
Generating and Checking DNN Verification Proofs

Hai Duong
George Mason University

Fairfax, VA 22030
hduong22@gmu.edu

ThanhVu Nguyen
George Mason University

Fairfax, VA 22030
tvn@gmu.edu

Matthew B. Dwyer
University of Virginia

Charlottesville, VA 22904
matthewbdwyer@virginia.edu

Abstract

Deep Neural Networks (DNN) have emerged as an effective approach to implement-
ing challenging subproblems. They are increasingly being used as components in
critical transportation, medical, and military systems. However, like human-written
software, DNNs may have flaws that can lead to unsafe system performance. To
confidently deploy DNNs in such systems, strong evidence is needed that they
do not contain such flaws. This has led researchers to explore the adaptation
and customization of software verification approaches to the problem of neural
network verification (NNV). Many dozens of NNV tools have been developed
in recent years and as a field these techniques have matured to the point where
realistic networks can be analyzed to detect flaws and to prove conformance with
specifications. NNV tools are highly-engineered and complex may harbor flaws
that cause them to produce unsound results.
We identify commonalities in algorithmic approaches taken by NNV tools to define
a verifier independent proof format—activation pattern tree proofs (APTP)—and
design an algorithm for checking those proofs that is proven correct and optimized
to enable scalable checking. We demonstrate that existing verifiers can efficiently
generate APTP proofs, and that an APTPchecker significantly outperforms prior
work on a benchmark of 16 neural networks and 400 NNV problems, and that it
is robust to variation in APTP proof structure arising from different NNV tools.
APTPchecker is available at: https://github.com/dynaroars/APTPchecker.

1 Introduction

As deep neural networks (DNNs) become integral components of critical systems such as autonomous
vehicles [1], medical decision-making [2], and robotics [3], it is imperative to rigorously verify their
behavior. In recent years, the research community has developed a wide-range of algorithmic
techniques to verify DNN properties and incorporated them into tools that now scale to realistic
DNN models millions of neurons [4]. These advances have enabled verification of properties such as
robustness to input perturbations and conformance to safety specifications [4, 5, 6, 7, 8].

However, despite the progress in algorithmic advances, a fundamental question remains: “How can
we trust the results produced by DNN verification tools?” While existing tools emit counterexamples
when properties are violated (i.e., SAT results), there is no mechanism to independently validate
results when properties are proven to hold (i.e., UNSAT claims). Recent competitions such as
VNN-COMP [4] have revealed correctness issues in multiple tools, including cases where a verifier
incorrectly declared a property to be proven even when a counterexample exists. These errors are
difficult to detect and debug due to the complexity of verifier implementations, which often exceed
tens of thousands of lines of code and employ intricate optimization techniques, e.g., top of the line
DNN verification tools such as αβ-CROWN [7] and NeuralSAT [9] have 20k SLOC implementations
with complex algorithms that may harbor bugs. Without a mechanism to independently validate

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/dynaroars/APTPchecker

verification results, correctness of DNN verification tools cannot be assured and therefore posing a
serious obstacle to deploying DNNs in safety-critical domains.

To address this, we propose proof-producing DNN verification: an approach in which verifiers emit a
formal proof object that encodes the reasoning steps behind the verification result, and a separate,
minimal proof checker certifies the proof’s validity. This paradigm, long established in classical logic
and SAT solving [10, 11, 12], brings transparency, auditability, and trust to the verification process.

More specifically, we analyze the broad class of Branch-and-Bound (BaB) DNN verification algo-
rithms and reveal that they share two commonalities: (1) they refine the abstractions they use by
performing case splitting to reason about the different phases of neuron activation, and (2) within
cases they perform reasoning steps that can be formulated within the broad class of mixed integer
linear programming (MILP) problems. Based on these insights, we show that BaB DNN verifi-
cation naturally emit activation pattern tree proofs (APTP), which are a compact representation of
the reasoning steps performed by the verifier (§3.1). We also define a verifier independent APTP
format that can be efficiently generated on-the-fly during DNN verification (§3.2). Finally, we resent
the APTPchecker algorithm along with a suite of optimizations and implement an independent
APTPchecker prototype tool that has a small-footprint (800 SLOC) and validates APTP proofs using
standard MILP solving.

This paper makes the following contributions:

• We identify commonalities in BaB DNN verification algorithms and show how they can be
minimally extended to generate proofs of unsatisfiability (§3.1).

• We define a verifier-independent, compact, and SMTLib [13]-based human-readable proof
format, APTP, that captures the reasoning steps of BaB verifiers (§3.2).

• We implement the APTPchecker tool to independently and efficiently check APTP proofs
(§4).

• We evaluate our work on a benchmark of 400 verification problems involving 16 net-
works, including large models (up to 1.7M parameters) (§5), and demonstrate that APTP
and APTPchecker are robust to variation in proof structure arising from different DNN
verification algorithms.

It is important to note that our goal is not to create a new DNN verifier, but to verify the correctness of
results produced by existing verifiers. Similar to SAT/SMT proof checking, where verifiers produce
proofs that are independently checked (e.g., DRAT proofs [10]), we propose such an approach for
DNN verification. We envision APTP and APTPchecker as a step toward DNN verifier accountability,
standardizes proof formats, supports independent checking, and can be integrated into future VNN-
COMP iterations to strengthen trust in verification results.

2 Background

Deep Neural Network A neural network consists of an input layer, multiple hidden layers, and
an output layer. The output of a DNN is obtained by progressively computing the values of neurons
in each layer. Specifically, the value of a hidden neuron y is ReLU(

∑n
i wivi + b), where b is

the bias, ws are the weights of y, vs are the neurons of preceding layer,
∑n

i wivi + b is the affine
transformation, and ReLU(x) = max(x, 0) is the activation function. The Rectified Linear Unit
(ReLU) is a representative of a broad class of piece-wise linear activations that could be supported by
our approach. A ReLU neuron is active if its input value is greater than zero and inactive otherwise.

DNN Verification Given a DNN N and a property ϕ, the DNN verification problem asks if ϕ is
a valid property of N . In modern DNN verification, ϕ(x, y) := ϕin(x) ⇒ ϕout(y), where ϕin is a
property over the inputs and ϕout is a property over the outputs of N . This form of properties has
been used to encode safety and security requirements of DNNs [14, 15].

DNN verification then can be formulated as checking the satisfiability of:

α ∧ ϕin ∧ ¬ϕout (1)

where α is the encoding of N . A DNN verifier attempts to find a counterexample input to N that
satisfies ϕin but violates ϕout. If Eq. 1 is unsatisfiable (e.g., no such counterexample exists), ϕ is a
valid property of N and invalid otherwise.

2

Alg. 1. The BaBNV algorithm with proof generation.
input :DNNN , property ϕin ⇒ ϕout

output :(unsat, proof) if property is valid, otherwise (sat, cex)

1 ActPatterns← {∅} // initialize verification problems
2 proof ← { } // initialize proof tree
3 while ActPatterns do // main loop
4 σi ← Select(ActPatterns) // process problem i-th
5 if Deduce(N , ϕin, ϕout, σi) then
6 (cex, vi)← Decide(N , ϕin, ϕout, σi)
7 if cex then return (sat, cex) // found a valid counter-example
8 ActPatterns← ActPatterns ∪ {σi ∧ vi ; σi ∧ vi} // new activation patterns

9 else // detect a conflict
10 proof ← proof ∪ {σi} // build proof tree

11 return (unsat, proof)

For the widely-used ReLU activation problem, this problem becomes a search for activation patterns,
i.e., boolean assignments representing activation status of neurons, that lead to satisfaction the formula
in Eq. 1. Modern DNN verification techniques [7, 6, 9, 16, 17, 18] all adopt this idea and search for
satisfying assignments.

