr,ytr

s,w)[log
P(ztr|ytr, ytrs,w)

P(zval|yval, yvals,w)
]

= E(ytr,ztr,ytr
s,w)[log

P(ytr|ytrs,w)

P(yval|yvals,w)
]

= E(Y tr,ytr
s,w)[log

P(Y tr|ytrs,w)

P(Y val|yvals,w)
]

= KL(P(ytr|ytrs,w)||P(yval|yvals,w))

(8)

Term KL(P(ztr|ytr, ytrs,w)||P(zval|yval, yvals,w)) captures the similarity between the groups in the
training and validation sets. According to the definition of subpopulation shift in Section 3.1, we
have P(ztr|ytr, ytrs,w) = P(zval|yval, yvals,w). Therefore,

KL(P(ztr|ytr, ytrs,w)||P(zval|yval, yvals,w)) =
∑

P(ytr, ytrs,w)
∑

P(ztr|ytr, ytrs,w) log
P(ztr|ytr, ytrs,w)

P(zval|yval, yvals,w)

=
∑
k

rtrk
∑

Pk log
Pk

Pk
= 0

(9)

Consequently, maximizing the spurious term KL(P(ytr|ytrs,w)||P(yval|yvals,w)) is tantamount to max-
imizing KL(P(ytr, ztr|ytrs,w)||P(yval, zval|yvals,w)).

Lemma 3. Given representations ztr and zval, the equivalence of the spurious term is lower
bounded by the following expression:

KL(P(ytr, ztr|ytrs,w)||P(yval, zval|yvals,w)) ≥ KL(P(ztr|ytrs,w)||P(zval|yvals,w)) (10)

The tighter the bound is as KL(P(ytr|ztr)||P(yval|zval)) becomes smaller.

Proof. Expanding the objective term, we have:

KL(P(ytr, ztr|ytrs,w)||P(yval, zval|yvals,w))

= E(ytr,ztr,ytr
s,w)[log

P(ytr, ztr|ytrs,w)

P(yval, zval|yvals,w)
]

= E(ytr,ztr,ytr
s,w)[log

P(ytr, ztr, ytrs,w)

P(yval, zval, yvals,w)
]− Eytr

s,w
[log

P(ytrs,w)

P(yvals,w)
]

(a)
= E(ytr,ztr,ytr

s,w)[log
P(ytr|ztr)P(ztr, ytrs,w)

P(yval|zval)P(zval, yvals,w)
]−KL(P(ytrs,w)||P(yvals,w))

= E(ytr,ztr,ytr
s,w)[log

P(ytr|ztr)
P(yval|zval)

] + E(ytr,ztr,ytr
s,w)[log

P(ztr, ytrs,w)

P(zval, yvals,w)
]−KL(P(ytrs,w)||P(yvals,w))

= KL(P(ytr|ztr)||P(yval|zval)) + KL(P(ztr|ytrs,w)||P(zval|yvals,w))

≥ KL(P(ztr|ytrs,w)||P(zval|yvals,w))

(11)
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(a) achieves by the Property 1 where we have:

P(y, z, ys) = P(y|z)P(ys|z)P(z) = P(y|z)P(ys, z) (12)

By Equation 11, we prove the lower bound of KL(P(ytr, ztr|ytrs,w)||P(yval, zval|yvals,w)) is
KL(P(ztr|ytrs,w)||P(zval|yvals,w)) and the tighter the bound is as KL(P(ytr|ztr)||P(yval|zval)) be-
comes smaller.

Theorem 2. (Restatement of Theorem 1) Given representations ztr and zval, the spurious term is
lower bounded by the following expression as:

KL(P(ytr|ytrs,w)||P(yval|yvals,w)) ≥ KL(P(ztr|ytrs,w)||P(zval|yvals,w)) (13)

Proof. Based on Lemma 2 and 3, we can directly deduce:

KL(P(ytr|ytrs,w)||P(yval|yvals,w)) ≥ KL(P(ztr|ytrs,w)||P(zval|yvals,w)) (14)

B EXPERIMENTS

B.1 SYNTHETIC TOY DATA

Consider a 2D synthetic dataset with the following distribution:

Example 1. (Synthetic 2D data) Let x = (x1,x2) ∈ R2 represent 2-dimensional features, with the
spurious feature X1 and the invariant feature x2, and y ∈ R1 denoting labels. The synthetic data
comprises four groups (domains), namely G1, G2, G3, and G4. The distributions and sample sizes
in the training, validation, and test sets for each group are as follows:

