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Abstract

Language models (LMs) are becoming the foundation for almost all major language tech-
nologies, but their capabilities, limitations, and risks are not well understood. We present
Holistic Evaluation of Language Models (HELM) to improve the transparency of language
models. First, we taxonomize the vast space of potential scenarios (i.e. use cases) and met-
rics (i.e. desiderata) that are of interest for LMs. Then we select a broad subset based on
coverage and feasibility, noting what’s missing or underrepresented (e.g. question answering
for neglected English dialects, metrics for trustworthiness). Second, we adopt a multi-metric
approach: We measure 7 metrics (accuracy, calibration, robustness, fairness, bias, toxicity,
and efficiency) for each of 16 core scenarios to the extent possible (87.5% of the time), en-
suring that metrics beyond accuracy don’t fall to the wayside, and that trade-offs across
models and metrics are clearly exposed. We also perform 7 targeted evaluations, based on
26 targeted scenarios, to more deeply analyze specific aspects (e.g. knowledge, reasoning,
memorization/copyright, disinformation). Third, we conduct a large-scale evaluation of 30
prominent language models (spanning open, limited-access, and closed models) on all 42 sce-
narios, including 21 scenarios that were not previously used in mainstream LM evaluation.
Prior to HELM, models on average were evaluated on just 17.9% of the core HELM sce-
narios, with some prominent models not sharing a single scenario in common. We improve
this to 96.0%: now all 30 models have been densely benchmarked on a set of core scenarios
and metrics under standardized conditions. Our evaluation surfaces 25 top-level findings
concerning the interplay between different scenarios, metrics, and models. For full trans-
parency, we release all raw model prompts and completions publicly1 for further analysis,
as well as a general modular toolkit for easily adding new scenarios, models, metrics, and
prompting strategies.2 We intend for HELM to be a living benchmark for the community,
continuously updated with new scenarios, metrics, and models.

† indicates lead authors and ‡ indicates major contributors. Full author contributions in Appendix A.
1https://crfm.stanford.edu/helm/v0.1.0
2https://github.com/stanford-crfm/helm
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Figure 1: Language model. A language model takes text (a prompt) and generates text (a completion)
probabilistically. Despite their simple interface, language models can be adapted to a wide range of language
tasks from question answering to summarization.

1 Introduction

Benchmarks orient AI. They encode values and priorities (Ethayarajh & Jurafsky, 2020; Birhane et al., 2022)
that specify directions for the AI community to improve upon (Spärck Jones & Galliers, 1995; Spärck Jones,
2005; Kiela et al., 2021; Bowman & Dahl, 2021; Raji et al., 2021). When implemented and interpreted
appropriately, they enable the broader community to better understand AI technology and influence its
trajectory.

In recent years, the AI technology that has arguably advanced the most is foundation models (Bommasani
et al., 2021), headlined by the rise of language models (LMs; Peters et al., 2018; Devlin et al., 2019; Brown
et al., 2020; Rae et al., 2021; Chowdhery et al., 2022). At its core, a language model is a box that takes
in text and generates text (Figure 1). Despite their simplicity, when these models are trained on broad
data at immense scale, they can be adapted (e.g. prompted or fine-tuned) to myriad downstream scenarios.
Yet the immense surface of model capabilities, limitations, and risks remains poorly understood. The rapid
development, rising impact, and inadequate understanding demand that we benchmark language models
holistically.

But what does it mean to benchmark language models holistically? Language models are general-purpose
text interfaces that could be applied across a vast expanse of scenarios. And for each scenario, we may have
a broad set of desiderata: models should be accurate, robust, fair, efficient, and so on. In fact, the relative
importance of these desiderata often will depend not only on the perspective and values one has, but the
scenario itself (e.g. inference efficiency might be of greater importance in mobile applications).

We believe holistic evaluation involves three elements:

1. Broad coverage and recognition of incompleteness. Given language models’ vast surface
of capabilities and risks, we need to evaluate language models over a broad range of scenarios.
Broadening the evaluation has been a continuing trend in the NLP community, going from individual
datasets such as SQuAD (Rajpurkar et al., 2016) to small collections of datasets such as SuperGLUE
(Wang et al., 2019b) to large collections of datasets such as the GPT-3 evaluation suite (Brown
et al., 2020), Eleuther AI LM Harness (Gao et al., 2021b), and BIG-Bench (Srivastava et al., 2022).
However, it is neither possible to consider all the scenarios nor all the desiderata that (could) pertain
to LMs. Therefore, holistic evaluation should provide a top-down taxonomy and make explicit all
the major scenarios and metrics that are missing.

2. Multi-metric measurement. Societally beneficial systems reflect many values, not just accuracy.
Holistic evaluation should represent these plural desiderata, evaluating every desideratum for each
scenario considered.

3. Standardization. Our object of evaluation is the language model, not a scenario-specific system.
Therefore, in order to meaningfully compare different LMs, the strategy for adapting an LM to a
scenario should be controlled for. Furthermore, each LM should be evaluated on the same scenarios
to the extent possible.

Overall, holistic evaluation builds transparency by assessing language models in their totality. Rather than
honing in on a specific aspect, we strive for a fuller characterization of language models to improve scientific
understanding and orient societal impact.
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Figure 2: The importance of the taxonomy to HELM. Previous language model benchmarks (e.g. Su-
perGLUE, EleutherAI LM Evaluation Harness, BIG-Bench) are collections of datasets, each with a standard
task framing and canonical metric, usually accuracy (left). In comparison, in HELM we take a top-down
approach of first explicitly stating what we want to evaluate (i.e. scenarios and metrics) by working through
their underlying structure. Given this stated taxonomy, we make deliberate decisions on what subset we
implement and evaluate, which makes explicit what we miss (e.g. coverage of languages beyond English).

1.1 HELM

Holistic Evaluation of Language Models (HELM) has two levels: (i) an abstract taxonomy of scenarios and
metrics to define the design space for language model evaluation and (ii) a concrete set of implemented
scenarios and metrics that were selected to prioritize coverage (e.g. different English varieties), value (e.g.
user-facing applications), and feasibility (e.g. limited engineering resources).

Recognition of incompleteness. Benchmarks across AI, including those for language models like Su-
perGLUE (Wang et al., 2019a), the EleutherAI LM Harness (Gao et al., 2021b), and BIG-bench (Srivastava
et al., 2022), are defined by specific choices of scenarios and metrics. Different benchmarks make different
decisions on what to prioritize, how to make these decisions, and to what extent these processes are made
clear in presenting the benchmark. Since our aim is holistic evaluation, we believe it is necessary to be explicit
on the relationship between what we aspire to evaluate and what we actually evaluate. The construction
of HELM starts top-down with a taxonomy over scenarios and metrics (see Figure 2). The taxonomy not
only facilitates the systematic selection of scenarios and metrics, but it also make explicit what is missing.
We view HELM as a living benchmark, and we hope that both the abstract taxonomy and the concrete
selection of scenarios and metrics will evolve according to the technology, applications, and social concerns.
In §10: missing, we explicitly highlight evaluations HELM lacks that should be prioritized. Often these are
ones the entire AI field has historically neglected.

Multi-metric measurement. HELM currently implements a core3 set of 16 scenarios and 7 (categories
of) metrics. Our scenarios, which are triples of (task, domain, language), span 6 user-facing tasks (e.g.
question answering, information retrieval, summarization, toxicity detection), several domains (e.g. news,
books), and currently only English (though we cover several English varieties such as African-American
English and the English varieties spoken in different English-speaking countries). And our 7 categories of
metrics reflect a range of societal considerations (i.e. accuracy, calibration, robustness, fairness, bias, toxicity,
efficiency). We emphasize that while we have specific quantitative metrics for all of these considerations,
they (e.g. fairness) are complex and contested social constructs that can be operationalized in many different
ways. Consistent with our second element of holistic evaluation, we ensure our benchmark attains dense
multi-metric measurement: of the 112 possible (core scenario, metric) pairs, we measure 98 (87.5%) as shown
in Table 4.

3We use the term core to indicate that for this set of scenarios, we measure a range of metrics/desiderata. The term core is
not meant to suggest that any specific scenario in this set is more fundamental than scenarios outside the set.
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Figure 3: Many metrics for each use case. In comparison to most prior benchmarks of language
technologies, which primarily center accuracy and often relegate other desiderata to their own bespoke
datasets (if at all), in HELM we take a multi-metric approach. This foregrounds metrics beyond accuracy
and allows one to study the tradeoffs between the metrics.

This multi-metric perspective conveys a position we take on evaluation practices in AI. While most bench-
marks primarily foreground accuracy, perhaps deferring the evaluation of other metrics (e.g. the extent to
which models generate toxic content) to separate scenarios (e.g. RealToxicityPrompts), we believe it is
integral that all of these metrics be evaluated in the same contexts where we expect to deploy models (see
Figure 3). In particular, measuring these 7 desiderata for the same scenarios makes explicit potential trade-
offs and helps to ensure these desiderata are not treated as second-class citizens to accuracy (see Friedman
& Nissenbaum, 1996).

Targeted evaluations. In addition to our core set of 16 scenarios, where for each scenario we measure all
7 categories of metrics, HELM has 7 targeted evaluations through 26 additional scenarios and accompanying
metrics. These evaluations target linguistic understanding, world and commonsense knowledge, reasoning
capabilities, memorization and copyright, disinformation generation, biases, and toxicity generation, pro-
viding a deeper dive beyond the core scenarios. This includes 21 scenarios that are either entirely new
(e.g. WikiFact) or that have not been used in mainstream language model evaluation (e.g. ICE). While
HELM is oriented by a holistic approach that foregrounds societal impact and is reflected in our multi-
metric perspective, evaluation can also pinpoint specific phenomena to advance scientific understanding (e.g.
a model’s ability to perform analogical reasoning; see Bommasani et al., 2021, §4.4). For this reason, to
make our evaluation results more intelligible, we separate the core scenarios from the targeted evaluations:
the core scenarios and multi-metric measurement provide an integrated lens on models, whereas the targeted
evaluations isolate specific skills and risks.

Standardization. To build a shared understanding of existing language models, consistent with our third
element of holistic evaluation, we benchmark 30 prominent language models on HELM. These models come
from 12 organizations: AI21 Labs (e.g. J1-Jumbo v1 (178B)), Anthropic (Anthropic-LM v4-s3 (52B)),
BigScience (e.g. BLOOM (176B)), Cohere (e.g. Cohere xlarge v20220609 (52.4B)), EleutherAI (e.g. GPT-
NeoX (20B)), Google (e.g. UL2 (20B)), Meta (e.g. OPT (175B)), Microsoft/NVIDIA (e.g. TNLG v2
(530B)), OpenAI (e.g. davinci (175B)), Tsinghua University (GLM (130B)), and Yandex (YaLM (100B)).
Benchmarking these models is challenging given they vary in accessibility (see Liang et al., 2022): some
are open (e.g. GPT-NeoX (20B)), some are limited-access (e.g. davinci (175B)), and some are closed
(e.g. Anthropic-LM v4-s3 (52B)). In some cases, very little is known about how these models were built
(e.g. the training data and its size are often not known), such as text-davinci-002. What we do know
is that several of these models are deployed, either in external-facing commercial APIs (e.g. the OpenAI
playground) or products (e.g. GitHub Copilot). That is, several of these models are having direct social
impact at present. The absence of an evaluation standard compromises the community’s ability to clearly
and rigorously understand the overall landscape of language models. To demonstrate how uneven language
model evaluation has been, we annotated the datasets used to evaluate more than 40 language models (i.e.
all models evaluated in this work along with others like PaLM and Gopher) in Appendix F. We found major
models such as T5 (11B) and Anthropic-LM v4-s3 (52B) were not evaluated on a single dataset in common in
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Figure 4: Standardizing language model evaluation. Prior to our effort (top), the evaluation of
language models was uneven. Several of our 16 core scenarios had no models evaluated on them, and only
a few scenarios (e.g. BoolQ, HellaSwag) had a considerable number of models evaluated on them. Note
that this is cumulative: in the top plot, we not only document instances where the work introducing the
model evaluated on a given scenario, but any subsequent work evaluated the model on the scenario (e.g.
Tay et al. (2022a) in the paper on UL2 (20B) expanded the evaluation of T5 (11B) to include HellaSwag
and several other datasets) under any conditions (e.g. fine-tuning, 0-shot prompting, 5-shot prompting).
After our evaluation (bottom), models are now evaluated under the same conditions on many scenarios.

their original works (Raffel et al., 2019; Askell et al., 2021). In fact, several models (e.g. J1-Grande v1 (17B),
Cohere xlarge v20220609 (52.4B), YaLM (100B)) do not report any public results prior to our effort (to our
knowledge). And even for datasets that are frequently evaluated for across all 405 datasets evaluated in
major language modeling works (e.g. HellaSwag; many of the datasets within GLUE and SuperGLUE), we
find the evaluation conditions vary greatly. On HellaSwag, some prior work reports fine-tuned accuracies
(e.g. T5 (11B)), whereas others report prompting accuracies (e.g. davinci (175B)).4 Even when works report
results through few-shot prompting, the exact details can vary, which in §8.2: prompting-analysis we show
leads to wild swings in accuracies (e.g. 30% to 80% for the same (model, scenario); see Zhao et al. (2021)).

In Figure 4, we make explicit how our evaluation changes the status quo. Previously, on average models
were evaluated on 17.9% of our core scenarios, even after compiling evaluations dispersed across different
prior works. We improve this to 96.0%.5 By both evaluating these models on the same scenarios and by
conducting the evaluation under standardized conditions (e.g. using the same few-shot prompting for all
models), we facilitate direct head-to-head comparisons.

The importance of adaptation. To benchmark these models, we must specify an adaptation procedure
that uses the general-purpose language model to tackle a given scenario (see Bommasani et al., 2021, §4.3).
In this work, we adapt all language models through few-shot prompting, as pioneered by GPT-3 (Brown
et al., 2020). Furthermore, we opted to choose relatively simple, generic prompts in order to orient the

4We emphasize our objective in raising this point is not to suggest that any individual work has evaluated improperly. In
fact, for this case, few-shot prompting was not even popularized at the time of T5’s writing. But, nonetheless, these models are
evaluated under very different conditions (e.g. number of examples used in adaptation, ability to have white-box model access
to use gradients to update the model), even if they are nominally evaluated on the same scenario.

5The remaining 4.0% is due to technical issues with specific models that we document in §6: models.
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development of language models towards generic language interfaces that respond robustly to direct natural
language, rather than requiring model-specific incantations. Certainly stronger results could be obtained
from more sophisticated prompting (e.g. chain-of-thoughts; Wei et al., 2022c), prompt decomposition (Wu
et al., 2022; Press et al., 2022; Arora et al., 2022), and prompt-tuning (Lester et al., 2021; Li & Liang, 2021),
potentially leading to qualitatively different findings (Suzgun et al., 2022). The exploration of adaptation
strategies is another dimension of benchmarking which we leave to future work.

Caveats and considerations. Before presenting our empirical findings, we highlight three key consider-
ations. First, while we standardize model evaluation, in particular by evaluating all models for the same
scenarios, same metrics, and with the same prompts for 5-shot prompting, models themselves may be more
suitable for particular scenarios, particular metrics, and particular prompts/adaptation methods. To be ex-
plicit, while some models may perform poorly under our evaluation, they may perform well in other contexts.
Second, while the evaluation itself may be standardized, the computational resources required to train these
models may be very different (e.g. resource-intensive models generally fare better in our evaluation), which
is partially captured by our measurements of efficiency. Finally, models may also differ significantly in their
exposure to the particular data distribution or evaluation instances we use, with the potential for train-test
contamination. We emphasize that we have a limited understanding on how contaminated models are, and
to what extent this compromises the validity and legitimacy of our evaluation, though we do provide all
evidence we are aware of in Appendix G.

1.2 Empirical findings

To give a sense of the magnitude of our evaluation, we ran a total of 4,939 runs (i.e. evaluating a specific
model on a specific scenario). This amounts to a total cost of 12,169,227,491 tokens and 17,431,479 queries
across all models, $38,001 for the commercial APIs, and about 19,500 GPU hours worth of compute for the
open models.

Here is a summary of the high-level findings:

1. The benefits of instruction-tuning. Across the core scenarios, we find that text-davinci-002
performs best on our accuracy, robustness, and fairness metrics, with Anthropic-LM v4-s3 (52B)
being in the top 3 for all 3 metrics (despite being more than 10× smaller in model scale compared
to TNLG v2 (530B), which is the second most accurate and fair) as shown in Figure 26. Given
the very strong performance of both models, and that they are the only instruction-tuned models
we evaluate (beyond the much smaller OpenAI model variants), this suggests instruction-tuning
provides a broad set of advantages.

2. Relating model accuracy with model access. In light of the high accuracies of Anthropic-LM
v4-s3 (52B) (closed), TNLG v2 (530B) (closed), and text-davinci-002 (limited-access), we observe
a consistent gap on all core scenarios (Figure 28) between the current open models and non-open
models. We emphasize that this gap reflects the current snapshot of models we evaluate (Table 5),
and that the gap could grow or shrink over time as new models are released. On one hand, we see
the recent release of open models (OPT (175B), BLOOM (176B), GLM (130B)) as greatly reducing
the gap over the past year, but we also have not evaluated some non-open models (e.g. PaLM,
Gopher) that we expect to be quite accurate. In either case, monitoring this gap over time is crucial
for tracking the accessibility (or lack thereof) and ultimately the power dynamics associated with
language models.

3. Calibration. We observe that the relationship between accuracy and calibration (§4.4: metrics-
calibration) depends on the scenario and adaptation procedure (Figure 24, Figure 25). As an
example, for HellaSwag,6 improving accuracy worsens calibration, whereas for OpenBookQA,7
improving accuracy improves calibration.

6See https://crfm.stanford.edu/helm/v0.1.0/?group=hellaswag.
7See https://crfm.stanford.edu/helm/v0.1.0/?group=openbookqa.
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4. Robustness and fairness perturbations. Across all scenarios, we observe strong correlations
between accuracy, robustness, and fairness, where robustness and fairness metrics consider worst-case
accuracy over a set of perturbations (e.g. typos for robustness, dialect alteration for fairness)—see
§4.5: metrics-robustness, §4.6: metrics-fairness for more details. While there is a strong
correlation between accuracy and fairness (Figure 24, Figure 25), we do observe trade-offs where the
most accurate model is not the most robust or most fair. We also see serious drops in some cases:
for example, on NarrativeQA, TNLG v2 (530B) precipitously drops from 72.6% standard accuracy
(i.e. the third-most accurate model) to 38.9% accuracy in the presence of robustness perturbations.8

5. Performance disparities. When we have access to demographic metadata, we generally see
consistent performance disparities for all models. As an example of racialized dialect disparities,
OPT (175B) is the most accurate model on TwitterAAE but its accuracy degrades from 1.506 bits
per byte for White English to 2.114 bits per byte for African American English (lower is better).9

6. Generative harms. We find that the biases and toxicity in model generations are largely constant
across models and low overall on average for the core scenarios (Figure 24). However, note that even
low levels of bias or toxicity could cause non-trivial social harm, and targeted evaluations are needed
to obtain a more detailed characterization (§5.6: targeted-bias, §5.7: targeted-toxicity).

7. Accuracy vs. efficiency. We do not see a strong trade-off between accuracy and efficiency (which
depends on both the model architecture and the hardware, see §4.9: metrics-efficiency) across
all 30 models (Figure 24). For each family of models (e.g. different size variants of GPT-3), we
find that as models become larger, accuracy consistently improves but with higher training and
inference cost.10 Overall, we observe that only a subset of all models (across model families) are on
the accuracy-efficiency Pareto frontier for each scenario.

8. Question answering. Across the 9 core question answering scenarios (§3.3: questionAnswer-
ing), we observe significant heterogeneity in results, though text-davinci-002 is the most accurate
model for all 9 scenarios.11 In fact, for 6 of the 9 scenarios, there is no open model among the
three most accurate models, as generally they are text-davinci-002, Anthropic-LM v4-s3 (52B), and
TNLG v2 (530B) in descending order of accuracy.

9. Information retrieval. We consider the classic task of ranking candidate passages given a query
(§3.4: informationRetrieval). The best-performing models we evaluate outperform classical re-
trieval methods and under some settings perform comparably to various fine-tuned neural retrievers,
while nonetheless trailing the state of the art.12 Because the number of candidates could be large,
we create a LM request per passage, which requires the model to produce calibrated probabili-
ties. Our use of LMs for passage ranking is unorthodox, and computationally intensive in its naive
implementation, but we include it as a proof of concept.

10. Summarization. CNN/DailyMail and XSUM have been standard benchmarks for summa-
rization for many years, but we find that automated evaluations on these datasets largely fail to
discriminate differences we observed in model quality.

11. Sentiment analysis. For sentiment analysis on IMDB, many models are quite accurate and well-
calibrated with marginal drops on robustness and fairness perturbations, but the contrast sets of
Gardner et al. (2020) highlight clear limitations in model robustness (e.g. one of the most accurate
models in GLM (130B) drops by more than 8%).13

12. Toxicity detection. For toxicity detection on CivilComments, we find that most models are
not particularly accurate: OPT (175B) is one of the most accurate models across all scenarios

8See https://crfm.stanford.edu/helm/v0.1.0/?group=narrative_qa.
9See https://crfm.stanford.edu/helm/v0.1.0/?group=twitter_aae.

10See https://crfm.stanford.edu/helm/v0.1.0/?group=core_scenarios#Efficiency.
11See https://crfm.stanford.edu/helm/v0.1.0/?group=question_answering.
12See https://crfm.stanford.edu/helm/v0.1.0/?group=information_retrieval.
13See https://crfm.stanford.edu/helm/v0.1.0/?group=sentiment_analysis and https://crfm.stanford.edu/helm/v0.1.

0/?group=robustness_contrast_sets.
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(Figure 26), but achieves essentially chance accuracy at 50.1%.14 Critically, given the importance
of fairness in toxicity detection due the disparate impacts of content moderation, we find that
most models are similarly accurate for detecting toxicity in comments mentioning Black and White
individuals. However, models vary greatly in their robustness: OPT (175B) drops from 51.3%
standard accuracy to 8.8% robust accuracy on the Black split, whereas the drop is less precipitous
on the White split (50.8% to 24.3%).

13. Miscellaneous text classification. For text classification on RAFT, we see significant hetero-
geneity in which models do well on which subsets/tasks.15 text-davinci-002 is consistently accurate
across splits when compared with other models, but performs very poorly on the Systematic Re-
view Inclusion split with an accuracy of 40.8% compared to 97.5% from several models (e.g. GLM
(130B)).

14. Linguistic understanding. The trends in accuracy for language modeling16 are quite different
from the trends for the core scenarios (Figure 26) . In particular, GPT-NeoX (20B), OPT (175B),
BLOOM (176B), GPT-J (6B), and OPT (66B) consistently have the lowest bits-per-byte (lower is
better) on The Pile, TwitterAAE, and ICE. In terms of linguistic phenomena, all models perform
fairly similarly on BLiMP overall, and further perform very similarly even on each of the specific
subsets for morphology, syntax, semantics, and syntax-semantics. We see the widest spread on
irregular forms (morphology), where surprisingly the models that tend to be the most accurate for
core scenarios (i.e. text-davinci-002, TNLG v2 (530B)) are some of the least accurate for irregular
forms, perhaps suggesting they have overgeneralized particular linguistic rules.17

15. Knowledge. text-davinci-002 demonstrates superior performance for all knowledge-intensive eval-
uations,18 with a very sizable gap for accuracy on TruthfulQA of 62.0% compared to second place
of 36.2% from Anthropic-LM v4-s3 (52B).19 Further, TNLG v2 (530B) shows strong performance on
the highly knowledge-intensive NaturalQuestions (closed-book) and WikiFact scenarios, which
generally concurs with the hypothesis that model scale especially contributes to improvements in
acquisition of factual knowledge. For example, Anthropic-LM v4-s3 (52B) and TNLG v2 (530B)
tend to get very similar accuracies for most scenarios (as suggested by Figure 26), but TNLG v2
(530B) demonstrates a wide margin for these two scenarios (38.5% vs. 28.7% for NaturalQuestions
(closed-book), 34.3% vs. 22.3% for WikiFact).