Related Work (more details in Apdx. D) Proof checking is a well-established area in constraint
solving, particularly in SAT/SMT solving, with significant work on clausal proof generation and
verification, such as DRAT for SAT solvers and various proof checkers like DRAT-trim and LRAT [10,
19, 12]. SMT solvers, such as Z3 and veriT, also produce proofs that can be reconstructed in proof
assistants, and other solvers like MathSAT5, SMTInterpol, and CVC5 have similar capabilities [20,
21, 22, 23, 24]. However, DNN verification is a newer field, with limited research on proof checkers.

The only existing proof checking work for DNNs focuses on the Marabou DNN verification tool [25],
using Farkas’s lemma and implemented in the Imandra framework [26]. In contrast, we introduces a
more expressive proof format, APTP, and stronger proof checker, APTPchecker, specifically designed
for branch-and-bound verification (§3.1).

3 Proof Generation for DNN Verification

Major DNN verification approaches including αβ-CROWN [7], NeuralSAT [16], PyRAT [6],
nnenum [17], and Marabou [27] all share a common “branch and bound” (BaB) search structure:
(i) (branch) split into smaller subproblems by using neuron splitting, which decides boolean values
representing neuron activation status, and (ii) (bound) use abstraction and LP solving to approximate
bounds on neuron values to determine the satisfiability of the partial activation pattern formed by the
split. We leverage this commonality to bring proof generation capabilities with minimal overhead to
existing DNN verification tools.

In this paper we focus on checking proofs of unsatisfiability (unsat). A counterexample, c, returned by
a verifier is an input that is purported to violate the property. This constitutes a proof of satisfiability
(sat) and can easily be checked by evaluating ϕ(c,N(c)). In contrast, unsat proof, which explains
why no possible inputs can violate the property, is inherently more complex to generate (§3), requires
a more sophisticated encoding (§3.2), and an efficient checking algorithm (§4).

3.1 Branch-and-Bound DNN Verification

Alg. 1 illustrates BaBNV, a reference architecture [28] for modern DNN verifiers based on the branch-
and-bound (BaB) framework. BaBNV takes as input a ReLU-based DNN and a property of interest. It
iteratively alternates between two core components: Decide (line 6), which performs neuron-splitting
by assigning an activation status (active/inactive) to a neuron, and Deduce (line 5), which checks the
feasibility of the current activation pattern and prunes infeasible branches.

Our key insight is that the BaB architecture of BaBNV naturally supports proof generation. To realize
this, we augment BaBNV with a proof tree structure, stored in the proof variable (line 2). We also

3

(a) A simple DNN.

1

2

4

3

5

6 7

(b) A proof tree.

Fig. 1: Example of verifying (x1, x2) ∈ [−2.0, 2.0]× [−1.0, 1, 0]⇒ (y1 > y2).

instrument BaBNV so that each branching decision made during the Decide step is explicitly recorded
into this tree (line 10). Each node in the binary proof tree represents a neuron, and its left and right
children correspond to the two possible activation decisions (active or inactive).

Example Fig. 1a illustrates a DNN and how BaBNV determines unsatisfiability (i.e., verifies the
problem) and generates the unsat proof in Fig. 1b. First, BaBNV initializes the activation pattern set
ActPatterns with an empty activation pattern ∅. Then BaBNV enters a loop (line 3-line 10) to search
for a satisfying assignment or a proof of unsatisfiability.

1st iteration: BaBNV selects the only available activation pattern ∅ ∈ ActPatterns, and calls Deduce
to check the feasibility of the problem based on the current activation pattern. Deduce uses abstraction
to approximate that from the input constraints the output values are feasible for the given network.
Since Deduce cannot determine infeasibility, BaBNV invokes Decide to randomly select a neuron
to split. Suppose it selects neuron v4, which results in the original problem being divided into two
independent subproblems: one where v4 is active, and another where v4 is inactive. BaBNV then adds
v4 and v4 to ActPatterns.

2nd iteration: BaBNV has two subproblems that can be processed in parallel. For the first subproblem
with v4, Deduce cannot decide infeasibility, so it selects v2 to split. It then conjoins v4 with v2 and
then with v2 and adds both conjuncts to ActPatterns. For the second subproblem with v4 inactive
(i.e., v4), Deduce determines that the problem is unsatisfiable and BaBNV saves v4 to the proof tree, as
node 3, to indicate one unsatisfiable pattern, i.e., whenever the network has v4 being inactive, the
problem is unsatisfiable.

3rd iteration: BaBNV has two subproblems for v4 ∧ v2 and v4 ∧ v2. For the first subproblem, Deduce
cannot decide infeasibility, so it selects v1 to split. It then conjoins v1 and then v1 to the current
activation pattern and adds them to ActPatterns. For the second one, Deduce determines that the
problem is unsatisfiable and BaBNV saves the v4 ∧ v2 to the proof tree, as node 5.

4th iteration: BaBNV has two subproblems for v4 ∧ v2 ∧ v1 and v4 ∧ v2 ∧ v1. Both subproblems are
determined to be unsatisfiable, and BaBNV saves them to the proof tree as nodes 6 and 7, respectively.

Finally, BaBNV has an empty ActPatterns, stops the search, and returns unsat and the proof tree.

The APTP proof tree The resulting proof tree has a specific structure. First, it is a binary tree where
each parent node must have children for both activation status values of a neuron. Second, it is a
proof tree that captures unsatisfiability reasoning, i.e., each leaf holds the constraint showing the
activation pattern encoded from the root to this leaf results in unsatisfiability. The tree in Fig. 1b
demonstrates this structure. Each white node corresponds to a branching node where BaBNV makes
decisions to split neurons. The red leaves correspond to the unsatisfiable patterns that are saved to
the proof tree. Note that a leaf node implies the unsatisfiability of the subtree rooted at the leaf, e.g.,
node 3 encodes the unsatisfiability of a set of 8 activation patterns.

We leverage this structure to store the proof in the APTP format (§3.2) and to check it using the
APTPchecker algorithm (§4).

3.2 The APTP Proof Language

We have shown in §3 that the broad class of BaBNV DNN verification techniques can generate a binary
tree that represents a proof of unsatisfiability (§3). We define a standard proof format for specifying
DNN proofs, APTP, that is human-readable, compact, and efficiently generated by verification tools

4

⟨proof⟩ ::= ⟨declarations⟩ ⟨assertions⟩
⟨declarations⟩ ::= ⟨declaration⟩ | ⟨declaration⟩ ⟨declarations⟩
⟨declaration⟩ ::= (declare-const ⟨input-vars⟩ Real)

| (declare-const ⟨output-vars⟩ Real)
| (declare-pwl ⟨hidden-vars⟩ ⟨activation⟩)

⟨input-vars⟩ ::= ⟨input-var⟩ | ⟨input-var⟩ ⟨input-vars⟩
⟨output-vars⟩ ::= ⟨output-var⟩ | ⟨output-var⟩ ⟨output-vars⟩
⟨hidden-vars⟩ ::= ⟨hidden-var⟩ | ⟨hidden-var⟩ ⟨hidden-vars⟩
⟨activation⟩ ::= ReLU | Leaky ReLU | . . .