G1 : (x1,x2) ∼ N
([

4

5

]
,

[
1 0

0 1

])
;Y = 0; (N tr, Nval, N ts) = (3900, 854, 3000)

G2 : (x1,x2) ∼ N
([

4

8

]
,

[
1 0

0 1

])
;Y = 1; (N tr, Nval, N ts) = (100, 287, 3000)

G3 : (x1,x2) ∼ N
([

8

8

]
,

[
1 0

0 1

])
;Y = 1; (N tr, Nval, N ts) = (3900, 18, 3000)

G4 : (x1,x2) ∼ N
([

8

5

]
,

[
1 0

0 1

])
;Y = 0; (N tr, Nval, N ts) = (100, 828, 3000)

(15)

The varying sample sizes in groups G1, G2, G3, and G4 indicate subpopulation shift across the
training, validation, and test sets.

Figure 6 visualizes the synthetic data and annotates the centers of the four groups. Subpopulation
shift can be clearly observed in the training, validation, and test datasets. Specifically, all three
datasets contain four groups: G1, G2, G3, and G4. However, the proportions of these groups vary
significantly across the datasets. Such distribution shift leads to challenges in generalization, as
models trained on the training set may struggle to perform well on the validation and test sets,
resulting in poor overall generalization performance.
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Figure 6: Visualization of Synthetic Data. The centers of the four groups G1, G2, G3, and G4 are
labeled. We can observe the subpopulation shift phenomenon in the training, validation, and test
datasets.

The second row of Figure 7 visualizes the decision boundary of fDISK without access to yval. Com-
pared to fvanilla, a decision boundary that aligns more closely with the vertical decision driven by
the spurious feature x1 is observed. This implies that fDISK without yval has learned more spurious
features, resulting in poorer generalization on the test data.
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Figure 7: (a-c) Decision Boundary and Prediction Accuracy for fvanilla. (d-f) DISK without Acces-
sible Y val: Decision Boundary and Prediction Accuracy for fDISK. (g-i) DISK with Subsampling:
Decision Boundary and Prediction Accuracy for fDISKS.

The third row of Figure 7 visualizes fDISKS, which is furthermore trained based on the domain
information inferred by DISK using the Subsampling strategy. Compared to fvanilla, fDISKS exhibits
a more horizontal decision boundary and higher test prediction accuracy. This indicates that DISK
can effectively infer domain information to help mitigate subpopulation shift.

B.2 REAL DATA

B.2.1 DATASET DETAILS

CMNIST(Arjovsky et al., 2019) is a noisy digit recognition task. The binary feature (green and
red), referred to as color, serves as a spurious feature, while the binary feature (digit contours)
acts as the invariant feature. The CMNIST dataset involves two classes, where class 0 corresponds
to the original digits (0,1,2,3,4), and class 1 represents digits (5,6,7,8,9). Following the approach
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recommended in Yao et al. (2022), we construct a training set with a sample size of 30,000. In class
0, the ratio of red to green samples is set at 8:2, while in class 1, it is set at 2:8. For the validation set
consisting of 10,000 samples, the proportion of green to red samples is equal at 1:1 for all classes.
The test set, containing 20,000 samples, features a proportion of green to red samples at 1:9 in class
0 and 9:1 in class 1. Additionally, label flipping is applied with a probability of 0.25.

MNIST-FashionMNIST are synthetic datasets derived from the Dominoes datasets (Shah et al.,
2020; Kirichenko et al., 2022). MNIST-FashionMNIST is generated by combining the MNIST
dataset with the FashionMNIST dataset. In these datasets, each image is divided into two halves:
the top half displays MNIST digits from classes 0, 1, while the bottom half showcases Fashion-
MNIST images from classes coat, dress. For MNIST-FashionMNIST, in the training set with 10,825
samples, in the class Dress, the ratio of digit 0 to digit 1 samples is set at 9:1, while in the class Coat,
it is set at 1:9. In the validation set with 1,175 samples, in the class Dress, the ratio of digit 0 to digit
1 samples is approximately set at 7:3, while in the class Coat, it is approximately set at 3:7. In the
test set with 2,000 samples, 95% of the samples in the Dress class are associated with the digit 1,
while 95% of the samples in the Coat class are associated with the digit 0.

