
Fast and Memory-Efficient Video Diffusion Using
Streamlined Inference

Zheng Zhan1∗ Yushu Wu1∗ Yifan Gong1 Zichong Meng1 Zhenglun Kong12
Changdi Yang1 Geng Yuan3 Pu Zhao1† Wei Niu3 Yanzhi Wang1
1Northeastern University 2Harvard University 3University of Georgia

a full-sized man rides a comically small motorcycle through a residential neighborhood

Animatediff

Peak Mem: 29.7G

Latency: 16.9s

Ours

Peak Mem:

9.08G
Latency:

10.7s

(3.3× less)

(1.6× less)

512×768 resolution

Figure 1: Our Streamlined Inference is a training-free inference framework for video diffusion models
that can reduce the computation and peak memory cost without sacrificing the quality.

Abstract

The rapid progress in artificial intelligence-generated content (AIGC), especially
with diffusion models, has significantly advanced development of high-quality
video generation. However, current video diffusion models exhibit demanding
computational requirements and high peak memory usage, especially for generating
longer and higher-resolution videos. These limitations greatly hinder the practical
application of video diffusion models on standard hardware platforms. To tackle
this issue, we present a novel, training-free framework named Streamlined Infer-
ence, which leverages the temporal and spatial properties of video diffusion models.
Our approach integrates three core components: Feature Slicer, Operator Grouping,
and Step Rehash. Specifically, Feature Slicer effectively partitions input features
into sub-features and Operator Grouping processes each sub-feature with a group of
consecutive operators, resulting in significant memory reduction without sacrificing
the quality or speed. Step Rehash further exploits the similarity between adjacent
steps in diffusion, and accelerates inference through skipping unnecessary steps.
Extensive experiments demonstrate that our approach significantly reduces peak
memory and computational overhead, making it feasible to generate high-quality
videos on a single consumer GPU (e.g., reducing peak memory of AnimateDiff
from 42GB to 11GB, featuring faster inference on 2080Ti)1.

1 Introduction

Recent years have witnessed continual progress and advancements in artificial intelligence-generated
content (AIGC). Among them, diffusion models allow artists and amateurs to create visual content

∗Equal contributions.
†Corresponding author
1Code available at: https://github.com/wuyushuwys/FMEDiffusion

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/wuyushuwys/FMEDiffusion

100 20 30

Time for AnimateDiff to generate an 576 × 1024 video

100 20 30

Time for SVD to generate an 576 × 1024 video

Original

Ours

Original

Ours

10

20

30

40

P
ea

k
M

em
or

y
(G

B
)

Baseline With ours Constraint

10

20

30

40

16G

Less30G

Less 4090

AnimateDiff

576x1024

SVD

576x1024

41.7
39.3

2080Ti

(a) Peak Memory (b) Latency

1.63× Less

1.61× Less

Figure 2: Comparison on Animatediff and SVD inference using our Streamlined Inference. Memory
requirement is crucial as “Out of Memory” errors prevent the GPU from performing inference.

with text prompts, advancing the development of image and video generation in both academia and
industry. For video diffusion models, the latest works such as SVD-XT [3], Gen2 [29], Pika [20],
and notably the more advanced Sora [28], demonstrate impressive capabilities in producing visually
striking and artistically effective videos. Despite their great performance, video diffusion models also
exhibit high computational requirements and substantial peak memory, particularly when generating
longer videos with higher resolutions. For instance, SVD-XT generates 25 frames simultaneously
with a resolution of 576× 1024, while Sora expands these capabilities by supporting the generation
of longer videos (over a minute) at a higher resolution of 1080×1920. Given the trends of generating
longer videos with higher quality, the escalating memory and computation demands have impeded
practical applications of these large-scale video diffusion models on various platforms.

Existing model compression methods to reduce peak memory and latency, such as weight pruning [38,
12, 35, 6, 48, 23, 42, 44, 47], quantization [37, 22, 32], and distillation [18, 10, 43, 39], typically
require substantial retraining or fine-tuning of the compressed model to recover performance. This
process is costly, time-consuming, and may raise data privacy concerns. Applying these methods in
zero-shot avoids the expensive retraining, but leads to severe performance degradation. Furthermore,
the variety and complexity of video diffusion architectures further complicate the model optimization.
Therefore, it is challenging yet crucial to develop an effective and efficient video diffusion framework
with reduced computations, smaller peak memory and less data (no re-training) requirements for its
wide applications.

To address the above challenges, we first identify the sources of the high computation and memory
cost, which scale up with the iterative denoising process and the simultaneous processing of multiple
frames. We further observe that the feature maps of certain layers may exhibit high similarity
between multiple consecutive denoising steps due to the temporal property of videos, enabling
further optimizations for acceleration. Based on that, we propose a training-free framework named
Streamlined Inference, by leveraging the temporal and spatial characteristics of video diffusion models
to effectively reduce peak memory and computational demands. Our framework contains three core
components: Feature Slicer, Operator Grouping, and Step Rehash, which work together closely and
comprehensively with different focuses on peak memory reduction or inference acceleration.

Our Feature Slicer performs lossless feature slicing in both temporal and spatial layers, raising the
possibility of peak memory reduction through processing smaller features. However, the feature
slicer alone is not able to decrease peak memory as we still need to store all intermediate results of
one layer for all sliced features to form a complete intermediate feature map for the next layer. To
reduce peak memory practically, we further propose Operator Grouping to group homogeneous and
consecutive operators in the computational graph. Within each operator group, the intermediate result
of one sliced feature can be directly sent to the next operator/layer without waiting for aggregation
with all other intermediate results, achieving the full potential of Feature Slicer to reduce the peak
memory. Furthermore, a pipeline technique is proposed to accelerate the computations of the same
operator group for multiple sliced feature inputs, with improved parallelism.

