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Abstract—We present OmniH2O (Omni Human-to-
Humanoid), a learning-based system for whole-body humanoid
teleoperation and autonomy. Using kinematic pose as a universal
control interface, OmniH2O enables various ways for a human
to control a full-sized humanoid with dexterous hands, including
using real-time teleoperation through VR headset, verbal
instruction, and RGB camera. OmniH2O also enables full
autonomy by learning from teleoperated demonstrations or
integrating with frontier models such as GPT-4o. OmniH2O
demonstrates versatility and dexterity in various real-world
whole-body tasks through teleoperation or autonomy, such as
playing multiple sports, moving and manipulating objects, and
interacting with humans. We develop an RL-based sim-to-real
pipeline, which involves large-scale retargeting and augmentation
of human motion datasets, learning a real-world deployable
policy with sparse sensor input by imitating a privileged teacher
policy, and reward designs to enhance robustness and stability.
We release the first humanoid whole-body control dataset,
OmniH2O-6, containing six everyday tasks, and demonstrate
humanoid whole-body skill learning from teleoperated datasets.

I. INTRODUCTION
How can we best unlock humanoid’s potential as one of

the most promising physical embodiments of general intel-
ligence? Inspired by the recent success of pretrained vision
and language models [1], one potential answer is to collect
large-scale human demonstration data in the real world and
learn humanoid skills from it. The embodiment alignment
between humanoids and humans not only makes the humanoid
a potential generalist platform but also enables the seamless
integration of human cognitive skills for scalable data collec-
tions [7, 12, 29, 9].

However, whole-body control of a full-sized humanoid robot
is challenging [21], with many existing works focusing only
on the lower body [31, 17, 8, 6, 25, 24, 18] or decoupled
lower and upper body control [11, 29, 22]. To simultaneously
support stable dexterous manipulation and robust locomotion,
the controller must coordinate the lower and upper bodies in
unison. For the humanoid teleoperation interface [7], the need
for expensive setups such as motion captures and exoskeletons
also hinders large-scale humanoid data collection. In short, we
need a robust control policy that supports whole-body dex-
terous loco-manipulation, while seamlessly integrating with
easy-to-use and accessible teleoperation interfaces (e.g., VR)
to enable scalable demonstration data collection.

In this work, we propose OmniH2O, a learning-based sys-
tem for whole-body humanoid teleoperation and autonomy.
We propose a pipeline to train a robust whole-body motion

imitation policy via teach-student distillation and identify
key factors in obtaining a stable control policy that supports
dexterous manipulation. For instance, we find these elements
to be essential: motion data distribution, reward designs, and
state space design and history utilization. The distribution
of the motion imitation dataset needs to be biased toward
standing and squatting to help the policy learn to stabilize
the lower body during manipulation. Regularization rewards
are used to shape the desired motion but need to be applied
with a curriculum. The input history could replace the global
linear velocity, an essential input in previous work [12] that
requires Motion Capture (MoCap) to obtain. We also carefully
design our control interface and choose the kinematic pose
as an intermediate representation to bridge between human
instructions and humanoid actuation. This interface makes
our control framework compatible with many real-world input
sources, such as VR, RGB cameras, and autonomous agents
(GPT-4o). Powered by our robust control policy, we demon-
strate teleoperating humanoids to perform various daily tasks
(racket swinging, flower watering, brush writing, squatting and
picking, boxing, basket delivery, etc.). Through teleoperation,
we collect a dataset of our humanoid completing six tasks
such as hammer catching, basket picking, etc., annotated with
paired first-person RGBD camera views, control input, and
whole-body motor actions. Based on the dataset, we showcase
training autonomous policies via imitation learning.

In conclusion, our contributions are as follows: (1) We
propose a pipeline to train a robust humanoid control policy
that supports whole-body dexterous loco-manipulation with a
universal interface that enables versatile human control and
autonomy. (2) Experiments of large-scale motion tracking in
simulation and the real world validate the superior motion
imitation capability of OmniH2O. (3) We contribute the first
humanoid loco-manipulation dataset and evaluate imitation
learning methods on it to demonstrate humanoid whole-body
skill learning from teleoperated datasets.

II. UNIVERSAL AND DEXTEROUS HUMAN-TO-HUMANOID

Problem Formulation. We formulate the learning problem as
goal-conditioned RL for a Markov Decision Process (MDP)
defined by the tuple M = ⟨S,A, T ,R, γ⟩ of state S, action
at ∈ A, transition T , reward function R, and discount
factor γ. The state st contains the proprioception sp

t and the
goal state sg

t . The goal state sg
t includes the motion goals
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from the human teleoperator or autonomous agents. Based on
proprioception sp

t , goal state sg
t , and action at, we define the

reward rt = R
(
sp
t , s

g
t ,at

)
. The action at specifies the target

joint angles and a PD controller actuates the motors. We apply
the Proximal Policy Optimization algorithm (PPO) [28] to
maximize the cumulative discounted reward E

[∑T
t=1 γ

t−1rt

]
.

In this work, we study the motion imitation task where our
policy πOmniH2O is trained to track real-time motion input as
shown in Figure 2. This task provides a universal interface
for humanoid control as the kinematic pose can be provided
by many different sources. We define kinematic pose as
qt ≜ (θt,pt), consisting of 3D joint rotations θt and positions
pt of all joints on the humanoid. To define velocities q̇1:T , we
have q̇t ≜ (ωt,vt) as angular ωt and linear velocities vt.

(a) (b) (c) (d)

Fig. 1: (a) Source motion; (b) Retargeted mo-
tion; (c) Standing variant; (d) Squatting variant.

Human Motion
Retargeting. We
train our motion
imitation policy
using retargeted
motions from
the AMASS [20]
dataset, using a
similar retargeting process as H2O [12]. One major drawback
of H2O is that the humanoid tends to take small adjustment
steps instead of standing still. In order to enhance the ability
of stable standing and squatting, we bias our training data
by adding sequences that contain fixed lower body motion.
For each motion sequence q̂1:T from our dataset, we create
a “stable” version q̂stable

1:T by fixing the root position and the
lower body to a standing or squatting position as shown in
Fig. 1. We provide ablation of this strategy in Section XII.