⟨assertions⟩ ::= ⟨assertion⟩ | ⟨assertion⟩ ⟨assertions⟩
⟨assertion⟩ ::= (assert ⟨formula⟩)
⟨formula⟩ ::= (⟨operator⟩ ⟨term⟩ ⟨term⟩)

| (and ⟨formula⟩+) | (or ⟨formula⟩+)

⟨term⟩ ::= ⟨input-var⟩ | ⟨output-var⟩
| ⟨hidden-var⟩ | ⟨constant⟩

⟨operator⟩ ::=< | ≤ | > | ≥
⟨input-var⟩ ::= X_⟨constant⟩

⟨output-var⟩ ::= Y_⟨constant⟩
⟨hidden-var⟩ ::= N_⟨constant⟩
⟨constant⟩ ::= Int | Real

(a) The APTP proof language.

1 ; Declare variables
2 (declare-const X_0 Real)
3 (declare-const X_1 Real)
4 (declare-const Y_0 Real)
5 (declare-const Y_1 Real)
6 (declare-pwl N_1 ReLU)
7 (declare-pwl N_2 ReLU)
8 (declare-pwl N_3 ReLU)
9 (declare-pwl N_4 ReLU)

10 ; Input constraints
11 (assert (>= X_0 -2.0))
12 (assert (<= X_0 2.0))
13 (assert (>= X_1 -1.0))
14 (assert (<= X_1 1.0))
15 ; Output constraints
16 (assert (<= Y_0 Y_1))
17 ; Hidden constraints
18 (assert (or
19 (and (< N_4 0))
20 (and (< N_2 0)
21 (>= N_4 0))
22 (and (>= N_2 0)
23 (>= N_1 0)
24 (>= N_4 0))
25 (and (>= N_2 0)
26 (< N_1 0)
27 (>= N_4 0))))

(b) APTP example.

Fig. 2: The APTP format.

and processed by proof checkers. APTP is inspired by the SMTLIB format [13] used for SMT solving,
which has also been adopted by the VNNLIB language [29] to specify DNN verification problems.

Fig. 2a presents the syntax of the APTP proof language. A proof consists of declarations and
assertions. Declarations define input/output variables (real numbers) and hidden variables (with PWL
activations like ReLU). Assertions encode preconditions over inputs and postconditions over outputs
using logical formulas with comparisons and Boolean operators like and and or. More details on the
syntax and semantics of APTP are available in (Apdx. A).

Example The APTP proof in Fig. 2b corresponds to the proof tree in Fig. 1b. The statement (and
(< N_4 0)) corresponds to the rightmost path of the tree with v4 decision (leaf 3). The statement
(and (< N_2 0) (>= N_4 0)) corresponds to the path with v4 ∧ v2 (leaf 5).

The APTP language is intentionally designed to (a) omit explicit weights and biases to reduce the size
of the proof structure, and (b) explicitly encode a DNF structure to enable easy parallelization. The
weights and biases of the DNN are already recorded in the ONNX format [30], which serves as a
standard input to both verification tools and APTP checkers, like the one we describe in §4.

Note that the APTP language can be extended to support other piece-wise linear activation functions,
e.g., Leaky ReLU. Particularly, Leaky(x, a) = x if x ≥ 0 else ax are expressible by APTP, e.g., (>=
Ni 0) for on and (< Ni 0) for off, which is essentially identical to ReLU, while the MILP encoding
described in §4.1 would handle the semantics of Leaky operations.

3.3 Handling Input Splitting

For networks with a small number of inputs (e.g., ≤ 50), some verifiers [31, 32, 7, 16] employ
input-splitting strategies that partition the input domain rather than branching on neuron activations
as in BaB. Our APTP proof generation and format can naturally represent these cases without
modification. More specifically, each input split can be encoded as a conjunction of input-range
constraints describing the corresponding subspace, replacing the “hidden activation” constraints
used in neuron splitting. For example, splitting on x1 at 0 yields two subproblems, each defined by
intervals on x1 and x2, as shown below.

1 (assert (or
2 (and (>= X_0 -2.0) (<= X_0 2.0) (>= X_1 0.0) (<= X_1 1.0))
3 (and (>= X_0 -2.0) (<= X_0 2.0) (>= X_1 -1.0) (<= X_1 0.0))
4))

5

Alg. 2. APTPchecker algorithm.
input :DNNN , property ϕin ⇒ ϕout, proof
output :certified if proof is valid, otherwise uncertified

1 if ¬ RepOK (proof) then RaiseError(Invalid proof tree)
2 model← CreateStabilizedMILP(N , ϕin, ϕout) // initialize MILP model with inputs
3 while proof do
4 node← Select(proof) // get node to check
5 model← AddConstrs(model, node) // add corresponding constraints
6 if CheckFeasibility(model) then
7 return uncertified // cannot certify

8 return certified

In this setting, the proof generation step emits input-subspace constraints instead of hidden-layer
constraints, and the proof tree structure remains unchanged. Essentially, we treat each input dimension
as a “neuron” and split on its range, similar to neuron splitting in BaB.

4 Checking APTP Proofs

After generating proofs, the next step is to validate them. The goal is to separate proof generation from
proof checking, where existing verifiers generate UNSAT proofs while a separate, independent checker
independently validates these proofs. To this end, we introduce a proof checker, APTPchecker, that
validates APTP proofs. First, APTPchecker eschews all optimizations and complexities in modern
verifiers. It only needs to validate the final activation pattern claims, regardless of the sophisticated
search strategies, bound tightening techniques, or pruning heuristics used by the verifiers. Next,
APTPchecker achieves a substantially reduced trusted code base, requiring only 800 SLOC compared
to 20K SLOC in verifiers, while providing verifier independence where the same proof format works
across multiple verification tools. Finally, APTPchecker also uses the MILP solver as a black box,
allowing multiple solvers to be employed to increase confidence in results.

4.1 The Core APTPchecker Algorithm

The goal of APTPchecker is to verify that the APTP tree generated by a DNN verification tool is cor-
rect (i.e., the proof tree is a proof of unsatisfiability of the DNN verification problem). APTPchecker
thus must verify that the constraint represented by each leaf node in the proof tree is unsatisfiable.
To check each node, APTPchecker forms an MILP problem consisting of the constraint in Eq. 1
(the DNN, the input condition, and the negation of the output) with the constraints representing the
activation pattern encoded by the tree path to the leaf node. APTPchecker then invokes an LP solver
to check that the MILP problem is infeasible, which indicates unsatisfiability of the leaf node.

Core Algorithm Alg. 2 shows a minimal (core) APTPchecker algorithm, which takes as input a
DNN N , a property ϕin ⇒ ϕout, a proof tree proof , and returns certified if the proof tree is valid
and uncertified otherwise. APTPchecker first checks the validity of the proof tree (line 2), i.e., the
input must represent a proper APTP proof tree (§3.2). If the proof tree is invalid, APTPchecker raises
an error. APTPchecker next creates a MILP model (line 2) representing the input. APTPchecker
then enters a loop (line 3) that selects a (random) leaf node from the proof tree (line 4) and adds its
MILP constraint to the model (line 5). It then checks the model using an LP solver to determine
whether the leaf node is unsatisfiable. If the LP solver returns feasibility, APTPchecker returns
uncertified, i.e., it cannot verify the input proof tree. APTPchecker continues until all leaf nodes
are checked and returns certified, indicating the proof tree is valid.

Example For the APTP proof in Fig. 2b, we need to check that the four leaf nodes 3, 5, 6, and 7 of
the proof tree in Fig. 1b are unsatisfiable. Assume APTPchecker first selects node 3, it forms the
MILP problem for leaf node 3 by conjoining the constraint representing 0.6v1 + 0.9v2 − 0.1 ≤ 0
(i.e., v4) with the constraints in Eq. 1 representing the input ranges and the DNN with the objective of
optimizing the output. APTPchecker then invokes an LP solver, which determines that this MILP is
infeasible, i.e., leaf node 3 indeed leads to unsatisfiability. APTPchecker continues this process for
the other three leaf nodes and returns certified as all leaf nodes are unsatisfiable.