Moreover, observing the high similarity of certain features between multiple consecutive denoising
steps, we propose Step Rehash to reuse the generated features for a few following steps due to their
high similarity, skipping the exact expansive and repetitive generation of similar features and thereby
accelerating the video diffusion significantly. With this framework, we can generate high-quality

2

videos in a fast and memory-efficient manner on a single consumer GPU, as shown in Fig. 2. For
example, the peak memory of AnimateDiff [11] can be reduced significantly from 41.7GB to 11GB,
featuring inference on a typical consumer GPU 2080Ti. We summarize our contributions as follows:

• We propose a novel training-free framework that can significantly reduce the peak memory
and computation cost for the inference of video diffusion models by leveraging the spatial
and temporal characteristics of video diffusion models.

• Our approach can be seamlessly integrated into existing video diffusion models. Our
extensive experiments on SVD, SVD-XT, and AnimateDiff demonstrate our effectiveness to
reduce peak memory and accelerate inference without sacrificing quality.

• Our approach offers a new research perspective for fast and memory-efficient video diffusion,
enabling the generation of higher quality and longer videos on consumer-grade GPUs.

2 Related Work

Video Diffuison Models. For video generation, various approaches have been proposed, with
VDM [17] as a leading example. VDM transforms the conventional U-Net [30] architecture of image
diffusion models into a 3D U-Net structure, employing joint training on both images and videos.
MagicVideo [49] is the first work that introduces Latent Diffusion Model (LDM) for text-to-video
(T2V) generation in latent space. LVDM [13] introduces a mask sampling technique that enhances
its longer video generation capability. ModelScope [36] incorporates spatial-temporal convolution
and attention into LDM. Video LDM [4] trains a T2V network composed of three training stages,
enabling higher quality and longer video generation. Show-1 [45] first introduces the fusion of
pixel-based and latent-based diffusion models for T2V generation. Recently, Stable Video Diffusion
(SVD) [3] identifies three key stages for training video LDMs: text-to-image (T2I) pretraining, video
pretraining, and high-quality video finetuning.

Architectural Efficiency of Video Diffusion Models. There are various research efforts exploring
either architectural efficiency or model compression techniques for image/video generation. For
example, ED-T2V [24] freezes parameters to reduce training costs and proposes a attention mecha-
nism to ensure temporal coherence. SimDA [40] devises a parameter-efficient training approach by
maintaining the parameter of the T2I model and uses two adapters to train it. For model compression,
Diff-pruning [6] employs structural pruning techniques to reduce inference time at each sampling
step. Additionally, the work [22] implements quantization on diffusion models using low-precision
data types. However, these methods take substantial efforts to retrain or finetune the diffusion model
to recover performance, which is costly, time-consuming, and may raise data privacy concerns.
Furthermore, applying post-training compression techniques in one-shot [8, 7, 34] may save the
retraining/fine-tuning efforts, but suffers from significant performance degradation.

Sample-Efficient Video Diffusion Models. To address the iterative denoising process in diffusion
models and improve the sampling efficiency, two approaches are proposed. The first approach [2,
19, 5, 25] focuses on creating rapid solvers to resolve the differential equation associated with the
denoising process more effectively. The works [31, 27, 21] utilize knowledge distillation methods to
compress and simplify the sampling trajectory efficiently, thereby enhancing overall performance.
Imagen video [15] is one of the first methods to apply progressive distillation on video diffusion
models, incorporating guidance and stochastic samplers. Recent work Deepcache [26] proposes a
novel training-free paradigm that accelerates diffusion models by reusing the high-level features.

3 Motivation

Peak memory and computation analysis. Existing open-source video diffusion models [11, 3,
36, 46] typically adopt a pretrained T2I 2D-UNet as backbone. Their temporal layers are seamlessly
integrated into the backbone 2D-UNet, positioned after every spatial layer. Here, we use SVD as
an example to demonstrate how peak memory and computational overhead scale with the number
of frames. The SVD model is trained with two distinct configurations: regular SVD is designed to
generate 14 frames, while SVD-XT is tailored to produce 25 frames. To generate 14 or 25 video
frames concurrently with SVD, its latent features require massive GPU memory and computation
consumption, estimated to be approximately 14× or 25× higher than its base T2I model. This

3

O
u
rs

N
a
iv
e

Figure 3: The quality results of our method and naïve slicing. Note that naïve slicing will incur
unpleasant artifacts due to lack of temporal correction by fewer frames.

estimate does not even account for the additional memory required by SVD’s extra-temporal layers.
More specifically, the SVD consumes 39.49G of peak memory for 576 × 1024 resolution output,
whereas its image generation counterpart only requires 6.33G of memory at the same resolution.
Furthermore, incorporating the classifier-free guidance [16] substantially enhances the generation
quality but doubles the peak memory required during inference.

Consequently, video diffusion is computationally demanding, but the challenge of memory con-
sumption is more critical and demands immediate attention. Most consumer-grade GPUs do not
have enough memory for video diffusion models and, therefore, suffer from the “Out of Memory”
error, which prevents the GPU from generating high-quality videos. There is no workaround without
switching GPUs. Most users have to endure generating short and low-resolution videos.

Naïve Slicing. A Naïve approach to reduce peak memory is to execute the video diffusion inference
clip-by-clip. However, this strategy is hindered by the temporal layers, which are essential for
maintaining temporal correlation in video diffusion models. Forcibly implementing this approach
can generate random artifacts and cause motion vanishing in the output video, as detailed in Fig. 3.
Therefore, designing a memory-efficient inference framework is a challenging and non-trivial task.