Teacher: Privileged Imitation Policy. During real-world
teleoperation of a humanoid robot, much information that is
accessible in simulation (eg., the global linear/angular velocity
of every body link) is not available. Moreover, the input to
a teleoperation system could be sparse (eg., for VR-based
teleoperation, only the hands and head’s poses are known),
which makes the RL optimization challenging. To tackle this
issue, We first train a teacher policy that uses privileged state
information and then distill it to a student policy with limited
state space. Having access to the privileged state can help RL
find more optimal solutions, as shown in prior works [16]
and our experiments ( Section III). Formally, we train a
privileged motion imitator πprivileged(at|sp-privileged

t , sg-privileged
t ),

as described in Figure 2. The proprioception is defined as
sp-privileged
t ≜ [pt,θt, q̇t,ωt,at−1], which contains the hu-

manoid rigidbody position pt, orientation θt, linear velocity
q̇t, angular velocity ωt, and the previous action at−1. The goal
state is defined as sg-privileged

t ≜ [θ̂t+1 ⊖ θt, p̂t+1 − pt, v̂t+1 −
vt, ω̂t − ωt, θ̂t+1, p̂t+1], which contains the reference pose
(θ̂t, p̂t) and one-frame difference between the reference and
current state for all rigid bodies of the humanoid.

Student: Sim-to-Real Imitation Policy with History.
We design our control policy to be compatible with many
input sources by using the kinematic reference motion as

the intermediate representation. As estimating full-body mo-
tion q̃t (both rotation and translation) is difficult (especially
from VR headsets), we opt to control our humanoid with
position p̃t only for teleoperation. Specifically, for real-
world teleoperation, the goal state is sg-real

t ≜ (p̃real
t −

preal
t , ṽreal

t − vreal
t , p̃real

t ). The superscript real indicates us-
ing the 3-points available (head and hands) from the VR
headset. For other control interfaces (e.g., RGB, language),
we use the same input 3-point input to maintain consis-
tency, though can be easily extended to more keypoints to
alleviate ambiguity. For proprioception, the student policy
sp-real
t ≜ (dt−25:t, ḋt−25:t,ω

root
t−25:t, gt−25:t,at−25−1:t−1) uses

values easily accessible in the real-world, which includes 25-
step history of joint (DoF) position dt−25:t, joint velocity
ḋt−25:t, root angular velocity ωroot

t−25:t, root gravity gt−25:t,
and previous actions at−25−1:t−1. The inclusion of history
data helps improve the robustness of the policy with our
teacher-student supervised learning. Note that no global linear
velocity vt information is included in our observations and
the policy implicitly learns velocity using history information.
This removes the need for MoCap as in H2O [12] and further
enhances the feasibility of in-the-wild deployment.

Policy Distillation. We train our deployable teleoper-
ation policy πOmniH2O following the DAgger [26] frame-
work: for each episode, we roll out the student policy
πOmniH2O(at|sp-real

t , sg-real
t ) in simulation to obtain trajecto-

ries of (sp-real
1:T , sg-real

1:T ). Using the reference pose q̂1:T and
simulated humanoid states sp

1:T , we can compute the priv-
ileged states sg-privileged

t , sp-privileged
t ← (sp

t , q̂t+1). Then, us-
ing the pair (sp-privileged

t , sg-privileged
t ), we query the teacher

πprivileged(at
privileged|sp-privileged

t , sg-privileged
t ) to calculate the ref-

erence action at
privileged. To update πOmniH2O, the loss is:

L = ∥at
privileged − at∥22.

Dexterous Hands Control. As shown in Figure 2(c), we use
the hand poses estimated by VR [3, 23], and directly compute
joint targets based on inverse kinematics for an off-the-shelf
low-level hand controller. We use VR for the dexterous hand
control in this work, but the hand pose estimation could be
replaced by other interfaces (e.g., MoCap gloves [30] or RGB
cameras [10]) as well.

III. EXPERIMENTAL RESULTS

In our experiments, we aim to answer the following ques-
tions. Q1. (Section III-A) Can OmniH2O accurately track
motion in simulation and real world? Q2. (Section III-B)
Does OmniH2O support versatile control interfaces in the real
world and unlock new capabilities of loco-manipulation? Q3.
(Section III-C) Can we use OmniH2O to collect data and
learn autonomous agents from teleoperated demonstrations?
As motion is best seen in videos, we provide visual evaluations
in our website.

A. Whole-body Motion Tracking
Experiment Setup. To answer Q1, we evaluate OmniH2O

on motion tracking in simulation and the real world. In
simulation, we evaluate on the retargeted AMASS dataset with
augmented motions Q̂ (14k sequences); in real-world, we test
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Fig. 2: (a) OmniH2O retargets large-scale human motions and filters out infeasible motions for humanoids. (b) Our sim-to-real policy is distilled through
supervised learning from an RL-trained teacher policy using privileged information. (c) The universal design of OmniH2O supports versatile human control
interfaces including VR headset, RGB camera, language, etc. Our system also supports to be controlled by autonomous agents like GPT-4o or imitation
learning policy trained using our dataset collected via teleoperation.
TABLE I: Simulation motion imitation evaluation of OmniH2O and baselines.