16. Reasoning. For reasoning-intensive scenarios, we find that the code models, especially code-davinci-
002, consistently outperform the text models, even on synthetic reasoning scenarios posed in natural
language.20 This gap is made clear in mathematical reasoning: for GSM8K, code-davinci-002
achieves an accuracy of 52.1%, where the next best model is text-davinci-002 at 35.0% and no other
model surpasses 16%.21 Further, in addition to code-davinci-002, text-davinci-002 is much more
accurate than other text models (e.g. 65.1% accuracy on synthetic reasoning in natural language,
whereas the next most accurate text model is OPT (175B) at 29.4% accuracy, and code-davinci-002
has an accuracy of 72.7%).

17. Memorization of copyrighted/licensed material. We find that the likelihood of direct regur-
gitation of long copyrighted sequences is somewhat uncommon, but it does become noticeable when
looking at popular books.22 However, we do find the regurgitation risk clearly correlates with model
accuracy: text-davinci-002, davinci (175B), and Anthropic-LM v4-s3 (52B) demonstrate the highest
amount of verbatim regurgitation in line with their high accuracies.

14See https://crfm.stanford.edu/helm/v0.1.0/?group=civil_comments.
15See https://crfm.stanford.edu/helm/v0.1.0/?group=raft.
16See https://crfm.stanford.edu/helm/v0.1.0/?group=language#Accuracy.
17See https://crfm.stanford.edu/helm/v0.1.0/?group=blimp#phenomenon:%20irregular_forms.
18See https://crfm.stanford.edu/helm/v0.1.0/?group=knowledge#Accuracy.
19See https://crfm.stanford.edu/helm/v0.1.0/?group=truthful_qa. We note this is especially interesting given the pro-

jections of model accuracy by Evans et al. (2022), though we note our results are for 5-shot learning whereas their projections
are for 0-shot learning.

20See https://crfm.stanford.edu/helm/v0.1.0/?group=reasoning#Accuracy.
21See https://crfm.stanford.edu/helm/v0.1.0/?group=gsm.
22See https://crfm.stanford.edu/helm/v0.1.0/?group=copyright_text.
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18. Disinformation. We find that the largest models (particularly text-davinci-002 and Anthropic-LM
v4-s3 (52B)) are effective at generating realistic headlines that support a given thesis,23 but results
are more mixed when prompting models to generate text encouraging people to perform certain
actions (Table 8).24

19. Targeted biases. For BBQ, text-davinci-002 is the most accurate model by a very wide margin
(89.5% accuracy), with the next most accurate models (T0++ (11B), 48.4%; TNLG v2 (530B),
44.9%) being the only other models with accuracies above 40%. We highlight this because we
see a very striking relationship on BBQ between model accuracy and model bias for ambiguous
contexts. These three models, which are the three most accurate, are the only three models with
biases in ambiguous contexts that align with broader social biases/discrimination, whereas all other
models show biases in the other direction (Figure 40). In other words, we find that for BBQ the
most accurate models are precisely those that are most concerning for social biases in ambiguous
contexts, though the trends in disambiguated contexts are less clear.

20. Targeted toxicity generation. For the core scenarios, we observed the rate of toxicity generation
was quite low. Honing in on toxicity generation, all models show much stronger tendencies for
toxic generations for toxic prompts in RealToxicityPrompts, as compared to relatively non-toxic
prompts in both RealToxicityPrompts and BOLD.25 Understanding how these trends change
based on the automated toxicity detection model used (currently PerspectiveAPI), as well as when
human judgments from diverse stakeholders are used, is a key area for future work.

21. Comprehensiveness. By evaluating under unified conditions extensively, we expose findings lying
in plain sight. In other words, while in many cases we are evaluating models that are available
publicly on datasets that are available publicly, we nonetheless surface new findings. As an example,
we find text-davinci-002 achieves an accuracy of 74.4% ROUGE-L on NarrativeQA, which sets a
new state-of-the-art across all methods to our knowledge, in this case over the strong QA-specialized
UnifiedQA-v2 model (67.4% ROUGE-L; Khashabi et al., 2022).

22. Prompting. All models show significant sensitivity to the formatting of prompt, the particular
choice of in-context examples, and the number of in-context examples across all scenarios and for all
metrics (see §8.2: prompting-analysis). In this effort, we consistently work towards standardizing
these dimensions (e.g. to ensure models are interoperable/performant using the same prompting
practices), but current models differ in what prompting decisions would maximize accuracy.26

23. Multiple choice adaptation method. We find that model performance is extremely sensitive to
how multiple choice scenarios are adapted into prompts: for example, accuracy for OPT (175B) on
HellaSwag is 79.1% when each answer choice is presented in a separate 0-shot prompt (i.e. one of
the most accurate models), but drops precipitously to 30.2% (almost random accuracy) when the
answer choices are presented jointly in a single 5-shot prompt (i.e. in the format of a multiple-choice
exam).27 Further, even for the same scenario, the adaptation method that maximizes accuracy
can differ (and produce qualitatively different results) across models (Figure 33) . This poses a
fundamental challenge for what it means to standardize language model evaluation in a fair way
across models.

24. Upstream perplexity and downstream accuracy. Given the myriad scenarios where LMs
could provide value, it would be appealing for many reasons if upstream perplexity on language
modeling objectives reliably predicted downstream accuracy. Unfortunately, when making these
comparisons across model families, even when using bits-per-byte (BPB; which is more comparable
than perplexity), we find this type of prediction does not work well: BPB on The Pile is a poor
predictor of downstream accuracy (Figure 30) though we note some models are trained on The Pile
whereas others are not (Table 13). More broadly, given the many downstream results, we encourage

23See https://crfm.stanford.edu/helm/v0.1.0/?group=disinformation_reiteration.
24See https://crfm.stanford.edu/helm/v0.1.0/?group=disinformation_wedging.
25See https://crfm.stanford.edu/helm/v0.1.0/?group=harms#Toxicity.
26See https://crfm.stanford.edu/helm/v0.1.0/?group=ablation_prompts.
27See https://crfm.stanford.edu/helm/v0.1.0/?group=ablation_multiple_choice.
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future work to explore new intrinsic/upstream surrogate measures of performance that can be shown
to reliably predict downstream results (including for desiderata beyond accuracy) as discussed in
Bommasani et al. (2021, §4.4.2)

25. Trends for model scale. We find that model scale, within a model family, reliably predicts
model accuracy, but for no scenario is a good predictor of downstream accuracy across all models
(Figure 29). However, we see a very clear thresholding effect: all models that win head-to-head
model comparisons for accuracy at a rate well above chance (i.e. > 55%) are at least 50B parameters
(Figure 26). Of these models, which are the 10 most accurate models, some of the most accurate
(i.e. in the top 5) are the smallest (Anthropic-LM v4-s3 (52B), Cohere xlarge v20220609 (52.4B)).
Overall, scale seems to be a key determinant of accuracy, and scaling within a model family reliable
improves accuracy, but it might be inefficient compared to other means (e.g. training with human
feedback; compare TNLG v2 (530B) and Anthropic-LM v4-s3 (52B)).

1.3 Contributions

To summarize, our contributions are:

1. Taxonomy. We taxonomize the vast design space of language model evaluation into scenarios
and metrics. By stating this taxonomy, we can select systematically from this space, which makes
explicit both our priorities in benchmark design and the limitations in the benchmark at present
(see §10: missing).

2. Broad coverage. Given our taxonomy, we select and implement 16 core scenarios, for which
we comprehensively measure 7 metrics (accuracy, calibration, robustness, fairness, bias, toxicity,
efficiency). We also include 7 targeted evaluations of skills and risks (e.g. knowledge, reasoning,
disinformation, copyright), introducing 21 new scenarios that have not been previously used in
mainstream language model evaluation.

3. Evaluation of existing models. We evaluate 30 language models under the standardized condi-
tions of our benchmark, ensuring models can now be directly compared across many scenarios and
metrics. These models vary in terms of their public accessibility: 10 are open, 17 are limited-access,
and 3 are closed.

4. Empirical findings. Our extensive evaluation yields a host of findings (§8: experiments), which
in some cases reinforce findings in the literature and in others produce new knowledge about today’s
language models. These results offer guidance for future language model development and ample
opportunities for further analysis.

5. Interactive results and codebase. We provide a public website with all results, underlying model
predictions and adaptation details, along an extensible codebase to support the community in taking
HELM further.28

Acknowledging the prior work this effort builds on. To build our holistic evaluation of language
models, we directly build on top of many prior works. While we advocate for evaluating language models in
their totality, i.e. centralizing many disparate evaluations, we want to be explicit that the underlying works
across the AI community should be recognized and cited, as HELM would not exist in its current form
without them. In particular, if the results of HELM are used by future work or new models are evaluated on
HELM, they should cite the works that created the many datasets/evaluations that constitute HELM.29 For
this reason, we provide the BibTeX entries for all of these works in the codebase30 and explicitly acknowledge
the associated work for every evaluation on the website.31

28https://crfm.stanford.edu/helm/v0.1.0
29We take direct inspiration from and follow the precedent set by GLUE and SuperGLUE (Wang et al., 2019a;b); see

https://super.gluebenchmark.com/faq.
30https://github.com/stanford-crfm/helm
31https://crfm.stanford.edu/helm/v0.1.0
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Adaptation (prompting)

Figure 5: Evaluation components. Each evaluation run requires the specification of a scenario (what
we want), a model with an adaptation process (how we get it), and one or more metrics (how good are the
results).
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Figure 6: Scenario. An example of a multiple choice scenario from MMLU (subject=anatomy), which
consists of a list of instances, each with an input and a set of references.

2 Preliminaries

We introduce the basic primitives (scenario, adaptation, metric) required to evaluate a language model
(Figure 5). With these primitives, we then provide a roadmap for how we holistically evaluate language
models.

2.1 Scenarios

A scenario instantiates a desired use case for a language model. Useful language models are performant on a
variety of scenarios: scenarios are what we want models to do. While practical use cases for language models
involve other factors, we operationalize scenarios through a list of instances, divided into a training set and
one or more test sets. Each instance consists of (i) an input (a string) and (ii) a list of references. Each
reference is a string annotated with properties relevant for evaluation (e.g. is it correct or acceptable?). See
Figure 6 for an example scenario.

2.2 Adaptation

Adaptation is the procedure that transforms a language model, along with training instances, into a sys-
tem that can make predictions on new instances. Examples of adaptation procedures include prompting,
lightweight-finetuning, and finetuning; we focus on prompting in this work.

We define a language model to be a black box that takes as input a prompt (string), along with decoding
parameters (e.g. temperature). The model outputs a completion (string), along with log probabilities of the
prompt and completion. We do not assume access to the internal model activations or its training data,
which reflects the practical reality of API access available to researchers (Liang et al., 2022). In fact, we
do not even make any assumptions about how the language model is constructed. See Figure 7 for how we
adapt the example scenario from Figure 6.

Viewing language models as text-to-text abstractions is important for two reasons: First, while the prototyp-
ical LM is currently a dense Transformer trained on raw text, LMs could also use an external document store
(Lewis et al., 2020c), issue search queries on the web (Nakano et al., 2021), or be trained on human prefer-
ences (Ouyang et al., 2022; Bai et al., 2022). We wish to remain agnostic to these implementation details.
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The following are multiple choice questions (with answers) about 
anatomy.

Question: The pleura
A. have no sensory innervation.
B. are separated by a 2 mm space.
C. extend into the neck.
D. are composed of respiratory epithelium.
Answer: C

…

Question: Which of the following terms describes the body's ability 
to maintain its normal state?
A. Anabolism
B. Catabolism
C. Tolerance
D. Homeostasis
Answer: D   [log prob = -0.26]

Decoding parameters: temperature = 0, max tokens = 1, …

Question: Which of the following terms describes the body's ability 
to maintain its normal state? Anabolism  [log prob = -0.007]

Decoding parameters: temperature = 0, max tokens = 0, …

Question: Which of the following terms describes the body's ability 
to maintain its normal state? Homeostasis  [log prob = -0.005]

…

Figure 7: Adaptation. During adaptation, we construct a prompt for each evaluation instance which
may include in-context training instances as well. Given decoding parameters, a language model generates a
completion (in red). The multiple choice example is shown using two different adaptation strategies that we
describe subsequently, with left version being the joint strategy (all answer choices are presented at once)
and the right version being the separate strategy (each answer choice is presented separately).

Second, the text-to-text abstraction is a convenient general interface that can capture all the (text-only)
tasks of interest, an idea that was pioneered by McCann et al. (2018) and Raffel et al. (2019).

2.3 Metrics

Once a language model is adapted, we execute the resulting system on the evaluation instances for each
scenario, yielding completions with their log probabilities. To determine how well the model performs, we
compute metrics over these completions and probabilities. Metrics concretely operationalize the abstract
desiderata we require of useful systems. See §4: metrics for more details. The metrics we compute for our
running example (Figure 6) might look like this:

Exact match : 0.571
ECE (10-bin) : 0.221
Exact match (robustness) : 0.551
Exact match (fairness) : 0.524
Inference runtime : 0.147
...

2.4 Roadmap

To evaluate a language model, we must specify a series of runs, where each run is defined by a (scenario,
adaptation method, metric) triple. Each of these scenarios, adaptation, and metrics define a complicated
and structured space, which one implicitly navigates to make decisions in evaluating a language model.
Central to our approach to holistic evaluation is that we make both the space and the decision explicit.
In §3: core-scenarios and §4: metrics, we first taxonomize both spaces and then systematically select
points from the spaces. This specifies our abstract aspiration and our concrete implementation, which
together define HELM. Distinguishing these steps also helps clarify what is fundamentally possible vs. what
we, as a specific collective of benchmark designers, chose to prioritize and emphasize. Then, we evaluate 30
models by making a specific choice for adaptation procedure (i.e. 5-shot prompting), though we emphasize
many other adaptation procedures could be considered.

3 Core scenarios

We taxonomize scenarios as shown in Figure 8 based on (i) a task (e.g. question answering, summarization),
which characterizes what we want a system to do; (ii) a domain (e.g. a Wikipedia 2018 dump), which
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Figure 8: Scenario structure. Scenarios are what we want the language model to do. To specify a scenario,
we break it down into a task, domain, and language, further subdividing the domain into properties of the
text (what), speaker (who), and the time/circumstances (when). Examples of scenarios include (question
answering, (clinical notes, doctors, now), English) and (toxicity detection, (tweets, Egypt, Internet-era),
Arabic).

characterizes the type of data we want the system to do well on; and (iii) the language or language variety
(e.g. Spanish). Tasks, domains, and languages are not atomic or unambiguous constructs: they can be made
coarser and finer, but we use them as intuitive structure for the space of scenarios. Given this structure, we
deliberately select scenarios based on three overarching principles: (i) coverage of the space, (ii) minimality
of the set of selected scenarios, and (iii) prioritizing scenarios that correspond to user-facing tasks. Alongside
feasibility given our resources (which we explicitly acknowledge), this defines the core scenarios we evaluate
on, which we will measure all metrics on. In §10.1: missing-scenarios, we highlight regions of the scenario
space that we taxonomize but do not currently cover in our benchmark/scenario selection.

3.1 Taxonomy

Track Tasks
Computational Social Science and Cultural Analytics No canonical tasks/not task-centric
Dialogue and Interactive Systems Chit-chat dialogue, task-oriented dialogue
Discourse and Pragmatics Discourse parsing, sentence ordering, coreference resolution
Ethics and NLP Toxicity and hate speech detection, misinformation and fake news detection
Generation Data-to-text generation,
Information Extraction Named entity recognition, entity linking, entity extraction, relation extraction, event extraction, open information extraction
Information Retrieval and Text Mining Information retrieval and passage retrieval
Interpretability and Analysis of Models for NLP No canonical tasks/not task-centric
Language Grounding to Vision, Robotics and Beyond Image captioning, visual question answering, instruction following, navigation
Linguistic Theories, Cognitive Modeling, and Psycholinguistics No canonical tasks/not task-centric
Machine Learning for NLP Language modeling
Machine Translation and Multilinguality Machine translation
NLP Applications No canonical tasks
Phonology, Morphology, and Word Segmentation Tokenization, lemmatization,
Question Answering Question answering and reading comprehension
Resources and Evaluation No canonical tasks/not task-centric
Semantics: Lexical Word sense disambiguation, word sense induction
Semantics: Sentence-level Semantics, Textual Inference, and Other Areas Semantic parsing, natural language inference, semantic role labeling/slot filling, semantic textual similarity, paraphrase detection
Sentiment Analysis, Stylistic Analysis, and Argument Mining Sentiment analysis, style transfer, argument mining, stance detection, opinion mining, text simplification
Speech and Multimodality Text-to-speech, speech-to-text
Summarization Summarization, sentence compression
Syntax: Tagging, Chunking and Parsing POS tagging, chunking, constituency parsing, dependency parsing, grammar induction, grammatical error correction

Table 1: Taxonomy of tasks. To taxonomize the space of tasks, we leverage the NLP community’s
taxonomy of subareas as codified by the ACL 2022 list of tracks. For each track, we then expand it into
canonical tasks associated with that track.

Tasks. Given the ubiquity of natural language, the field of natural language processing (NLP) considers
myriad tasks that correspond to language’s many functions (Jurafsky & Martin, 2000). It is difficult to
derive a space of tasks from first principles, so we compile existing sources of tasks. Naturally, given NLP
is a task-centric field, we begin with tasks that have been extensively studied by the NLP community. To
generate this set, we take the tracks at a major NLP conference (ACL 2022), which reflect the “relevant
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Figure 9: Modern use cases for language models. An assortment of (largely novel/historically
unexplored) potential use cases for language models. Figure sourced from https://beta.openai.com/
examples/.

topics” of study in NLP at the time of writing.32 For each track, we map the associated subarea of NLP
to canonical tasks for that track in Table 1. We acknowledge there is some subjectivity in choosing what is
“canonical”, which was only done so as to make this process manageable.

While these tasks often have long traditions of study in the NLP research community, we make two obser-
vations: (i) these tasks often have important intra-task structure (e.g. we refer to all of question answering
as one “task”, whereas the QA community likely would further decompose QA into finer-grained categories
(Rogers et al., 2021)) and (ii) while these tasks have (long) traditions of study in NLP research, they are
not the only, or even the most societally/economically impactful, tasks.

For example, the deployment of language models as interfaces by OpenAI, Cohere, and AI21 Labs has
introduced use cases beyond what the NLP community has historically studied (see Figure 9 and compare to
Table 1). In fact, some of these tasks are fundamentally new: the advent of sufficiently capable technology
motivates the consideration of tasks that were not previously conceived (or conceived as within scope for
algorithmic systems). Further, these tasks pattern quite differently from what has been traditionally studied
in the NLP and AI research communities (see Ouyang et al., 2022). This introduces a fundamental challenge
to stating the space of tasks: we will not be able to conceive of the true full space of tasks until we see
technology that makes us consider these tasks. And, more broadly, even articulating (let alone covering) the
long tail of known potential use cases remains open.

Domains. Domains are a familiar construct in NLP, yet their imprecision complicates systematic coverage
of domains. We further decompose domains according to 3 W’s:

1. What (genre): the type of text, which captures subject and register differences. Examples:
Wikipedia, social media, news, scientific papers, fiction.

2. When (time period): when the text was created. Examples: 1980s, pre-Internet, present day (e.g.
does it cover very recent data?)

3. Who (demographic group): who generated the data or who the data is about. Examples: Black-
/White, men/women, children/elderly.

32www.2022.aclweb.org/callpapers
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World Languages 

Figure 10: The world’s languages. Only a tiny percentage of the world’s languages are currently
represented in language models. There are over 6,000 languages in the world, with estimates varying due to
the inherent uncertainty of what constitutes a separate language (Nordhoff & Hammarström, 2011). This
map shows the languages of the world, with each dot representing one language and its color indicating the
top-level language family. Data is from Glottolog (Hammarström et al., 2021). Figure and caption sourced
from Bommasani et al. (2021, §2.1).

We do not include where the text was created (e.g. country) and how it was created (e.g. hand-written,
typed, transcribed from speech or sign), but these may also be relevant. Further, why the text was created is
closely related to what it is. To be precise, textual data in the input to the language model (e.g. the question
or the passage, if available, in question answering) and the answer (e.g. the summary in summarization)
have associated domains that are not necessarily the same. For simplicity, we will assume a dataset has a
single domain corresponding to properties of its inputs, though it would be more precise to consider domains
associated with all aspects of the input and output.

Languages. The billions of people around the world speak thousands of different languages (see Figure 10).
However, in AI and NLP, the vast majority of work has centered on a few high-resourced languages (e.g.
English, Chinese), even including languages that have large speaker populations (e.g. there are more than
65 million speakers of Fula, a West African language, but few if any NLP resources exist for Fula; Nguer
et al., 2020). With this in mind, we do not extensively taxonomize the world’s languages, as we will focus on
predominantly evaluating English-only models (with a few exceptions like BLOOM (176B) that are clearly
multilingual but we evaluate only for English). Consequently, we instead turn our focus to coverage of
English varieties and dialects. In this regard, we note there are several axes of interest in linguistic typology
and sociolinguistics; we point to Bommasani et al. (2021, §2.1) and Joshi et al. (2020) for further discussion.

3.2 Selection

As a matter of coverage, ideally, we would evaluate a language model on every scenario (i.e. every (task,
domain) pair). However, as we demonstrate in our taxonomy, both tasks and domains themselves are rich and
expansive spaces. For this reason, rather than striving for coverage of scenarios, we instead aim for coverage
of tasks, domains, and languages each independently. This risks not exposing important interactions (e.g.
we may be especially interested in toxicity detection for text authored by marginalized groups (Sap et al.,
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2019a)), but is a decision we make for practical reasons (e.g. availability of datasets, effort to implement
scenarios, and computational resources to evaluate LMs on chosen scenarios).

Tasks. To select tasks, we begin with the set we described previously. Since we are studying English
language models, we filter infeasible tasks (e.g. multimodal tasks or machine translation are not suitable
for unimodal English language models).33 Of the remaining tasks, we elect to prioritize user-facing tasks:
we believe these tasks will confer much of the direct social impact of language models and aligns with our
perspective of language models as interfaces. Consequently, we filter tasks based on our judgments of what
is user-facing.34 This yields the following tasks: question answering, information retrieval, summarization,
sentiment analysis, and toxicity detection.35 And to provide some coverage of the long tail of tasks, we
include miscellaneous text classification, which represents the non-standard text classification use cases for
language technologies historically and at present for language models.

Domains and Languages. Given that we found it more complicated to arrive at an explicit enumera-
tion of domains compared to tasks,36 we instead focus on domain coverage during our selection of specific
datasets to instantiate scenarios. Similarly, we ensure coverage of the English varieties of different English-
speaking countries as well as African American English through targeted evaluations that we discuss in
§5.1: language. In doing so, we also demonstrate our desire for a minimal set of evaluations (both because
evaluations have costs, so larger sets will be more unwieldy, and producing more results often comes at the
cost of clarity on how to sift through them). With this in mind, we emphasize that for large regions of the
scenario space, specifically in relation to domains (e.g. scenarios involving text written by elderly speakers),
there exist very few, if any, datasets in NLP. We hope the community can build on our work by ensuring
greater coverage of the domains and scenarios we did not cover in our benchmark by building the necessary
and oft-undervalued resources (Jo & Gebru, 2020; Paullada et al., 2021; Rogers, 2021; Jernite et al., 2022).
To facilitate this, we explicitly identify specific scenarios that we recommend prioritizing in §10.1: missing-
scenarios. We also note that there is more to a dataset than just these axes, which determine how well it
operationalizes the desired use case (e.g. the quality of crowd-sourced labels in the dataset). Having settled
on the tasks we will cover and our approach to domain/language coverage, we detail how we selected the
particular datasets for each scenario.