MNIST-CIFAR are also synthetic datasets created by combining the MNIST dataset with the CI-
FAR datasets (Shah et al., 2020; Kirichenko et al., 2022). To increase the diversity of the data,
we included all samples from CIFAR-10, rather than just the samples car, truck as included in
Kirichenko et al. (2022). First, the labels of CIFAR-10 were binarized, where samples originally
labeled as airplane, automobile, bird, cat, or deer were relabeled as 0, and samples originally labeled
as dog, frog, horse, ship, or truck were relabeled as 1. In these datasets, each image is divided into
two halves: the top half displays MNIST digits from classes 0, 1, while the bottom half showcases
CIFAR-10 images from the new classes 0, 1. MNIST-CIFAR exhibits more extreme distributions
of spurious features (MNIST) and invariant features (CIFAR-10). For the training set with 4,500
samples, 99% of samples labeled as 0 are associated with digit 0, and 99% of samples labeled as 1
are associated with digit 1. In the validation set with 5,000 samples, 70% of samples labeled as 0
are associated with digit 0, and 70% of samples labeled as 1 are associated with digit 1. In the test
set with 10,000 samples, only 10% of samples labeled as 0 are associated with digit 0, and 10% of
samples labeled as 1 are associated with digit 1.

Waterbirds aims to classify bird images as either waterbirds or landbirds, with each bird image
falsely associated with either a water or land background. Waterbirds is a synthetic dataset where
each image is generated by combining bird images sampled from the CUB dataset (Wah et al.,
2011) with backgrounds selected from the Places dataset (Zhou et al., 2017). We directly load the
Waterbirds dataset using the Wilds library in PyTorch (Koh et al., 2021). The dataset consists of a
total of 4,795 training samples, with only 56 samples labeled as waterbirds on land and 184 samples
labeled as landbirds on water. The remaining training data includes 3,498 samples from landbirds
on land and 1,057 samples from waterbirds on water.

CelebA (Liu et al., 2015; Sagawa et al., 2019) is a hair-color prediction task, similar to the study
conducted by (Yao et al., 2022), and follows the data preprocessing procedure outlined in (Sagawa
et al., 2019). Given facial images of celebrities as input, the task is to identify their hair color as
either blond or non-blond. This labeling is spuriously correlated with gender, which can be either
male or female. In the training set, there are 71,629 instances (44%) of females with dark hair,
66,874 instances (41%) of non-blond males, 22,880 instances (14%) of blond females, and 1,387
instances (1%) of blond males. In the validation set, there are 8535 instances (43%) of females with
dark hair, 8276 instances (42%) of non-blond males, 2874 instances (14%) of blond females, and
182 instances (1%) of blond males.

B.2.2 TRAINING DETAILS

We use a pre-trained ResNet model (He et al., 2016) for image data. For Subsampling, assuming
a minimum sample size of T for each domain after DISK partitioning, we sample T samples from
each domain to form a subsampled dataset. Each method is repeated three times with random seeds
0, 1, and 2. Detailed parameters used in the experiments are shown in Table 3.
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Table 3: Hyperparameter settings for Different Datasets. Parameters inside parentheses indicate
differences between cases when DISK yval is not available and when yval is available. Parameters
inside parentheses correspond to DISK with yval not available.

Hyperparameters CMNIST MNIST
FashionMNIST

MNIST
CIFAR Waterbirds CelebA

fvanilla

Learning rate 1e-3 1e-2 1e-2 1e-3 1e-3
Weight decay 1e-4 1e-3 1e-3 1e-4 1e-4
Architecture ResNet50 ResNet18 ResNet18 ResNet18 ResNet50

Epoch 300 300 300 300 50

fspurious
DISK

Learning rate 1e-5 1e-5 1e-5 1e-5 1e-5
Momentum 0.9 0.9 0.9 0.9 0.9
Architecture 1-layer NN 1-layer NN 1-layer NN 1-layer NN 1-layer NN

Epoch 100 (50) 500 (500) 300 (300) 200 (100) 180 (180)

f correlation
DISK

Learning rate 1e-5 1e-4 1e-5 1e-5 1e-5
Momentum 0.9 0.9 0.9 0.9 0.9
Architecture 1-layer NN 1-layer NN 1-layer NN 1-layer NN 1-layer NN