All sequences Successful sequences

Method State Dimension Sim2Real Succ ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓

Privileged policy S ⊂ R913 ✗ 94.77% 126.51 70.68 3.57 6.20 122.71 69.06 2.22 5.20

H2O [12] S ⊂ R138 ✓ 87.52% 148.13 81.06 5.12 7.89 133.28 75.99 2.40 5.75
OmniH2O S ⊂ R1665 ✓ 94.10% 141.11 77.82 3.70 6.54 135.49 75.75 2.30 5.47
(a) Ablation on DAgger/RL

OmniH2O-w/o-DAgger-History0 S ⊂ R90 ✗ 90.62% 163.44 91.29 5.12 8.80 153.31 87.59 3.15 7.27
OmniH2O-w/o-DAgger S ⊂ R1665 ✗ 47.11% 223.27 128.90 15.03 16.29 182.13 119.54 5.47 9.10
OmniH2O-History0 S ⊂ R90 ✓ 93.80% 141.21 78.52 3.74 6.62 134.90 76.11 2.25 5.48
OmniH2O S ⊂ R1665 ✓ 94.10% 141.11 77.82 3.70 6.54 135.49 75.75 2.30 5.47
(b) Ablation on History steps/Architecture

OmniH2O-History50 S ⊂ R3240 ✓ 93.56% 141.51 78.51 4.01 6.79 135.04 76.07 2.36 5.55
OmniH2O-History5 S ⊂ R405 ✓ 93.60% 139.23 77.82 3.91 6.66 132.67 75.33 2.24 5.41
OmniH2O-History0 S ⊂ R90 ✓ 93.80% 141.21 78.52 3.74 6.62 134.90 76.11 2.25 5.48
OmniH2O-GRU S ⊂ R90 ✓ 92.85% 147.67 80.84 4.05 6.93 142.75 79.10 2.38 5.66
OmniH2O-LSTM S ⊂ R90 ✓ 91.03% 147.36 80.34 4.12 7.04 142.64 78.59 2.37 5.72
OmniH2O-History25 (Ours) S ⊂ R1665 ✓ 94.10% 141.11 77.82 3.70 6.54 135.49 75.75 2.30 5.47
(c) Ablation on Tracking Points

OmniH2O-22points S ⊂ R1836 ✓ 94.72% 127.71 70.39 3.62 6.25 123.87 68.92 2.22 5.24
OmniH2O-8points S ⊂ R1710 ✓ 94.31% 129.30 71.70 3.78 6.39 125.14 70.07 2.22 5.26
OmniH2O-3points (Ours) S ⊂ R1665 ✓ 94.10% 141.11 77.82 3.70 6.54 135.49 75.75 2.30 5.47

(d) Ablation on Linear Velocity

OmniH2O-w-linvel S ⊂ R1743 ✓ 93.80% 138.18 78.12 3.94 6.61 132.44 75.98 2.29 5.40
OmniH2O S ⊂ R1665 ✓ 94.10% 141.11 77.82 3.70 6.54 135.49 75.75 2.30 5.47

on 20 standing sequences due to the limited physical lab space
and the difficulty of evaluating on large-scale datasets in the
real world. Detailed state-space composition (Section VII),
ablation setup (Section VI), hyperparameters (Section XV),
and hardware configuration (Section V) are summarized in
the Appendix.

Metrics. We evaluate the motion tracking performance
using both pose and physics-based metrics. We report Success
rate (Succ) as in PHC [19], where imitation is unsuccessful if
the average deviation from reference is farther than 0.5m at
any point in time. Succ measures whether the humanoid can
track the reference motion without losing balance or lagging
behind. The global MPJPE Eg−mpjpe and the root-relative mean
per-joint position error (MPJPE) Empjpe (in mm) measures our
policy’s ability to imitate the reference motion globally and
locally (root-relative). To show physical realism, we report
average joint acceleration Eacc (mm/frame2) and velocity Evel
(mm/frame) error.

1) Simulation Motion-Tracking Results: In Table I’s first
three rows, we can see that our deployable student policy
significantly improves upon prior art [12] on motion imitation
and achieves a similar success rate as the teacher policy.

Ablation on DAgger/RL. We test the performance of
OmniH2O without DAgger (i.e., directly using RL to train the
student policy). In Table I(a) we can see that DAgger improves
performance overall, especially for policy with history input.
Without DAgger the policy struggles to learn a coherent policy
when provided with a long history. This is due to RL being
unable to handle the exponential growth in input complexity.
However, the history information is necessary for learning a
deployable policy in the real-world, providing robustness and
implicit global velocity information (see Section XVIII-B).
Supervised learning via DAgger is able to effectively leverage
the history input and is able to achieve better performance.

Ablation on History Steps/Architecture. In Table I(b),
we experiment with varying history steps (0, 5, 25, 50)
and find that 25 steps achieve the best balance between
performance and learning efficiency. Additionally, we evaluate
different neural network architectures for history utilization:
MLP, LSTM, GRU and determine that MLP-based OmniH2O
performs the best. More experimental results and discussions
are provided in Section XVIII

B. Human Control via Universal Interfaces

To answer Q2, we demonstrate real-world capabilities of
OmniH2O with versatile human control interfaces. All the
capabilities discussed below utilize the same policy.

Teleoperation. We teleoperate the humanoid using πOmniH2O
with both VR and RGB camera as interfaces. The results are



“Wave your left hand” “Wave your right hand” “Could you do a T-Pose” “Could you hug yourself” “Walk forward 0.5m” “Turn to the right”

Fig. 3: OmniH2O policy tracks motion goals from a language-based human
motion generative model [33].

(a) Disturbances (b) Outdoor Terrains

Fig. 4: OmniH2O shows superior robustness against human strikes and
different outdoor terrains.

shown in Figure 9(a) and Section XIII, where the robot is able
to finish dexterous loco-manipulation tasks with high precision
and robustness.

Language Instruction Control. By linking πOmniH2O with
a pretrained text to motion generative model (MDM) [33], it
enables controlling the humanoid via verbal instructions. As
shown in Figure 3, with humans describing desired motions,
such as “raise your right hand”. MDM generates the corre-
sponding motion goals that are tracked by the OmniH2O.

Robustness Test. As shown in Figure 4, we test the
robustness of our control policy. We use the same policy
πOmniH2O across all tests, whether with fixed standing motion
goals or motion goals controlled by joysticks, either moving
forward or backward. With human punching and kicking from
various angles, the robot, without external assistance, is able
to maintain stability on its own. We also test OmniH2O
on various outdoor terrains. OmniH2O demonstrates great
robustness under disturbances and unstructured terrains.