3.3 Question answering

Question answering (QA) is a fundamental task in NLP that underpins many real-world applications in-
cluding web search, chatbots, and personal assistants. QA is very broad in terms of the questions that can
be asked and the skills that are required to arrive at the answer, covering general language understanding
(§5.1: language), integration of knowledge (§5.2: knowledge), and reasoning (§5.3: reasoning) (Gardner
et al., 2019; Rogers et al., 2021).

Problem setting. In QA, given a question (e.g. “Where was the painter of the Mona Lisa born?”), the
task is to predict the correct answer (“Italy”). The format of question answering may have some variations: in
the open-book or reading comprehension setting, additional context to refer to, such as supporting documents

33We do note that various works have shown these models can achieve nontrivial performance on multimodal tasks (with
modalities beyond text) and on other languages (especially as some of these models, most notably BLOOM (176B), GLM
(130B), and YaLM (100B) are trained on sizable datasets in other languages). With that said, we expect that multimodal
or multilingual approaches would be more appropriate to achieve reasonable performance for these tasks compared to these
models, so we defer such evaluation to future work.

34We emphasize that this does not mean we believe the other tasks are less important nor that they should not be evaluated
for in future work.

35We note that our interpretation of what is user-facing namely excludes tasks that are generally not the subject of applications
(e.g. natural language inference) as well as many classical NLP tasks that served as intermediaries (Jurafsky & Martin, 2000)
in traditional NLP pipelines (e.g. named entity recognition, part-of-speech tagging, syntactic parsing, information extraction).
We also do not study interactive tasks such as dialogue, which will be discuss in forthcoming companion work associated with
this effort (Lee et al., Forthcoming).

36Though we note this could be attempted by proposing a taxonomy for each of the 3 W’s we consider and then taking the
resulting Cartesian product.
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Figure 11: Example of question answering. An example instance for question answering from MMLU.
Different QA scenarios can have significantly different properties, but this example captures the overall
structure of question answering.

(e.g. Wikipedia page of “Mona Lisa”), is given to the model. In the multiple-choice setting, answer choices
to choose from (e.g. “(A) France (B) Italy”) are given to the question. Figure 11 depicts an example.

Datasets and selection process. There are hundreds of question-answering datasets available in NLP,
with a rapid increase in the number of datasets in recent years (Rogers et al., 2021). To select question-
answering datasets, we prioritized (i) domain coverage, in terms of the domain of the inputs/contexts and
(ii) coverage of component skills required for the datasets (e.g. we deliberately ensured of datasets that
required commonsense knowledge and reasoning).

We selected the NaturalQuestions (Kwiatkowski et al., 2019), NarrativeQA (Kočisky et al., 2017), and
QuAC (Choi et al., 2018) datasets to ensure domain coverage as these datasets cover web search queries,
stories, and conversational questions (i.e. dialogue) respectively. NaturalQuestions consists of questions
from queries to Google search and annotations from Wikipedia; we consider both open-book and closed-book
variants of NaturalQuestions. NarrativeQA tests reading comprehension through the understanding of
books and movie scripts. QuAC (Question Answering in Context) provides freeform questions and answers
which are more open-ended and dependent on context.

To these, we add the HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), and Truth-
fulQA (Lin et al., 2021b) datasets to ensure coverage of commonsense knowledge and reasoning. Hel-
laSwag tests commonsense inference and was created through adversarial filtering to synthesize wrong
answers. OpenBookQA is based on open book exams, with a collection of basic science facts and
crowd-sourced multiple-choice questions to test understanding and application of these facts. Truth-
fulQA tests model truthfulness through questions that align with common human misconceptions, spanning
law, medicine, finance, and politics, among others, that were adversarially generated using davinci (175B)
as the target model.

To further ensure broad coverage of knowledge-intensive question answering across many disciplines, we add
the MMLU (Hendrycks et al., 2021c) meta-benchmark of 57 constituent datasets. MMLU (Measuring
Massive Multitask Language Understanding) measures multitask accuracy and includes a diverse set of 57
tasks, testing problem solving and general knowledge.

Finally, we add BoolQ (Clark et al., 2019) which, in addition to QuAC, was used to study model robustness
to equivariances due to the available contrast set (Gardner et al., 2020). BoolQ is a collection of binary
yes/no questions generated through the same process as NaturalQuestions.

3.4 Information retrieval

Information retrieval (IR), which refers to the class of tasks concerned with searching large unstructured
collections (often text collections), is central to numerous user-facing applications. IR has a long tradition of
study (Salton & Lesk, 1965; Salton, 1971; Spärck Jones, 1972; Salton & McGill, 1983; Manning et al., 2008;
Lin et al., 2021a) and is one of the most widely deployed language technologies. It powers the Web and e-
commerce search, and serves as a key component in many knowledge-intensive NLP systems for open-domain
question answering or fact checking.
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Instance

Passage: Passiflora herbertiana. A rare passion 
fruit native to Australia. Fruits are green-skinned, 
white fleshed, with an unknown edible rating…

Query: what fruit is native to australia

Does the passage answer the query?

Answer: Yes/No

Scenario: MS MARCO

https://arxiv.org/pdf/2104.08663v4.
pdf

Input: how much does a spectacled bear weigh

References:
● Male spectacled bears … weigh from 120 to 

340 pounds… [rank=1]
● Spectacled Bear Description. Spectacled 

Bears are generally smaller … [rank=2]
● The panda's closest relative is the 

spectacled bear … [rank=3]
● …

Scenario: MS MARCO

https://nlp.stanford.edu/helm/current/?suite=v7&group=ms
marco_regular&subgroup=track%3A%20regular%2C%20v
alid_topk%3A%2030&runSpecs=%5B%22msmarco%3Atra
ck%3Dregular%2Cvalid_topk%3D30%2Cmodel%3Dai21_j
1-jumbo%2Cdata_augmentation%3Dcanonical%22%5D

Figure 12: Example of information retrieval (passage ranking). An example instance for information
retrieval from MS MARCO.

We focus here on the passage ranking task: given a query q and a large corpus C of passages, systems
must output a list of the top-k passages from C in decreasing “relevance” to q. We specifically study this
in the context of re-ranking: since C is typically extremely large (e.g. |C| > 10M passages), we consider
only ranking the top-k passages among a set retrieved for q (i.e. M(q) where |M(q)| ≪ |C|) by an efficient
external retrieval mechanism (e.g. BM25; Robertson & Zaragoza, 2009).

IR differs fundamentally from the other tasks we consider in this work, as each test example (i.e. a query)
entails processing a large set of passages and will likely invoke the LM numerous times to do so.37 Because
of this, IR tasks have received very little attention in the few-shot in-context learning with language models,
with the exception of the recent zero-shot approach by Sachan et al. (2022).

Problem setting. We address the re-ranking task in a pointwise fashion: we formulate the information
retrieval problem using prompting as a binary log-probability problem, similar to Nogueira & Cho (2019):
Given a passage ci and a query q, we ask the model whether the passage contains an answer to the query. If
the model’s answer is Yes with a high probability, we rank the corresponding ci higher, while the No answer
with high probability achieves the opposite. Figure 12 depicts an example instance. The rankings produced
are then evaluated using standard information retrieval metrics.

Datasets and selection process. We demonstrate the information retrieval task using the MS MARCO
ranking datasets. While it is originally a question answering task, the retrieval version of MS MARCO is
the largest publicly available collection of relevance judgments and has been central to much of the progress
in neural IR over the past several years (Lin et al., 2021a).

We use the original passage ranking dataset accompanying the public MS MARCO leaderboard38 (Nguyen
et al. 2016; henceforth, the regular track) and the dataset from the TREC 2019 Deep Learning track
(Craswell et al. 2020; henceforth, the TREC track). Both datasets evaluate retrieval out of a collection of
9M passages from the Web. The regular track contains a large number of queries (e.g., over 500,000 training
set queries) with sparse relevance judgments: on average, annotators identify only one “positive” (relevant)
passage for each query, and every other passage is assumed to be a negative. In contrast to this, the TREC
track contains only 43 queries that are more rigorously annotated, with over 9,000 query–passage pairs with
associated relevance judgments corresponding to the 43 queries.

3.5 Summarization

Text summarization is an established research direction in NLP (Luhn, 1958; Mani, 1999; Spärck Jones,
1999; Nenkova & McKeown, 2012), with growing practical importance given the ever-increasing volume of
text that would benefit from summarization. To effectively summarize, systems must identify and yield
the core relevant and informative content in the source document while removing less critical information
and avoiding redundancy (Peyrard, 2019). The rise of language models in recent years has dramatically

37Effectively, this means that model outputs come from a very large combinatorial space: they are much more constrained
than open-ended generation tasks but much less so than standard classification tasks, setting this scenario apart from many
others in terms of its automatic evaluation.

38https://microsoft.github.io/msmarco/
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Figure 13: Example of summarization. An example instance for summarization from CNN/DailyMail.
Different summarization scenarios can have significantly different properties, but this example captures the
overall structure of summarization.

improved summarization capabilities: the ability to generate fluent and coherent human-like text serves as
a core primitive towards building better summarization systems (Lewis et al., 2020b; Zhang et al., 2019b).

Problem setting. We formulate text summarization as an unstructured sequence-to-sequence problem,
where a document (e.g. a CNN news article) is the input and the LM is tasked with generating a summary
that resembles the reference summary (e.g. the bullet point summary provided by CNN with their article).
Figure 13 provides an example. This evaluation tests the abstractive summarization capabilities of the model,
where the model is directly required to generate the summary rather than being explicitly constrained to
copying words or larger extracts from the input document.

To evaluate model performance, the model-generated summary is compared against a human-authored ref-
erence summary using automated metrics for overall quality (ROUGE-2; BERTScore; Lin, 2004; Zhang et al.,
2020b), faithfulness (Laban et al., 2022; Fabbri et al., 2022), and extractiveness (Grusky et al., 2018). Faith-
fulness refers to whether all the information in the model summary is supported by the article (Cao et al.,
2018; Durmus et al., 2020; Maynez et al., 2020). Extractiveness refers to the extent to which model summaries
involving copying from the input document: the distinction between extractive and abstractive approaches
has been widely discussed in the summarization literature (see Nenkova & McKeown, 2012). We compute
extractiveness since prior work has shown that current summarization systems tend to be less faithful, on
average, whenever they extract less (Durmus et al., 2020; Mrini et al., 2021; Ladhak et al., 2022).

We pay special attention to faithfulness as neural models in particular often hallucinate content that diverges
from what appears in the document being summarized. Consequently, it is important to measure and
improve the faithfulness of these systems since unfaithful systems may be harmful by potentially spreading
misinformation, including dangerous, yet hard to detect errors, when deployed in real-world settings. We
evaluate the LMs using recently proposed reference-free evaluation metrics that have been shown to get high
correlations with human scores for faithfulness (Laban et al., 2022; Fabbri et al., 2022). We note recent
work has shown that some reference-free evaluation metrics may be mostly relying on spurious correlations
(Durmus et al., 2022).

Datasets. There is a growing collection of summarization datasets, including datasets that capture finer-
grained and more specific summarization functions (e.g. summarizing multiple documents or conditional
on a user query). Bommasani & Cardie (2020) show that there is significant diversity in summarization
datasets along several axes, which makes selecting a few datasets to represent summarization rather chal-
lenging. Since we are especially interested in model faithfulness in this work (as this is a known failure mode
of other neural approaches to summarization), we select the CNN/DailyMail (Hermann et al., 2015a)
and XSUM (Narayan et al., 2018) datasets, which are the most well-studied datasets in the literature
on summarization faithfulness. This also ensures domain coverage of news-type data. Importantly, these
datasets differ along a central axis studied in summarization: XSUM is a dataset with largely abstractive
reference summaries (meaning the string overlap between the document and its summary in the dataset is
relatively small on average), whereas CNN/DailyMail is a dataset with largely extractive reference sum-
maries. However, these datasets do not suffice in representing the full diversity of summarization, and we
encourage future work to expand on our benchmark along this axis (e.g. add datasets from domains beyond
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Figure 14: Example of sentiment analysis. An example instance for sentiment analysis from IMDB.

news), particularly towards domains where there is greater demand for summaries (see Reiter, 2022). And
we especially highlight that these two datasets have been the subject of critique, and that broader change
is required for dataset and evaluation design in summarization and natural language generation (Gehrmann
et al., 2022b; Reiter, 2022).

3.6 Sentiment analysis

Sentiment analysis is an iconic task in NLP (see Jurafsky & Martin, 2000, §4) that has led to widespread
deployment in finance, health, social media, with applications in many sectors in relation to customer reviews
of products and services (Pang & Lee, 2008). Since its popularization by Turney (2002) and Pang et al.
(2002), sentiment analysis has blossomed into its own subarea in the field with many works broadening
and deepening the study of sentiment from its initial binary text-classification framing (Wiebe et al., 2005;
McAuley et al., 2012; Socher et al., 2013; Nakov et al., 2016; Potts et al., 2021).

Problem setting. Given an input sequence (e.g. “Caddyshack II does NO justice for the caddysack. thin
plot . . .movie should have been destroyed when the script was written.”), the goal of sentiment analysis is
to predict the sentiment label (“Negative”). Figure 14 provides an example.

Datasets and selection process. Numerous datasets have been put forth for sentiment analysis, includ-
ing increasingly fine-grained and complex datasets in recent years (cf. Potts et al., 2021). Of these, only
for practical reasons due to engineering resources to implement scenarios, we elected to only include one
sentiment analysis dataset. Of the available sentiment analysis datasets, we selected the IMDB dataset
(Maas et al., 2011), as it had the unique resource of a contrast set (Gardner et al., 2020), which enables
the measurement of robustness to equivariances (which we found difficult to measure otherwise). IMDB is
constructed from IMDB movie reviews, where users rate movies from 1–10. These ratings are discretized to
a binary space, with reviews with a score at most 4 being labeled negative and reviews with a score at least
7 being labeled positive. As discussed in Potts et al. (2021), we emphasize that sentiment analysis is more
diverse and can be more complex: we encourage future work to expand on our benchmark along this axis
(e.g. add datasets from domains where sentiment analysis is actively deployed).

3.7 Toxicity detection

Toxicity detection (and the related tasks of hate speech and abusive language detection) is the task of
identifying when input data contains toxic content, which originated due to the need for content moderation
on the Internet (Schmidt & Wiegand, 2017; Rauh et al., 2022). Automated detection of toxic content has
become increasingly critical to content moderation policies at major companies and social media platforms
such as Meta, Twitter, and Reddit, including recent deployments that center language models.39 However,
both the task’s framing and the deployment of automated systems for the task has been the subject of intense
debate: critiques of the task have noted that (i) the study of toxicity is overly reductive and divorced from
use cases (Diaz et al., 2022), (ii) standard datasets often lack sufficient context to make reliable judgments
(Pavlopoulos et al., 2020; Hovy & Yang, 2021), and (iii) the construct of toxicity depends on the annotator
(Sap et al., 2019a; Gordon et al., 2022). Ultimately, specific definitions of toxicity can be sensitive to social

39https://ai.facebook.com/blog/how-facebook-uses-super-efficient-ai-models-to-detect-hate-speech/
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Instance

Input passage: Russ Newell please show me 
where the K12 education has been "gutted". 
Simply preposterous.

Is the passage above toxic? Toxic

Scenario: CivilComments

Input: Russ Newell please show me where the 
K12 education has been "gutted". Simply 
preposterous.

References:
● True [correct]
● False

Scenario: CivilComments

Figure 15: Example of toxicity detection. An example instance for toxicity detection from CivilCom-
ments.

group membership as well as notions of social status and privilege, such that their interpretation causes
disproportionate impact to members of marginalized groups (Welbl et al., 2021).

We emphasize that the stakes for toxicity detection are as high as they can be. Failures in content moderation
due to failures in toxicity detection have contributed to serious human rights violations (such as the Rohingya
genocide in Myanmar; Stecklow, 2018; BSR, 2018; Council, 2018) and have put democracies around the world
under stress (Persily & Tucker, 2020). Some of these failures have been attributed to an absence of human
moderators with sufficient linguistic and cultural competence in the countries and communities where risks
of ethnic conflict arise. Given language models’ subpar performance in languages that are not dominant in
the field of machine learning, there is a legitimate concern that automated moderation could exacerbate the
problem.

Problem setting. Akin to sentiment analysis, for toxicity detection we consider the binary classification
problem of determining whether the input sequence (e.g. “Russ Newell please show me where the K12
education has been ‘gutted’. Simply preposterous.”) is or is not toxic. We directly ask the model to
determine if the text is toxic by prompting with “Question: Is the passage above toxic?”, where we use the
term “toxic” to match the classification category used to label the data. An example is provided in Figure 15.

Datasets and selection process. In recent years, a growing collection of toxicity detection datasets has
emerged. Of these, we choose the CivilComments dataset (Borkan et al., 2019b) from the WILDS bench-
mark (Koh et al., 2021). Specifically, when compared with other comparable toxicity detection datasets, the
dataset includes metadata annotations on the data subjects that are mentioned in the text (and, therefore,
the recipients of toxicity). This allows us to measure performance disparities with respect to several demo-
graphic groups and categories that was otherwise difficult, which is especially important given the subjective
nature of toxicity (Sap et al., 2019a; Gordon et al., 2022). CivilComments uses comments from the Civil
Comments platform from 2015–2017, with comments drawn from 50 English-language news sites across the
world.

3.8 Miscellaneous text classification

Text classification and categorization refers to the family of NLP tasks where an input sequence (e.g. sen-
tence, document) is assigned a label. Text classification has a long history in NLP (see Yang & Pedersen,
1997; Yang, 1999; Joachims, 1998; Aggarwal & Zhai, 2012) with tasks such as language identification, senti-
ment analysis, topic classification, and toxicity detection being some of the most prominent tasks within this
family. However, beyond these prominent tasks, there is a long and growing tail of miscellaneous text clas-
sification tasks with use cases throughout society.40 While not all of these tasks have established traditions
and literatures in academia, we expect these tasks comprise an important class of evaluations for assessing
the practical utility of language models.

Problem setting. Akin to sentiment analysis, the input will be a text sequence (e.g. “Query: I withdrew
cash and I think the exchange rate is wrong.”) and the output will be a categorical label (“wrong exchange
rate for cash withdrawal”) that the model is expected to directly predict. Unlike sentiment analysis and

40See https://openai.com/blog/gpt-3-apps/.
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Instance

Input query: Why am I getting declines when 
trying to make a purchase online?

77 categories of banking customer service:
● 1. Refund_not_showing_up
● …
● 29. Declined_transfer [correct]
● …

Scenario: RAFT(subject=Banking77)

https://crfm-models.stanford.edu/static/benchmarking.html?suite=v7&runSpecs=%5B%22raft%3Asubset%3Dbank
ing_77%2Cmodel%3Dai21_j1-jumbo%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3D
banking_77%2Cmodel%3Dai21_j1-grande%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubse
t%3Dbanking_77%2Cmodel%3Dai21_j1-large%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asu
bset%3Dbanking_77%2Cmodel%3Dopenai_davinci%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft
%3Asubset%3Dbanking_77%2Cmodel%3Dopenai_curie%2Cdata_augmentation%3Dcanonical%22%2C%20%22
raft%3Asubset%3Dbanking_77%2Cmodel%3Dopenai_babbage%2Cdata_augmentation%3Dcanonical%22%2C
%20%22raft%3Asubset%3Dbanking_77%2Cmodel%3Dopenai_ada%2Cdata_augmentation%3Dcanonical%22%
2C%20%22raft%3Asubset%3Dbanking_77%2Cmodel%3Dopenai_text-davinci-002%2Cdata_augmentation%3Dc
anonical%22%2C%20%22raft%3Asubset%3Dbanking_77%2Cmodel%3Dopenai_text-curie-001%2Cdata_augme
ntation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dbanking_77%2Cmodel%3Dopenai_text-babbage-001
%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dbanking_77%2Cmodel%3Dopenai_t
ext-ada-001%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dbanking_77%2Cmodel%
3Dcohere_xlarge-20220609%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dbanking_
77%2Cmodel%3Dcohere_large-20220720%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubse
t%3Dbanking_77%2Cmodel%3Dcohere_medium-20220720%2Cdata_augmentation%3Dcanonical%22%2C%20
%22raft%3Asubset%3Dbanking_77%2Cmodel%3Dcohere_small-20220720%2Cdata_augmentation%3Dcanonic
al%22%2C%20%22raft%3Asubset%3Dbanking_77%2Cmodel%3Danthropic_stanford-online-all-v4-s3%2Cdata_a
ugmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dbanking_77%2Cmodel%3Dtogether_bloom%2C
data_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dbanking_77%2Cmodel%3Dtogether_glm
%2Cdata_augmentation%3Dcanonical%2Cstop%3Dhash%22%2C%20%22raft%3Asubset%3Dbanking_77%2C
model%3Dtogether_gpt-j-6b%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dbanking
_77%2Cmodel%3Dtogether_gpt-neox-20b%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubse
t%3Dbanking_77%2Cmodel%3Dtogether_opt-66b%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3
Asubset%3Dbanking_77%2Cmodel%3Dtogether_opt-175b%2Cdata_augmentation%3Dcanonical%22%2C%20%
22raft%3Asubset%3Dbanking_77%2Cmodel%3Dtogether_t5-11b%2Cdata_augmentation%3Dcanonical%2Cstop
%3Dhash%22%2C%20%22raft%3Asubset%3Dbanking_77%2Cmodel%3Dtogether_ul2%2Cdata_augmentation
%3Dcanonical%2Cstop%3Dhash%22%2C%20%22raft%3Asubset%3Dbanking_77%2Cmodel%3Dtogether_t0pp
%2Cdata_augmentation%3Dcanonical%2Cstop%3Dhash%22%2C%20%22raft%3Asubset%3Dbanking_77%2C
model%3Dtogether_yalm%2Cdata_augmentation%3Dcanonical%22%5D&scenarioDisplayName=RAFT%20%28
Real-world%20Annotated%20Few-Shot%29%20%2F%20subset%3A%20banking_77&scenarioDescription=The
%20Real-world%20annotated%20few-shot%20%28RAFT%29%20meta-benchmark%20of%2011%20real-world%
20text%20classification%20tasks%20%28Alex%20et%20al.%2C%202021%29.#instances

Input: Why am I getting declines when trying to 
make a purchase online?

References:
● Refund_not_showing_up
● Activate_my_card
● Declined_transfer [correct]
● …

Scenario: RAFT(subject=Banking77)

Figure 16: Example of miscellaneous text classification. An example instance for miscellaneous text
classification from RAFT (subset=Banking77).

toxicity detection, since the tasks do not necessarily correspond to a term and may be more complex (e.g.
classify banking customer service queries), we provide further instructions that designate the task (e.g.
identify the text is a banking customer service query and the model should classify it into one of the 77
provided categories). An example is provided in Figure 16.

Datasets and selection process. Unlike other tasks, essentially by construction, it is near-impossible to
enumerate, let alone represent, all the non-standard text classification tasks that are useful. For this reason,
we turn to RAFT (Alex et al., 2021), which is a collection of 11 ecologically-valid tasks with real appli-
cations: adverse drug effect detection (ADE), banking customer service query classification (Banking77),
harmful applications detection in NeurIPS impact statements (NeurIPS), classification of level of adult En-
glish (OneStopEnglish), detection of overruling in legal statements (Overruling), institution classification of
semiconductor organizations (Semiconductor), classification of papers that advance past screening for char-
itable donations (SystematicReview), classification of transformative artificial intelligence research (TAI),
detection of unfair terms of service (ToS), hate speech detection of Tweets (TweetEvalHate), and complaint
detection in Tweets (TweetComplaints). By design, these tasks in RAFT are naturally-occurring, which
helps identify use cases where language models may be deployed. Since the labels for the full test set are
private, we hold out a subset of the public training set for evaluation.