Epoch 100 (50) 500 (500) 300 (300) 200 (100) 180 (180)

Common
Parameters

γ 1 (1) 5 (1) 1 (1) 1 (1) 4 (4)
α 0.9 0.95 0.9 0.8 -

Batch size 16 32 32 16 16
Optimizer SGD SGD SGD SGD SGD

B.3 MORE EXPERIMENTS

B.3.1 THE ACCURACY DISCREPANCY OF fDISK BETWEEN THE TRAINING AND VALIDATION
SETS

Figure 8 visualizes the difference in predictive accuracy of fDISK between the training and valida-
tion sets. fDISK encourages a more pronounced spurious correlation to learn spurious information,
resulting in an increase in the gap in predictive accuracy between the training and validation sets.
This phenomenon is indeed observed in Figure 8, demonstrating the effectiveness of DISK.

CMNIST MNIST-FashionMNIST MNIST-CIFAR Waterbirds CelebA
 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

AC
C 

Di
ffe

re
nc

e 
Be

tw
ee

n 
Tr

ai
ni

ng
 a

nd
 V

al
id

at
io

n

Vanilla
DISK w/ Y
DISK w/o Y

Figure 8: The difference in predictive accuracy of fDISK between the training and validation sets.
We observe that DISK indeed encourages an increase in the gap in predictive accuracy between the
training and test sets by learning spurious information, resulting in poorer generalization.
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Table 5: Average Minority Domain Inference Precision PM on four datasets without HCS. We
observe that even without the HCS operation, DISK maintains high precision in recognizing
challenging-to-identify minority groups. Although there is a slight decrease in accuracy compared
to when HCS operation is applied, this suggests that DISK’s performance in recognizing minority
groups and inferring domain information primarily originates from its inherent capabilities.

Method CMNIST MNIST
FashionMNIST

MNIST
CIFAR WaterBirds

DISK w/ yval 81.2±1.9 80.4±4.7 86.9±1.1 35.8±4.0
DISK w/o yval 73.7±0.9 77.7±4.5 86.9±2.4 51.5±2.9

B.3.2 ABLATION STUDY

Table 2 demonstrates that the HCS operation assists DISK in better identifying minority groups.
To further understand the factors influencing DISK’s domain partitioning ability, we present abla-
tion experiment results in Tables 4 and 5, without the HCS operation, on the CMNIST, MNIST-
FashionMNIST, MNIST-CIFAR, and Waterbirds datasets (the CelebA dataset did not undergo the
HCS operation). We can observe that even without the HCS operation, DISK still significantly im-
proves average/worst performance, regardless of the availability of yval. This suggests that while
HCS helps DISK better identify hard-to-recognize minority group samples, DISK’s ability to parti-
tion domain information originates from its own core capabilities.

Table 4: Results of the ablation experiments. Even without HCS, significant improvements in per-
formance relative to ERM are still observed for DISK, indicating that DISK’s domain partitioning
ability stems from its core capabilities instead of the HCS operation. The CelebA dataset is not
included because CelebA does not use HCS.

Method HCS CMNIST MNIST
FashionMNIST

MNIST
CIFAR WaterBirds

Avg. Worst Avg. Worst Avg. Worst Avg. Worst

DISKS w/ yval ✓ 65.1±1.7 67.6±2.0 92.3±0.8 92.6±0.9 69.0±0.4 69.2±0.6 91.1±1.4 85.5±3.0

DISKS w/o yval ✓ 62.5±4.4 65.5±3.0 91.8±2.8 93.0±2.7 68.1±1.2 68.4±1.2 80.8±1.5 81.1±0.4

DISKS w/ yval × 60.9±0.9 60.1±1.0 90.5±2.2 90.5±2.3 66.3±1.7 65.9±2.1 81.9±3.8 75.8±4.6

DISKS w/o yval × 57.7±5.6 56.7±6.5 85.7±2.9 85.5±3.0 66.2±2.5 65.7±3.0 80.8±2.1 70.1±2.5