4 Streamlined Inference Framework

To address the above massive peak memory and computation costs, in this section, we propose a
training-free framework named Streamlined Inference, which is composed of three core components:
Feature Slicer, Operator Grouping, and Step Rehash. First, we discuss Feature Slicer, designed
to partition input features of spatial and temporal layers, and enable the potential of massive peak
memory reduction. Next, we introduce our Operator Grouping technique to aggregate homogeneous
and consecutive operators into the same group, achieving the full potential of Feature Slicer to reduce
peak memory through reusing the memory of intermediate result from previous sliced feature. Finally,
we discuss our Step Rehash method to reuse the same feature for a few consecutive steps due to their
high similarity. It accelerates the inference without increasing peak memory overhead as it skips
certain denoising steps with less computations.

4.1 Feature Slicer

Video diffusion models contain spatial and temporal layers which extract the corresponding infor-
mation from their specific domains. On this basis, we propose a feature slicer that consists of two
components: Spatial-layer slicer and Temporal-layer slicer, to divide the feature map into multiple
batches/sub-features, ensuring accurate computation without introducing additional operations. The
slicer is further utilized for Operator Grouping to reduce peak memory cost.

Spatial layers slicer. Based on our profiling (more details can be found in Appendix A) for memory
allocation of various video diffusion models, we find that performing slices at spatial layers can
greatly reduce the memory footprint. The 5-D feature in the spatial layer X ∈ RB×T×C×H×W

can be reshaped to a 4-D feature X ∈ R(B×T)×C×H×W , where B, T,C,H,W are the batch size,
number of frames, channels, height, and width, respectively. Thus, we slice it into k sub-features,{
Xi ∈ Rni×C×H×W

}k

i=1
, where ni = ⌈B × T/k⌉ with ⌈·⌉ denoting the least integer greater than

or equal to the input. If ⌈B × T/k⌉ ≠ B × T/k, the dimension of the last sub-feature nk is different

4

Fea.

... ...
...

...

...

A

A

A

AN

A

A

A

N

C

A

N

N

N

C

C

C

C Conv Norm Activ.

S
lic

in
g

S
lic

in
g

t0 t1 t2 t3 t4 t5

DoneExec. Queue

(a) Original

(b) Operator Grouping with Feature slicing (c) Pipeline

N

N

N

N

C

C

C
C

C

N AC

Grouping

Figure 4: Overview of Operator Grouping with Pipeline in our framework.

from others. The spatial layer slicer is applicable for most operations in spatial layers such as Conv2D,
GroupNorm, LayerNorm, Attention, and Linear.

Temporal layers slicer. The input of the temporal layer is a 5-D feature map with dimensions
{batch, channels, frames, height, width}. 3-D operations such as Conv3D are employed to extract
temporal information from the 5-D feature. Differing from spatial layers, slicing along the temporal
dimension may disrupt the extraction and processing of temporal information. Therefore, we keep
the temporal dimension untouched while slicing over other dimensions. Specifically, the 5-D feature
X ∈ RB×T×C×H×W can be sliced to kh × kw sub-features

{
Xij ∈ RB×T×C×hi×wj

}i=kh,j=kw

i=1,j=1
,

where hi = ⌈H/kh⌉ and wj = ⌈W/kw⌉. After detailed profiling different configurations for temporal
layer slicer, we discover that the configuration with kh = max (H, 16) and kw = max (W, 16) can
result in promising peak memory reduction.

4.2 Operator Grouping

Although Feature Slicer converts the original feature map into multiple smaller sub-features with
reduced memory footprint, the peak memory can not be reduced since the intermediate results of
multiple sliced features require re-consolidation to send to the next layer/operator as inputs. It still
needs to store all intermediate outputs of sliced features to form the united/unsliced intermediate
feature map without actual peak memory reduction. Therefore, to address this problem, we propose
Operator Grouping to group the operators accordingly in the computational graph, achieving
the full potential of Feature Slicer with effective peak memory reduction due to less memory
reserved for intermediate results. Furthermore, a pipeline technique is proposed to optimize the
inference of operator groups with improved parallelism and practical acceleration.

4.2.1 Grouping Operators for Peak Memory Reduction

Operator Grouping directly re-uses existing operators by aggregating consecutive homogeneous
operators into the same group. Homogeneous operators indicate these operators extract features from
coherent domains and dimensions. In video diffusion models, different operators can be grouped
into GroupOPt (temporal operator groups) and GroupOPs (spatial operators groups) to ensure
the well-preserved semantics of sliced sub-features within each group. For example, in the SVD
Model [3], consecutive GroupNorm, Conv2D, SiLU, and Up/DownSample operators in the Spatial
ResBlock can be aggregated to one group, as these operators all extract features from spatial domain
and are deemed homogeneous. As shown in Fig. 4, when computing the output feature Xo for an
operator group (GroupOP), the input feature X is sliced into multiple sub-features X1, X2, . . . , Xk

with Feature Slicer. Each sub-feature Xi goes through the operator group and their outputs are
concatenated after all outputs are available, as shown in Eq. (1),

Xo = Concat (GroupOP(X1),GroupOP(X2), . . . ,GroupOP(Xk)) (1)

where k is the number of slices, and Concat is the concatenation operation.