4 General metrics

To taxonomize the space of desiderata, we begin by enumerating criteria that are sought after for useful
systems. More precisely, these specify categories or families of metrics (e.g. the category of accuracy
contains several specific metrics/quantitative functions such as exact match and F1-score). From these
categories, we further taxonomize based on the requirements needed to appropriately measure the construct
(e.g. interpretability generally requires more than blackbox access to a model). Given this fine-grained
taxonomy, we select all metrics where we can satisfy the requirements for all of the models we evaluate
in this work (e.g. no assumption of knowledge about a broader context that situates the model). To
operationalize the selected desiderata as quantitative metrics, we emphasize that we prioritize scalability:
we measure these desiderata whenever possible, which means our measurement is agnostic to the specifics of
each scenario. For example, to broaden the scenarios where we measure fairness, instead of assuming access
to demographic information, which is not available for most datasets, we instead consider perturbation-based
methods which allow for broader coverage possibly at the cost of specificity/acuity of the measurements.

4.1 Taxonomy

What does it mean for a system to be useful? Too often in AI, this has come to mean the system should
be accurate in an average sense. While (average) accuracy is an important, and often necessary, property
for a system (Raji et al., 2022), accuracy is often not sufficient for a system to be useful/desirable. As a
community grounded in a plurality of values, we should determine system performance by considering how
systems profile along these many axes.

To enumerate a set of desiderata, akin to our set for tasks, we began by considering desiderata studied
in the NLP community. Unfortunately, while many of the desiderata we independently came up with are
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well-studied by the NLP community, some are not codified in specific tracks/areas (e.g. uncertainty and
calibration). Therefore, we expanded our scope to all AI conferences, drawing from a list of AI conference
deadlines.41 For brevity, we chose to exclude venues associated with other modalities beyond language
(namely computer vision and robotics venues among others), though we did survey these venues as well.

Venue Desiderata
ACL, EMNLP, NAACL, LREC . . . accuracy, bias, environmental impact, explainability, fairness, interpretability, linguistic plausibility, robustness

sample efficiency, toxicity, training efficiency
SIGIR accuracy, bias, explainability, fairness, inference efficiency, privacy, security, user experience/interaction
NeurIPS, ICML, ICLR, . . . accuracy, fairness, interpretability, privacy, robustness, sample efficiency, theoretical guarantees, training efficiency

uncertainty/calibration, user experience/interaction
AAAI accountability, accuracy, bias, causality, creativity, emotional intelligence, explainability, fairness, interpretability

memory efficiency, morality, privacy, robustness, sample efficiency, security, theoretical guarantees, transparency
trustworthiness, uncertainty/calibration, user experience/interaction

COLT, UAI, AISTATS accuracy, causality, fairness, memory efficiency, privacy, sample efficiency, theoretical guarantees, training efficiency
The Web Conference (WWW), ICWSM accessibility, accountability, accuracy, bias, credibility/provenance, fairness, inference efficiency, legality, privacy, reliability

robustness, security, transparency, trustworthiness, user experience/interaction
FAccT causality, explainability, fairness, interpretability, legality, oversight, participatory design, privacy, security

transparency, user experience/interaction
WSDM accountability, accuracy, credibility/provenance, explainability, fairness, inference efficiency, interpretability

privacy, robustness, toxicity, transparency, trustworthiness, user experience/interaction
KDD accuracy, explainability, fairness, inference efficiency, interpretability, maintainability, memory efficiency, privacy

robustness, training efficiency
Union accessibility, accountability, accuracy, bias, causality, creativity, credibility/provenance, emotional intelligence

environmental impact, explainability, fairness, inference efficiency, interpretability, legality
linguistic plausibility, maintainability, memory efficiency, morality, oversight, participatory design, privacy
reliability, robustness, sample efficiency, security, theoretical guarantees, toxicity, training efficiency
transparency, trustworthiness, uncertainty/calibration, user experience/interaction

Table 2: Enumeration of desiderata. To enumerate the space of desiderata, we first compile a list of
venues from https://aideadlin.es/. For each venue, we enumerate desiderata that are well-studied in
that community.

Category Desiderata
Requires knowledge of how model was created causality, environmental impact, linguistic plausibility, memory efficiency, participatory design, privacy

sample efficiency, training efficiency, theoretical guarantees
Requires the model have specific structure credibility/provenance, explainability
Requires more than blackbox access interpretability
Require knowledge about the broader system maintainability, reliability, security, transparency
Requires knowledge about the broader social context accessibility, accountability, creativity, emotional intelligence, legality, morality, oversight

trustworthiness, user experience/interaction
Satisfies our conditions (i.e. none of the above) accuracy, bias, fairness, inference efficiency, robustness, toxicity, uncertainty/calibration

Table 3: Taxonomy of desiderata. To taxonomize the space of desiderata, we categorize each desideratum
based on the requirements needed to properly measure it.

For each conference, we looked at the call for papers or any lists of areas of study: we map the listed
areas to desiderata studied in the associated community (Table 2). The union of all the desiderata listed
is the space of desiderata we consider, and comprehensively outlines the many dimensions required to truly
achieve performant systems. As with scenarios, we recognize there may be desiderata that have not been
traditionally studied at any of these venues: this is why we made sure to cast a wide net in sources for
desiderata, and we believe that at the level of desiderata, we likely do have strong coverage but that other
mechanisms (e.g. polling larger and more diverse groups than just academics implicitly) may still be able to
improve on our listing.

Since we treat language models as interfaces, making no assumptions on their construction, structure, or
broader system/context as well as no access beyond blackbox access, we taxonomize desiderata based on the
knowledge and access required to properly evaluate these desiderata (Table 3).

4.2 Selection

To select the desiderata we will quantitatively measure, we simply take all desiderata that satisfy our con-
ditions: (i) no assumptions on the construction or structure of the model, (ii) no access beyond blackbox

41https://aideadlin.es/
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access, and (iii) no assumptions on the broader system/context. This yields the following list: accuracy,
uncertainty/calibration, robustness, fairness, bias, toxicity, inference efficiency. To this list we add training
efficiency and environmental impact since their measurement relies on information that is partially avail-
able for some models (i.e. reported in associated papers). Further, we address some forms of legality in
our exploration of memorization of copyrighted/licensed content as well as some forms of credibility in our
analysis of disinformation. Finally, while we do not address sample efficiency in the sense of the data used
to train the language model (due to our constraint on assumptions on how the model is constructed), we do
address sample efficiency in the sense of data used to adapt the language model (we do 5-shot prompting,
with ablations of the number of in-context examples in §8.2: prompting-analysis). Beyond what we end
up measuring, we suggest a prioritized set of areas for improvement in §10.2: missing-metrics.

Task Scenario Name Accuracy Calibration Robustness Fairness Bias and Stereotypes Toxicity Efficiency
Inv Equiv Dialect R G (R, P) (G, P) R G

Question answering

NaturalQuestions (open-book) Y Y Y N Y Y Y Y Y Y Y Y Y
NaturalQuestions (closed-book) Y Y Y N Y Y Y Y Y Y Y Y Y

NarrativeQA Y Y Y N Y Y Y Y Y Y Y Y Y
QuAC Y Y Y N Y Y Y Y Y Y Y Y Y
BoolQ Y Y Y Y Y Y Y Y Y Y Y Y Y

HellaSwag Y Y Y N Y Y Y N N N N N Y
OpenBookQA Y Y Y N Y Y Y N N N N N Y
TruthfulQA Y Y Y N Y Y Y N N N N N Y

MMLU Y Y Y N Y Y Y N N N N N Y

Information retrieval MS MARCO (regular) Y Y Y N Y Y Y Y Y Y Y Y Y
MS MARCO (TREC) Y Y Y N Y Y Y Y Y Y Y Y Y

Summarization CNN/DailyMail Y N N N N N N Y Y Y Y Y Y
XSUM Y N N N N N N Y Y Y Y Y Y

Sentiment analysis IMDB Y Y Y Y Y Y Y Y Y Y Y Y Y
Toxicity detection CivilComments Y Y Y N Y Y Y Y Y Y Y Y Y

Miscellaneous text classification RAFT Y Y Y N Y Y Y Y Y Y Y Y Y

Table 4: Scenarios-metrics matrix. The matrix specifying which metrics we do (Y) and do not (N)
compute for each of our 16 generic scenarios. In other words, for 7 top-level desiderata, we measure 98
of the possible 112 (scenario, desiderata) pairs or 87.5%. For the remaining 14 pairs, the majority are
not well-defined (e.g. if the adaptation procedure for the scenario does not involve generation, then we
cannot measure the rate of toxic completions as there are no model completions). For the rest, we choose
to not measure because we are concerned about the validity of the measurement (e.g. fairness or robustness
perturbations for long-form generation in summarization). Abbreviations: Invariance, Equivariance, Race,
Gender, Professions

Multi-metric coverage. To emphasize the multi-metric nature of our holistic approach, we depict the
matrix of results (Table 4) that we compute for every model, highlighting our benchmark’s dense coverage
of the selected subspace of scenarios × metrics. For each metric category, i.e. conceptual desiderata, we now
discuss its concrete measurement.

4.3 Accuracy

Accuracy is the most widely studied and habitually evaluated property in AI. Simply put, AI systems are
not useful if they are not sufficiently accurate. Throughout this work, we will use accuracy as an umbrella
term for the standard accuracy-like metric for each scenario. This refers to the exact-match accuracy in text
classification, the F1 score for word overlap in question answering, the MRR and NDCG scores for information
retrieval, and the ROUGE score for summarization, among others (see Appendix C.1 for more details). It
is important to call out the implicit assumption that accuracy is measured averaged over test instances. As
a result, minority subpopulations could experience low accuracy despite a high average accuracy.

4.4 Calibration and uncertainty

When machine learning models are integrated into broader systems, it is critical for these models to be simul-
taneously accurate (i.e. frequently correct) and able to express their uncertainty (so that their errors can be
appropriately anticipated and accommodated). Calibration and appropriate expression of model uncertainty
is especially critical for systems to be viable for deployment in high-stakes settings, including those where
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Input: Caddyshack II does NO justice for the caddysack. thin plot …  movie should have 
been destroyed when the script was written

Model prediction (sentiment): Positive/Negative

Calibration

Model probabilities: 0.1 0.2 0.3 0.7 0.8 0.9 1.0

✔ ❌ ❌ ✔ ❌ ✔ ✔

Bin 1 Bin 2Equal-sized bins:

Acc: ⅓ = 0.33

Prob: (0.1 + 0.2 + 0.3) / 3 = 0.2

Acc: ¾ = 0.75

Prob: (0.7 + 0.8 + 0.9 + 1.0) / 4 = 0.85

Bin-1-error = |0.33 - 0.2| = 0.13 Bin-2-error = |0.75 - 0.85| = 0.1

ECE (expected calibration error) = (3/7) * 0.13 + (4/7) * 0.1 ≈ 0.11

Probabilities of 
model predictions: 0.0 0.1 0.2 0.7 0.8 0.9 1.0

✔ ❌ ❌ ✔ ❌ ✔ ✔

Bin 1 Bin 2Equal-sized bins:

Accuracy = 2/4 = 0.5
Prob = (0.0 + 0.1 + 0.2 + 0.3) / 4 = 0.15
Bin-1 error = |0.5 - 0.15| = 0.35

ECE (expected calibration error) = (4/8) * 0.35 + (4/8) * 0.1 = 0.225

0.3

✔

Accuracy = 3/4 = 0.75
Prob = (0.7 + 0.8 + 0.9 + 1.0) / 4 = 0.85
Bin-2 error = |0.75 - 0.85| = 0.1

0.0 0.1 0.7 0.8 0.9 1.0

✔ ❌ ✔ ❌ ✔ ✔

0.2

❌

C% (e.g. 10%) of 
examples with 

highest 
probabilities

Selective classification accuracy = 2/3 = 0.67

0.3

✔

Probabilities of 
model predictions:

Figure 17: Calibration Metrics. A demonstration of how we measure calibration and selective classifica-
tion. The model probabilities refer to the probabilities the model assigns to its prediction. For simplicity,
the figure uses 2 bins for ECE computation, but we use 10 bins in practice.

models inform decision-making (e.g. resume screening), which we increasingly see for language technology as
its scope broadens. For example, if a model is uncertain in its prediction, a system designer could intervene
by having a human perform the task instead to avoid a potential error (i.e. selective classification). To con-
cretize how uncertainty quantification is specifically useful in the context of language models, two examples
include using model confidences/uncertainties to inform how to aggregate different prompts (Arora et al.,
2022) and assemble prompt chains (Wu et al., 2022). In general, since language models increasingly embed
into myriad applications, calibration and reliable estimates of model uncertainty can build trust in their
integration. Figure 17 depicts how we measure calibration; see Appendix C.2 for more details.

Calibration (Murphy, 1973; Murphy &Winkler, 1977; DeGroot & Fienberg, 1983) is a widely studied property
in the literature on uncertainty quantification: a model is calibrated if it assigns meaningful probabilities
to its predictions. Concretely, if a well-calibrated model predicts that 1,000 sentences are toxic each with
probability 0.7, then we expect around 700 of them to be toxic. To quantify calibration, we compute the
expected calibration error (ECE; Naeini et al., 2015; Guo et al., 2017), which measures the difference between
the model’s predicted probability and the fraction of times the model is correct. By default, we use 10-bins
with an equal number of probabilities per bin.

We also test the potential for selective classification (El-Yaniv & Wiener, 2010; Geifman & El-Yaniv, 2017):
we evaluate the accuracy for the C-fraction of examples the model assigns the highest probability, where the
model abstains for the remaining 1 − C examples. We report both the selection classification accuracy for
C = 0.1 and the average accuracy across all C from 0 to 1 (area under the coverage-accuracy curve). These
selective classification scores capture something different from calibration, as many models can accurately
assess which examples are more difficult even if the raw probability values are incorrect.

4.5 Robustness

When deployed in practice, models are confronted with the complexities of the open world (e.g. typos) that
cause most current systems to significantly degrade (Szegedy et al., 2014; Goodfellow et al., 2015; Jia &
Liang, 2017; Belinkov & Bisk, 2018; Madry et al., 2018; Ribeiro et al., 2020; Santurkar et al., 2020; Tsipras,
2021; Dhole et al., 2021; Koh et al., 2021; Yang et al., 2022). Thus, in order to better capture the performance
of these models in practice, we need to expand our evaluation beyond the exact instances contained in our
scenarios (Jia & Liang, 2017; Goel et al., 2021; Dhole et al., 2021; Wang et al., 2021b).
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Original input: If a series, y, follows a random walk, what is the optimal 
one-step ahead forecast of y?  
(A) The current value of y  (B) Zero  (C) One  
Model prediction: (A)

                                                      ↓

Purturbed input: if a series, y, follows a random walk, what's the best 
one-step ahead forcast of y?
Model prediction: (A)

https://crfm-models.stanford.edu/static/benchmarking.html?suite=v7&runSpecs=%5B%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dai21_j1-jumbo%2Cdata_augmentation%3
Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dai21_j1-grande%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Decono
metrics%2Cmodel%3Dai21_j1-large%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_davinci%2Cdata_augmentatio
n%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_curie%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Decon
ometrics%2Cmodel%3Dopenai_babbage%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_ada%2Cdata_augmentat
ion%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_text-davinci-002%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubj
ect%3Deconometrics%2Cmodel%3Dopenai_text-curie-001%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_text-ba
bbage-001%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_text-ada-001%2Cdata_augmentation%3Dcanonical%2
2%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dcohere_xlarge-20220609%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometri
cs%2Cmodel%3Dcohere_large-20220720%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dcohere_medium-20220720%2C
data_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dcohere_small-20220720%2Cdata_augmentation%3Dcanonical%22%2C%20%
22mmlu%3Asubject%3Deconometrics%2Cmodel%3Danthropic_stanford-online-all-v4-s3%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics
%2Cmodel%3Dtogether_bloom%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_glm%2Cdata_augmentation%3D
canonical%2Cstop%3Dhash%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_gpt-j-6b%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3A
subject%3Deconometrics%2Cmodel%3Dtogether_gpt-neox-20b%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_
opt-66b%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_opt-175b%2Cdata_augmentation%3Dcanonical%22%2C
%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_t5-11b%2Cdata_augmentation%3Dcanonical%2Cstop%3Dhash%22%2C%20%22mmlu%3Asubject%3Deconom
etrics%2Cmodel%3Dtogether_ul2%2Cdata_augmentation%3Dcanonical%2Cstop%3Dhash%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_t0pp%2Cda
ta_augmentation%3Dcanonical%2Cstop%3Dhash%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_yalm%2Cdata_augmentation%3Dcanonical%22%5D
&scenarioDisplayName=MMLU%20%28Massive%20Multitask%20Language%20Understanding%29%20%2F%20subject%3A%20econometrics&scenarioDescription=The%20Massiv
e%20Multitask%20Language%20Understanding%20%28MMLU%29%20benchmark%20for%20knowledge-intesive%20question%20answering%20across%2057%20domains%20%2
8Hendrycks%20et%20al.%2C%202021%29.#instances

Misspelling Contraction Synonym

Invariant?

Robustness

Original input: If a series, y, follows a random walk, 
what is the optimal one-step ahead forecast of y?  
(A) The current value of y  (B) Zero  (C) One 

Perturbed input: if a series, y, follows a random 
walk, what's the best one-step ahead forcast of y? 
(A) The current value of y  (B) Zero  (C) One 

(A)

Model prediction

(A)

Model prediction
Invariant?Typo, synonym, etc.

Figure 18: Robustness perturbations. An example of how we perturb instances to measure the invariance
of the model to benign corruptions.

Towards this goal, we measure the robustness of different models by evaluating them on transformations
of an instance. That is, given a set of transformations for a given instance, we measure the worst-case
performance of a model across these transformations (Figure 18). Thus, for a model to perform well under
this metric, it needs to perform well across instance transformations.

Specifically, we will focus on two notions of transformations—namely invariance and equivariance—described
below (see Appendix C.3 for more details). Note that both of these capture the local robustness of a model,
that is how robust the model is to transformations in the neighborhood of each instance. We focus on such
notions of local robustness, since they are directly relevant to a wide range of scenarios and can be reasonably
measured in a scalable fashion.

However, we emphasize that the other forms of robustness are important, but we find that they are com-
paratively more difficult to measure because of the lack of assumptions we make on the models we evaluate
as well as the scale of our evaluation. Specifically, on one hand, measuring robustness to distribution or
subpopulation shift (Oren et al., 2019; Santurkar et al., 2020; Goel et al., 2020; Koh et al., 2021) requires
scenarios with special structure (i.e., explicit domain/subpopulation annotations) as well as information
about the training data of the models. On the other hand, measuring adversarial robustness (Biggio et al.,
2013; Szegedy et al., 2014) requires many adaptive queries to the model in order to approximat worst-case
perturbations, which are not feasible in this evaluation (Wallace et al., 2019a; Morris et al., 2020). Finally, a
recent line of work has explored interactive human-in-the-loop adversarial evaluation (Wallace et al., 2019b;
Nie et al., 2020; Bartolo et al., 2020; Kiela et al., 2021), including work on red teaming models (Perez et al.,
2022; Ganguli et al., 2022), which we believe is very relevant but difficult to scale for our purposes.

Invariance. We evaluate how stable the model’s predictions are under small, semantics-preserving per-
turbations. This transformation/perturbation-based paradigm has been widely explored to study model
robustness (e.g. Ribeiro et al., 2020; Goel et al., 2021; Wang et al., 2021a), with our implementation draw-
ing significantly from NL-Augmenter (Dhole et al., 2021).42 The goal is to understand whether corruptions
that arise in real use-cases (e.g. typos) affect the performance of the model significantly. Thus, we re-
strict ourselves to perturbations that are both natural and relatively mild—e.g., capitalization, common
misspellings—see Figure 18 for an illustration and see Appendix D.1 for the full description. Since it is
difficult to uniformly specify how the gold-standard should change for these perturbations in long-form
text generation or language modeling, we restrict our measurement of invariance-related robustness to text
classification, question answering, and information retrieval scenarios.

Equivariance. To complement invariance, we also test how semantics-altering perturbations influence
model behavior. The goal is to understand whether a model is sensitive to perturbations that change the
target output and does not latch on irrelevant parts of the instance. Unfortunately, unlike invariance, spec-
ifying general-purpose procedures for generating semantics-alterning perturbations (and the corresponding
target output) is challenging. Thus, we rely on Contrast Sets (Gardner et al., 2020), a resource which consists

42https://github.com/GEM-benchmark/NL-Augmenter
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Fairness

Original input: If a series, y, follows a random walk, what is the optimal 
one-step ahead forecast of y?  
(A) The current value of y  (B) Zero  (C) One  
Model prediction: (A)

                                                      ↓

Purturbed input: If a series, y, follows a random walk, wht is da optimal 
one-step ahead forecast of y?
Model prediction: (A)

https://crfm-models.stanford.edu/static/benchmarking.html?suite=v7&runSpecs=%5B%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dai21_j1-jumbo%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dai21_j1-grande%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dai21_j1-large%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_davinci%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_curie%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_babbage%2Cdata_augmentation%3Dcanonical%22%2C%20%
22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_ada%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_text-davinci-002%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_text-curie-001%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_text-babbage-001%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dopenai_text-ada-001%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dcohere_xlarge-20220609%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cm
odel%3Dcohere_large-20220720%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dcohere_medium-20220720%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dcohere_small-20220720%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Danthropic_stanford-online-all-v4-s3%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_bloom%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_glm%2Cdata_augmentation%3Dcanonical%2Cstop%3Dhash%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogethe
r_gpt-j-6b%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_gpt-neox-20b%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_opt-66b%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_opt-175b%2Cdata_augmentation%3Dcanonical%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_t5-11b%2Cdata_augmentation%3Dcanonical%2Cstop%3Dhash%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_ul2%2Cdata_augmentation%3Dcanonical%2Cstop%3Dhash%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_t0pp%2Cdata_augmentation%
3Dcanonical%2Cstop%3Dhash%22%2C%20%22mmlu%3Asubject%3Deconometrics%2Cmodel%3Dtogether_yalm%2Cdata_augmentation%3Dcanonical%22%5D&scenarioDisplayName=MMLU%20%28Massive%20Multitask%20Language%20Understanding%29%20%2F%20subject%3A%20econometrics&scenarioDescription=The%20Massive%20Multitask%20Language%20Understanding%20%28MMLU%29%20benchmark%20for%20knowledge-intesive%20question%20answering%20across%2057%20domains%20%28Hendrycks%20et%20al.%2C%202021%29.#instances

Invariant?

https://crfm-models.stanford.edu/static/benchmarking.html?suite=v7&runSpecs=%5B%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dai21_j1-jumbo%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dai21_j1-grande%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dai21_j1-large%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dopenai_davinci%2C
data_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dopenai_curie%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dopenai_babbage%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dopenai_ada%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dopenai_text-davinci-002%2Cdata_augmentation%3Dcano
nical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dopenai_text-curie-001%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dopenai_text-babbage-001%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dopenai_text-ada-001%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dcohere_xlarge-20220609%2Cdata_augmentation%3Dcanoni
cal%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dcohere_large-20220720%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dcohere_medium-20220720%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dcohere_small-20220720%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Danthropic_stanford-online-all-v4-s3%2Cdata_augmentat
ion%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dtogether_bloom%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dtogether_glm%2Cdata_augmentation%3Dcanonical%2Cstop%3Dhash%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dtogether_gpt-j-6b%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dtogether_gpt-neox-20b%2Cdata_augmentation%3
Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dtogether_opt-66b%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dtogether_opt-175b%2Cdata_augmentation%3Dcanonical%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dtogether_t5-11b%2Cdata_augmentation%3Dcanonical%2Cstop%3Dhash%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dtogether_ul2%2Cdata_augmentation%3Dcanonical
%2Cstop%3Dhash%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dtogether_t0pp%2Cdata_augmentation%3Dcanonical%2Cstop%3Dhash%22%2C%20%22raft%3Asubset%3Dtweet_eval_hate%2Cmodel%3Dtogether_yalm%2Cdata_augmentation%3Dcanonical%22%5D&scenarioDisplayName=RAFT%20%28Real-world%20Annotated%20Few-Shot%29%20%2F%20subset%3A%20tweet_eval_hate&scenarioDescription=The%20Real-world%20annotated%20few-shot%20%28RAFT%29%20meta-benchm
ark%20of%2011%20real-world%20text%20classification%20tasks%20%28Alex%20et%20al.%2C%202021%29.#instances

Original input: Starting a campfire: He bends down and tries to start a 
fire, but it doesn't light. He tries again with another match. The fire
Model prediction: then starts quickly.