B.3.3 THE STABILITY OF DISK

The challenge addressed by Lin et al. (2022) revolves around testing the stability of domain inference
algorithms. Specifically, it questions whether domain inference methods can learn invariant mod-
els from heterogeneous data originating from multiple environments with unknown environmental
indices, aiming to demonstrate their stability. In the context of CMNIST, digits are considered as
invariant features (x1), while colors are regarded as spurious features (x2). A variant of CMNIST,
known as MCOLOR, has been created, where color assumes the role of the invariant feature, and
digit shape serves as the spurious feature. The joint distribution P(x1,x2, y) of MCOLOR and
CMNIST remains identical. The only distinction lies in the fact that CMNIST treats digits as the
invariant feature, color as the spurious feature, and the prediction target is digit prediction. In con-
trast, MCOLOR treats color as the invariant feature, digits as the spurious feature, and the prediction
target is color prediction. To underscore the poorer generalization of MCOLOR in this experiment,
we retained only the digits 0 and 1 for both CMNIST and MCOLOR, eliminating the need for binary
processing.
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Table 6: Results on CMNIST and MCOLOR for DISK. DISK improves the performance of ERM
on the test data for both CMNIST and MCOLOR, even when the data distributions are identical.
This demonstrates that DISK can reliably identify spurious information for domain information
inference.

Method CMNIST MCOLOR
Train Acc(%) Test ACC(%) Train Acc(%) Test ACC(%)

ERM 89.0±0.7 31.1±1.7 79.6±1.2 59.8±0.4
DFR 61.8±6.1 66.1±1.8 65.4±3.0 68.1±0.5

DISKS w/ yval 58.6±3.1 62.8±3.1 63.0±3.1 63.9±1.2
DISKS w/o yval 58.1±2.1 62.1±1.6 57.3±0.9 60.6±0.7

Table 6 also reports the training and test accuracy of DISK on CMNIST and MCOLOR. We observe
that compared to CMNIST, MCOLOR exhibits fewer severe generalization issues, with an average
test accuracy that approaches 60%. This suggests that color might be a feature easier to learn than
digit shapes. We also notice that DISK significantly improves the performance of ERM on the test
set for both CMNIST and MCOLOR, particularly when yval is available. This underscores the
stability of DISK in domain information inference.

B.3.4 DISK WITH MIXUP

To demonstrate that DISK can be combined with additional enhancement techniques, we present
the performance of DISK and Mixup (DISKM) using the MNIST-FashionMNIST, and Waterbirds
datasets as examples. Similar to LISA, Mixup includes two strategies: Intra-label Mixup (interpo-
lating samples with the same label from different domains) and Intra-domain Mixup (interpolating
samples from the same domain but different instances) (Yao et al., 2022). LISA is essentially a
method that applies Mixup based on oracle domain information, representing the upper performance
limit achievable by DISKM if the oracle domain information is accurate enough. Figure 9 describes
the algorithmic process of DISKM for enhancing generalization. For Mixup, we sample the interpo-
lation ratio parameter from a Beta(2, 2) distribution, as recommended by LISA. Table 7 illustrates
that DISKM significantly improves the accuracy of ERM, demonstrating the potential of combining
DISK with various enhancement techniques.

fDISK

yval

ytr

ytr
s

Training Data

Validation Data

Training Data with 4 Groups

(a) Domain Inference (b) Generalization Enhancement

HCS

Training Data with 4 Groups

Mixed Training Data 

Mixup

Figure 9: (a) DISK discovers the spurious correlation between the training and validation data,
assigning spurious labels ytrs to training instances. Subsequently, the training set is partitioned into
different groups with distinct distributions P(xs,xv|g) where g = (y, ys). The HCS operation aids
DISK in achieving a more precise inference of minority groups; (b) The training data from different
domains undergo enhancement techniques, such as Mixup, which involves mixing up images across
domains or across labels for further training.
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Table 7: Comparison of Accuracy (%). DISKM achieves performance improvements compared to
ERM, effectively addressing the challenge of weak ERM generalization without relying on domain
information. We adopt the experimental results as reported in the original LISA paper by default,
with the exception of the blue results for LISA on the Waterbirds dataset, which were obtained from
our own experiments.

Method Domain
Info

MNIST
FashionMNIST WaterBirds

Avg. Worst Avg. Worst

ERM × 71.1±2.0 69.6±2.0 63.4±4.0 34.4±8.2

IRM ✓ - - 87.5±0.7 75.6±3.1

GroupDRO ✓ - - 91.8±0.3 90.6±1.1

LISA ✓ 92.9±0.7 92.6±0.8 78.2±0.3 / 91.8±0.3 78.0±0.2 / 89.2±0.6
DISKM w/ yval × 94.3±0.4 94.1±0.5 78.5±0.7 77.8±0.1

DISKM w/o yval × 93.6±1.2 94.7±1.2 78.5±0.3 78.1±0.5

B.3.5 MORE VISUALIZATIONS ON WATERBIRDS

In this section, we present additional instances of Minority Group and Majority Group inferred by
DISK, and investigate the similarity of DISK’s partitioning when different random number seeds are
used.