Reducing peak memory cost. As shown in Fig. 4, the peak memory with the operator group is
determined by the memory footprint of the input feature, the output feature, and the intermediate

5

results. Without operator grouping, all intermediate results of all operators for sliced sub-features
will allocate their own memory, hence failing to reduce memory consumption. Compared with the
case above, grouped operators only need to allocate memory for intermediate results of a single
sliced sub-feature and the final outputs, without the necessity to allocate full intermediate features
corresponding to the original unsliced input feature, as shown in Fig. 4 (a) and (b). Operator Grouping
can effectively reduce peak memory cost, enabling successful inference of video diffusion models on
one single consumer or commercial GPU with low or moderate available memory, as shown in Tab. 1.

Mitigating I/O intensity. As the original feature map is sliced into multiple sub-features to reduce
peak memory cost, the computation may slow down due to multiple iterations corresponding to multi-
ple inputs. However, we surprisingly observe that even with the naive basic for-loop implementation
for each sub-feature as shown in Fig. 4 (b), the overall runtime with Operator Grouping is around 10%
slower than that of the original unsliced version. The marginal increase in runtime can be attributed
to the memory bound of the GPU for video diffusion inference. Specifically, current video diffusion
model inference suffers from the memory bound, where the I/O overhead of intermediate results is
more notorious than their computation workload. The slicer provides a solution to mitigate the I/O
burden, thus balancing the computation and memory read/write to fully utilize the GPU capacity.

4.2.2 Pipelining with Improved Parallelism and Practical Acceleration.

With the proposed Feature Slicer and Operator Grouping, the peak memory will decrease
significantly with a marginal increase for the computation runtime (based on the basic for-loop
implementation). With a deeper investigation for the computation patterns, we find that the for-loop
implementation cannot maximize GPU parallelism, and further employ the pipelining technique to
optimize the for-loop implementation for faster inference without additional memory cost.

With Operator Grouping, there are multiple operators in one group to process one sliced sub-
feature sequentially. With the naive for-loop implementation, before feeding each sliced sub-feature
into another operator group, it needs to wait until the last sub-feature finishes its computation within
the group. The parallelism can be further improved with the proposed pipeline method. Specifically,
in an operator group, after a sliced feature map is computed by the out-of-place computation
operator (e.g., Conv, GroupNorm, Attention, etc.) and sent to the next operator, its previous
allocated memory is no longer required, but it is still reserved during inference, leading to resource
waste. We can pipeline all operators in the same group to mitigate this issue. As shown in Fig. 4(c),
once the Conv operator completes processing a sliced feature Xi as described in Eq. (1) and its
outputs are sent to the next operator Norm, the subsequent sliced feature Xi+1 is immediately piped
into the same Conv operator, reusing the reserved memory of Xi. In this way, multiple operators are
executed simultaneously with improved parallelism. No additional memory is required, as we only
make use of previously reserved memory.

Acceleration performance. With the naive for-loop implementation, only one operator in an operator
group is executed at a time. However, our pipeline method can simultaneously execute multiple
operators (such as Conv, Norm, and Activation as depicted in Fig. 4 (c)) without incurring additional
memory. Consequently, the inference speed can be further improved. Accordingly, integrating the
pipeline within Operator Grouping can mitigate 10% speed degradation caused by feature slicing.

4.3 Step Rehash

In this section, we further introduce our step rehash method to optimize the iterative denoising steps
for effective acceleration in video diffusion generation. Capitalized on the high similarity between
adjacent steps, our approach accelerates the video generation, while ensuring both high quality and
temporal consistency across video frames, without extra memory cost. Next we first discuss our
observations for the high feature similarity and then explain details of our step rehash.

4.3.1 Similarity of Temporal Features between Steps

Similarity visualization. The denoising process of U-Net in diffusion models requires multiple
steps and the features of different steps may share certain similarities with minor differences [26].
To explore this, we analyze the feature maps averaged over multiple images at different parts of the
model and plot the similarity between features of different steps, with an example shown in Fig. 5
(and more results and details demonstrated in Appendix C). We find two key insights below:

6

• The similarity between adjacent steps significantly depends on certain blocks and layers,
and it may change sharply after specific operations in video diffusion. The features do not
always show high similarity. For example, neither deeper layers within the same block nor
those in middle blocks consistently show higher similarity between adjacent steps.

• The features between adjacent steps following the temporal layers and spatial layers in video
diffusion usually exhibit remarkably higher similarity compared to outputs of other layers.

0 10 20
Timesteps

0

5

10

15

20

Ti
m

es
te

ps

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

(a) SVD

0 10 20
Timesteps

0

5

10

15

20

Ti
m

es
te

ps

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

(b) AnimateDiff

Figure 5: The high similarity of output features after
temporal layers in U3 between each timestep.

High similarity after temporal layers. Ex-
isting video diffusion models typically em-
ploy pretrained image diffusion models as
their backbone. While these image mod-
els are trained to produce a variety of im-
ages, the addition of temporal layers is de-
signed to improve the temporal continuity
of latent features. This enhancement signif-
icantly strengthens their correlation, thereby
increasing similarity among the features.

Motivation and challenges for step rehash.
Due to the high similarity between features of different steps, we propose the step rehash method to
skip the computation of certain features by reusing previous generated features. However, we need to
address the challenges of when and where to skip. Specifically, based on the above insights, simply
reusing features from deeper layers does not guarantee better results since deeper layers may not
show high similarity. We need to carefully choose what layers or blocks can be skipped (where to
skip) to make use of high similarities without significantly downgrading the generation performance.
As shown in fig. 5, it exhibits high similarity between adjacent time steps, but the similarity pattern
differs between video diffusion models. Thus, we need to determine which steps can use skip strategy
(when to skip), and the remaining steps that require full computation are full computation steps.

4.3.2 Step Rehash

Figure 6: Illustration of Step Rehash.
Computation in grey areas are skipped.