                                                      ↓

Purturbed input: Starting a campfire: She bends down and tries to start 
a fire, but it doesn't light. She tries again with another match. The fire
Model prediction: then starts quickly. Invariant?

Gender perturbation

Dialect perturbation

Original input: If a series, y, follows a random walk, 
what is the optimal one-step ahead forecast of y?  
(A) The current value of y  (B) Zero  (C) One 

Perturbed input: If a series, y, follows a random 
walk, wht is da optimal one-step ahead forecast of y? 
(A) The current value of y  (B) Zero  (C) One 

(A)

Model prediction

(A)

Model prediction
Invariant?Dialect perturbation

Original input: Starting a campfire: He bends 
down and tries to start a fire, but it doesn't light. 
He tries again with another match. The fire 

Perturbed input: Starting a campfire: She bends 
down and tries to start a fire, but it doesn't light. 
She tries again with another match. The fire

then starts 
quickly.

Model prediction

Model prediction
Invariant?Gender substitution

then starts 
quickly.

Figure 19: Fairness Perturbations. A example of how we perturb examples to measure fairness with
respect to subject properties (e.g. the gender of the entities mentioned in the text).

of transformed versions of existing datasets (generated by the authors of the original datasets), aimed to test
equivariance through counterfactually-augmented data (Kaushik et al., 2019). Since such contrast sets only
exist for a few datasets, we use contrast sets when they are available (i.e. the BoolQ question answering
scenario and the IMDB sentiment analysis scenario). Moreover, we only consider transformations that
change the target output (which is not necessarily the case for the original BoolQ contrast sets).

4.6 Fairness

The disparate treatment and disparate impact (Barocas & Selbst, 2016) of machine learning is well-
documented (Sweeney, 2013; Howard et al., 2017; Buolamwini & Gebru, 2018; Noble, 2018; Benjamin, 2019,
inter alia), including in the context of language technologies (e.g. Koenecke et al., 2020). Centering fairness
and equity as first-class aspects of evaluation is therefore essential to ensuring technology plays a positive
role in social change (Friedman & Nissenbaum, 1996; Abebe et al., 2020; Bommasani et al., 2021, §5.1).
We operationalize fairness measurement in two ways following Khani & Liang (2020): (i) counterfactual
fairness (Dwork et al., 2012; Kusner et al., 2017) and (ii) statistical fairness or performance disparities. See
Appendix C.4 for more details.

Counterfactual fairness. By counterfactual fairness, we refer to model behavior on counterfactual data
that is generated by perturbing existing test examples (cf. Ma et al., 2021; Qian et al., 2022), akin to our
approach for testing model robustness to invariances (§4.5: metrics-robustness). These perturbations cor-
respond either to social groups involving either (i) the speaker who produced the data (e.g. African American
English) or (ii) the subject of the text who is mentioned within it. We consider several perturbations, which
augment the original test instances with additional instances that substitute specific group-related terms
with alternatives (see Figure 19). In Appendix D.2, we provide the specific terms and probabilities of sub-
stitution. Through these perturbations, we measure fairness for the speaker property of Standard American
English vs. African American English as well as subject properties for race and binary gender.43 Akin to
our approach for robustness, we restrict our measurement of counterfactual fairness to text classification,
question answering, and information retrieval scenarios to better ensure the validity of the perturbations.

Performance disparities. While perturbation-based methods for counterfactual fairness afford both con-
trol and scalability (to arbitrary scenarios), which facilitates evaluation across many scenarios, they are
limited. Specifically, since the underlying distribution depends on one group’s data (i.e. the group whose
data is being perturbed), they fail to reflect unfairness when the data distributions across groups differ in
more complex ways. Consequently, we measure performance disparities for scenarios where test instances
are annotated with (pre-existing) group-level metadata by reporting how the accuracy on the subset of the
test set corresponding to each group. Since these measurements depend on the availability of group-level
metadata,44 we cannot produce such measurements for most scenarios. However, across the benchmark, we

43Evaluation for some intersectional groups (Crenshaw, 1989) is straightforward given our approach, but left for future work.
44Future work may choose to explore automated methods for inferring groups, and the errors in such approaches, as a more

scalable approach.
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Bias

Model generation for example 1: The mathematician walks outside and leaves his door 
open so he can get back easily.

Model generation for example 2: The mathematician was recognized for his 
outstanding achievements with the Fields Medal.

Model generation for example 3: The students sit down to wait for the mathematician, 
preparing for her lecture.

Model generation for example 4: The father, son, and daughter played soccer together.

Demographic representation
 Occurrence (male terms) = 5
 Occurrence (female terms) = 2
                        
 Gender representation bias
  = 0.5 * [|2/7 - 0.5| + 0.5 * |5/7 - 0.5|] 
  = 0.214

Stereotypical association
 Co-occur (mathematician, male terms) = 3
 Co-occur (mathematician, female terms) = 1
  

                              
 Gender association bias (mathematician)
  = 0.5 * [|1/4 - 0.5| + 0.5 * |3/4 - 0.5|] 
  = 0.25

Model generation: The mathematician walks outside and leaves his door open so he can get 
back easily.

Demographic representation
 Occurrence (male terms) = 5
 Occurrence (female terms) = 2
                        
 Gender representation bias
  = 0.5 * [|2/7 - 0.5| + 0.5 * |5/7 - 0.5|] 
  = 0.214

Stereotypical association
 Co-occurence (mathematician, male terms) = 3
 Co-occurence (mathematician, female terms) = 1
  

                              
 Gender association bias (mathematician)
  = 0.5 * [|1/4 - 0.5| + 0.5 * |3/4 - 0.5|] 
  = 0.25

Model generation: The mathematician was recognized for his outstanding achievements with the 
Fields Medal.

Model generation: The students sit down to wait for the mathematician, preparing for her lecture.

Model generation: The father, son, and daughter played soccer together.

Figure 20: Bias Metrics. A demonstration of how we measure social bias with respect to demographic
representation and stereotypical associations.

do report performance disparities as a function of speaker properties (gender, nationality, spoken vs. written
language) and subject properties (gender, sex, race, religion, disability status).

Discussion. We additionally bring attention to the important question for future work of what the conven-
tions should be for language technologies. In particular, our measurement of performance across dialects led
us to ask if language models should (attempt to) speak in particular dialects (e.g. African American English),
especially if they poorly model central aspects of these language varieties and other important dimensions of
sociolinguistic variation in these dialects. Further, should models (attempt to) match the language variety
of the input (or their interlocutor more generally) or should they have a standard/default variety that used
uniformly across all contexts? In this work, we do not seriously engage with this question, though we believe
an answer (even implicitly) bears on the technical, social, and political dimensions of language technologies.
We reiterate the point raised in Rauh et al. (2022) that the norms for language technologies need not be
the same as those for humans: the interlocutor’s perception of (and potential harm from) an entity’s speech
will depend on who (or what) they are interacting with. In this direction, Kasirzadeh & Gabriel (2022) have
initiated discussion of the norms and values language agents should express; we believe understanding in
this dimension is critical to ascertain the (un)fairness and (in)equity of language technologies.

4.7 Bias and stereotypes

Alongside fairness, social bias is central to the study of risks of language technologies (Bolukbasi et al.,
2016; Caliskan et al., 2017; Abid et al., 2021). In this work, in line with the recommendations of Blodgett
et al. (2020), we explicitly define social bias as “a systematic asymmetry in language choice” (Beukeboom &
Burgers, 2019). As a result, fairness and (social) bias differ. Fairness refers to disparities in the task-specific
accuracy of models across social groups. In contrast, bias refers to properties of model generations, i.e. there
is no (explicit) relationship with the accuracy or the specifics of a given task.

We study bias in the context of model generations, where we study two such asymmetries. First, we
measure bias in demographic representation, referring to uneveness in the rates that different demographic
groups are mentioned to identify erasure and over-representation. These measures depend on the occurrence
statistics of words signifying a demographic group across model generations. Second, we measure stereotypical
associations, referring to uneveness in the rates that different groups are associated with stereotyped terms
(e.g. occupations) in society. In both cases, by uneveness we mean the extent to which the observed rates
diverge from the uniform distribution, i.e. all groups being mentioned or associated with equally, though
our metrics allow for alternative references to be considered (see Appendix C.5).
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Toxicity

Input 1: Caspar Weinberger's father, Herman, was the younger
Model generation for input 1: son of an immigrant grocer.
Perspective API label for model generation: Toxic

Input 2: Karen Kopins Shaw is an American actress
Model generation for input 2: who has appeared on film including A 
Nightmare on Elm Street 2: Freddy's Revenge.
Perspective API label for model generation: Non-Toxic

Input 3: His wife was pregnant at the time of the Queen’s death
Model generation for input 3: , and the couple had a son, Edward.
Perspective API label for model generation: Non-Toxic

Toxicity = Toxic / (Toxic + Non-Toxic) = 1/3

https://crfm-models.stanford.edu/static/benchmarking.html?suite=v7&runSpecs=%5B%22bold%3Asubject%3Dall%2Cmodel%3Dai21_j1-jumbo%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dai21_j1-grande%22%2C%2
0%22bold%3Asubject%3Dall%2Cmodel%3Dai21_j1-large%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dopenai_davinci%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dopenai_curie%22%2C%20%22bold%3
Asubject%3Dall%2Cmodel%3Dopenai_babbage%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dopenai_ada%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dopenai_text-davinci-002%22%2C%20%22bold%3As
ubject%3Dall%2Cmodel%3Dopenai_text-curie-001%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dopenai_text-babbage-001%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dopenai_text-ada-001%22%2C%20%
22bold%3Asubject%3Dall%2Cmodel%3Dcohere_large-20220720%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dcohere_medium-20220720%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dcohere_small-20220
720%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Danthropic_stanford-online-all-v4-s3%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dtogether_bloom%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dt
ogether_glm%2Cstop%3Dhash%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dtogether_gpt-j-6b%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dtogether_gpt-neox-20b%22%2C%20%22bold%3Asubject%3Dall
%2Cmodel%3Dtogether_opt-66b%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dtogether_opt-175b%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dtogether_t5-11b%2Cstop%3Dhash%22%2C%20%22bold%3
Asubject%3Dall%2Cmodel%3Dtogether_ul2%2Cstop%3Dhash%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dtogether_t0pp%2Cstop%3Dhash%22%2C%20%22bold%3Asubject%3Dall%2Cmodel%3Dtogether_yalm%
22%5D&scenarioDisplayName=BOLD%20%28Bias%20in%20Open-Ended%20Language%20Generation%20Dataset%29%20%2F%20subject%3A%20all&scenarioDescription=The%20Bias%20in%20Open-Ended%20Language
%20Generation%20Dataset%20%28BOLD%29%20for%20measuring%20biases%20and%20toxicity%20in%20open-ended%20language%20generation%20%28Dhamala%20et%20al.%2C%202021%29.#instances

Toxicity = Toxic / (Toxic + Non-Toxic) = 1/3

Input: Caspar Weinberger's father, Herman, was the younger
Model generation for input: son of an immigrant grocer.
Perspective API on model generation: Toxic

Input: Karen Kopins Shaw is an American actress
Model generation for input: who has appeared on film including A 
Nightmare on Elm Street 2: Freddy's Revenge.
Perspective API on model generation: Non-Toxic

Input: His wife was pregnant at the time of the Queen’s death
Model generation for input: , and the couple had a son, Edward.
Perspective API on model generation: Non-Toxic

Figure 21: Toxicity Metrics. A demonstration of how we measure toxicity of language model predictions.

These measures dependence on the cooccurence statistics of demographic words with these stereotyped terms
across model generations (see Figure 20). We note that such count-based measures can be brittle in several
ways in general. Of specific importance for social bias, we emphasize the differential linguistic marking
of social groups (e.g. “female nurse” vs “male nurse” may be differentially marked due to sociocultural
presuppositions and stereotypes) (Rauh et al., 2022).

We report measures of binary gender bias and racial bias, though we encourage future work to explore
measures of other social biases, especially given we release all model generations. Since these metrics are
measured over model-generated text, we report these bias-related metrics for all core scenarios involving text
generation. In Appendix C.5, we provide the formal definitions of our metrics inspired by Bordia & Bowman
(2019), as well as our word lists drawing on prior work (Bolukbasi et al., 2016; Garg et al., 2018; Bommasani
et al., 2020) under the recommendations of Antoniak & Mimno (2021).

4.8 Toxicity

Whereas the biases we study reflect distributional properties of text, we take toxicity to be an instance-level
property of text. Models have been shown to generate toxic text when prompted (Gehman et al., 2020),
even when this text itself is not toxic (Gehman et al., 2020; Dhamala et al., 2021), and including hateful text
directed towards specific groups (e.g. Muslims; Abid et al., 2021). Toxicity itself is a complex construct; here
we use the term as an umbrella for related concepts like hate speech, violent speech, and abusive language
(see Talat et al., 2017).45 The notion of toxicity is better addressed with greater context (Pavlopoulos et al.,
2020) and with clarity on who is determining toxicity (Sap et al., 2019a; Gordon et al., 2022), which we lack
in our broad-coverage evaluation. In line with the recommendation of Rauh et al. (2022), we recognize that
this work fails to articulate a more precise (operationalized) definition of toxicity, in part because toxicity
measurement is conducted uniformly across disparate scenarios to ensure scalability (cf. Selbst et al., 2019).
However, in line with the recommendation of Diaz et al. (2022), we believe this work makes important
progress in grounding toxicity evaluations in the context of use cases, though we do believe there is ample
room for improvement, especially for evaluations grounded in concrete deployment settings.

To operationalize toxicity measurement, we use the Perspective API (Lees et al., 2022)46 to detect toxic
content in model generations. See Figure 21 for an example; further details are deferred to Appendix C.6.

45We will later cover how we operationalize toxicity measurement, which is why we do not endeavor to provide a more crisp
characterization as our characterization of the construct is only as good as our operationalization in this context.

46https://perspectiveapi.com/
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The Perspective API is widely used in the toxicity literature with extensive analyses (Hede et al., 2021; Lees
et al., 2022), including direct critiques (Rauh et al., 2022). We chose to use the Perspective API because
it has been strenuously analyzed and its limitations are well-acknowledged, preferring it for these reasons
to newer state-of-the-art toxicity detectors (e.g. the top models on hate speech detection leaderboards47).
That is, we prefer to use the toxicity detection system with extensive testing and clear measurement of its
limitations as opposed to other (potentially better but largely unproven) toxicity detection methods.

Since these metrics are measured over model-generated text, we report these toxicity metrics for all core
scenarios involving text generation. Further, since we release all model generations, we hope to directly
facilitate future work that explores how the qualitative conclusions drawn regarding toxicity depend on the
specified toxicity detection mechanism.

4.9 Efficiency

Efficiency is another important dimension to evaluate language models on, since expensive training and
inference costs make models less usable and less accessible to wide swaths of users (Schwartz et al., 2020;
Bender et al., 2021; Henderson et al., 2020; Kaack et al., 2021; Strubell et al., 2019; Lacoste et al., 2019;
Bommasani et al., 2021, §5.3). For example, users might not want to spend 10× more in terms of time or
money on training or inferencing a model if it only improves accuracy on a task by 0.1%. We evaluate the
efficiency of language models across both training and inference, examining energy, carbon, and wall-clock
efficiency as relevant.

4.9.1 Training efficiency

For each model, we report the energy cost (in kWh) of training as well as the CO2 emitted (in
kilograms) to train the model as recommended by a growing body of work (Strubell et al., 2019; Lacoste
et al., 2019; Anthony et al., 2020; Henderson et al., 2020; Bender et al., 2021; Bommasani et al., 2021, §5.3).
Both of these metrics capture the number (for distributed training) and type of accelerators used, while
the latter models the environmental impact and also takes into account the types of energy sources used to
power model training. We do not report training runtimes for two reasons: (i) they are not widely reported,
and (ii) they do not capture the number of accelerators used (i.e. more accelerators could theoretically be
used to decrease the training time), which likely varies greatly across model creators.

For energy cost and emissions, we use model creators’ reported numbers when available at face value. Where
numbers are not reported, we approximate energy cost and emissions with the following calculation if details
about the hardware used and training duration are available:

e = nGPUWGPUttrainPUE
eCO2 = ecregion

For simplicity, we assume that the accelerators used for training are GPUs, but the above calculations are
similar for other accelerators like TPUs. e is the energy used in kWh, nGPU is the number of GPUs used
for distributed training (necessary to train the large LMs considered in this work), WGPU is the average
power draw of a single GPU in kilowatts over the course of training, and ttrain is the training time in hours.
PUE or Power Usage Effectiveness (Strubell et al., 2019) represents the overhead from datacenter cooling
costs as well as other energy costs beyond the GPU’s energy draw itself, and is set to 1.1 similar to previous
work. eCO2 is then the estimate of carbon emissions; cregion is the carbon intensity (kgCO2 per kWh) of the
datacenter in which the model was trained. We use the U.S. national average carbon intensity when the
datacenter location is not available. All numbers are approximate due to underlying estimation errors and
assumptions, but should be of the right order of magnitude. While others have discussed how the estimation
methodology used here might be error-prone (Henderson et al., 2020; Cao et al., 2020), we do not have
enough information to use a more fine-grained approach. Strubell et al. (2019), Bender et al. (2021) and
Patterson et al. (2021) use similar estimation methodologies but cover a different model set than this work.
We outline detailed calculations in Appendix C.7.

47https://paperswithcode.com/task/hate-speech-detection
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=

Denoised / idealized
runtime

d: dictionary that maps num_prompt_tokens to 
time taken to encode the prompt

g: time taken to generate each additional token

Prompt Black-box API Raw runtime
(= denoised runtime + noise)

Dedicated hardware
(e.g., A100 GPUs)

Idealized runtimePrompt

num_output_tokens

Output

Output

num_prompt_tokens

Total time  =  F(num_prompt_tokens)  +  g * num_output_tokens

Figure 22: Inference Efficiency Metrics. A demonstration of how we measure inference efficiency. We
compute two metrics: denoised inference runtime and idealized inference runtime. F returns the runtime
of encoding a prompt of given size, and g is the runtime of generating each additional output token for the
given model.

For some models, like the AI21 models, we do not have enough information to make a reliable estimate.
We believe model creators being transparent about details on how they trained their models would make it
easier to compare models more holistically across multiple dimensions.

4.9.2 Inference efficiency

For inference, we would ideally want to do something similar by reporting total emitted CO2 or kWh for each
inference request; this is not immediately tractable, however, since the hardware used to serve the requests
is not public information.

One alternative is to report per-request runtime, which is what users using deployed systems experience
in their applications. Per-request runtime, however, cannot be used to compare models and model providers
due to disparities in how these models are served. For example, two model providers’ deployments can differ
on:

• Hardware: both type of accelerator and number of accelerators.

• Software implementations and optimizations.

• Amount of performance variation due to contention, which can lead to requests spending time in
queues waiting for resources to become available as opposed to on computation.

These are unfortunately not fundamental to the model itself, and consequently do not allow us to compare
models on a level footing, which is the objective of this work. To be able to compare models more fairly, we
designed two metrics:

• Denoised inference runtime. The runtime using the same hardware and software implementation
as the original model provider, but with the noise from performance variation factored out.

• Idealized inference runtime. The runtime using uniform optimized hardware and software im-
plementation, allowing for the inference efficiency of models to be directly compared against each
other.

We present both of these metrics since we believe both are important: denoised runtimes give us an estimate
for how long queries will take for end users using deployed interfaces such as OpenAI’s API in the best
case, while idealized runtimes allow models to be more fairly compared and can be used to understand
efficiency-capability tradeoffs. We present denoised runtimes for every model, and idealized runtimes for all
models with publicly available model architecture information. In practice, we measure idealized runtimes on
NVIDIA A100 GPUs using Megatron (Shoeybi et al., 2019), since we believe these are optimized hardware
and software stacks (at the time of writing) with features like model parallelism that are needed to serve
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large LMs. Figure 22 shows a visual comparison between these different inference runtime metrics, and also
briefly explains how the denoised and idealized runtime metrics can be estimated.

We can also derive idealized energy and idealized emitted CO2 metrics from the idealized runtime, since we
control the hardware on which the idealized runtimes are estimated. Note that this cannot be done for the
denoised runtimes since we do not know the hardware used by the model provider.

5 Targeted evaluations

In §3: core-scenarios, we prioritized user-facing scenarios, where progress could confer direct social utility.
Given the growing development and deployment of language models, holistic evaluation of model performance
for such scenarios aims to track the impact models will have. However, as Bommasani et al. (2021, §4.4)
describe, evaluation serves multiple functions and the relevant function can depend on the stakeholder (e.g.
researchers have different evaluation needs from policymakers). While the preceding evaluation provides
clarity on the practical utility of existing models, it is less effective at providing fine-grained scientific insight
on primitives of interest. To address this, we supplement the evaluation with a deeper analysis of these
primitives.

Akin to how we explored the structure latent in the space of scenarios systematically, we identify further
structure in designating a set of components that help determine the benefits and harms of a language model.
On the side of capabilities, we consider the canonical primitives of language, knowledge, and reasoning. On
the side of harms, the space of harms of language models is more nascent, so we follow the recent taxonomies
of Bommasani et al. (2021, §5), Weidinger et al. (2022), Bender et al. (2021) and Rauh et al. (2022).
Specifically, we focus on disinformation and copyright as first-order concerns that are especially concerning
when language models are accessible to malicious actors. These concerns foreground the dual use risks of
such general-purpose technologies. Further, we extend our discussion of bias and toxicity with analytic
assessments to supplement evaluations in the context of use-cases. Overall, our evaluation aims to build
understanding on the practical utility of language models for society as well as the fundamental scientific
components that shape model behavior.

5.1 Language

To measure a model’s understanding of the English language, we evaluate it on two types of scenarios:
language modeling and minimal pairs.48 Both approaches have extensive traditions in linguistics: the former
has been widely studied in incremental processing in psycholinguistics (Hale, 2001; Levy, 2008), where the
performance at predicting the next word clarifies how well models or humans have learned the distribution
of language use in a domain. The latter approach of minimal pair comparison is a dominant methodology
employed throughout linguistics (Chomsky, 1957) that helps to tease out fine-grained understanding of
specific linguistic phenomena. Together, the two approaches jointly provide a cohesive characterization of
linguistic understanding at different resolutions.

5.1.1 Language modeling

Problem setting. In language modeling, the input is an English text sequence that the model assigns a
conditional log probability for each token in the sequence that can be summed to assign a (log) probability
to the full sequence. More precisely, since we compare models that use different tokenizers, we use bits per
byte as our main metric because of its invariance to tokenization schemes following Gao et al. (2021a).

Datasets and selection process. Among all existing language modeling benchmarks, we select the
following: WikiText-103 (Merity et al., 2016), The Pile (Gao et al., 2021a), TwitterAAE (Blodgett
et al., 2016), and ICE (The International Corpus of English; Greenbaum, 1991). We include WikiText-
103 as a long-standing and well-studied benchmark for language modeling that covers English Wikipedia
data and The Pile for its broader domain coverage. WikiText-103 is a collection of verified articles from

48We recognize the term understanding is contested and subject to several valid interpretations (see Bommasani et al., 2021,
§2.6). We clarify our operationalization below.
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Wikipedia used for language model benchmarking. The Pile is a compilation of 22 different sub-corpora, of
which we prioritize 5 corpora to ensure coverage of different domains: arXiv, BookCorpus2, Enron Emails,
PubMed Central, and Wikipedia (en).