6

MILP Formulation

APTPchecker formulates MILP problems [33] and checks for feasible solutions using off-the-shelf
LP solving. Formally, the MILP problem is defined as:

(a) z(i) = W (i)ẑ(i−i) + b(i); (b) y = z(L);x = ẑ(0);

(c) ẑ
(i)
j ≥ z

(i)
j ; ẑ

(i)
j ≥ 0; (d) a

(i)
j ∈ {0, 1};

(e) ẑ
(i)
j ≤ a

(i)
j u

(i)
j ; ẑ

(i)
j ≤ z

(i)
j − l

(i)
j (1− a

(i)
j);

(2)

where x is input, y is output, and z(i), ẑ(i), W (i), and b(i) are the pre-activation, post-activation,
weight, and bias vectors for layer i, respectively. This encodes precisely the semantics of a ReLU-
based DNN: (a) the affine transformation computing the pre-activation value for a neuron; (b) the
inputs and outputs in the DNN; (c) assertion that post-activation values are non-negative and no
less than pre-activation values; (d) neuron activation status indicator variables that are either 0 or 1;
and (e) constraints on the upper, u(i)

j , and lower, l(i)j , bounds of the pre-activation value of the jth

neuron in the ith layer. Deactivating a neuron, a(i)j = 0, simplifies the first of the (e) to ẑ
(i)
j ≤ 0, and

activating a neuron simplifies the second to ẑ
(i)
j ≤ z

(i)
j , which is consistent with ẑ

(i)
j = max(z

(i)
j , 0).

Correctness Alg. 2 returns certified iff the input APTP proof tree is unsatisfiable. This proof tree
encodes a disjunction of constraints, one per tree path, where each constraint represents an activation
pattern of the network (the leaf node). Then each problem is reduced to a simple LP that exactly
captures the semantics of the DNN for a specific activation pattern and thus, the algorithm introduces
no approximations, i.e., it is sound and complete.

Note that this correctness argument assumes that the LP solver is correct. In practice multiple solvers
could be used to guard against errors in that component. It is standard for proof checkers to assume
the correctness of a small set of external tools, e.g., checkers that use theorem provers assume the
correctness of the underlying prover [34].

Implementation and Validation APTPchecker is written in Python, and uses Gurobi [35] for LP
solving. The core APTPchecker algorithm (Alg. 2) consists of 600 SLOC, while optimizations use
an additional 200 SLOC. Currently, APTPchecker supports ReLU-based feed-forward (FNNs) and
convolutional neural networks (CNNs). APTPchecker uses ONNX for neural networks and outputs
APTP proofs. In addition, we used the CrossHair [36] symbolic execution tool to check the correctness
of the core algorithm in APTPchecker. Specifically, CrossHair confirmed that key postconditions
hold, e.g., that APTPchecker returns certified if and only if all leaf nodes in the proof tree are
formally proven. While the verification is not exhaustive (CrossHair only explore program paths up
to a certain depth), this increases confidence in the implementation’s correctness up to certain depth.
A detailed discussion is provided in Apdx. B.

4.2 Optimizations

Our APTPchecker implementation employs several optimizations to improve efficiency, especially
for large proof trees. It uses neuron stabilization to identify stable neurons (either active or inac-
tive) and replace disjunctive constraints with linear ones, and simplifying the MILP problem and
reducing the work of the LP solver. Additionally, it employs pruning of leaf nodes and backtracking
to check parent nodes only when necessary, reducing the number of LP problems to be solved.
Finally, APTPchecker leverages the tree structure of APTP proof to parallelize the checking of leaf
nodes, making the verification process scale better to large proof trees. Additional details on these
optimizations are available in Apdx. C.

5 Evaluation

We evaluate our work using the following research questions: RQ1 (§5.1): How does proof generation
and checking perform with existing verifiers? RQ2 (§5.2): What factors impact proof checking
performance? RQ3 (§5.3): How does this work compare to prior work? RQ4 (§5.4): What are some
unsound cases that we can detect?

7

Tab. 1: Benchmarks consist of a 8 neural networks comprised of varying numbers of CNN (C) and FNN (F)
layers, neurons, and parameters, each paired with 25 properties to form UNSAT verification instances.

Name Networks Instances
Num. Layers Neurons Param. Num.

CNN 8 1-2C;1F 320-3920 41K-180K 200

FNN 8 2-6F 64-3072 27K-1.7M 200

Tab. 2: APTPchecker performances in seconds (mean/median/max).

Verifier FNN CNN
Verify Check Proof Verify Check Proof

αβ-CROWN 4/9/481 3/19/870 6/16/50 13/67/866

NeuralSAT 9/16/304 2/10/599 12/30/64 7/42/825

Benchmarks We evaluate on UNSAT verification problems selected from the benchmark suite intro-
duced in [9], which includes ACAS Xu, RESNET_A/B, CIFAR2020, MNISTFC, and MNIST_GDVB.
Specifically, MNISTFC contains networks with 2, 4, and 6 layers, each with 256 ReLUs per layer.
MNIST_GDVB networks, generated using GDVB [37], range from 2-6 layers with 16-512 neurons
per layer, yielding 64-3072 ReLU counts total. As with prior work [5] we exclude ACAS Xu, which
has networks with low input dimensions and did not even need to use BaB on activation space to be
solved. We also exclude RESNET, which are currently not supported by the APTPchecker. Note
that this a straightforward engineering limitation and there is no fundamental reason the checking
algorithm is not applicable.

From CIFAR2020, we selected CNN models and varied convolutional sizes and depths; from
MNISTFC and MNIST_GDVB, we chose 8 FNNs of diverse sizes. For robustness properties, we
use local perturbation radii ranging from 0.01 to 0.09 in L∞ norm. For each network, we randomly
sampled local robustness properties until we obtained 25 UNSAT instances, yielding 200 CNN and
200 FNN problems (400 total) as shown in Tab. 1.

Baselines We adapted two verifiers: αβ-CROWN and NeuralSAT, to generate APTP proofs. We also
compare our work with the Marabou verifier and its proof checker [38].

Metrics To assess performance we use the two common metrics in the verification community [4]:
(i) time to solve and (ii) number of problems solved. We record time to verify, generate, and check
proofs, using a 1000-second timeout. A problem is “solved” if all steps complete within time limit.

Setup All experiments were run on a Linux machine with an AMD Threadripper 64-core 4.2GHZ
CPU, 128GB RAM, and an NVIDIA GeForce RTX 4090 GPU with 24 GB VRAM.

5.1 RQ1 : Proof Generation and Checking

0 100 200 300 400

Solved problems

0

100

200

300

400

500

600

700

800

900

1000

R
u

nt
im

es
(s

)

αβ-C+APTPchecker

αβ-C

NS+APTPchecker

NS

Fig. 3: Runtimes and problems solved.

Fig. 3 shows cactus plots for proof generation and check-
ing with the underlying NeuralSAT and αβ-CROWN ver-
ifiers. In cactus plots like this, lines that extend further
on the x-axis are better – more problems solved – and
lines that are lower are better – faster solve times. The
dashed lines show the performance of the verifier and the
solid lines show the performance of the verifier, proof
generation, and the proof checker.