First, we visualize 40 instances of Minority Groups inferred by DISK under the same experimental
settings, with the random seed set to 2, as in Section 4.2.2. In Figures 10, 11, 12 and 13 We observe
that the reasons for Land (or Water) being misclassified as Water (Land), consistent with the findings
in Section 4.2.2, are due to the fact that Land backgrounds, which are actually Land, contain typical
Water features such as extensive blue areas (sky), which might lead DISK to categorize them as
Water, which also has extensive blue regions like oceans. Conversely, Water backgrounds, which
are actually Water, contain typical Land features such as vertical linear structures (tree branches or
trunks or water ripples) and green tree leaves, which might lead DISK to classify them as Land.
These findings, in conjunction with the results in Section 4.2.2, reveal that DISK infers domains
based more on the similarity of underlying patterns rather than the patterns themselves.

Without loss of generality, we also observed the Minority Groups and Majority Groups inferred
by DISK when the random seed is set to 0. We observed consistent results, as emphasized in
Section 3.4, that DISK’s instance recognition accuracy for Majority Groups is relatively higher
than for Minority Groups. In the randomly selected 8 images, there were no misclassified samples
within the Majority Group. However, for the misclassified samples within the Minority Groups,
we found that it was still due to Land backgrounds containing extensive blue areas (sky) or water-
like patterns, or Water backgrounds containing numerous land features, such as trees and tree branch
reflections, which exhibit vertical stripe structures. By visualizing the Minority Groups and Majority
Groups samples partitioned by DISK under different random seeds, we once again realize that DISK
categorizes images based on the inherent similarity of their patterns. This neural network-based
perspective of partitioning may introduce discrepancies compared to human decisions.
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Figure 10: Comparison between DISK-inferred and oracle minority domains. We observe that the
reason for Figure 1 being misclassified as Water by DISK is consistent with the misclassification
reasons shown in Figure 5. In both cases, it is due to the background consisting of vast blue skies
(a feature of water) and land. The misclassification of Figures 8 and 9 as Land instead of Water by
DISK is also attributed to the presence of green foliage and extensive tree branches.

Figure 11: Comparison between DISK-inferred and oracle minority domains. We observe that the
reason Figure 4 is misclassified by DISK as Water instead of Land is due to its background consisting
of extensive blue skies (a characteristic of water) and land. Similarly, Figure 9 is misclassified by
DISK as Land instead of Water because it contains a significant number of tree branches (linear
structures).

Figure 12: Comparison between DISK-inferred and oracle minority domains. We observed that the
reason for Figure 2 being misclassified by DISK as Water instead of Land is due to its background
consisting of extensive blue sky (a characteristic of water). Similarly, Figures 6 and 8 being mis-
classified as Land by DISK instead of Water is attributed to the presence of numerous tree branches
(linear structures) and green trees, which are typical land features.
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Figure 13: Comparison between DISK-inferred and oracle minority domains. We observe that the
reason Figure 4 is misclassified by DISK as Water instead of Land is due to its background featuring
extensive blue sky (a characteristic of water). Figures 7, 8, 9, and 10 being misclassified as Land
instead of Water by DISK are attributed to the presence of numerous linear structures resembling
tree branches in the images, or the absence of prominent water features (unlike Figures 1, 2, 3, 5,
where backgrounds typically include extensive blue areas; even in the case of Figures 8 and 9, the
backgrounds lack extensive blue areas and are dominated by yellow land, people, and clutter often
seen on land).
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Figure 14: Comparison between DISK-inferred and oracle minority domains. We observe that Fig-
ures 6 and 7 are misclassified as Water by DISK due to their backgrounds consisting of extensive
blue skies (a water-related feature) or horizontally striped branches that resemble rippling water sur-
faces, which can be confusing for DISK. On the other hand, Figures 13, 14, and 15 are misclassified
as Land by DISK because they contain a significant amount of vertical linear structures, tree ele-
ments, tree reflections, and other land-related features.
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