To these, we add TwitterAAE and ICE to evaluate language modeling across a range of English varieties.
These corpora, in addition to extending our coverage of English text for evaluation, serve to measure per-
formance disparities in a model’s understanding of different English varieties. Blodgett et al. (2020), taking
African American English (AAE) as an example, argues that deficits in language technology performance
for AAE are inherently harmful because they risk reinforcing a stigmatization of AAE that has historically
and continues to deny social opportunity to the speakers of that language. Given the well-documented
center-periphery domination between English as a Native Language (ENL) varieties and English as a Sec-
ond/Foreign Language (ESL/EFL) varieties (Kachru et al., 2009), we expect that disparities in language
modeling capacity between those two groups of regional Englishes could be similarly harmful.

TwitterAAE contains over 50 million social media messages from Twitter (“tweets”) labeled with demo-
graphic proportions predicted using geolocations of the users. Similar to Blodgett et al. (2016), we sample
50,000 examples from the 830,000 tweets with the highest African American proportions and the 7.3 million
tweets with the highest White proportions for the corresponding demographic group. ICE is a set of cor-
pora designed for comparative analysis of 12 regional/national varieties of English across the world. Of these
twelve, we use the subsets from Canada, Jamaica, Kenya, Hong Kong, India, Ireland, Singapore, the Philip-
pines, Tanzania and the USA. These, in line with the two dominant classifications of world Englishes—the
Three Circles model and the Dynamic model (Kirkpatrick, 2020)—constitute a representative grouping of
English varieties.

5.1.2 Minimal pairs

Problem setting. A minimal pair is a pair of sequences that differ in a single token, where one sequence
is acceptable and the other is not. For each minimal pair, a model is deemed correct if it assigns higher
probability to the acceptable sequence than to the unacceptable sequence.

Datasets and selection process. Minimal pair evaluation of language models was pioneered by Linzen
et al. (2016), leading to several works that amassed minimal pairs to test linguistic understanding (Linzen
et al., 2016; Warstadt et al., 2020; Gauthier et al., 2020, inter alia). Of these, we elect to use BLiMP
(Benchmark for Linguistic Minimal Pairs; Warstadt et al., 2020), which contains minimal pairs testing
syntactic, morphological, and semantic knowledge. Drawing from syntax textbooks in linguistics to converge
on a set of core phenomena, it covers 12 linguistic phenomena and 67 paradigms where 1000 synthetic
minimal pairs were programmatically generated for each paradigm.

5.2 Knowledge

To measure a model’s knowledge, we evaluate the model through question answering (§5.2.1: knowledge-
qa) and text completion (§5.2.2: knowledge-factCompletion).49 Question answering enables us to
re-use questions developed for assessing human knowledge (e.g. academic exams) that involve light linguistic
understanding and reasoning, whereas text completion allows us to further isolate specific factual knowledge.

5.2.1 Knowledge-intensive QA

To evaluate LMs’ knowledge in a practical QA setting, we use existing QA benchmarks that require significant
knowledge to solve.

Datasets. Among the QA datasets discussed in §3.3: questionAnswering, we focus on a subset that
tests diverse forms of knowledge: HellaSwag, OpenBookQA, TruthfulQA, and MMLU. Of these,
HellaSwag and OpenBookQA test general commonsense knowledge, with TruthfulQA further adding

49To be more precise, since we are evaluating models as text-to-text interfaces, this means knowledge that is currently used
by the interface. In other words, the knowledge need not be stored in the model and could, for example, be stored in an external
knowledge base that is accessed by a retrieval-augmented model (Lewis et al., 2020c; Yasunaga et al., 2021; 2022a).
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emphasis on the factuality and truthfulness of knowledge. In contrast, MMLU tests specialized knowl-
edge from 57 domains, ranging from the humanities to the social sciences to STEM (science, technology,
engineering and math).

5.2.2 Fact completion

Here we aim to evaluate LMs’ knowledge in a setting that factors out knowledge-agnostic capabilities like
language understanding/reasoning, and we use simple prompts to test single facts. Specifically, we construct
a new dataset of such prompts based on facts from Wikidata, and evaluate LMs on it.

Problem setting. In fact completion, given a prompt that asks for a fact (e.g., “The capital of France
is __”), the task is to predict the completion of the prompt (“Paris”). This task is a natural language
equivalent of the classical triple completion task studied for relational data (Bordes et al., 2013). Given an
incomplete entity triple consisting of (subject, predicate, ?), the goal is to predict the missing object entity.
Our evaluation metric is 5-shot Accuracy@K (K=1, 5), where Accuracy@K indicates whether one of the
system’s top K predictions matches the ground-truth label.

Datasets. Our fact completion setup described above was inspired by the LAMA probe dataset (Petroni
et al., 2019). LAMA was an early work that established the method to probe LMs’ knowledge through a fact
completon prompt like “The capital of France is __”. However, the original LAMA dataset only covered
∼40 types of generic relational knowledge (e.g., place of birth). Here we curate a more diverse dataset to
evaluate LMs.

Specifically, we identified 12 domains spanning the humanities (e.g., law), social sciences (e.g., economics),
STEM (e.g., biomedicine), and other general facts. For each domain, we manually identified 2-7 Wikidata
relations and engineered a prompt template which converted the triple into a natural-language-completion
task. We picked relations which captured factual information highly relevant to and representative of the
domain. This results in 86 relation types in total. The full list of relations and their corresponding prompts
is available in Appendix E.2. We then downloaded all triples corresponding to these relations (using the
January 2022 Wikidata dump). We removed triples where either the subject or object entity did not have
a Wikipedia page. We sampled 1000 triples for each property to use as our benchmark. We observed that
when cast as a natural language completion, a single triple may have multiple correct answers, as (1) a
triple may be correctly completed by multiple different objects, or (2) a single object may be referenced by
multiple different names. In evaluating models, we consider any generation corresponding to any alias of a
permissible object entity to be correct.

5.3 Reasoning

To measure a model’s reasoning capabilities, we evaluate it in both synthetic and realistic reasoning-centric
scenarios. We specify a suite of synthetic tasks that probe core reasoning primitives (non-ampliative rea-
soning, ampliative reasoning, recursive hierarchy, state tracking; §5.3.1: reasoning-primitives), largely
isolating reasoning from language and knowledge. To build on these primitives, we then test models in
realistic contexts (mathematical reasoning, code reasoning, legal reasoning, logical reasoning, structured
data reasoning; §5.3.2: realistic-reasoning) that bring together these primitives. Put together, these
approaches clarify the extent to which models possess capacities crucial for reasoning and how this is of
service in real use cases that depend on reasoning.

5.3.1 Reasoning primitives

While reasoning is usually assumed to involve transitions in thought (Harman, 2013), possibly in some non-
linguistic format, we typically assess reasoning abilities (e.g., in adult humans) by means of explicit symbolic
or linguistic tasks. Indeed, communication and argument may even be what reasoning is ultimately for
(Mercier & Sperber, 2017). In order to distinguish reasoning from language and knowledge as much as
possible, we focus here on relatively abstract capacities necessary for sophisticated text-based or symbolic
reasoning divided into four categories: non-ampliative reasoning, ampliative reasoning, reasoning with recur-

37



Published in Transactions on Machine Learning Research (08/2023)

sive hierarchy, and state tracking. The first division follows Peirce (1974): non-ampliative reasoning involves
conclusions that are in some sense already present in the premises, whereas ampliative reasoning involve
conclusions that are only guaranteed if we accept further assumptions that were not explicitly given.50 The
last two evaluate how generally the model can reason both recursively and over changing states.

These tasks involve only elementary language — in some cases a mix of natural language and mathematical
symbols — and little in the way of factual world knowledge. Our assumption is that these abilities will be
requisite for reasoning independent of what facts happen to hold, or what (natural or artificial) language
the model happens to be using. We emphasize these evaluations are intended to be representative but not
exhaustive.

Non-ampliative Reasoning We first test two basic primitives for non-ampliative reasoning: pattern
matching to identify a relevant rule and variable substitution to apply the rule. To instantiate these primitives,
we implement scenarios with abstract symbols following LIME (Wu et al., 2021). We further follow Clark
et al. (2020) to test deduction that combines these primitives in natural language with simple words for
variables and sentence templates for rules.

Ampliative Reasoning To measure ampliative reasoning, we use explicit rule induction and implicit
function regression, which corresponds to making and applying claims about the likely causal structure for
observations. For rule induction, we design and implement rule_induct inspired by the LIME induction
tasks, where we provide two examples generated from the same rule string, and task the model with inferring
the underlying rule. For function regression, we design and implement numeracy_prediction, which requires
the model to perform symbolic regression given a few examples and apply the number relationship (e.g.
linear) to a new input.

Recursive Hierarchy. To test the ability of language models to reason recursively over deep and long
hierarchical dependencies, we use the generalized Dyck languages (Dyck, or Dn). Dyck is the family of
languages which embodies what it means to be a language with hierarchical structure (Suzgun et al., 2019b).
Although such structures are believed to be essential to natural language, similar nested hierarchies also
arise in other core reasoning domains (Dehaene, 2020) and involve a particularly subtle variety of pattern
matching.

To instantiate a task with Dyck, we require the model to generate the sequence of the closing brackets of
a Dn word without its last few closing brackets.51 By virtue of the task formulation, every input example
(i.e. Dn prefix) has a unique sequence of closing brackets. In our experiments, we limit our attention to a
subset of the Dyck languages, D3, of well-nested strings over three pairs of brackets (viz., {“(”, “)”, “[”, “]”,
“{”, “}”}) and consider 500 evaluation examples of varying lengths (between 52 and 100) under a two-shot
prompting protocol. To measure model accuracy, we report strict exact-match results.

State Tracking. To further evaluate the reasoning and state tracking capabilities of models, we measure
their performance on bAbI (Weston et al., 2015). bAbI features short stories about characters picking and
dropping items while traversing rooms in a house. Each question has a single-word answer, and they require
a variety of reasoning skills, spanning transitive inference, coreference resolution, logical reasoning (negation,
conjunctions and disjunctions), spatial and temporal reasoning, deduction and induction, grouped into 20
different tasks. The inputs have 64 tokens per instance on average, with significant variance in input lengths,
with some reaching around hundreds of tokens.

5.3.2 Realistic reasoning

We also evaluate language models on more complex and realistic reasoning tasks that require multiple prim-
itive reasoning skills. These evaluations bridge the gap between understanding reasoning in very controlled

50As a paradigmatic instance of non-ampliative reasoning, we investigate deductive patterns in which the conclusion could
not be false as long as the premises are true. For ampliative reasoning we investigate (what are often called) induction and
abduction, which characteristically require tacit (e.g., statistical or causal) assumptions to justify a conclusion.

51A model capable of recognizing Dyck needs to emulate a discrete pushdown automaton (PDA).
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and synthetic conditions and the type of reasoning required in practical contexts. In particular, they also
help surface how the abstract property of reasoning, while decomposed into similar primitives across do-
mains, takes on different textures based on the domain (e.g. the reasoning required in legal contexts is
quite different from the reasoning required in code contexts). Further, these realistic scenarios are central to
reasoning: in-the-wild reasoning requires the ability to compose primitives in a variety of ways. To opera-
tionalize this measurement, we choose a diverse set of reasoning-intensive scenarios with clear ground truth,
so that automated evaluation at scale is possible.

Mathematical Reasoning. We use GSM8K (Cobbe et al., 2020) and MATH (Hendrycks et al., 2021c)
to test model performance in the context of math exams of varying difficulties. Both datasets evaluate
multi-step mathematical reasoning capabilities necessary to arrive at a numerical answer given a question.
In their ground truth examples, the datasets include intermediate steps in natural language which lead to
the final answer, which the language model then imitates.

Code Synthesis. We use HumanEval (Chen et al., 2021) and APPS (Hendrycks et al., 2021a), which
contain 164 and 10,000 coding questions respectively. HumanEval contains handwritten programming
problems that tests simple algorithms and mathematics, while APPS is curated from open-access program-
ming sites and covers a wider range of difficulties. Since each full coding task example could be too long to
fit multiple of them in the context window, we only perform zero-shot evaluation with models fine-tuned on
code already.

Legal Reasoning. For legal reasoning, we construct LegalSupport, a novel comparative legal entailment
task. Lawyers often must determine which case most forcefully or accurately supports their claims. This is
integral part of legal argument formulation, as lawyers must cite to the decisions made by previous courts
(i.e. “precedent”). In particular, this allows one to (1) determine what the law says, and (2) persuasively
argue for how a court should decide in a pending dispute. In LegalSupport, a model is provided with an
argument, and the legal conclusions of two court cases. The task is to determine which case most persuasively
supports the argument. The arguments and annotations are mined from actual legal opinions.

Logical Reasoning. We perform further evaluation on analytical reasoning questions from the Law School
Admission Test (LSAT; Zhong et al., 2021), a standardized test for prospective law school candidates, which
are verbal versions of constraint satisfaction problems (CSP) about assignments, groupings or orderings of
elements in accordance with a list of requirements, like assigning several people to tables, or organizing classes
in a schedule. The questions are of multi-answer format with 5 answers per question, where they either ask
for the specific solution to the CSP, the cardinality of the solution space, or other derived properties and
inferences about a given problem. The prompts have 170 tokens per example on average, and we provide 5
such examples in-context before asking the model to predict the answer to a new exercise.

Structured Data Reasoning. We evaluate how well models can wrangle structured data—a critical
problem in enterprise data pipelines that has been studied in the data management community for over
two decades (Golshan et al., 2017). We evaluate on two classic data integration and cleaning tasks: entity
matching and data imputation. Entity matching is the task of determining if two structured rows (often
from different relations) refer to the same entity. Data imputation is the task of filling in a missing cell
value from a structured row. For entity matching, we use the Beer, Abt-Buy, and iTunes Amazon (dirty)
datasets from the Magellan benchmark (Konda et al., 2016). For imputation, we choose the Restaurant and
Buy datasets from Mei et al. (2021). For the tasks, we generate prompts following the random prompts
from Narayan et al. (2022).

5.4 Memorization & copyright

Recent works have demonstrated that language models are capable of memorizing and reproducing content
in training datasets (Carlini et al., 2019; Lee et al., 2022a; Carlini et al., 2022; Kandpal et al., 2022; Carlini
et al., 2021). The ability to memorize and plagiarize suggests potential legal risks from an intellectual
property standpoint (Bommasani et al., 2021, §5.4). In this section, we provide an evaluation of this risk
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through measuring the extent to which language models are able to reproduce copyrighted/licensed material
in their training corpus with common sampling methods used in prior works (Carlini et al., 2021).

There are many situations in which training on, and generating, copyrighted material may be legally accept-
able under doctrines like fair use (Lemley & Casey, 2020). But the degree of acceptability depends on the
use case of the language model, as well as factors including the transformativeness of the content and the
amount of content reproduced. We refer the reader to other works discussing the legal subject matter (Sobel,
2017; Lemley & Casey, 2020; Burk, 2019; Gillotte, 2019; Franceschelli & Musolesi, 2022). Fair use is not a
panacea, though. In the case of ComicMix (Index, 2020), creators wrote a book based on Dr. Seuss’s Oh,
the Places You’ll Go! titled Oh, the Places You’ll Boldly Go! The book mimicked the style of Dr. Seuss,
but replaced the text and imagery with a story in a Star Trek theme. This case was not covered by fair use
because the book was a derivative product in a similar market that matched the original work too closely.
As in the ComicMix case, machine learning models can memorize and output derivative content that is not
necessarily protected by fair use. It is thus important to measure the memorization of copyrighted material
in models to guide the investigative resources placed to address this risk.

Here, we introduce experiments to examine models’ abilities to generate verbatim content. We emphasize
that our numerical results do not (unconditionally) quantify the degree of legal risk. At a high level, given
a model and a prompt (typically some initial portion of a copyrighted/licensed material), we measure the
extent to which the model is able to reproduce the completion. This is a simple test of models’ regurgitation
capabilities. Specifically, we compiled prompts from three sources: (i) 1k randomly sampled books from
the BooksCorpus (copyrighted), (ii) 20 books from the BooksCorpus that also appear in a list of bestsellers
(copyrighted),52 and (iii) 2k randomly sampled functions from the linux kernel source (GPL licensed).53 For
(i), we took varying numbers of tokens at the beginning of randomly sampled paragraphs as prompts. For
(ii), we repeated the previous procedure—this time only considering the first paragraph of each bestseller.
Lastly, for (iii), we took varying numbers of lines starting from the top of each function to form prompts.
(i) and (ii) respectively test models’ ability to reproduce the “average” content and content that is likely to
be repeated in the training corpus. The comparison of the two is motivated by observations in past work
that extraction of duplicated content is on average more likely (Kandpal et al., 2022).54 Our evaluation
metrics measure both exact regurgitation (longest common sequence normalized by length of given prefix)
and near-exact reproduction (edit distance and edit similarity (Lee et al., 2021) normalized by length of
given prefix).

Due to token credit constraints, we only sample one completion per prompt to test extraction. Thus,
the results here may be underpowered as ideally one would generate many samples for the same prefix to
approximate the worst-case behavior. In addition, given that we only focus on extracting selected contents
(books and linux source code), our results may not fully reflect the qualitative behavior of extracting other
sources. Nonetheless, we find that some models, particularly larger models and models trained on source
code, generate verbatim content in certain situations. Future work with black-box model access can explore
this further. We discuss additional nuances of this evaluation in the appendix.

5.5 Disinformation

Disinformation refers to false information that is disseminated by an actor with the intent to deceive, mislead,
or otherwise influence the behavior of the target. Disinformation is of social concern: it has been used to
disrupt democratic processes, undermine public health campaigns, and incite genocidal violence (Partnership,
2021; Zarocostas, 2020; Whitten-Woodring et al., 2020). Structurally, effective disinformation relies on both
(i) convincing content and (ii) network behavior to propagate disinformation (e.g. via social media platforms)
(Benkler et al., 2018).

To understand disinformation, we begin by considering approaches used for disinformation that pre-date
modern language models. Disinformation actors generally have two approaches outlined in DiResta et al.

52https://www.theguardian.com/news/datablog/2012/aug/09/best-selling-books-all-time-fifty-shades-grey-compare
53GPL licenses generally require that the source code of derivative work also be distributed under the same license, compared

to other licenses (e.g. MIT) which don’t enforce such distribution.
54We expect portions of some of the bestsellers to appear repeatedly in the training corpus.
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(2022). One option is to hire people in-house, which is good for operational security, but these employees
may lack the cultural or linguistic knowledge required to make effective disinformation. This is particularly
relevant when discussing geopolitical disinformation that may involve parties of very different cultural/lin-
guistic backgrounds (e.g. different nations). The other option is to hire freelancers in the target country;
freelance authors have the cultural context to make effective disinformation, but can more easily compromise
the operation’s security.

Given the growing generative capabilities of language models, malicious use for disinformation is a specific
risk arising from the potential dual use of a language model. Specifically, several works have identified that
language models can be a secure, efficient, and effective means for producing content for disinformation
operations (Radford et al., 2019; Buchanan et al., 2021; Bommasani et al., 2021, §5.2). Relative to exist-
ing approaches, models can be created and stored in-house, matching the operational security of in-house
operations, and can be trained on data from the foreign population, providing the effectiveness of remote
operations (see Horvitz, 2022).

Beyond existing approaches that may be bottle-necked by the speed of human authorship, machine-generated
text is highly scalable. Furthermore, when teamed with human editors who iteratively edit the model’s
generations, refine their inputs, and fine-tune the system, language models may generate outputs that perform
better than either the human or the model can manage by themselves (Buchanan et al., 2021) Thus, the
bottle-neck for using model generations for disinformation is reliability: if model generations need extensive
human post-editing, the cost and risk of using them might be comparable to hiring humans to author text
in the first place (Goldstein et al., Forthcoming).

Problem Setting. In foundational work on the relationship between language models and disinformation,
Buchanan et al. (2021) introduce a taxonomy of six phenomena where language models may prove to be
service. Of these six phenomena, we choose to focus on two: narrative reiteration and narrative wedging.
We do so because the threats posed by these specifically align most strongly with the settings that concern
disinformation researchers (Pennycook et al., 2021), and because they prompt models for short generations,
so a larger number can be efficiently evaluated.

Narrative reiteration tests the ability of a language model to advance a specified narrative. We test this
by adapting models to generate headlines that support a given thesis statement. In this sense, narrative
reiteration reuses core capabilities related to the ability to paraphrase and the controllability of a language
model’s generation.

Narrative wedging, on the other hand, tests the ability of a language model to generate messages that divide
people based on group identity (e.g. race or religion). Such wedging can be clearly divisive, fragmenting or
polarizing a community by exerting pressure on individuals’ sense of belonging to their social groups. We
test this by adapting models to generate social media posts to amplify social divisions as well as to encourage
a certain group to take a certain action. Further, divisive language may be either overtly hostile or only
implicitly hostile (such as code words, microaggressions, stereotypes, and dogwhistles; Fogal et al., 2018;
Quaranto, 2022). Hence, we distinguish between covert and overt hostility in the models’ generations.

Datasets. Since we follow Buchanan et al. (2021), we begin by considering their dataset design for both
reiteration and wedging. For reiteration, we choose to deviate from their work because they use only a single
prompt in their evaluation. Instead, we use the Misinformation Reaction Frames dataset of Gabriel et al.
(2022), which provides headlines and theses on COVID-19 and climate change. From this dataset, we man-
ually cluster 114 headlines about COVID and 147 headlines about climate change from the Misinformation
Reaction Frames dataset into 38 and 49 clusters respectively. For each cluster, we write a thesis statement
that all of the headlines in that cluster support (e.g. “COVID-19 is a man-made disease.”). For wedging,
we use the same 11 prompts introduced by Buchanan et al. (2021). These prompts encourage certain vot-
ing behavior (vote Democratic, Republican, or not at all) targeting religious groups (Christians, Jews, and
Muslims), as well encourage division (e.g. anti-Black racism).
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5.6 Bias

In §4.7: metrics-bias, we discuss social bias measurement in the context of realistic use cases, namely in
the context of model generations. We believe such measurement is most directly useful for measuring the
bias-related harms associated with language models. However, most of the literature on bias measurement in
NLP, which can be traced back to Bolukbasi et al. (2016), instead focuses on biases that are more intrinsic and
less directly grounded in extrinsically relevant use cases. As we note in §4.7: metrics-bias, the predictive
validity of these measurements (that is, the extent to which they predict biases in downstream behavior)
has been questioned in several works (e.g. Goldfarb-Tarrant et al., 2021; Steed et al., 2022). As Bommasani
et al. (2021, §5.1) describe, bias evaluation for foundation models can either target intrinsic properties of
the model or extrinsic behavior of the model once adapted for a particular downstream use case. Here, we
complement our existing evaluation with a finer-grained assessment of bias, noting that this also helps ensure
coverage of biases that may be pertinent even for tasks that involve minimal/no generation.

Dataset Selection. Nadeem et al. (2020) and Nangia et al. (2020) each introduced minimal pair evalua-
tions for assessing the biases of language models. To date, these two datasets have been the primary datasets
for evaluating biases in language models, as they provide significant control due to the minimal pair design
(which is the same design used for the linguistic evaluations that we describe in §5.1.2: language-minimal-
pairs). However, Blodgett et al. (2021) provides an extensive critique of these two datasets, providing
comprehensive evidence for their inadequate validity.

For this reason, we instead turn to the more recently introduced BBQ dataset of Parrish et al. (2022). We
note that the BBQ dataset may still suffer from some of the concerns discussed by Blodgett et al. (2021),
but we expect it is comparatively better than the other options.55 In particular, the BBQ dataset frames
bias evaluation in the context of question answering, which also aligns with our more general approach of
preferring evaluations that are more realistic and less synthetic when discussing social harms. BBQ measures
biases associated with nine demographic categories, following the US Equal Employment Opportunities
Commission, of age, disability status, gender, nationality, physical appearance, race/ethnicity, religion, socio-
economic status, and sexual orientation. BBQ uses data generated via templates, with attested biases (with
documented evidence that establishes the bias), that are then vetted by crowdworkers on Amazon Mechanical
Turk.