C. Autonomy via Frontier Models or Imitation Learning

To answer Q3, we need to bridge the whole-body tracking
policy (physical intelligence), with automated generation of
kinematic motion goals through visual input (semantic in-
telligence). We explore two ways of automating humanoid
control with OmniH2O: (1) using multi-modal frontier models
to generate motion goals and (2) learning autonomous policies
from the teleoperated dataset.

GPT-4o Autonomous Control. We integrate our system,
OmniH2O, with GPT-4o, utilizing a head-mounted camera on
the humanoid to capture images for GPT-4o (Figure 5). The
prompt (details in Section XVII) provided to GPT-4o offers
several motion primitives for it to choose from, based on the
current visual context. We opt for motion primitives rather
than directly generating motion goals because of GPT-4o’s
relatively long response time. As shown in Figure 5, the robot
manages to give the correct punch based on the color of the
target and successfully greets a human based on the intention
indicated by human poses.

OmniH2O-6 Dataset. We collect demonstration data via
VR-based teleoperation. We consider six tasks: Catch-Release,
Squat, Rope-Paper-Scissors, Hammer-Catch, Boxing, and
Pasket-Pick-Place. Our dataset includes paired RGBD images
from the head-mounted camera, the motion goals of H1’s head
and hands with respect to the root, and joint targets for motor
actuation, recorded at 30Hz. Detailed task descriptions of the

(a) Autonomous Boxing (b) Autonomous Greetings with Human

Fig. 5: OmniH2O sends egocentric RGB views to GPT-4o and executes the
selected motion primitives.

(d) Rock-Paper-Scissors(b) Squat(a) Catch-Release (c) Hammer-Catch

(a) Catch-Release

Fig. 6: OmniH2O autonomously conducts four tasks using LfD models trained
with our collected data.

six open-sourced datasets are in Appendix XIV.
TABLE II: Quantitative
LfD average performance
on 4 tasks over 10 runs.

Metrics All Tasks

(a) Ablation on Data size

25%data 50%data 100%data

MSE Loss 1.30E-2 7.48E-3 5.25E-4
Succ rate 4/10 6.5/10 8/10

(b) Ablation on Sequence observation/action

Si-O-Si-A Se-O-Se-A Si-O-Se-A

MSE Loss 4.89E-4 9.91E-4 5.25E-4
Succ rate 6.5/10 8.75/10 8/10

(c) Ablation on BC/DDIM/DDPM

BC DP-DDIM DP-DDPM

MSE Loss 5.63E-3 1.9E-3 5.25E-4
Succ rate 1/10 7.75/10 8/10

Humanoid Learning from
Demonstrations. We design our
learning from demonstration policy
to be πLfD(p̂

Sparse-lfd
t:t+ϕ |It), where πLfD

outputs ϕ frames of motion goals
given the image input It. Here,
we also include dexterous hand
commands in p̂Sparse-lfd

t:t+ϕ . Then, our
πOmniH2O(at|sp-real

t , sg-real
t ) serves as

the low-level policy to compute joint
actuations for humanoid whole-body control. The training
hyperparameters are in Section XVI. Compared to directly
using the πLfD to output joint actuation, we leverage the
trained motor skills in πOmniH2O, which drastically reduces
the number of demonstrations needed. We benchmark a
variety of imitation learning algorithms on four tasks in our
collected dataset (shown in Figure 6), including Diffusion
Policy [4] with Denoising Diffusion Probabilistic Model [14]
(DP-DDPM) and Denoising Diffusion Implicit Model [32]
(DP-DDIM) and vanilla Behavior Cloning with a ResNet
architecture (BC). Detailed descriptions of these methods are
provided in Section VIII. To evaluate πLfD, we report the
average MSE loss and the success rate in Table II, where
we average the metrics across all tasks. More details for
each task evaluation can be found in Section XIV. We draw
two key conclusions: (1) The Diffusion Policy significantly
outperforms vanilla BC with ResNet; (2) In our LfD training,
predicting a sequence of actions is crucial, as it enables the
robot to effectively learn and replicate the trajectory.

IV. LIMITATIONS AND FUTURE WORK

Summary. OmniH2O enables dexterous whole-body hu-
manoid loco-manipulation via teleoperation, designs universal
control interfaces, facilitates scalable demonstration collection,
and empowers humanoid autonomy via frontier models or
humanoid learning from demonstrations.

Limitations. One limitation of our system is the require-
ment of robot root odometry to transfer pose estimation from
teleoperation interfaces to motion goals in the robot frame.
Results from VIO can be noisy or even discontinuous, causing
the motion goals to deviate from desired control. Another
limitation is safety; although the OmniH2O policy has shown
great robustness, we do not have guarantees or safety checks
for extreme disturbances or out-of-distribution motion goals
(eg., large discontinuity in motion goals).
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APPENDIX

More real-world experiment videos are at the website
https://omni.human2humanoid.com.

V. REAL ROBOT SYSTEM SETUP

Our real robot employs a Unitree H1 platform [34], out-
fitted with Damiao DM-J4310-2EC motors [5] and Inspire
hands [15] for its manipulative capabilities. We have two
versions of real robot computing setup. (1) The first one has
two 16GB Orin NX computers mounted on the back of the
H1 robot. The first Orin NX is connected to a ZED camera
mounted on the waist of H1, which performs computations
to determine H1’s own location for positioning. The camera
operates at 60 Hz FPS. Additionally, this Orin NX connects via
Wi-Fi to our Vision Pro device to continuously receive motion
goal information from a human operator. The second Orin NX
serves as our main control hub. It receives the motion goal
information, which it uses as input for our control policy. This
policy then outputs torque information for each of the robot’s
motors and sends these commands to the robot. As control for
the robot’s fingers and wrists does not require inference, it is
directly mapped from the Vision Pro data to the corresponding
joints on the robot. The policy’s computation frequency is set
at 50 Hz. The two Orin NX units are connected via Ethernet,
sharing information through a common ROS (Robot Operating
System) network. The final commands to H1 are consolidated
and dispatched by the second Orin NX. Our entire system
has a low latency of only 20 milliseconds. It’s worth noting
that we designed the system in this way partly because the
ZED camera requires substantial computational resources. By
dedicating the first Orin NX to the ZED camera, and the
second to policy inference, we ensure that each component
operates with optimal performance. (2) In the second setup, a
laptop (13th Gen i9-13900HX and NVIDIA RTX4090, 32GB
RAM) serves as the computing and communication device. All
devices, including the ZED camera, control policy, and Vision
Pro, communicate through this laptop on its ROS system,
facilitating centralized data handling and command dispatch.
These two setups yield similar performance, and we use them
interchangeably in our experiments.