Here we specify the details of our step rehash. The video
diffusion models typically use a U-Net architecture with 4
down-sampling and 4 up-sampling blocks, and their output
features can be represented by Ds

0∼3 and Us
0∼3, respectively,

with s denoting the current step number as shown in Fig. 6.
Typically, Us

b is obtained by feeding Ds
b and Us

b−1 into the
bth (b > 0) up-sampling block, and Us

3 is the final output
of the sth step. Based on similarity analysis, in the next
step s+ 1, we can directly reuse the output features of the
temporal layer from the previous step s without actual exact
computations. Our insights into the similarity indicate that
deeper and middle blocks do not consistently demonstrate
high similarity. Reusing their features results in significant degradation of generation quality. There-
fore, we rehash features of the temporal layer in the final up-sampling block. Specifically, to obtain
Us+1
3 for step s+ 1, we feed the output features of the temporal layer from Us

3 (current full compu-
tation step) into the final up-sampling block. Note that we only compute part of Us+1

3 and do not
need to compute Ds+1

3 for concatenation, since our reused temporal layer is deeper than the concat
operator for features from Ds+1

3 , as shown in Fig. 6. We further propose a step search algorithm to
solve the when to skip problem, algorithm details can be found in Appendix B.

5 Experimental results

5.1 Models, Datasets and Evaluation Metrics

We conduct the experiments on representative video diffusion models, including SVD [3], SVD-XT
[3], and AnimateDiff [11]. For evaluation, we use the following evaluation protocols: The first
frame of the video clips are extracted as the image condition for image-to-video generation and their
captions are considered as the prompts. All experiments are conducted on a NVIDIA A100 GPU.

7

Table 1: Comparison of our Streamlined Inference with baseline methods in video visual quality (on
UCF101), PM (Peak Memory), and latency (measured with 50 runs with the average value).

Model Method FVD↓ CLIP-Score↑ 512× 512 576× 1024

PM Latency PM Latency

SVD
#F=14

Original 307.7 29.25 20.91G 10.23s 39.49G 23.29s
Naïve Slicing 1127.5 26.32 8.12G 31.85s 10.72G 65.56s

Ours 340.6 28.98 13.67G 7.36s 23.42G 14.24s

SVD-XT
#F=25

Original 387.9 28.18 31.97G 17.05s 61.17G 40.77s
Naïve Slicing 2180.0 24.42 8.12G 59.86s 10.72G 121.82s

Ours 424.7 27.94 19.37G 12.10s 36.32G 25.47s

AnimateDiff
#F=16

Original 758.7 28.89 21.83G 9.65s 41.71G 24.38s
Naïve Slicing 2403.9 26.63 7.22G 19.98s 9.92G 38.69s

Ours 784.5 28.71 7.51G 7.08s 11.07G 15.15s

Zero-shot UCF-101 [33]: We sample clips from each categories of UCF-101 dataset, and gather a
subset with 1,000 video clips for evaluation. Their action categories are considered as their captions.
For SVD and SVD-XT, our samples are generated at a resolution of 576× 1024 (14 frames for SVD
and 25 frames for SVD-XT) and then resize to 240× 320. For AnimateDiff, we generate samples
with resolution 512× 512 (16 frames).

Zero-shot MSR-VTT [41]: We generated a video sample for each of the 9,940 development prompts.
The samples are at resolution 320 × 576 then resized to 240 × 426 for all models with different
number of generated frames.

Metrics: We compute the FVD as outlined in [9] and CLIP-Score [14] using TorchMetrics [1] to
measure the performance of generated samples.

Baseline: We use pretained weight for SVD (I2V) and AnimateDiff (T2V). We compare the pro-
posed Streamlined Inference (use 13 full computation steps) with the original inference (use 25
full computation steps) and naïve slicing inference as mentioned in Sec.3. More specifically, for
image-conditioned SVD model, we set each naïve slice with a frame size of 2 and use the last frames
of each generated slice as the image condition for the next slice. For AnimateDiff, we evenly generate
4 slices with a frame size of 4, then combine them into a full video clip.

5.2 Quantitative Evaluation

The results from Table 1 demonstrate the effectiveness of our proposed method in managing memory,
computational resources, and performance. Our method significantly reduced peak memory and
latency while maintaining competitive FVD and CLIP-Score values across all three models and
resolutions compared to the original method. For SVD, our method achieved a notable reduction in
peak memory and latency while maintaining competitive FVD and CLIP-Score, unlike Naïve Slicing,
which increased FVD and latency. For SVD-XT, our method improved over Naïve Slicing and
balanced resource usage and performance. For AnimateDiff, our method significantly outperformed
Naïve Slicing in FVD and latency, achieving nearly the same performance as the original method but
with smaller latency and around a 70% reduction in peak memory.

5.3 Ablation Study

Our ablation study in Table 2 demonstrates that our Step Rehash method consistently outperforms
DeepCache with the same number of full computation steps. Step Rehash skips more computa-
tions than DeepCache. For the SVD model, our method maintains competitive CLIP-Scores while
slightly increasing FVD compared to the original method (FVD of 307.7 and CLIP-Score of 29.25
on UCF101). DeepCache performs poorly, increasing FVD and reducing video quality. For the
AnimateDiff model, our method maintains stable FVD (603.9 vs. 607.13) and CLIP-Score (29.29 vs.
29.40) on MSR-VTT compared to the original method. DeepCache shows the worst performance
on UCF101, with higher FVD and lower CLIP-Scores. Visual comparisons of our method with
DeepCache are provided in Appendix D.