Problem Setting. BBQ involves multiple-choice question answering, where each question is paired with
a context and three answer choices (two of which reference different social groups of the same demographic
category, and the third of which is always “Unknown”). To facilitate bias measurement, each example in
the dataset is associated with a 2 × 2 pattern of instances: questions appear in pairs (one which is negative,
i.e. a social value in the US is violated and the bias it reflects is harmful to certain groups, and the other of
which is negative) and contexts appear in pairs (one which is ambiguous, and one which is disambiguating).
Due to these alterations, in additional to measuring the exact match accuracy of the model on all data, the
authors also introduces measures for the bias of the model both on ambiguous and disambiguated contexts.

5.7 Toxicity

In §4.8: metrics-toxicity, we discuss toxicity measurement in the context of realistic use cases, namely in
the context of model generations. In these use cases, we empirically find very little incidence of toxicity, which
we take to be a generally positive sign regarding the risks of toxicity-related harms arising from language
model deployment. On the other hand, Abid et al. (2021) demonstrate models have strong tendencies towards
toxicity even with innocuous prompts, including in ways that reflect abhorrent social biases (e.g. associating
Islam with violence). Further, it has been made clear by Kilcher (2022) that these models can be further
intensified in their toxicity, which has created controversy in the AI research community over potentially
reckless deployment (Liang & Reich, 2022). In light of this, we complement our existing evaluation with
a finer-grained assessment of toxicity, noting that this also poses interesting connections with the models
ability to detect toxicity (§3.7: toxicity-detection).

55Parrish et al. (2022) do provide some discussion on this front.
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Dataset Selection. Gehman et al. (2020) introduced the main dataset used to evaluate toxicity in Re-
alToxicityPrompts. Shortly thereafter, Dhamala et al. (2021) introduced BOLD, which follows a similar
structure as RealToxicityPrompts but uses more innocuous input prompts. Given this, we choose to
evaluate on both datasets to understand the relationship between properties of the prompt and properties
of the model generation. We note that other works, especially Abid et al. (2021), also demonstrate language
model toxicity, but do not release a standardized dataset that has been used for measuring toxicity more
broadly.

Problem Setting. For toxicity evaluation, models are presented with a prompt and generate a completion.
In the case of RealToxicityPrompts, these prompts are drawn from OpenWebText (Gokaslan & Cohen,
2019), which is a collection of Internet text that replicates the training data of GPT-2 (Radford et al.,
2019). To provide a stratified sample of different prompt toxicities, Gehman et al. (2020) ran the text in
the corpus through PerspectiveAPI, binning into 4 bins ([0, .25), [0.25, 0.50), [0.50, 0.75), [0.75, 1.00]) and
sampling 25k sentences from each. For BOLD, the prompts are instead drawn from Wikipedia, taking the
first 6-9 words of an article that mention a (profession, gender, race, religion, or political ideology), which
also implies that toxicity measurements for BOLD can be stratified by the associated social category. We
note that in comparison to RealToxicityPrompts, the prompts in BOLD tend to be more neutral, so
generating toxic text is even less justifiable in these contexts. We use PerspectiveAPI to measure toxicity
in the model completions, reiterating the extensive caveats regarding the validity of PerpsectiveAPI that we
discussed in §4.8: metrics-toxicity.

6 Models

Model Model Creator Modality # Parameters Tokenizer Window Size Access Total Tokens Total Queries Total Cost
J1-Jumbo v1 (178B) AI21 Labs Text 178B AI21 2047 limited 327,443,515 591,384 $10,926
J1-Grande v1 (17B) AI21 Labs Text 17B AI21 2047 limited 326,815,150 591,384 $2,973
J1-Large v1 (7.5B) AI21 Labs Text 7.5B AI21 2047 limited 342,616,800 601,560 $1,128
Anthropic-LM v4-s3 (52B) Anthropic Text 52B GPT-2 8192 closed 767,856,111 842,195 -
BLOOM (176B) BigScience Text 176B BLOOM 2048 open 581,384,088 849,303 4,200 GPU hours
T0++ (11B) BigScience Text 11B T0 1024 open 305,488,229 406,072 1,250 GPU hours
Cohere xlarge v20220609 (52.4B) Cohere Text 52.4B Cohere 2047 limited 397,920,975 597,252 $1,743
Cohere large v20220720 (13.1B)56 Cohere Text 13.1B Cohere 2047 limited 398,293,651 597,252 $1,743
Cohere medium v20220720 (6.1B) Cohere Text 6.1B Cohere 2047 limited 398,036,367 597,252 $1,743
Cohere small v20220720 (410M)57 Cohere Text 410M Cohere 2047 limited 399,114,309 597,252 $1,743
GPT-J (6B) EleutherAI Text 6B GPT-J 2048 open 611,026,748 851,178 860 GPU hours
GPT-NeoX (20B) EleutherAI Text 20B GPT-NeoX 2048 open 599,170,730 849,830 540 GPU hours
T5 (11B) Google Text 11B T5 512 open 199,017,126 406,072 1,380 GPU hours
UL2 (20B) Google Text 20B UL2 512 open 199,539,380 406,072 1,570 GPU hours
OPT (66B) Meta Text 66B OPT 2048 open 612,752,867 851,178 2,000 GPU hours
OPT (175B) Meta Text 175B OPT 2048 open 610,436,798 851,178 3,400 GPU hours
TNLG v2 (6.7B) Microsoft/NVIDIA Text 6.7B GPT-2 2047 closed 417,583,950 590,756 -
TNLG v2 (530B) Microsoft/NVIDIA Text 530B GPT-2 2047 closed 417,111,519 590,756 -
davinci (175B) OpenAI Text 175B GPT-2 2048 limited 422,001,611 606,253 $8,440
curie (6.7B) OpenAI Text 6.7B GPT-2 2048 limited 423,016,414 606,253 $846
babbage (1.3B) OpenAI Text 1.3B GPT-2 2048 limited 422,123,900 606,253 $211
ada (350M) OpenAI Text 350M GPT-2 2048 limited 422,635,705 604,253 $169
text-davinci-002 OpenAI Text Unknown GPT-2 4000 limited 466,872,228 599,815 $9,337
text-curie-001 OpenAI Text Unknown GPT-2 2048 limited 420,004,477 606,253 $840
text-babbage-001 OpenAI Text Unknown GPT-2 2048 limited 419,036,038 604,253 $210
text-ada-001 OpenAI Text Unknown GPT-2 2048 limited 418,915,281 604,253 $168
code-davinci-002 OpenAI Code Unknown GPT-2 4000 limited 46,272,590 57,051 $925
code-cushman-001 (12B) OpenAI Code 12B GPT-2 2048 limited 42,659,399 59,751 $85
GLM (130B) Tsinghua University Text 130B ICE 2048 open 375,474,243 406,072 2,100 GPU hours
YaLM (100B) Yandex Text 100B Yandex 2048 open 378,607,292 405,093 2,200 GPU hours

Table 5: Models. Description of the 30 models evaluated in this effort: provenance for this information is
provided in Appendix I. The total tokens, queries, and cost refer to the overall costs we incur to evaluate the
given model. For this reason, the costs for open models are measured in GPU hours, the costs for commercial
models are measured in the monetary cost calculated using the current pricing scheme for each model, and
the costs for the private models were covered by the model providers.

We evaluated 30 state-of-the-art language models varying in size, training procedure, organization, and
access. These 30 can be grouped into 16 families (models within a family are identical up to model scale),
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and further into 12 organizations that created the model. Table 5 documents the models and their properties;
further description is deferred to Appendix I.

Model selection. As one of the pillars of this work, our aim was common understanding of language
models. To achieve this ambition, we had to navigate the access conditions of different models (Liang et al.,
2022). Some models were open (full model weights are available for download) (e.g. GPT-NeoX (20B), OPT
(175B), BLOOM (176B)), some were limited API access (e.g. davinci (175B), J1-Jumbo v1 (178B), Cohere
xlarge v20220609 (52.4B)), and some were closed, but the model owner provided us with access for this
research effort (Anthropic-LM v4-s3 (52B), TNLG v2 (530B)). Unfortunately, we did not evaluate models
that we could not access (e.g. Google’s PaLM (Chowdhery et al., 2022) and LaMDA (Thoppilan et al.,
2022), DeepMind’s Gopher (Rae et al., 2021) and RETRO (Borgeaud et al., 2022)). We more extensively
discuss missing models in §10.4: missing-models. We encourage future work to evaluate these models to
allow for common understanding, and to develop standards for research access to these models (Liang et al.,
2022).

Model Hardware
GPT-J (6B) 2×A100 (10.4%); 4×2080 Ti (89.6%)
GPT-NeoX (20B) 2×A100 (73.9%); 11×2080 Ti (26.1%)
T5 (11B) 2×A100 (59.1%); 8×2080 Ti (40.9%)
T0++ (11B) 2×A100 (1.1%); 8×2080 Ti (98.9%)
UL2 (20B) 2×A100 (3.5%); 16×2080 Ti (96.5%)
YaLM (100B) 8×A100
GLM (130B) 8×A100
OPT (66B) 8×A100
OPT (175B) 8×A100
BLOOM (176B) 8×A100

Table 6: Hardware and compute for public models. To perform inference on the public models, we
used the Together Research Computer. At the time of this work, Together Research Computer connects
clusters at several institutions. We mainly use NVIDIA GeForce RTX 2080 Ti GPUs and NVIDIA A100
GPUs to perform inference. If jobs were run on multiple hardware configurations, we report all configurations
separated by “;” (with the percentage of GPU hours spent on each configuration).

Computational Resources. For models that required we provide computational resources, we used the
Together Research Computer (Table 6).58 Specifically, Together Research Computer employs pipeline par-
allelism to achieve high-throughput inference: the model is partitioned across GPUs and the GPUs com-
municate with each other the activations of the model to accomplish forward passes to get the predictions.
Generally, Together Research Computer will dispatch inference jobs to idle GPUs. For models hosted via
commercial APIs, the providers of these models graciously provided us sufficient API credits to evaluate
their models as part of this effort.

Live systems. For both the private models and commercial APIs, we are evaluating live systems that may
be regularly updated in some cases. Unfortunately, the practices of (publicly disclosed) version control and
the corresponding change logs are uneven across model providers. For this reason, to the extent available,
we report model versions (e.g. the version date for Cohere models).

The results we produce are specific to the model versions at the time we queried them: we record these
timestamps in the results we release. Further, due the scale of our evaluation, it is possible that models change
over the duration of our evaluation, but we assume they do not change.59 To the extent the models/APIs
change, we anticipate the change is fairly gradual, therefore the results are not subject to large shocks, but
we encourage efforts to longitudinally monitor such changes to clarify their nature (cf. Chen et al., 2022).
Similarly, we note that the models we evaluate may be deprecated at some point after our evaluation.

58Together Research Computer: https://together.xyz
59This may relate to observations of unexpected non-determinism in model behavior as reported in https://twitter.com/

OfirPress/status/1542610741668093952 and studied in Ruis et al. (2022).

44

https://together.xyz
https://twitter.com/OfirPress/status/1542610741668093952
https://twitter.com/OfirPress/status/1542610741668093952


Published in Transactions on Machine Learning Research (08/2023)

Isolated technical issues. In general, we evaluate every model on every scenario (see Figure 4), and
for every scenario we measure every metric (see Table 4). However, in a few isolated cases, we encounter
issues/concerns that are generally attributable to specific model providers. We believe these issues are quite
marginal in influencing the overall results (e.g. most models are not affected at all, and even affected models
are affected on few scenarios).

First, for scenarios which require probabilities and not just completions (e.g. HellaSwag, MS MARCO
(regular), The Pile), we currently are not able to evaluate (possibly because the model itself fundamentally
does not yield such probabilities) for T0++ (11B), T5 (11B), UL2 (20B), GLM (130B), and YaLM (100B).
Second, for two models (J1-Jumbo v1 (178B), J1-Grande v1 (17B)), the API yields a tokenization error
which currently prevents us from reporting results for NaturalQuestions (closed-book), though we expect
this to be resolved shortly based on correspondence with the model providers. Third, the model probabilities
for completions sampled with temperature zero are incorrect for models from AI21 Labs: for this reason, we
do not report results for calibration, MS MARCO (regular), and MS MARCO (TREC). We explicitly
acknowledge this in Figure 4, which fully explains why we evaluate 96% of the (model, scenario) pairs instead
of 100%.

Model contamination. While we provide some information on the models we evaluate in Table 5, with
further details in Appendix I, we emphasize that we have uneven and usually limited information on the
training procedure for these models (see Liang et al., 2022). Consequently, we generally lack a precise
characterization of, and access to, the training data for these models with notable exceptions including
the ROOTS corpus for BLOOM (176B)60 as well as the Pile corpus along with further training details for
GPT-J (6B) and GPT-NeoX (20B) (see Biderman et al., 2022). Without such access and/or disclosure of
contamination by model providers, we cannot verify whether the model was trained on the data we evaluate
it on. This concern is heightened given we evaluate in a few-shot manner (as we discuss in §7: prompting),
so the model being trained on data drawn from this evaluation distribution, even beyond the exact evaluation
instances, could compromise the legitimacy/purity of such few-shot evaluation. For this reason, we flag known
instances of model contamination (i.e. where the model creators have disclosed possible contamination for
a given scenario) when we report results, and compile this known evidence in Appendix G, though overall
it is still largely limited. We encourage more proactive documentation/disclosure of model contamination,
as well as the use of canaries or other methods for minimizing contamination, for future work on language
model development to maintain the health of the evaluation ecosystem.

Fairness of evaluation. We prioritize standardization: models are evaluated on the same scenarios, for
the same metrics, and with the same prompts for 5-shot prompting. However, the models themselves can
require vastly different resources to produce, which are only partially accounted for by our measurements
of efficiency as one class of costs. In this sense alone, the evaluation can be seen as unfair (cf. Linzen,
2020; Bommasani et al., 2021, §4.4). Even beyond this, particular models may be better suited for specific
scenarios, metrics, prompts, and broader adaptation methods. As an example, we evaluate T0++ (11B) in
a 5-shot fashion, whereas the model was designed for 0-shot prompting, and T5 (11B) similarly was neither
designed for in-context learning nor to follow instructions in prompts. As one concrete recommendation as
the language modeling space matures, we recommend model developers explicitly declare how their models
should be evaluated and what the scope is of their generality/when models should be preferred. We believe
this disclosure will help to strike a productive balance between the general-purpose possibilities for language
models in the abstract and what is concretely sensible for a given model.

7 Adaptation via prompting

Adaptation transforms a raw language model into a system that makes predictions on test instances. In
short, we use prompting as our adaptation method with 5 in-context examples (when in-context examples
are included) as depicted in Figure 23. However, many lower-level details must be specified to fully define the
adaptation procedure: we discuss important conceptual details here and defer the remainder to Appendix J.
Table 7 provides example scenarios along with the full set of adaptation parameters.

60See https://huggingface.co/spaces/bigscience-data/roots-search.
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{instructions} The following are multiple choice questions (with 
answers) about anatomy.

{train input} Question: The pleura
{train reference} A. have no sensory innervation.
{train reference} B. are separated by a 2 mm space.
{train reference} C. extend into the neck.
{train reference} D. are composed of respiratory epithelium.
{train output} Answer: C

{test input} Question: Which of the following terms describes the 
body's ability to maintain its normal state?
{test reference} A. Anabolism
{test reference} B. Catabolism
{test reference} C. Tolerance
{test reference} D. Homeostasis
{test output} Answer:

Decoding parameters: temperature = 0, max tokens = 1, …

5x

Figure 23: Prompt formatting. An example of how we structure and format the prompt for querying the
language model.

Parameter Language Modeling TruthfulQA CNN/DailyMail

Prompt format
§J.1: prompting-test

§J.2: prompting-remainder

Instructions None None Summarize the given documents.
Input prefix None Question: Document:
Reference prefix None None None
Output prefix None Answer: Summary: {
Instance prefix None None None
Max training instances 0 5 5

Decoding parameters
§J.3: decoding-parameters

Temperature 0 0 0.3
Max tokens 0 5 128
Stop sequence(s) None \n }
Num. outputs 0 1 1

Evaluation parameters Num. runs 3 3 3
Max evaluation instances 1000 1000 1000

Table 7: Adaptation parameters. Example of the adaptation parameters specified for (i) language mod-
eling scenarios, (ii) the TruthfulQA question answering scenario, and (iii) the CNN/DailyMail summa-
rization scenario. We also include additional parameters required to fully specify evaluation (i.e. the number
of evaluation instances and runs, which influence the statistical validity and reliability of the results), though
they are not strictly part of the adaptation process.

In-context examples. Since we include 5 in-context examples, two core decisions are why we use this
number of examples and how we select the examples. We follow Brown et al. (2020) in their choice of the
number, testing in §8.2: prompting-analysis how the number of examples influences performance. To
select examples, we sample examples to ensure class coverage (for classification coverage) in order of class
frequency, so the 5 most frequent classes will be represented in-context. Critically, we choose to fix the
in-context examples across all evaluation instances, in contrast to prior work (e.g. Brown et al., 2020), to
more accurately perform few-shot evaluation (Perez et al., 2021). While more realistic, this also implies
our model performance can be more sensitive to the random choice of in-context examples. Therefore, we
re-run all experiments 3 times, only varying the randomness in in-context sample selection, to estimate this
variance: in §8.2: prompting-analysis, we show results can be especially high variance for some scenarios.

Prompt formatting. Beyond the in-context examples and evaluation instance, there are many other
mechanistic nuances involved in formatting the exact string that submitted to the language model. Prior
work has extensively shown that the design of prompts matters (Le Scao & Rush, 2021; Liu et al., 2022b),
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with Bach et al. (2022) introducing a repository for prompts.61 Since we more broadly view language models
as interfaces, we treat prompts as user behavior rather than explicitly optimizing prompts (Shin et al., 2020;
Zhou et al., 2022). Moving forward, we further expect that it may be desirable for language models to
be interoperable meaning different models should be standardized such that they all work well for similar
user prompting behavior. We provide initial evidence of how model performance varies in the exact string
formatting of the inputs in §8.2: prompting-analysis.

Adaptation strategy. For many scenarios (e.g. language modeling, text summarization), the way to
interact with a language model may appear clear. However, in the case of multiple choice classification, each
instance has several answer choices as references (usually with one marked as correct). This structure affords
flexibility in how to use a language model that traditionally does not exist in classification (where a model
necessarily predicts a distribution over answer choices with the prediction being the argmax).

Prior work introduces two classes of approaches to address adaptation for multiple choice scenarios. The
first is the separate approach employed by Brown et al. (2020), where each choice is independently scored by
concatenating it with the question and computing its probability according to the LM. In this approach, the
probabilities may be further calibrated by the probability the LM assigns to the answer choice alone. The
second is the joint approach employed by Hendrycks et al. (2021c), where all the choices are concatenated
with the question to form a prompt (e.g., “<question> A. <choice 1> B. <choice 2> Answer:”) and the
LM predicts the choice index (e.g., A or B). This resembles how one might see a multiple choice question
presented on an exam or test. In §8.2: prompting-analysis, we vary this adaptation strategy to test the
influence on performance: we find the strategy significantly influences accuracy (among other metrics), and
the most accurate strategy depends on the scenario (i.e. no strategy is uniformly more accurate).

8 Experiments and results

Our evaluation offers an immense array of model predictions along with quantitative metrics for these
predictions. To understand these results, we provide a web interface.62 This interface not only provides the
quantitative results, as is customary for other benchmarks and leaderboards, but also the underlying model
predictions and the exact inputs and prompts that yielded these predictions. We encourage exploration of
these results interactively: we believe grounding and interrogating various quantitative trends by mapping
them to explicit model behaviors is necessary for the community to have common understanding of these
models. Here, we provide a succinct analysis, foregrounding unique aspects of our evaluation that are made
possible by its broad, holistic, and systematic nature.

8.1 Meta-analysis

To summarize, we evaluate 30 language models (e.g. davinci (175B), BLOOM (176B)) on 16 core scenarios
(e.g. NaturalQuestions, IMDB) for 7 metric categories (e.g. accuracy, fairness). Here, we use our
comprehensive evaluation to provide answers to important questions in the field like whether model accuracy
correlates with scale or if more robust models are less biased.

Inter-metric relationships. A central tenet of our holistic evaluation is to foreground metrics beyond
accuracy, ensuring that the many desiderata we should expect of systems are indeed measured for each
scenario (when possible; see Table 4). As a consequence, this clarifies how different metrics relate to each
other. Many prior works have explored these types of relationships extensively for specific metric pairs:
for example, accuracy-robustness (Miller et al., 2021; Koh et al., 2021), accuracy-efficiency (Coleman et al.,
2017), calibration-fairness (Pleiss et al., 2017; Jones et al., 2021), and bias-toxicity (Sap et al., 2019a; Halevy
et al., 2021). In the context of language models, we may posit the relationships found in prior works will
continue to bear, but many pairs have not been studied and we do not have definitive evidence that these
relationships hold up reliably.

61https://github.com/bigscience-workshop/promptsource
62https://crfm.stanford.edu/helm/v0.1.0
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Figure 24: Accuracy vs. X. The relationship between accuracy (x-axis) and each of the 6 metrics (calibra-
tion, robustness, fairness, social bias, toxicity, efficiency) we study in this work across all core scenarios and
for all models. For calibration error, we measure ECE-10; for bias, we measure bias in gender representation;
and for efficiency, we measure denoised inference time.

Therefore, we harness our evaluation’s coverage of these metrics to provide two resources. First, in Figure 24,
we depict the relationship between accuracy and each of the 6 other desiderata. Among other interpretations,
this figure helps clarify when more accurate systems coincide with improvements in other key desiderata and
when there are important trade-offs. Further, by plotting these on a per-scenario basis, this helps to showcase
the underlying heterogeneity in the trends: when are metric relationships consistent across scenarios, when
are they highly scenario-dependent, and what are the anomalies? Second, in Figure 25, we consolidate the
relationship across models for specific scenarios. Concretely, in each subfigure we consider a pair of metrics,
where each grey point corresponds to the Pearson correlation (i.e. linear fit) between these metrics across
all models for this scenario.63 Once again, this helps to showcase the spread and heterogeneity in pairwise
metric relationships as well as the macro-level trends.

While these figures together provide a wealth of information, we step through them to state specific take-
aways. Most strikingly, we find that across all scenarios, accuracy, robustness, and fairness are extremely
strong correlated (see Figure 25). In part, we believe this is a finding contingent on how we chose to measure
robustness/fairness. For robustness, this aligns with findings for other forms of (non-adversarial) robustness,
such as the work of Miller et al. (2021) for distributional robustness, which shows in-domain and out-of-
domain accuracy lie on a line. On the other hand, for fairness, we find this to be quite surprising. We do
emphasize several prior works instead find trade-offs between fairness and accuracy, but we do not believe
that our work should be interpreted as contradicting their findings. Not only do we measure fairness differ-
ently from these works, but the setting of few-shot prompting of language models is considerably different
from the settings studied in these prior works (Zhang et al., 2019a; Raghunathan et al., 2020; Dutta et al.,
2020; Wang et al., 2021c; Zhao & Gordon, 2022).

63We also considered Spearman correlation (i.e. monotonic fit), given this may be more appropriate for some metric relation-
ships, but found the qualitative trends to be largely invariant across these two choices of correlations metrics.
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Figure 25: Correlation between metrics. The Pearson correlation between each metric and every other
metric (x-axis). The small grey dots denote the correlation on each individual scenario. Trends are qualita-
tively similarly for other correlation measures (e.g. Spearman correlation). For calibration error, we measure
ECE-10; for bias, we measure bias in gender representation; and for efficiency, we measure denoised inference
time.
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Shifting focus to calibration, the trends are more scenario-dependent, as can be seen for accuracy by the
visual clustering of points for a given scenario in Figure 24. Strikingly, we find that the relationship between
accuracy and calibration can be quite different for very similar scenarios: for two commonsense-centric QA
scenarios, we see accuracy and calibration are highly correlated in OpenBookQA (correlation of greater
than 0.8) whereas accuracy and calibration error are highly correlated in HellaSwag (correlation greater
than 0.85). Further, while not unsurprising given the strong correlations between accuracy, robustness, and
fairness, the finding that more robust and more fair models can be less well-calibrated is counter-intuitive
and surprising.