VI. SIMULATION BASELINE AND ABLATIONS

In this section, we provide an explanation of each ablation
method. Main results in Table I

• Privileged policy: This teacher policy πprivileged incorpo-
rates all privileged environment information, along with
complete motion goal and proprioception data in the
observations. State space composition details in Table III.

• H2O: A policy trained using RL without DAgger and
historical data, utilizing 8 keypoints of motion goal in
observations. State space composition details in Table IV.

• OmniH2O: Our deployment policy πOmniH2O that in-
cludes historical information and uses 3 keypoints of
motion goal in observations, trained with DAgger. State
space composition details in Table V.

Ablation on DAgger/RL in Table I(a)

• OmniH2O-w/o-DAgger-History0: This variant of Om-
niH2O is trained solely using RL and does not incorporate
historical information within observations. State space
composition details in Table VI.

• OmniH2O-w/o-DAgger: This model is trained using
RL, excludes DAgger, but includes historical informa-
tion from the last 25 steps in observations. State space
composition details in Table VII.

• OmniH2O-History0: This model is trained with DAgger,
but excludes historical information from the last 25
steps in observations. State space composition details in
Table VIII.

• OmniH2O: This model is trained with DAgger and
incorporates 25-step historical information within obser-
vations. State space composition details in Table V.

Ablation on History steps/Architecture in Table I(b)
• OmniH2O-History50/25/5/0: This variant of the Om-

niH2O with 50, 25, or 0 steps of historical information
in the observations. State space composition details in
Table IX.

• OmniH2O-GRU/LSTM: This version replaces the MLP
in the policy network with either GRU or LSTM, in-
herently incorporating historical observations. State space
composition details in Table X.

Ablation on Tracking Points in Table I(c)
• OmniH2O-22/8/3points: This variant of the OmniH2O

policy includes 22, 8, or 3 keypoints of motion goal in the
observations, with the 3 keypoints setting corresponding
to the standard OmniH2O policy. State space composition
details in Tables V, XI and XII.

Ablation on Linear Velocity in Table I(d)
• OmniH2O-w-linvel: This variant is almost the same as

OmniH2O but with root linear velocity in observations
and past linear velocity in history information. State space
composition details in Table XIII.

VII. STATE SPACE COMPOSITIONS

In this section, we introduce the detailed state space com-
position of baselines in the experiments.

Privileged Policy. This policy πprivileged is the teacher policy
that has access to all the available states for motion imitation,
trained using RL.

TABLE III: State space information in Privileged Policy setting

State term Dimensions
Motion goal DoF position 66
Motion goal DoF rotation 138
Motion goal DoF velocity 69

Motion goal DoF angular velocity 69
DoF position difference 69
DoF rotation difference 138
DoF velocity difference 69

DoF angular velocity difference 69
Local DoF position 69
Local DoF rotation 138

Actions 19
Total dim 913

https://omni.human2humanoid.com


H2O. This policy has 8 keypoints input (shoulder, elbow,
hand, leg) and with global linear velocity, trained using RL.

TABLE IV: State space information in H2O setting

State term Dimensions
DoF position 19
DoF velocity 19
Base velocity 3

Base angular velocity 3
Base gravity 3
Motion goal 72

Actions 19
Total dim 138

OmniH2O. This is our deployment policy πOmniH2O with 25
history steps and without global linear velocity, trained using
DAgger.

TABLE V: State space information in OmniH2O setting

State term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Single step total dim 90

History state term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3

Actions 19
History Single step total dim 63

Total dim 1665(63*25 + 90)

OmniH2O-w/o-DAgger-History0. This policy has a history
of 0 steps, trained using RL.

TABLE VI: State space information in OmniH2O-w/o-DAgger-History0 set-
ting

State term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Total dim 90

OmniH2O-w/o-DAgger. This policy has the same architec-
ture as OmniH2O but trained with RL.

TABLE VII: State space information in OmniH2O-w/o-DAgger setting

State term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Single step total dim 90

History state term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3

Actions 19
History Single step total dim 63

Total dim 1665(63*25 + 90)

OmniH2O-History0. This policy has a history of 0 steps,
trained using DAgger.

TABLE VIII: State space information in OmniH2O-History0 setting

State term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Total dim 90

OmniH2O-Historyx. This policy has a history of x steps,
trained using DAgger.

TABLE IX: State space information in OmniH2O-Historyx setting

State term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Single step total dim 90

History state term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3

Actions 19
History Single step total dim 63

Total dim 63*x + 90

OmniH2O-GRU/LSTM. This policy uses GRU/LSTM-
based architecture, trained using DAgger.

TABLE X: State space information in OmniH2O-GRU/LSTM setting

State term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Total dim 90

OmniH2O-22points. This policy has 22 keypoints input
(every joint on the humanoid), trained using DAgger.



TABLE XI: State space information in OmniH2O-22points setting

State term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 198

Actions 19
Single step total dim 261

History state term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3

Actions 19
History Single step total dim 63

Total dim 1836(63*25+261 )

OmniH2O-8points. This policy has 8 keypoints input
(shoulder, elbow, hand, leg), trained using DAgger.