8

Table 2: Ablation study of our proposed method compared with DeepCache in video visual quality.
Both our Step Rehash and DeepCache involve 13 full computation steps.

Model Method
UCF101 MSR-VTT

FVD↓ CLIP-Score↑ FVD↓ CLIP-Score↑

SVD
Original 307.7 29.25 373.6 26.06

DeepCache 394.0 28.57 463.6 25.30
Step Rehash 340.6 28.98 402.1 25.86

AnimateDiff
Original 758.7 28.89 607.1 29.40

DeepCache 840.2 28.15 615.8 29.06
Step Rehash 784.5 28.71 603.9 29.29

a boy and a girl walking along

a description of an owl and danger

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

S
V

D
-X

T
O

ur
s

Figure 7: Quality evaluation of using our method on baseline models. The results show that our
method can be generally applied to various video diffusion models and achieve competitive results.

5.4 Quality results

In Fig. 7 and Appendix E, we present qualitative results comparing our method to the original model
without using Streamlined Inference.We can see that our method produces vivid and high-quality
samples aligned with the text descriptions. More importantly, these results demonstrate that our
method can significantly reduce peak memory and computation without sacrificing quality.

6 Conclusion and Limitation

In this paper, we propose a novel training-free framework that significantly reduces peak memory and
computation costs for video diffusion model inference by leveraging its spatial and temporal charac-
teristics. Our approach can be seamlessly integrated into existing models. Extensive experiments on

9

SVD, SVD-XT, and AnimateDiff demonstrate our method’s effectiveness in reducing peak memory
and accelerating inference without sacrificing quality. Our approach offers a new perspective for fast,
memory-efficient video diffusion, enabling the generation of higher quality and longer videos on
consumer-grade GPUs. Though our method is general, the efficiency is limited by baseline model
architecture design.

Acknowledgments and Disclosure of Funding

This work is supported by National Science Foundation CNS-2312158. We would like to express our
sincere gratitude to the reviewers for their invaluable feedback and constructive comments to improve
the paper.

References
[1] Torchmetrics, https://lightning.ai/docs/torchmetrics/stable/multimodal/

clip_score.html,.

[2] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the
optimal reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503,
2022.

[3] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion:
Scaling latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

[4] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja
Fidler, and Karsten Kreis. Align your latents: High-resolution video synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22563–22575, 2023.

[5] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Genie: Higher-order denoising diffusion
solvers. Advances in Neural Information Processing Systems, 35:30150–30166, 2022.

[6] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In
Advances in Neural Information Processing Systems, 2023.

[7] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In International Conference on Machine Learning, pages 10323–10337. PMLR,
2023.

[8] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
compression for generative pretrained transformers. arXiv preprint arXiv:2210.17323, 1, 2022.

[9] Songwei Ge, Aniruddha Mahapatra, Gaurav Parmar, Jun-Yan Zhu, and Jia-Bin Huang. On
the content bias in fréchet video distance. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

[10] Yifan Gong, Zheng Zhan, Qing Jin, Yanyu Li, Yerlan Idelbayev, Xian Liu, Andrey Zharkov,
Kfir Aberman, Sergey Tulyakov, Yanzhi Wang, et al. E2gan: Efficient training of efficient gans
for image-to-image translation. arXiv preprint arXiv:2401.06127, 2024.

[11] Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and Bo Dai. Ani-
matediff: Animate your personalized text-to-image diffusion models without specific tuning.
arXiv preprint arXiv:2307.04725, 2023.

[12] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[13] Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. Latent video diffusion
models for high-fidelity long video generation. arXiv preprint arXiv:2211.13221, 2022.

10

https://lightning.ai/docs/torchmetrics/stable/multimodal/clip_score.html
https://lightning.ai/docs/torchmetrics/stable/multimodal/clip_score.html

[14] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 7514–7528, 2021.

[15] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High
definition video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

[16] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop
on Deep Generative Models and Downstream Applications, 2021.

[17] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and
David J Fleet. Video diffusion models. Advances in Neural Information Processing Systems,
35:8633–8646, 2022.

[18] Minguk Kang, Richard Zhang, Connelly Barnes, Sylvain Paris, Suha Kwak, Jaesik Park, Eli
Shechtman, Jun-Yan Zhu, and Taesung Park. Distilling diffusion models into conditional gans.
arXiv preprint arXiv:2405.05967, 2024.

[19] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space
of diffusion-based generative models. Advances in Neural Information Processing Systems,
35:26565–26577, 2022.

[20] Pika Labs. Pika labs ai text to video generator, 2023.

[21] Muyang Li, Ji Lin, Chenlin Meng, Stefano Ermon, Song Han, and Jun-Yan Zhu. Effi-
cient spatially sparse inference for conditional gans and diffusion models. arXiv preprint
arXiv:2211.02048, 2022.

[22] Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 17535–17545, 2023.

[23] Yanyu Li, Pu Zhao, Geng Yuan, Xue Lin, Yanzhi Wang, and Xin Chen. Pruning-as-search:
Efficient neural architecture search via channel pruning and structural reparameterization. arXiv
preprint arXiv:2206.01198, 2022.

[24] Jiawei Liu, Weining Wang, Wei Liu, Qian He, and Jing Liu. Ed-t2v: An efficient training
framework for diffusion-based text-to-video generation. In 2023 International Joint Conference
on Neural Networks (IJCNN), pages 1–8, 2023.

[25] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver:
A fast ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in
Neural Information Processing Systems, 35:5775–5787, 2022.

[26] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for
free. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

[27] Chenlin Meng, Ruiqi Gao, Diederik P Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. arXiv preprint arXiv:2210.03142, 2022.