Fig. 3, with additional timing details given in Tab. 2, show
that checking proofs is slower than verification itself. Mod-
ern verification tools rely on sophisticated abstractions and
optimizations (e.g., αβ-CROWN and NeuralSAT employ
advanced bound propagation, pruning heuristics, and leverage GPU acceleration), but these enhance-
ments are precisely what make verification complex and error-prone. In contrast, APTPchecker

8

Tab. 3: subproofs vs. MILP complexity.

Verifier Num. subproofs MILP Complexity
Mean Median Mean Median

αβ-CROWN 230 180 414 179

NeuralSAT 95 36 601 545

0 500 1000 1500 2000 2500 3000

MILP Complexity

101

102

103

104

105

C
ou

nt
s

FNN (solved)

FNN (unsolved)

CNN (solved)

CNN (unsolved)

0 2000

Sub-proofs

100

101

102

103

Fig. 4: Number of constraints and subproofs per problem.

deliberately eschews all verifier-specific optimizations and systematically validates each proof node
using MILP (e.g., we use Gurobi which runs on CPU but can be replaced with other solvers),
prioritizing reliability over speed.

Overall, both verifiers were able to generate proofs for all problems with APTP, and APTPchecker is
able to check between 93.7% and 99.4% of the proofs that are generated. This demonstrates that the
APTP is able to encode proofs generated by differing neural network verification algorithms, and that
APTPchecker can check them.

5.2 RQ2 : Proof Checking Analysis

Tab. 3 shows statistics on the number of subproofs—the number of MILP calls made by APTPchecker
(equivalent to the number of leaf nodes in the proof tree if no pruning is used), and the MILP
complexity—the number of constraints in the MILP problem at each MILP call, of proofs generated
by NeuralSAT and αβ-CROWN. We can see that NeuralSAT produces fewer subproofs, but with
more complex MILP problems. In contrast, αβ-CROWN generates significantly more subproofs, but
with simpler MILP problems. This variation suggests directions for future work, such as designing
NeuralSAT to generate larger proof trees with simpler MILPs for better parallelization.

Fig. 4 explores the impact of MILP complexity and subproofs on APTPchecker performance. The
MILP complexity distribution reveals distinct patterns across network architectures, e.g., FNN prob-
lems predominantly occupy the lower complexity range (0-1000 constraints), where APTPchecker
nearly solves them all. In contrast, CNN problems have broader complexities, with many instances
requiring more than 1000 constraints and exhibiting higher unsolved rates at greater complexities. For
subproofs CNN and FNN architectures both generate remarkably similar proof tree sizes, with most
problems requiring fewer than 1000 subproofs. However, the key difference lies in the complexity of
individual MILP subproblems. FNN proofs involve simpler MILPs that can be efficiently verified,
whereas CNN proofs remain challenging even with small proof trees due to the higher computational
cost of solving individual MILP subproblems.

This architectural difference highlights that FNN problems generate more tractable MILP formula-
tions, whereas CNN problems pose greater computational challenges due to their inherently more
complex constraint structures.

5.3 RQ3: APTPchecker vs. Marabou’s Checker

To evaluate proof checking performance in isolation, we compared APTPchecker against the proof
checker built into the Marabou verifier [38], which uses Farkas’s lemma and is implemented in the
Imandra framework [25]. We used identical verification results from the Marabou verifier for both

9

Tab. 4: Proof checking times of Marabou’s checker and APTPchecker.

Checker Proof checking time
Mean Median Max

Marabou checker 4 204 785

APTPchecker 3 9 38

checkers. Marabou successfully verified 54 problems from our benchmark suite. For each verified
problem, we extracted the proof in APTP format and measured the time required by each checker to
validate the proof.

Tab. 4 presents the proof checking times for both approaches. The similar mean times indicate that
both checkers handle simple problems quickly. However, for more challenging proofs, APTPchecker
demonstrates significant advantages with over 20× speedup in both median (e.g., 9 vs 204 seconds)
and maximum (e.g., 38 vs 785 seconds) checking times. This demonstrates the effectiveness of
APTPchecker’s optimizations for complex proof validation.

5.4 RQ4: Unsound Cases

So far APTPchecker can validate sound proofs generated by existing verifiers. While unsound results
are rare in practice, we were able to use this work to identify both real and synthetic examples of
soundness bugs in existing verifiers, demonstrating its goal in ensuring verifier soundness.

Real Bugs One concrete example of such a soundness bug is documented in NeuralSAT Github issue
#8, where NeuralSAT falsely returns UNSAT for a SAT instance [39].We were able to extract the
APTP proof tree from this false verification result and analyzed it using APTPchecker. APTPchecker
successfully found a valid counterexample, confirmed by NeuralSAT developers, that violates the
claimed UNSAT result.

Synthetic Bugs Zhou et al. [40] explored verifier soundness by introducing synthetic bugs into
verifiers. One studied class of bugs involves randomly dropped branches during BaB search, e.g., a
proportion of new branches created in each BaB iteration are randomly discarded. This bug breaks the
completeness of the BaB algorithm, as it may miss branches containing counterexamples, leading to
false UNSAT claims. APTPchecker easily detects such incompleteness bugs because it always first
checks is that all branches in the proof tree are properly visited and justified. Thus, APTPchecker
will catch missing branches and raise errors indicating an invalid proof that it cannot certify.

6 Conclusion and Future Work

We introduce a proof format APTP which can express proofs generated by state-of-the-art DNN
verifiers, and a proof checker APTPchecker that can validate proofs in this format. Together, these
contributions establish a concrete foundation for certifiable and reliable neural network verification,
closing the gap between practical verification and assurance required for real-world deployment.

Limitations APTPchecker relies on an external MILP solver such as Gurobi, which itself is not
formally verified and can contain bugs (e.g., floating-point errors). While this is a limitation as we
cannot eliminate all trusted components, this work allows us to significantly reduce the trusted code
base. This can also be mitigated by using multiple solvers to cross-check results, e.g., CPLEX [41]
and Xpress [42], or by replacing the MILP solver with a formally verified LP solver, e.g., SCIP [43].

Potential Negative Societal Impact The research line on DNN verification can exploited to find
issues in DNNs and this work, which aims to improve DNN verification, indirectly supports that.
However, DNN verification, and therefore this work, also helps to ensure that DNNs are safe and
secure for deployment in critical applications.

10

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their helpful comments. This work was supported in part by
funds provided by the National Science Foundation awards 2129824, 2217071, 2501059, 2422036,
2319131, 2238133, and 2200621, and by an Amazon Research Award.

References

[1] Nuro.ai, “Nuro Driver,” 2024. https://www.nuro.ai/technology.

[2] B. Kovatchev, A. Castillo, E. Pryor, L. L. Kollar, C. L. Barnett, M. D. DeBoer, and S. A. a.
Brown, “Neural-net artificial pancreas: A randomized crossover trial of a first-in-class automated
insulin delivery algorithm,” Diabetes Technology & Therapeutics, vol. 26, no. 6, pp. 375–382,
2024.

[3] D. Hanover, A. Loquercio, L. Bauersfeld, A. Romero, R. Penicka, Y. Song, G. Cioffi, E. Kauf-
mann, and D. Scaramuzza, “Autonomous drone racing: A survey,” IEEE Transactions on
Robotics, 2024.

[4] C. Brix, S. Bak, C. Liu, and T. T. Johnson, “The Fourth International Verification of Neural
Networks Competition (VNN-COMP 2023): Summary and Results,” 2023.