TABLE XII: State space information in OmniH2O-8points setting

State term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3
Motion goal 72

Actions 19
Single step total dim 135

History state term Dimensions
DoF position 19
DoF velocity 19

Base angular velocity 3
Base gravity 3

Actions 19
History Single step total dim 63

Total dim 1710(63*25+135 )

OmniH2O-w-linvel. This policy has 25 history steps and
global linear velocity, trained using DAgger.

TABLE XIII: State space information in OmniH2O-w-linvel setting

State term Dimensions
DoF position 19
DoF velocity 19
Base velocity 3

Base angular velocity 3
Base gravity 3
Motion goal 27

Actions 19
Single step total dim 93

History state term Dimensions
DoF position 19
DoF velocity 19
Base velocity 3

Base angular velocity 3
Base gravity 3

Actions 19
History Single step total dim 66

Total dim 1743(66*25 + 93)

VIII. LFD BASELINES

We conduct numerous ablation studies on LfD, aiming to
benchmark the impact of various aspects on LfD tasks. The
details of each ablation are as follows:

Ablation on Dataset size.
• 25/50/100% data: In this task, we use 25/50/100% of the

dataset as the training set. The algorithm is DDPM which
takes a single-step image as input and outputs 8 steps of
actions.

Ablation on Single/Sequence observation/action in-
put/output.

• Si-O-Si-A: Single-step observation and single-step action
mean that we take 1 step of image data as input and
predict 1 step of action as output.

• Se-O-Se-A: Sequence-steps observation and sequence-
steps actions mean that we take 4 steps of image data
as input and predict 8 steps of action as output.

• Si-O-Se-A: Single-step observation and sequence-steps
actions mean that we take 1 step of image data as input
and predict 8 steps of action as output.

Ablation on Training Architecture..
• BC: Behavior cloning which means we use resnet+MLP

to predict the next 8 steps action from the current step’s
image.

• DP-DDIM: We use DDIM as the algorithm which takes a
single-step image as input and outputs 8 steps of actions.

• DP-DDPM: We use DDPM as the algorithm which takes
a single-step image as input and outputs 8 steps of
actions.

IX. REWARD FUNCTIONS

Reward Components. Detailed reward components are sum-
marized in Table XIV.

TABLE XIV: Reward components and weights: penalty rewards for preventing
undesired behaviors for sim-to-real transfer, regularization to refine motion,
and task reward to achieve successful whole-body tracking in real-time.

Term Expression Weight
Penalty

Torque limits 1(τ t /∈ [τmin, τmax]) -2
DoF position limits 1(dt /∈ [qmin, qmax]) -125
DoF velocity limits 1(ḋt /∈ [q̇min, q̇max]) -50

Termination 1termination -250
Regularization

DoF acceleration ∥d̈t∥E2 -0.000011
DoF velocity ∥ḋt∥22 -0.004

Lower-body action rate ∥alower
t − alower

t−1 ∥22 -3
Upper-body action rate ∥aupper

t − a
upper
t−1 ∥22 -0.625

Torque ∥τ t∥ -0.0001
Feet air time Tair − 0.25 [27] 1000

Max feet height for each step max{hmax feet height for each step − 0.25, 0} 1000
Feet contact force ∥Ffeet∥22 -0.75

Stumble 1(Fxy
feet > 5× F z

feet) -0.00125
Slippage ∥vt

feet∥22 × 1(Ffeet ≥ 1) -37.5
Feet orientation ∥gfeet

z ∥ -62.5
In the air 1(F left

feet, F
right
feet < 1) -200

Orientation ∥groot
z ∥ -200

Task Reward
DoF position exp(−0.25∥d̂t − dt∥2) 32

DoF velocity exp(−0.25∥ˆ̇dt − ḋt∥22) 16
Body position exp(−0.5∥pt − p̂t∥22) 30

Body position VRpoints exp(−0.5∥preal
t − p̂real

t ∥22) 50
Body rotation exp(−0.1∥θt ⊖ θ̂t∥) 20
Body velocity exp(−10.0∥vt − v̂t∥2) 8

Body angular velocity exp(−0.01∥ωt − ω̂t∥2) 8

Reward Curriculum. We have modified the cumulative dis-
counted reward expression to handle multiple small rewards



at each time step differently, depending on their sign. The
revised formula is given by: E

[∑T
t=1 γ

t−1
∑

i st,irt,i

]
where

rt,i represents different reward functions at time t, and st,i
is the scaling factor for each reward, defined as: st,i ={
scurrent if rt,i < 0

1 if rt,i ≥ 0
where scurrent is the scaling factor. This

scaling factor is adjusted dynamically: it is multiplied by
0.9999 when the average episode length is less than 40, and
multiplied by 1.0001 when it exceeds 120. The init scurrent is
set to 0.5, then the upper bound of this scaling factor is set to
1. This modification allows our policy to progressively learn
from simpler to more complex scenarios with higher penalties,
thereby reducing the difficulty for RL in exploring the optimal
policy.

X. DOMAIN RANDOMIZATIONS

Detailed domain randomization setups are summarized in
Table XV.

TABLE XV: Here we describe the range of dynamics randomization for
simulated dynamics randomization, external perturbation, and terrain, which
are important for sim-to-real transfer, robustness, and generalizability.

Term Value
Dynamics Randomization

Friction U(0.2, 1.1)
Base CoM offset U(−0.1, 0.1)m

Link mass U(0.7, 1.3)× default kg
P Gain U(0.75, 1.25)× default
D Gain U(0.75, 1.25)× default

Torque RFI [2] 0.1× torque limit N · m
Control delay U(20, 60)ms

Motion reference offset U([−0.02, 0.02], [−0.02, 0.02], [−0.1, 0.1])cm
External Perturbation

Push robot interval = 5s, vxy = 1m/s
Randomized Terrain

Terrain type flat, rough, low obstacles [13]

XI. LINEAR VELOCITY ESTIMATION

The illustration of using the ZED camera VIO module and
the comparison of VIO with neural state estimators are shown
in Figure 7. We train our neural velocity estimators using a
supervised learning approach. The process involves repeatedly
deploying our policy in simulation with different motion goals.
In every environment step, we use the root linear velocity to
supervise our velocity estimator.