[28] OpenAI. Creating video from text, 2024.

[29] Runway Research. Gen-2: The next step forward for generative ai, 2023.

[30] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[31] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models.
arXiv preprint arXiv:2202.00512, 2022.

[32] Xuan Shen, Zhenglun Kong, Changdi Yang, Zhaoyang Han, Lei Lu, Peiyan Dong, et al. Edgeqat:
Entropy and distribution guided quantization-aware training for the acceleration of lightweight
llms on the edge. arXiv preprint arXiv:2402.10787, 2024.

11

[33] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[34] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning
approach for large language models. arXiv preprint arXiv:2306.11695, 2023.

[35] Haotao Wang, Shupeng Gui, Haichuan Yang, Ji Liu, and Zhangyang Wang. Gan slimming:
All-in-one gan compression by a unified optimization framework. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16,
pages 54–73. Springer, 2020.

[36] Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang.
Modelscope text-to-video technical report. arXiv preprint arXiv:2308.06571, 2023.

[37] Peiqi Wang, Dongsheng Wang, Yu Ji, Xinfeng Xie, Haoxuan Song, XuXin Liu, Yongqiang
Lyu, and Yuan Xie. Qgan: Quantized generative adversarial networks. arXiv preprint
arXiv:1901.08263, 2019.

[38] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity
in deep neural networks. In Advances in neural information processing systems (NeurIPS),
pages 2074–2082, 2016.

[39] Yushu Wu, Yifan Gong, Pu Zhao, Yanyu Li, Zheng Zhan, Wei Niu, Hao Tang, Minghai Qin,
Bin Ren, and Yanzhi Wang. Compiler-aware neural architecture search for on-mobile real-time
super-resolution. In European Conference on Computer Vision, pages 92–111. Springer, 2022.

[40] Zhen Xing, Qi Dai, Han Hu, Zuxuan Wu, and Yu-Gang Jiang. Simda: Simple diffusion adapter
for efficient video generation. arXiv preprint arXiv:2308.09710, 2023.

[41] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for
bridging video and language. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5288–5296, 2016.

[42] Changdi Yang, Pu Zhao, Yanyu Li, Wei Niu, Jiexiong Guan, Hao Tang, Minghai Qin, Bin Ren,
Xue Lin, and Yanzhi Wang. Pruning parameterization with bi-level optimization for efficient
semantic segmentation on the edge. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 15402–15412, 2023.

[43] Zheng Zhan, Yifan Gong, Pu Zhao, Geng Yuan, Wei Niu, Yushu Wu, Tianyun Zhang, Malith
Jayaweera, David Kaeli, Bin Ren, et al. Achieving on-mobile real-time super-resolution
with neural architecture and pruning search. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 4821–4831, 2021.

[44] Zheng Zhan, Zhenglun Kong, Yifan Gong, Yushu Wu, Zichong Meng, Hangyu Zheng, Xuan
Shen, Stratis Ioannidis, Wei Niu, Pu Zhao, and Yanzhi Wang. Exploring token pruning in vision
state space models. arXiv preprint arXiv:2409.18962, 2024.

[45] David Junhao Zhang, Jay Zhangjie Wu, Jia-Wei Liu, Rui Zhao, Lingmin Ran, Yuchao Gu,
Difei Gao, and Mike Zheng Shou. Show-1: Marrying pixel and latent diffusion models for
text-to-video generation. arXiv preprint arXiv:2309.15818, 2023.

[46] Shiwei Zhang, Jiayu Wang, Yingya Zhang, Kang Zhao, Hangjie Yuan, Zhiwu Qin, Xiang Wang,
Deli Zhao, and Jingren Zhou. I2vgen-xl: High-quality image-to-video synthesis via cascaded
diffusion models. arXiv preprint arXiv:2311.04145, 2023.

[47] Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen, Mingyi Hong, Yanzhi
Wang, and Sijia Liu. Advancing model pruning via bi-level optimization. Advances in Neural
Information Processing Systems, 35:18309–18326, 2022.

[48] Pu Zhao, Fei Sun, Xuan Shen, Pinrui Yu, Zhenglun Kong, Yanzhi Wang, and Xue Lin. Pruning
foundation models for high accuracy without retraining. arXiv preprint arXiv:2410.15567,
2024.

[49] Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv, Yizhe Zhu, and Jiashi Feng. Magicvideo:
Efficient video generation with latent diffusion models. arXiv preprint arXiv:2211.11018, 2022.

12

Appendix
A Memory Snapshot during inference

0.0

4.0G

8.0G

12.0G

16.0G

20.0G

24.0G

(a) w/o our method

2.0G

6.0G

10.0G

14.0G

(b) w/ our method

Figure A1: GPU memory snapshot of active cached segment timeline for Stable Video Diffusion with
14 frames 512× 512
We provide memory snapshots under different configurations during inference, demonstrating the
effectiveness of memory reduction. An example is shown in Fig.A1. This example shows the memory
reduction of our method on SVD with 512× 512 resolution. The snapshot is collected following the
tutorial2.

B Key Step Search for Step Rehash

Example of Step Rehash. For step s + 1, we only conduct part of the computations in the final
up-sampling block, skipping most of the computations in the U-net. Similarly, we can skip multiple
steps. For example, if we skip both step s+ 1 and s+ 2, to obtain the output Us+2

3 for step s+ 2,
we feed the output features Us+1

3 into the final up-sampling block of step s+ 2, where Us+1
3 is also

obtained from Us
3 following the above reusing and skipping method.