[5] H. Zhang, S. Wang, K. Xu, L. Li, B. Li, S. Jana, C.-J. Hsieh, and J. Z. Kolter, “Gen-
eral cutting planes for bound-propagation-based neural network verification,” arXiv preprint
arXiv:2208.05740, 2022.

[6] A. Lemesle, J. Lehmann, T. L. Gall, and Z. Chihani, “Verifying neural networks with pyrat,” in
International Static Analysis Symposium, pp. 11–33, Springer, 2025.

[7] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z. Kolter, “Beta-crown: Efficient
bound propagation with per-neuron split constraints for neural network robustness verification,”
Advances in Neural Information Processing Systems, vol. 34, pp. 29909–29921, 2021.

[8] H. Duong, T. Nguyen, and M. B. Dwyer, “Neuralsat: A high-performance verification tool for
deep neural networks,” in International Conference on Computer Aided Verification, pp. 409–
423, Springer, 2025.

[9] H. Duong, D. Xu, T. Nguyen, and M. B. Dwyer, “Harnessing neuron stability to improve dnn
verification,” Proc. ACM Softw. Eng., vol. 1, jul 2024.

[10] N. Wetzler, M. J. Heule, and W. A. Hunt Jr, “Drat-trim: Efficient checking and trimming
using expressive clausal proofs,” in International Conference on Theory and Applications of
Satisfiability Testing, pp. 422–429, Springer, 2014.

[11] F. Pollitt, M. Fleury, and A. Biere, “Faster lrat checking than solving with cadical,” in 26th
International Conference on Theory and Applications of Satisfiability Testing (SAT 2023),
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

[12] P. Lammich, “Efficient verified (un) sat certificate checking,” Journal of Automated Reasoning,
vol. 64, no. 3, pp. 513–532, 2020.

[13] C. Barrett, A. Stump, C. Tinelli, et al., “The smt-lib standard: Version 2.0,” in Proceedings of
the 8th international workshop on satisfiability modulo theories (Edinburgh, England), vol. 13,
p. 14, 2010.

[14] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Towards proving the
adversarial robustness of deep neural networks,” Proc. 1st Workshop on Formal Verification of
Autonomous Vehicles (FVAV), pp. 19-26, 2017.

[15] M. J. Kochenderfer, J. E. Holland, and J. P. Chryssanthacopoulos, “Next-generation airborne col-
lision avoidance system,” tech. rep., Massachusetts Institute of Technology-Lincoln Laboratory
Lexington United States, 2012.

[16] H. Duong, T. Nguyen, and M. Dwyer, “A DPLL(T) Framework for Verifying Deep Neural
Networks,” arXiv preprint arXiv:2307.10266, 2024.

[17] S. Bak, “nnenum: Verification of relu neural networks with optimized abstraction refinement,”
in NASA Formal Methods Symposium, pp. 19–36, Springer, 2021.

11

https://www.nuro.ai/technology

[18] C. Ferrari, M. N. Mueller, N. Jovanović, and M. Vechev, “Complete Verification via Multi-
Neuron Relaxation Guided Branch-and-Bound,” in International Conference on Learning
Representations, 2022.

[19] L. Cruz-Filipe, M. J. Heule, W. A. Hunt, M. Kaufmann, and P. Schneider-Kamp, “Efficient
certified rat verification,” in Automated Deduction–CADE 26: 26th International Conference
on Automated Deduction, Gothenburg, Sweden, August 6–11, 2017, Proceedings, pp. 220–236,
Springer, 2017.

[20] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International conference on Tools
and Algorithms for the Construction and Analysis of Systems, pp. 337–340, Springer, 2008.

[21] T. Bouton, D. Caminha B. de Oliveira, D. Déharbe, and P. Fontaine, “verit: an open, trustable
and efficient smt-solver,” in International Conference on Automated Deduction, pp. 151–156,
Springer, 2009.

[22] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The mathsat5 smt solver,” in
International Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pp. 93–107, Springer, 2013.

[23] J. Christ, J. Hoenicke, and A. Nutz, “Smtinterpol: An interpolating smt solver,” in International
SPIN Workshop on Model Checking of Software, pp. 248–254, Springer, 2012.

[24] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed, M. Mo-
hamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and
Y. Zohar, “cvc5: A versatile and industrial-strength smt solver,” in Tools and Algorithms for the
Construction and Analysis of Systems (D. Fisman and G. Rosu, eds.), (Cham), pp. 415–442,
Springer International Publishing, 2022.

[25] O. Isac, C. Barrett, M. Zhang, and G. Katz, “Neural network verification with proof production,”
Proc. 22nd Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD), 2022.

[26] G. Passmore, S. Cruanes, D. Ignatovich, D. Aitken, M. Bray, E. Kagan, K. Kanishev, E. Maclean,
and N. Mometto, “The imandra automated reasoning system (system description),” in Automated
Reasoning: 10th International Joint Conference, IJCAR 2020, Paris, France, July 1–4, 2020,
Proceedings, Part II 10, pp. 464–471, Springer, 2020.

[27] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu,
A. Zeljić, et al., “The marabou framework for verification and analysis of deep neural networks,”
in International Conference on Computer Aided Verification, pp. 443–452, Springer, 2019.

[28] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and F. Oquendo, “Consolidating
a process for the design, representation, and evaluation of reference architectures,” in 2014
IEEE/IFIP Conference on Software Architecture, pp. 143–152, IEEE, 2014.

[29] A. Tacchella, L. Pulina, D. Guidotti, and S. Demarchi, “The international benchmarks standard
for the Verification of Neural Networks,” 2023. https://www.vnnlib.org/.

[30] J. Bai, F. Lu, and K. Zhang, “ONNX Open neural network exchange.” https://onnx.ai.
[31] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Efficient formal safety analysis of neural

networks,” Advances in Neural Information Processing Systems, vol. 31, 2018.
[32] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security analysis of neural

networks using symbolic intervals,” in 27th USENIX Security Symposium (USENIX Security
18), pp. 1599–1614, 2018.

[33] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed
integer programming,” in International Conference on Learning Representations, 2019.

[34] P. Lammich, “Grat: a formally verified (un) sat proof checker,” SAT COMPETITION 2023,
p. 82, 2023.

[35] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2022. https://www.gurobi.
com.

[36] CrossHair, “An analysis tool for Python that blurs the line between testing and type systems. ,”
2025. https://github.com/pschanely/CrossHair.

[37] D. Xu, D. Shriver, M. B. Dwyer, and S. Elbaum, “Systematic generation of diverse benchmarks
for dnn verification,” in International Conference on Computer Aided Verification, pp. 97–121,
Springer, 2020.

12

https://www.vnnlib.org/
https://onnx.ai
https://www.gurobi.com
https://www.gurobi.com
https://github.com/pschanely/CrossHair

[38] R. Desmartin, O. Isac, G. Passmore, K. Stark, E. Komendantskaya, and G. Katz, “Towards a
certified proof checker for deep neural network verification,” in International Symposium on
Logic-Based Program Synthesis and Transformation, pp. 198–209, Springer, 2023.

[39] NeuralSAT, “NeuralSAT falsely claims verification,” 2025. https://github.com/dynaroars/
neuralsat/issues/8.

[40] X. Zhou, H. Xu, A. Xu, Z. Shi, C.-J. Hsieh, and H. Zhang, “Testing neural network verifiers: A
soundness benchmark with hidden counterexamples,” arXiv preprint arXiv:2412.03154, 2024.

[41] IBM, “IBM ILOG CPLEX Optimizer,” 2025. https://www.ibm.com/products/
ilog-cplex-optimization-studio/cplex-optimizer.