(a) X-axis velocity (b) Y-axis velocity (c) Z-axis velocity (d) VIO setup

Fig. 7: The illustration of using ZED camera VIO module, and the comparison
of the velocity estimation of VIO with neural state estimators.

XII. ABLATION ON DATASET MOTION DISTRIBUTION

The ablation study on motion data distribution is shown in
Figure 8. The policy trained without motion data augmentation
is hard to stand still and make upper-body moves.

XIII. ADDITIONAL PHYSICAL TELEOPERATION RESULTS

Additional VR-based and RGB-based teleoperation demo
are shown in Figure 10.

XIV. DATASET AND IMITATION LEARNING

As shown in Figure 11, we collected 6 LfD tasks’ dataset to
enable the robot to autonomously perform certain functions.
Catch-Release: Catch a red box and release it into a trash bin.
This task has 13234 frames in total.
Squat: Squat when the robot sees a horizontal bar approaching
that is lower than its head height. This task has 8535 frames
in total.
Hammer-Catch: Use right hand to catch a hammer in a box.
This task has 12759 frames in total.
Rock-Paper-Scissors: When the robot sees the person oppo-
site it makes one of the rock-paper-scissors gestures, it should
respond with the corresponding gesture that wins. This task
has 9380 frames in total.
Boxing: When you see a blue boxing target, throw a left
punch; when you see a red one, throw a right punch. This
task has 11118 frames in total.
Basket-Pick-Place: Use your right hand to pick up the box
and place it in the middle when the box is on the right side,
and use your left hand if the box is on the left side. If you
pick up the box with your right hand, place it on the left side
using your left hand; if picked up with your left hand, place
it on the right side using your right hand. This task has 18436
frames in total.

The detailed performance of 4 tasks is documented in
Table XVI

TABLE XVI: Quantitative LfD autonomous agents performance for 4 tasks.

Metrics Catch-Release Squat Hammer-Catch Rock-Paper-Scissors

(a) Ablation on Data size

25%data 50%data 100%data 25%data 50%data 100%data 25%data 50%data 100%data 25%data 50%data 100%data

MSE Loss 3.01E-3 3.04E-4 9.89E-5 1.25E-4 1.10E-4 7.07E-5 2.18E-2 1.56E-2 3.29E-4 2.72E-2 1.39E-2 1.60E-3
Succ rate 1/10 3/10 6/10 9/10 10/10 10/10 3/10 6/10 6/10 3/10 9/10 10/10

(b) Ablation on Sequence observation/action

Si-O-Si-A Se-O-Se-A Si-O-Se-A Si-O-Si-A Se-O-Se-A Si-O-Se-A Si-O-Si-A Se-O-Se-A Si-O-Se-A Si-O-Si-A Se-O-Se-A Si-O-Se-A

MSE Loss 2.52E-4 1.47E-4 9.89E-5 5.18E-5 9.60E-5 7.07E-5 2.22E-4 3.62E-4 3.29E-4 1.43E-3 3.36E-3 1.60E-3
Succ rate 3/10 7/10 6/10 10/10 10/10 10/10 5/10 9/10 6/10 10/10 9/10 10/10

(c) Ablation on BC/DDIM/DDPM

BC DP-DDIM DP-DDPM BC DP-DDIM DP-DDPM BC DP-DDIM DP-DDPM BC DP-DDIM DP-DDPM

MSE Loss 1.39E-3 4.79E-5 9.89E-5 6.24E-4 6.42E-5 7.07E-5 4.50E-3 3.41E-4 3.29E-4 1.46E-2 2.42E-3 1.60E-3
Succ rate 0/10 6/10 6/10 3/10 10/10 10/10 0/10 5/10 6/10 1/10 10/10 10/10

XV. SIM2REAL TRAINING HYPERPARAMETERS

The hyperparameters for our RL/DAgger policy training are
detailed in Table XVII below.

TABLE XVII: Hyperparameters

Hyperparameters Values
Batch size 64
Discount factor (γ) 0.99
Learning rate 0.001
Clip param 0.2
Entropy coef 0.005
Max grad norm 0.2
Value loss coef 1
Entropy coef 0.005
Init noise std (RL) 1.0
Init noise std (DAgger) 0.001
Num learning epochs 5
MLP size [512, 256, 128]



(b) w/o motion data augmentation(a) w/ motion data augmentation

Fig. 8: The ablation of data augmentation.
(a) Teleoperation

(b) Autonomous Agent

Fig. 9: (a) OmniH2O enables teleoperating a full-size humanoid robot (Unitree H1) to complete tasks that require both high-precision manipulation and
locomotion. (b) OmniH2O also enables full autonomy through visual input, controlled by GPT-4o or a policy learned from teleoperated demonstrations.
Videos: see our website: https://omni.human2humanoid.com

(a) VR-based Teleoperation (a) RGB-based Teleoperation

Fig. 10: More physical teleoperation showcases.

XVI. LFD HYPERPARAMETERS

In order to make the robot autonomous, we have developed a
Learning from Demonstration (LfD) approach utilizing a diffu-
sion policy that learns from a dataset we collected. The default
training hyperparameters are shown below in Table XVIII.

TABLE XVIII: Training Hyperparameters for the Lfd Training

Hyperparameter Default Value
Batch Size 32
Observation Horizon 1
Action Horizon 8
Prediction Horizon 16
Policy Dropout Rate 0.0
Dropout Rate (State Encoder) 0.0
Image Dropout Rate 0.0
Weight Decay 1E-5
Image Output Size 32
State Noise 0.0
Image Gaussian Noise 0.0
Image Masking Probability 0.0
Image Patch Size 16
Number of Diffusion Iterations 100

https://omni.human2humanoid.com


(f) Basket-Pick-Place

(e) Boxing

(d) Rock-Paper-Scissors

(c) Hammer-Catch

(b) Squat

(a) Catch-Release

Fig. 11: OmniH2O-6 dataset.