Similarity patterns. The feature similarity between different steps exhibits certain patterns. As
shown in Fig. 5a, at initial steps, the similarity is high (above 97%) across multiple steps such as
from step 0 to step 13. In the middle steps, the high similarity only appears within a small step range.
For example, the similarity between step 17 and step 19 is lower than 93%. In the final steps, the
high similarity appears in a slightly larger step range, such as from step 20 to step 22, with above
93% similarity. Algorithm 1 Key step search in step re-

hash
Require: The similarity map S, the sim-

ilarity threshold γ, the maxi-
mum step number K

Ensure: The set of key steps G
i← 0, j ← 0, G← {}, G← G∥i
while i < K do

if Sij ≥ γ then
i← i+ 1

else
G← G∥i
j ← i

G← G∥K − 1
return G

We address the where-to-skip problem with a fixed strategy
to skip the computations from the specific blocks. Next,
we address the when skip problem to choose what steps
can be skipped based on the similarity map. Given the
similarity map as shown in Fig. 5a, the similarity value
between step i and j can be represented by Sij as shown
in the similarity map. We develop a search method to find
the key steps with feature rehash and skip the other steps.

The algorithm is shown in Algorithm 1. We use a thresh-
old to select the key steps. If the similarity of multiple
consecutive steps is above the threshold, we only select
the start and end steps as key steps, and the middle steps
can be skipped. Typically, a larger threshold leads to more
key steps with high generation performance close to the
original one, and a smaller threshold leads to skipping more steps and, thus, computations with faster
generation.

2https://pytorch.org/blog/understanding-gpu-memory-1/

13

https://pytorch.org/blog/understanding-gpu-memory-1/

0 10 20
Timesteps

0

5

10

15

20

Ti
m

es
te

ps

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

(a) up_blocks.0.resnets.0

0 10 20
Timesteps

0

5

10

15

20

Ti
m

es
te

ps

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

(b) up_blocks.0.resnets.1

0 10 20
Timesteps

0

5

10

15

20

Ti
m

es
te

ps

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

(c) up_blocks.0.resnets.2

Figure A2: Similarity maps of different temporal layers in up_blocks.0.resnets.

We provide sample PyTorch snippets for operation grouping and Step Rehash. The sample code
effectively reduces the peak memory and accelerates the inference speed. However, the pipeline is
not released because it requires specific compilation support.

C Similarity map of middle layers

We illustrate the similarity map of several layers closer to the mid-block of the UNet, showing that
the similarity of these layers is relatively low compared to the results in Fig. 5.

D Visual comparison with DeepCache

We provide visual comparison of our method with DeepCache in here. As we can see, our method
produces more vivid and detailed sample than DeepCache.

D
e
e
p
C
a
c
h
e

O
u
rs

D
e
e
p
C
a
c
h
e

O
u
rs

D
e
e
p
C
a
c
h
e

O
u
rs

Figure A3: Visual comparison of our method with DeepCache.

14

E More quality results

a boat sailing in the ocean with a rocky landmass in view

a bus pulls up to a curb then pulls off

the expensive audi car going very fastly in

the road at the center of the forest

a lion is shown with another lion walking through the field

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

Figure A4: Quality evaluation of using our method on baseline models.

15

a bunch of loud lamborghini s a driving up and down the street all at different times

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

2 cute parrots sitting nicely

a movie trailer of james cameron s titanic movie

a street with traffic shown first then a setting of

custom made convertables are being displayed

Figure A5: Quality evaluation of using our method on baseline models.

16

a band is performing and being shown on a large screen

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

a man is standing on a car at a car tv show

a beautiful rhyme about the roadbus journey for children

a campaign ad for hillary clinton

Figure A6: Quality evaluation of using our method on baseline models.

17

a black audi car is on the road

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

A
ni

m
at

eD
if

f
O

ur
s

a animated video playing the song twinkle twinkle little star

a boat in a lego game shoots missles a group of people harvesting stick rice in field

a battle involving tanks is shown a young mouse runs on soil ground and runs in an exercise wheel

harry ritchie is talking about drama and what drama really is

a woman with a yellow and gray checked backpack

walks next to a small waterfall

a man with suit talking in front of the camera

the natural scenes of the mountains are

very nice and wonderful to see

Figure A7: Quality evaluation of using our method on baseline models.

18

S
V
D
-
X
T

O
u
rs

S
V
D
-
X
T

O
u
rs

S
V
D
-
X
T

O
u
rs

S
V
D
-
X
T

O
u
rs

S
V
D
-
X
T

O
u
rs

Figure A8: Quality evaluation of using our method on baseline models.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We explain method and summarize the contribution in introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitation is included in conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

20

Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper fully discloses all the information needed to reproduce the main
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

21

Answer: [Yes]
Justification: The datasets and models we used is open-source, and we will open source our
code soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:We have specified all the training and test details necessary to understand the
results
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report average results of multiple runs in our experimental section. Our
paper does not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We explain the computation resources in experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research is conducted in the paper conform with NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper is not highly related to societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

23

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks. Our work does not release a new model.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: CC-BY 4.0, and we referenced the works that we used to implement our code.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

24

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Related Work
	Motivation
	Streamlined Inference Framework
	Feature Slicer
	Operator Grouping
	Grouping Operators for Peak Memory Reduction
	Pipelining with Improved Parallelism and Practical Acceleration.

	Step Rehash
	Similarity of Temporal Features between Steps
	Step Rehash

	Experimental results
	Models, Datasets and Evaluation Metrics
	Quantitative Evaluation
	Ablation Study
	Quality results

	Conclusion and Limitation
	Memory Snapshot during inference
	Key Step Search for Step Rehash
	Similarity map of middle layers
	Visual comparison with DeepCache
	More quality results