[42] FICO, “Xpress Optimization,” 2024. https://www.fico.com/en/products/
fico-xpress-optimization.

[43] The SCIP Optimization Suite, “Solving Constraint Integer Programs,” 2025. https://www.
scipopt.org/.

[44] M. R. Garey and D. S. Johnson, Computers and intractability, vol. 174. Freeman San Francisco,
1979.

[45] C. Barrett, L. De Moura, and P. Fontaine, “Proofs in satisfiability modulo theories,” All about
proofs, Proofs for all, vol. 55, no. 1, pp. 23–44, 2015.

[46] S. Conchon, A. Mebsout, and F. Zaïdi, “Certificates for parameterized model checking,” in
FM 2015: Formal Methods: 20th International Symposium, Oslo, Norway, June 24-26, 2015,
Proceedings 20, pp. 126–142, Springer, 2015.

[47] A. Griggio, M. Roveri, and S. Tonetta, “Certifying proofs for sat-based model checking,” Formal
Methods in System Design, vol. 57, no. 2, pp. 178–210, 2021.

[48] A. Van Gelder, “Producing and verifying extremely large propositional refutations: Have your
cake and eat it too,” Annals of Mathematics and Artificial Intelligence, vol. 65, pp. 329–372,
2012.

[49] E. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability for cnf formulas,” in
2003 Design, Automation and Test in Europe Conference and Exhibition, pp. 886–891, IEEE,
2003.

[50] M. J. Heule, W. A. Hunt, and N. Wetzler, “Trimming while checking clausal proofs,” in 2013
Formal Methods in Computer-Aided Design, pp. 181–188, IEEE, 2013.

[51] M. J. Heule, “The drat format and drat-trim checker,” arXiv preprint arXiv:1610.06229, 2016.
[52] H. Barbosa, A. Reynolds, G. Kremer, H. Lachnitt, A. Niemetz, A. Nötzli, A. Ozdemir,

M. Preiner, A. Viswanathan, S. Viteri, et al., “Flexible proof production in an industrial-
strength smt solver,” in International Joint Conference on Automated Reasoning, pp. 15–35,
Springer International Publishing Cham, 2022.

[53] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduction and applications,”
Communications of the ACM, vol. 54, no. 9, pp. 69–77, 2011.

[54] G. C. Necula, Compiling with proofs. Carnegie Mellon University, 1998.
[55] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry, and B. Werner, “A modular integration

of sat/smt solvers to coq through proof witnesses,” in International Conference on Certified
Programs and Proofs, pp. 135–150, Springer, 2011.

[56] S. Böhme, A. C. Fox, T. Sewell, and T. Weber, “Reconstruction of z3’s bit-vector proofs in hol4
and isabelle/hol,” in Certified Programs and Proofs: First International Conference, CPP 2011,
Kenting, Taiwan, December 7-9, 2011. Proceedings 1, pp. 183–198, Springer, 2011.

[57] S. Böhme and T. Weber, “Fast lcf-style proof reconstruction for z3,” in Interactive Theorem Prov-
ing: First International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings
1, pp. 179–194, Springer, 2010.

[58] H.-J. Schurr, M. Fleury, and M. Desharnais, “Reliable reconstruction of fine-grained proofs in a
proof assistant.,” in CADE, vol. 28, pp. 450–467, 2021.

[59] S. Kan, A. W. Lin, P. Rümmer, and M. Schrader, “Certistr: a certified string solver,” in
Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and
Proofs, pp. 210–224, 2022.

13

https://github.com/dynaroars/neuralsat/issues/8
https://github.com/dynaroars/neuralsat/issues/8
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization
https://www.scipopt.org/
https://www.scipopt.org/

[60] B. Andreotti, H. Lachnitt, and H. Barbosa, “Carcara: An efficient proof checker and elaborator
for smt proofs in the alethe format,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pp. 367–386, Springer, 2023.

[61] H.-J. Schurr, M. Fleury, H. Barbosa, and P. Fontaine, “Alethe: Towards a generic smt proof
format,” arXiv preprint arXiv:2107.02354, 2021.

[62] R. J. Vanderbei, “Linear programming: foundations and extensions,” Journal of the Operational
Research Society, vol. 49, no. 1, pp. 94–94, 1998.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims match our theoretical and empirical results. APTPchecker solved
more problems than SoTA checkers across benchmarks.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are explicitly mentioned in §6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

14

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The correctness arguments have been provided in §4.1 and Apdx. B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The model architectures and configurations used are provided in §5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

15

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and code with instructions to reproduce the results have been uploaded
to an anonymized repo.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details have been provided in §5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: Results are deterministic on the benchmarks, no random process involved, and
no error bars need to be provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Detailed hardware resources are provided in §5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have acknowledged the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

17

https://neurips.cc/public/EthicsGuidelines

Answer: [Yes]

Justification: They have been discussed in §6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No data or models are released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited both αβ-CROWN, NeuralSAT, Marabou and its checker, and libraries
used for experimental evaluation.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

18

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are introduced in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper paper does not involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

19

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM was only used for revising writing and suggesting words.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Syntax and Grammar of APTP

Fig. 2a in §3.2 outlines the APTP syntax and grammar, represented as production rules. A proof is
composed of declarations and assertions. Declarations define the variables and their types within
the proof. Specifically, input variables (prefixed with X) and output variables (prefixed with Y) are
declared as real numbers, representing the inputs and outputs of the network. Additionally, hidden
variables are declared with specific piece-wise linear (PWL) activation functions, such as ReLU.
These hidden variables correspond to the internal nodes of the neural network that process the input
data through various activation functions.

Assertions are logical statements that specify the conditions or properties that must hold within
the proof. Assertions over input variables are preconditions and those over output variables are
post-conditions. Each assertion is composed of a formula, which can involve terms and logical
operators. Formulas include simple comparisons between terms (e.g., less than, greater than) or more
complex logical combinations using and and or operators. The terms used in these formulas can be
variables or constants.

The declare-* statements declare input, output, and hidden variables, while the assert statements
specify the constraints on these variables (i.e., the pre and postcondition of the desired property). The
hidden constraints represent the activation patterns of the hidden neurons in the network (i.e., the
proof tree). Each and statement represents a tree path that represents an activation pattern.

B Correctness of APTPchecker Implementation

We were able to verify the implementation of the core APTPchecker algorithm (§4.1) using
the CrossHair [36] symbolic execution for upto certain thresholds (e.g., timeout per condition
per_condition_timeout=10).

To perform such analysis, we need to create a simplified version of APTPchecker including: (1)
No optimization – remove all optimizations in Apdx. C; (2) Assume that Gurobi (MIP) is correct,
therefore, the condition indicating whether MIP is correct or not must be made up (e.g., sum(n) ≥ 0
– summation of all literals (e.g., variable and branch condition) in a leaf node); and (3) Add pre- and
post-conditions to the main function. This make APTPchecker codebase minimal with just about
100 LoC. In particular, some pre- and post- conditions are listed in Listing 1.

1 """
2 pre: isinstance(proof , list)
3 pre: all(isinstance(p, list) for p in proof)
4 post: _ in {CERTIFIED , UNCERTIFIED}
5 post: (_ == UNCERTIFIED) == (any(sum(n) < 0 for n in proof))
6 post: (_ == CERTIFIED) == (all(sum(n) >= 0 for n in proof))
7 """

Listing 1: Pre- and Post- Conditions for CrossHair

CrossHair outputs are shown in Listing 2.