XVII. GPT-4O PROMPT EXAMPLE

Here is the example prompt we use for Autonomous
Boxing task:

You’re a humanoid robot equipped with a camera slightly
tilted downward on your head, providing a first-person per-
spective. I am assigning you a task: when a blue target appears
in front of you, extend and then retract your left fist. When a
red target appears, do the same with your right fist. If there
is no target in front, remain stationary. I will provide you
with three options each time: move your left hand forward,
move your right hand forward, or stay motionless. You should
directly respond with the corresponding options A, B, or C
based on the current image. Note that, yourself is also wearing
blue left boxing glove and right red boxing glove, please do
not recognize them as the boxing target. Now, based on the
current image, please provide me with the A, B, C answers.

For Autonomous Greetings with Human Task, our prompt
is:

You are a humanoid robot equipped with a camera slightly
tilted downward on your head, providing a first-person per-
spective. I am assigning you a new task to respond to human
gestures in front of you. Remember, the person is standing fac-
ing you, so be mindful of their gestures. If the person extends
their right hand to shake hands with you, use your right hand
to shake their right hand (Option A). If the person opens both
arms wide for a hug, open your arms wide to reciprocate the
hug (Option B). If you see the person waving his hand as a
gesture to say goodbye, respond by waving back (Option C).
If no significant gestures are made, remain stationary (Option
D). Respond directly with the corresponding options A, B,
C, or D based on the current image and observed gestures.
Directly reply with A, B, C, or D only, without any additional

characters.
It is worth mentioning that we can use GPT-4 not only

to choose motion primitive but also to directly generate the
motion goal. The following prompt exemplifies this process:

You are a humanoid robot equipped with a camera slightly
tilted downward on your head, providing a first-person per-
spective. I am assigning you a new task to respond to human
gestures in front of you. If the person extends his left hand
for a handshake, extend your left hand to reciprocate. If they
extend their right hand, respond by extending your right hand.
If the person opens both arms wide for a hug, open your
arms wide to reciprocate the hug. If no significant gestures
are made, remain stationary. Respond 6 numbers to represent
the desired left and right hand 3D position with respect to your
root position. For example: [0.25, 0.2, 0.3, 0.15, -0.19, 0.27]
means the desired position of the left hand is 0.25m forward,
0.2m left, and 0.3m high compared to pelvis position, and the
desired position of the right hand is 0.15m forward, 0.19m
right and 0.27m high compared to pelvis position. The default
stationary position should be (0.2, 0.2, 0.2, 0.2, -0.2, 0.2). Now
please respond the 6d array based on the image to respond
to the right hand shaking, left hand shaking, and hugging.

XVIII. MORE EXPERIMENTAL RESULTS

A. Simulation Results

Ablation on Sparse Input. To support VR-based teleop-
eration, πOmniH2O only tracks 3-points (head and hands) to
produce whole-body motion. The impact of the number of
tracking points is examined in Table I(c). We test configu-
rations ranging from minimal (3) to full-body motion goal
(22) and found that 3-point tracking can achieve comparable
performance with more input keypoints. As expected, 3-point
policy sacrifices some whole-body motion tracking accuracy
but gains greater applicability to commercially available de-
vices.

Ablation on Global Linear Velocity. Given the challenges
associated with global velocity estimation in real-world appli-
cations, we compare policies trained with and without explicit
velocity information. In Table I(d), we find that linear velocity
information does not boost performance in simulation, but it
introduces significant challenges in real-world deployment (de-
tails illustrated in Section XVIII-B), prompting us to develop
a policy with state spaces that do not depend on linear velocity
as proprioception to avoid these issues.

B. Real-world Motion-Tracking Results
Ablation on Real-world Linear Velocity Estimation.

We exclude linear velocity in our state space design global
linear velocity obtained by algorithms such as visual inertial
odometry (VIO) can be rather noisy, as shown in Section XI.
Our ablation study (Table XIX(a)) also shows that policies
without velocity input has better performance compared with
policies using velocities estimated by VIO or MLP/GRU neu-
ral estimators (implementation details in Section XI), which
suggests that the policy with history can effectively track
motions without explicit linear velocity as input.



TABLE XIX: Real-world motion tracking evaluation on 20 standing motions
in Q̂

Tested sequences

Method State Dimensions Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓

H2O [12] S ⊂ R138 87.33 53.32 6.03 5.87
OmniH2O S ⊂ R1665 47.94 41.87 1.84 2.20
(a) Ablation on Real-world Linear Velocity estimation

OmniH2O-w-linvel(VIO)1,2S ⊂ R1743 N/A N/A N/A N/A
OmniH2O-w-linvel(MLP) S ⊂ R1743 50.93 42.47 2.16 2.26
OmniH2O-w-linvel(GRU) S ⊂ R1743 49.75 42.38 2.20 2.31
OmniH2O S ⊂ R1665 47.94 41.87 1.84 2.20
(b) Ablation on History steps/Architecture

OmniH2O-History0 S ⊂ R90 83.26 46.00 4.86 4.45
OmniH2O-History5 S ⊂ R405 62.18 46.50 2.66 2.90
OmniH2O-History50 S ⊂ R3240 50.24 40.11 2.37 2.71
OmniH2O-LSTM S ⊂ R90 87.00 46.06 3.89 3.88
OmniH2O S ⊂ R1665 47.94 41.87 1.84 2.20

1 Use ZED SDK to estimate the linear velocity.
2 Unable to finish the real-world test due to falling on the ground.

History Steps and Architecture. Real-world evaluation in
Table XIX(b) also shows that our choice of 25 steps of history
achieves the best performance. The tracking performance of
LSTM shows that MLP-based policy performs better in the
real-world.
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