1 attempt_call () Postcondition confirmed.
2 analyze_calltree () Path tree stats {CONFIRMED :58}
3 analyze_calltree () Iter complete. Worst status found so far: UNKNOWN
4 analyze_calltree () Exceeded condition timeout , stopping
5 analyze_calltree () Aborted calltree search with UNKNOWN and 0 messages. Number of

iterations: 58
6 analyze_class () Analyzing class ProofReturnStatus
7 condition_parser () Using parsers: (AnalysisKind.PEP316 , AnalysisKind.icontract ,

AnalysisKind.deal)
8 analyze_class () Analyzing class ProofTree
9 condition_parser () Using parsers: (AnalysisKind.PEP316 , AnalysisKind.icontract ,

AnalysisKind.deal)
10 analyze_function () Analyzing mip_worker
11 condition_parser () Using parsers: (AnalysisKind.PEP316 , AnalysisKind.icontract ,

AnalysisKind.deal)

Listing 2: CrossHair traces

21

0 2000 4000 6000 8000 10000

Number of sub-proofs

100

101

102

103

C
ou

nt
s

FNN (solved)

FNN (unsolved)

CNN (solved)

CNN (unsolved)

0 2000

Sub-proofs

100

101

102

103

Fig. 5: Number of sub-proofs per problem without (left) and with (right) APTPchecker optimizations.

C Optimizations

While the core APTPchecker algorithm in Alg. 2 is minimal, it can be inefficient. APTPchecker
employs several optimizations to improve its efficiency. These are crucial for checking large proof
trees generated for challenging problems.

Neuron Stabilization A primary challenge in DNN analysis is the presence of large numbers of
piece-wise linear constraints (e.g., ReLU) which generate a large number of branches and yield large
proof trees. In the MILP formulation, this creates many disjunctions which are hard to solve. To
reduce the number of disjunctions, APTPchecker uses neuron stabilization [9] to determine neurons
that are stable, either active or inactive, for all inputs defined by the property pre-condition. For all
stable neurons, the disjunctive ReLU constraint is replaced with a linear constraint that represents the
neuron’s value. This simplifies the MILP problem.

APTPchecker traverses the DNN and computes stable neurons. It initializes the MILP model with
input constraints and then iterates over each layer of the network. Next, for each layer, it creates
constraints depending on the layer type. Moreover, it uses approximation to estimate bounds of
neuron values to determine neuron stability. Next, it filters unstable neurons and attempts to make
them stable by optimizing either their lower or upper bounds.

Pruning Leaf Nodes APTPchecker uses a backtracking mechanism to check the parent node only
when the child nodes are infeasible. Specifically, if it determines unsatisfiability of leaf l, it will check
the parent p of l. If p is unsatisfiable it immediately removes the children of p (more specifically the
sibling of l). Next it backtracks to the parent of p and repeats until meeting a stopping criteria. This
optimization reduces the number of LP problems that need to be solved, making the proof checking
process more efficient.

Parallelization APTPchecker leverages the structure of APTP proof tree to parallelize the checking
of leaf nodes. Each tree path is an independent sub-proof and partitions of the tree allow checker to
leverage multiprocessing to check large proof trees efficiently.

C.1 Proof Checking Optimizations

Fig. 5 (left) plots a histogram of the number of sub-proofs solved per verification problem, i.e., the
number of nodes of the proof tree. When interpreting these plots, understand that the y-axis log scale
means that vertical distances have a different meaning as you move upward in the plot. While the
vast majority of the verification problems have proof trees of fewer then 2000 leaves, but 17 of them
have larger trees up to a maximum of more than 10000 leaves. Note also that even among the smaller
sized proof trees, there are some problems that cannot be solved. This is due to complexity of solving
the MILP constraints at the leaves of those proof trees.

Fig. 6 (left) plots a histogram of the number of occurrences of MILP problems of a given complexity
across the benchmarks. Here again we see a spread in data, but unlike with the number of sub-proofs
the CNN benchmarks seem to have consistently larger constraints and there is a clear bias among the

22

0 500 1000 1500 2000 2500 3000

MILP Complexity

101

102

103

104

105

C
ou

nt
s

FNN (solved)

FNN (unsolved)

CNN (solved)

CNN (unsolved)

0 500 1000 1500 2000 2500 3000

MILP Complexity

101

102

103

104

105

C
ou

nt
s

FNN (solved)

FNN (unsolved)

CNN (solved)

CNN (unsolved)

Fig. 6: Number of constraints per problem without (left) and with (right) APTPchecker optimizations.

unsolved problems towards larger constraint size. To optimize proof checking, we must address both
of these sources of complexity.

The Fig. 5 (right) and Fig. 6 (right) explore the impact of the S and X optimizations on the number
of sub-proofs and MILP complexity. Across the benchmarks optimizations reduce the number of
sub-proofs is to less than 1000 and MILP complexity to less than 2000. The reduction in sub-
proofs directly contributes to the increase in performance of APTPchecker, but the reduction in
MILP complexity is more subtle. Integer programming, and thus MILP, is known to be NP-Hard in
general [44]. The stabilization optimization addresses this complexity by calculating sets of variables
that are forced to take on specific values based on other constraints in the MILP problem. For each
such variable, the constraints associated with it is effectively eliminated. We can observe this in
comparing the left and right of Fig. 6 where we see both constraints of higher complexity eliminated
and the peak of the constraint distribution shifted downward from 400 to 100 constraints.

D Related Work

Proof checking has been widely-recognized in the field of constraint solving such as SAT/SMT
solving. (e.g., [45, 46, 47]). There is extensive literature on clausal proof generation and checking for
SAT solvers [48, 49, 50, 10, 51]. Most modern SAT solvers can produce resolution-based proofs in
standard formats (e.g., DRAT [10]), which can be independently checked by proof checkers, e.g., by
efficient, untrusted programs such as DRAT-trim [10] or by certified, slower programs that work on
extended formats such as LRAT [19] and GRAT [12].

SMT proof checkers [52, 53, 54] share the same purpose of checking unsatisfiability proofs, but they
are more complex than SAT proof checkers due to the richer languages and theories of SMT formulas
(e.g., theory of strings). Two significant proof-producing state-of-the-art SMT solvers are z3 [20] and
veriT [21] that both can have their proofs successfully reconstructed in proof assistants [55, 56, 57, 58].
Other proof-producing SMT solvers are MathSAT5 [22] and SMTInterpol [23], CVC5 [24] and
CertiStr [59]. Recently, a high-performance stand-alone checker Carcara [60] for the Alethe [61]
proof format was also introduced.

Compared to SAT/SMT, DNN verification is a relatively new field, and the development of proof
checkers for DNN verifiers is few. To the best of our knowledge, there is only one line of work [25] that
is explicitly for the Marabou. This work uses Farkas’s lemma [62] for checking and is implemented
in the Imandra [26] that can produce verifiable code. Our work generalizes to neuron-splitting based
DNN verification and introduces a new, more expressive proof format, APTP, that can be adopted by
other DNN verifiers. Our proof checker, APTPchecker, is also significantly more capable (§5.1).

23

	Introduction
	Background
	Proof Generation for DNN Verification
	Branch-and-Bound DNN Verification
	The APTP Proof Language
	Handling Input Splitting

	Checking APTP Proofs
	The Core APTPchecker Algorithm
	Optimizations

	Evaluation
	RQ1 : Proof Generation and Checking
	RQ2 : Proof Checking Analysis
	RQ3: APTPchecker vs. Marabou's Checker
	RQ4: Unsound Cases

	Conclusion and Future Work
	Syntax and Grammar of APTP
	Correctness of APTPchecker Implementation
	Optimizations
	Proof Checking Optimizations

	Related Work