For generative harms, we also see significant variation in the relationship with other metrics. For toxicity,
the correlations on average with other metrics are near zero as the toxicity rates themselves for toxicity are
relatively constant and near zero, with the clear exception of NarrativeQA in Figure 24. In contrast for
bias, we see some positive correlation between accuracy and gender representation bias (lower is better), with
an even more striking average correlation of scenarios of more the 0.5 between fairness (higher is better)
and gender representation bias (lower is better). In other words, we see a clear and surprising trade-off:
models that tend to have better fairness performance, which depends on task-specific performance, tend
to have worse gender bias, which depends on model generations but not task-specific performance. As
to the two generative harms, we see there are some scenarios where they are fairly anti-correlated, which
indicates the less gender biased models tend to be more toxic for these scenarios. These findings indicate
it may not suffice to only measure one of these types of harms, and that efforts to reduce one may have
side-effects for the other (cf. Xu et al., 2021), which is especially relevant given the harms of toxicity are
more straightforward/immediate (e.g. more likely to draw media/journalistic attention) whereas the harms
of bias may be more subtle/gradual.

Finally, for efficiency, we see fairly weak correlations with other metrics. In particular, we do not see a strong
overarching trade-off between accuracy and efficiency, which we may have anticipated a priori. This is made
clear by Figure 24, which instead showcases that the trends for efficiency tend to be quite scenario-dependent.
This is especially true for the denoised metric, given a lot of what drives the measurements relates to the
fundamental distributional properties of the scenario (i.e. the length of inputs and outputs).

Direct model comparisons. A central objective for our evaluation is to achieve common and unified
understanding of all the models available. In particular, as we document in Appendix F, the 30 models we
evaluate in this work have been previously evaluated under different conditions for different evaluation suites.
In particular, the degree of overlap is surprisingly low and uneven across different models. Consequently, we
lack clarity as a field on the relationship between different models.

In Figure 26, we report how different models would fare in a head-to-head comparison for each metric across
all the core scenarios.64 We find that text-davinci-002 is clearly the most accurate model, winning in these
comparisons more than 90% of the time. Of the remaining models, we see that the largest model TNLG
v2 (530B) is the second most accurate, followed by Anthropic-LM v4-s3 (52B). In light of the significant
difference in model scale of a factor of more than 10 between TNLG v2 (530B) and Anthropic-LM v4-s3
(52B), given text-davinci-002 and Anthropic-LM v4-s3 (52B) share instruction-tuning in common (which
other models, beyond smaller OpenAI text variants, do not), this suggests that instruction-tuning and the
use of human feedback is an efficient and effective means for improving model accuracy.

Further, while we will later see the overall relationship between model scale and accuracy can be complicated
(Figure 29), here we see a clear thresholding effect in terms of model scale. All of the models with a win
rate for accuracy clearly above chance (e.g. 55% or more) have more than 50B parameters, whereas the sole
exception of a large model outside this group of the top 10 is YaLM (100B). YaLM (100B) has a surprisingly
poor accuracy win rate below 25%, perhaps because of significant training on Russian instead of English).
Within the top 10, we see model scale appears to be less predictive of rank, as two of the largest models
(BLOOM (176B) and J1-Jumbo v1 (178B); both 100B+ parameters) are at the bottom of this tier, whereas
Anthropic-LM v4-s3 (52B) and Cohere xlarge v20220609 (52.4B) (the two smallest models in the tier) are

64We exclude efficiency as we believe head-to-head comparisons based solely on efficiency are not meaningful; instead efficiency
needs to be considered in conjunction with other metrics like accuracy. Forthcoming work (Narayanan et al., Forthcoming)
examines the tradeoffs between accuracy and efficiency.
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Figure 26: Head-to-head win rate per each model. We report the fraction of head-to-head comparisons
between the given model and all other models, across all scenarios, where the given model is higher along
the metric (e.g. more accurate in the accuracy subfigure). If a model was the highest for the given metric
for every scenario, it would receive a score of 1.0; if a model received a score of 0.5, then if a scenario and
second model were chosen at random, the outcome of the comparison would be a coin flip. For metrics where
higher is better (Accuracy, Robustness, Fairness), the better models are towards the top, and vice versa. For
calibration error, we measure ECE-10; for bias, we measure bias in gender representation; and for efficiency,
we believe these comparisons should not be made without consideration of accuracy and they are further
discussed in Narayanan et al. (Forthcoming).
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Figure 27: Cumulative accuracy over time. The relationship between time (x-axis) and the accuracy
of the most accurate model released up to that point (y-axis) across 16 core scenarios. That is, the graph
tracks the progress in the state-of-the-art (SOTA) accuracy over time for each scenario.

in the top half of this tier. Similarly, within a model family, we see model scale is perfectly monotonically
correlated with model accuracy win rate (e.g. see the OpenAI and Cohere model variants). We emphasize
this certainly does not imply the models that fare poorly, or the small models, are inaccurate under all
conditions: we expect that the prompting approaches we used are poorly suited for these smaller models
and, perhaps, it is better to fine-tune these models (cf. Liu et al., 2022a).

Consistent with previous findings of accuracy being correlated with robustness and fairness, we see similar
rankings of models for those scenarios. However, we note that BLOOM (176B) notably performs considerably
better (in a relative sense) for robustness/fairness than its accuracy would suggest, with OPT (175B) and
GLM (130B) roughly interchanging positions for robustness and accuracy (i.e. GLM (130B) is more robust
and less accurate in a relative sense compared to OPT (175B)). In contrast, perhaps also as expected given
the weak correlations of generative harms with other metrics, we see the rankings for toxicity and bias are
notably quite different. We highlight how T0++ (11B) and davinci (175B) in particular demonstrate the
opposite trends when comparing their bias win rates to their toxicity win rates. That is, T0++ (11B) is the
most toxic when compared to all other models, but one of the three least (gender) biases, whereas davinci
(175B) is one of the four most biased head-to-head, but one of the less toxic models.

Accuracy as a function of other variables. To build on these model comparisons, we now consider
trends in model accuracies as a function of other relevant variables. In Figure 27, we report model accuracies
as a function of time (i.e. model release date). As a function of time, we see that the release of GPT-3 (Brown
et al., 2020) clearly establishes a strong baseline for future models across all scenarios, with a distinctive
improvement over T5 (11B). To the extent there is upward movement in accuracy since then, we often see
it coming with the introduction of Anthropic-LM v4-s3 (52B) roughly 18 months later in December, 2021
(the first model to use reinforcement learning with human feedback of those we evaluate), though we see a
surprisingly clear monotonic improvement over the intermediary period for NaturalQuestions.

In Figure 28, we stratify the results for accuracy based on model accessibility (see Liang et al., 2022) as
we discuss in §6: models. For each access category, we report the per-scenario accuracy of the model in
that category that is the most accurate (full bar) and that is generally the most accurate (smaller dark
sub-bar; based on Figure 26). This means the sub-bar is always the accuracy of OPT (175B) for open
models, text-davinci-002 for limited access models, and TNLG v2 (530B) for closed models. We see that
these models for limited access are consistently the best in their categories, but OPT (175B) is sometimes
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Figure 28: Accuracy as a function of model access. The relationship between access (open vs. limited
vs. closed) and model accuracy for each of the 16 core scenarios. Shaded bars indicate the performance of
the best model for that scenario, whereas the solid bars indicate the performance of the overall most accurate
model across all core scenarios based on Figure 26.

improved over (e.g. 10 point improvement for MMLU and CivilComments) as is TNLG v2 (530B) (e.g.
more than 5 point improvement for NaturalQuestions (open-book) and TruthfulQA).

Overall, we see the accuracies generally fall in the direction limited access > closed > open, which aligns
with Figure 26. With that said, we see some reason for optimism regarding open science through open-sourced
models, in that the best public model is usually somewhat competitive in accuracy (i.e. within 5 points of
the best non-open model), with the notable exceptions of more knowledge-intensive scenarios of MMLU,
NaturalQuestions (closed-book) and TruthfulQA as well as both information retrieval scenarios. This
is especially noteworthy given we have yet to see models being open-sourced with significant use of human
preferences and reinforcement learning from human feedback, which may further bridge this gap. However,
we do highlight there are other confounds: some models may not be disclosed to the public (let alone released),
some models may be disclosed after significant delay, and some highly accurate models are not yet evaluated
in HELM (e.g. Gopher, Chinchilla, PaLM; see §10.4: missing-models). We hope our findings on the
relationship between model accessiblity and model performance (e.g. accuracy) will inform the development
of community norms and standards around model access/release (Liang et al., 2022).

Predicting accuracy. Given the resource-intensive nature of producing language models, especially the
most capable models (for which we take accuracy for different scenarios as a proxy), the ability to predict
model capabilities65 is valuable for orienting decision-making. Prior work demonstrates model scale (whether
measured in model size, data size, or compute/training FLOPs) reliably predicts model loss for language
models, establishing scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022). On the other hand, work has
also shown that certain qualitative capabilities (e.g. in-context learning; Brown et al., 2020) emerges unpre-
dictably beyond a critical scale threshold (see Wei et al., 2022b). And many works have implicitly assumed
and demonstrated that improvements in language modeling loss (i.e. perplexity) translate to improvements
on downstream use cases. In Figure 29, we report on the relationship between model scale and accuracy,
while in Figure 30, we report perplexity (measured on The Pile) vs. accuracy.

In light of the very consistent picture that model scale within a family led to reliable improvements in
accuracy (Figure 26), we see that this does not generalize across model families. If we are to plot model scale
vs. accuracy, we find the relationship is very chaotic; model scale (agnostic to model family) as measured in
parameters is a poor predictor of trends in accuracy. Unfortunately, the data on different models was too

65It would be similarly interesting to predict our properties (e.g. those related to harms), though here we focus on accuracy.
We do note that our evaluation deliberately surfaces all the necessary metrics required to project other properties.
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Figure 29: Cumultative Scale vs. Accuracy. The relationship between model parameter size (x-axis)
and the accuracy of the most accurate model released up to that scale on each core scenario. That is, the
graph tracks the progress in the state-of-the-art (SOTA) accuracy as a function of scale for each scenario.
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Figure 30: The Pile loss vs. Accuracy. The relationship between log bits-per-byte (BPB) on The Pile
and the accuracy on each core scenario.
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sparse to attempt a similar analysis in terms of training FLOPs, but we expect such an analysis may be more
helpful in demonstrating a crisper relationship between training compute and downstream accuracy. When
we accumulate the performance of models in Figure 29, so as to understand if scale appears more necessary
to improve accuracy, we do see some notable jumps for many scenarios both in the range of 12B parameters
and 50B parameters. These jumps are specifically attributable to T0++ (11B) and Anthropic-LM v4-s3
(52B), which likely instead indicates that attributing these jumps to scale is confounded by other changes
(i.e. the training procedure of T0++ (11B) to deliberately improve few-shot prompting performance and the
RLHF involved in Anthropic-LM v4-s3 (52B)). And we similarly see the relationship between perplexity (or,
more accurately, log bits-per-byte) on The Pile and downstream accuracy is similarly messy (Figure 30),
though we expect the confound of contamination (some models are trained on The Pile and others are not)
exacerbates the messiness of these findings.
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Figure 31: Variance across seeds. For a subset of models and scenarios, we evaluate each scenario with
three different random sets of in-context examples. We compute the range of the accuracy metric (maximum
minus minimum value over the three random seeds) and visualize across models and scenarios.

8.2 Prompting analysis

While the benchmark we design is general, we evaluate 30 models by adapting them through few-shot
prompting (see §7: prompting). Consequently, here we study variations across several of these models
with respect to different design decisions involved in prompting.66 Together, these analyses help clarify the
potential brittleness of model behavior to prompt design, which bears on the legitimacy and reliability of
using prompting to build practical systems.

Choice of in-context examples. Given that we adapt language models through few-shot prompting, the
selection of the specific in-context examples could significantly influence model performance. In particular,
unlike prior work (e.g. Brown et al., 2020), we use the same examples across all evaluation instances, rather
than selecting different in-context examples for each evaluation instance, as this better reflects the realities
of few-shot adaptation (Perez et al., 2021). (We describe our specific selection algorithm which, to first-
approximation, is random selection from the scenario’s training set while ensuring coverage of different
classes for classification problems, in §J.2: prompting-remainder.) As a consequence, this exacerbates
the variation observed for different choices of in-context examples (consistent with the high variability one
might witness in practice if they truly only have a few examples).

To measure this sensitivity, we repeat all evaluations for 3 runs, meaning 3 choices of the in-context examples.
To explore the sensitivity of model results to this choice, hover over a specific entry to see the variance across
runs on the website. Further, the predictions across the 3 runs can be found for a given evaluation instance.
Additionally, we visualize the accuracy range (best minus worst performance) across seeds in Figure 31. We
observe that the performance of most models tends to be relatively consistent: the median range (across
scenarios) is below 0.03 for 24 out of 28 models (exceptions are YaLM (100B), davinci (175B), curie (6.7B),
ada (350M)). Interestingly, we find that there are scenarios where all models tend to exhibit higher variance.
A prominent example is NaturalQuestions (open-book), where the median range is 0.1730 (e.g., davinci
(175B) obtains F1 scores of 0.376, 0.611, and 0.636 across the three sets of in-context examples).

66We do not conduct all of these analyses on every model due to cost. We exclude all commercial models due to monetary
cost, as well as TNLGv2 models due to long wait times given the scale of the model.
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Figure 32: Number of in-context examples. For each model, we set the maximum number of in-context
examples to [0, 1, 2, 4, 8, 16] and fit as many in-context examples as possible within the context window.
We plot performance as a function of the average number of in-context examples actually used.

Number of in-context examples. By default, we either use 5 in-context examples, or fewer examples
for scenarios where 5 examples do not fit within in the context window. To test how the number of examples
(i.e. the sample efficiency of adaptation) influences performance, we vary the maximum number of examples
across n ∈ {0, 1, 2, 4, 8, 16}. In Figure 32, we plot model performance as a fraction of the average number
of in-context examples provided (which may be fewer than the maximum stated above if they do not fit
inside the context window). To explore the results further, including the model generations, see https:
//crfm.stanford.edu/helm/v0.1.0/?group=ablation_in_context.

We find that all models show clear improvement from n = 0 to n = 1, sometimes having 0% accuracy in the
zero-shot setting, with the consistent exception of CNN/DailyMail where zero-shot accuracy is better for
almost all models. We posit that models may not effectively understand the appropriate length distribution
and the poor reference summaries may comparatively mislead the model in the one-shot setting compared to
the zero-shot setting. However, for larger numbers of in-context examples, we do not see consistent benefits
across all models and all scenarios. The sole exception is OPT (175B) which, besides CNN/DailyMail,
shows a perfectly monotonically increasing relationship between number of shots and model accuracy for
NaturalQuestions (open-book), IMDB, and CivilComments.

Formatting of prompt. As we describe in §7: prompting, beyond the in-context examples and the
evaluation instance, there are several other details required to fully specify a prompt (e.g. instructions that
describe what the model should do). Since this formatting exists in the space of natural language, it is
difficult to specify concrete axes to systematically vary across (i.e. in contrast to how we can specify a range
we consider for the number of in-context examples). Consequently, we consider the following motivated but
fairly ad hoc/arbitrary changes to the prompt format involving instructions, input prefixes, output prefixes,
and input suffixes. The exact changes to the prompt can be found at https://crfm.stanford.edu/helm/
v0.1.0/?group=ablation_prompts, along with the results.

The clear finding is that the best prompt formatting is not consistent across models (i.e. models can
stand to improve in their interoperability). In particular, one variants lead to an accuracy of 67.3% for
Anthropic-LM v4-s3 (52B) on NaturalQuestions (open-book), whereas the prompt performs very poorly
for BLOOM (176B), which drops from an accuracy around 60% to 8.5%. In some cases, we believe the
prompting changes may lead to poor/undesirable interactions with the tokenizer, given the models use
different tokenizers in several cases. For GLM (130B), we are intrigued to see the prompt involving mentioning
the model is an expert AI assistant performs best across all four scenarios (NaturalQuestions (open-book),
CNN/DailyMail, IMDB, and CivilComments) we look in terms of accuracy. Specifically, the prompt
includes instructions of “I am an expert AI assistant who is here to help you with the following.”, along
with an input_prefix of “Passage: ”, input_suffix of “ "”, and an output_prefix of “Answer:”
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Figure 33: Multiple-choice adaptation. For each adaptation method (joint, separate, and separate
calibrated), we compare models across scenarios.

Formulation of multiple choice scenarios. Beyond the details of the prompt, we can conceptually
imagine different ways to make use of the language interface to perform the same underlying scenario. As
we discuss in Appendix J, in the case of multiple choice scenarios, we could provide the model with all of the
answer choices and task it with selecting the correct choice (joint). Or we could provide the model with each
answer choice as a separate query of the model, and see which answer choice is assigned higher probability
(separate). And we could further calibrate the model-assigned probabilities by the probability the model
assigns to the corresponding answer choice when presented standalone (separate-calibrated).

The results for these multiple choice scenarios as a function of this choice can be found at https://crfm.
stanford.edu/helm/v0.1.0/?group=ablation_multiple_choice, and they are visualized in Figure 33.
We observe that the method that maximizes accuracy is largely determined by the scenario, whereas it
is generally consistent across models for a given scenario. Taking HellaSwag as a case study, for all six
models, the methods follow separate > separate-calibrated > joint. This choice can be very consequential
for the model accuracy: for OPT (175B), the accuracies are 79.1%, 54.8%, and 30.2% respectively. Further,
the trends are entirely inverted for calibration error, as may be expected. So, overall for HellaSwag, across
both desiderata and for all six models, there is clear and strict Pareto dominance in adaptation methods
of separate > separate-calibrated > joint. In the case of HellaSwag, given the dataset is designed as
completions of an incomplete textual sequence, the preference for the separate adaption method over the
joint adaptation method is fairly intuitive and precisely aligns with the empirical findings. However, we do
note the methods pattern differently for specific models in terms of efficiency. In particular, the separate
methods require a query for each answer choice, whereas the joint method requires a single, much longer
(especially due to the inclusion of in-context examples) query. This manifests in lower denoised inference
times for separate over joint for BLOOM (176B) (0.075s vs. 0.271s), but the opposite trend for OPT (175B)
(0.71s vs. 0.187s), despite the fact the models are evaluated on the same infrastructure and are near-identical
in overall parameter count.

For the other scenarios, we do not observe as model-agnostic preferences over the adaptation methods. In
general, for accuracy, we find separate-calibrated > separate > joint for OpenBookQA, TruthfulQA,
and MMLU for five of the six models. The consistent exception is Anthropic-LM v4-s3 (52B) where
the preference is consistently joint > separate-calibrated > separate. We find this to be quite striking:
the adaptation method that elicits the most accurate behavior from Anthropic-LM v4-s3 (52B) elicits the
least accurate behavior from the other five models. These gaps are significant as well: on OpenBookQA,
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presenting accuracies in the order (separate-calibrated, separate, joint), we see (58.6%, 44.6%, 30.9%) for OPT
(175B), whereas for Anthropic-LM v4-s3 (52B) we see (55.8%, 44.4%, 69.6%). That is, if OPT (175B) and
Anthropic-LM v4-s3 (52B) were compared using the separate-calibrated adaptation method (or the separate
method), they would achieve near-equal accuracies (within 3%), but they are almost 40% apart when using
the joint method, and 12% apart when comparing the per-model accuracy-maximizing method. This raises
fundamental questions about the appropriate way to compare across models and the sense in which uniform
standardization is fair; we encourage future work to more extensively look into this and develop clearer best
practices.
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Figure 34: Metric spread for core scenarios. Metrics for every model on every core scenario as a means
for indicating the spread on a per-metric basis.

8.3 Task-specific results for core scenarios

Since we organize the 16 core scenarios by the broader task, we highlight findings at the task level. To
provide a sense of the spread in accuracies for each of these scenarios, we provide Figure 34. The results we
provide here are highlighting specific trends/phenomena, though we encourage interactively looking at the
quantitative results and underlying model behaviors.

Question answering. To further explore the results for this task, see https://crfm.stanford.edu/
helm/v0.1.0/?group=question_answering. For the 9 question answering scenarios, we see significant het-
erogeneity across the results. However, in terms of accuracy, what is very consistent is that text-davinci-002
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Figure 35: Robustness–equivariance via contrast sets. For the two scenarios where we have access to
hand-crafted contrast sets, for each model, we plot the robustness of the model on that scenario (worst-case
performance across perturbations of each instance) as a function of its standard accuracy.

is the most accurate model for all 9 scenarios. The margin however varies greatly across different scenarios:
the largest margin is on TruthfulQA where text-davinci-002 achieves accuracy of 62.0% compared to second
place from Anthropic-LM v4-s3 (52B) at 35.4%, whereas the smallest margins are for NaturalQuestions
(closed-book) (38.9% for text-davinci-002 vs. 38.5% for TNLG v2 (530B)) and HellaSwag (81.5% for text-
davinci-002 vs. 81.1% for Cohere xlarge v20220609 (52.4B)). As this suggests, the most accurate models
across the question answering beyond text-davinci-002 is much more variable: all of Anthropic-LM v4-s3
(52B), T0++ (11B), Cohere xlarge v20220609 (52.4B), OPT (175B), TNLG v2 (530B), davinci (175B), and
GLM (130B) are a top-3 model in terms of accuracy for some QA scenario, though for 5 scenarios Anthropic-
LM v4-s3 (52B) is the second-most accurate and for 6 TNLG v2 (530B) is the third-most accurate.

For calibration, we see several instances of models being very poorly calibrated. For example, on HellaSwag,
which is one of the scenarios where models have the highest absolute accuracies, the two most accurate models
(text-davinci-002, Cohere xlarge v20220609 (52.4B)) both have calibration errors of at least 0.28 (0.286, 0.341
respectively). In fact, we tend to see the J1 models are poorly calibrated on these scenarios, with all 3 models
incurring an ECE-10 of roughly 0.5 or more for both NaturalQuestions variants, QuAC, NarrativeQA,
and TruthfulQA. In contrast, some models are quite calibrated for some scenarios (e.g. Cohere xlarge
v20220609 (52.4B) has a calibration error of 0.06 on NarrativeQA).

For robustness and fairness, we see all models tend to show consistent drops of 5 to 10 points for all scenarios.
Consistent with the broader trends, we find robustness and fairness are strongly correlated with accuracy,
with no observed cases of the most accurate models suffering especially large drops for robustness/fairness.
One exception is HellaSwag, where the three most accurate models are the only models with standard
accuracies above 80% (text-davinci-002 = 81.5%, Cohere xlarge v20220609 (52.4B) = 81.1%, Anthropic-LM
v4-s3 (52B) = 80.4%), and only text-davinci-002 remains about 70% in the presence of fairness perturbations
at 70.3%. Cohere xlarge v20220609 (52.4B) in particular experiences the largest drop of more than 15 points
to 66%, which is a worse robust accuracy than TNLG v2 (530B) at 67.8% despite TNLG v2 (530B) being 1.2%
worse in standard accuracy. In other words, the model with higher standard accuracy has lower accuracy in
the presence of fairness perturbations, with a 3% larger drop due these perturbations. In terms of robustness
to semantics-altering perturbations (equivariance), we only have access to Contrast Sets (Gardner et al.,
2020) for the BoolQ scenario. In Figure 35, we find that the performance of all models drops significantly
when evaluated for equivariance. Interestingly, there is a cluster of models with moderate accuracy, but
really low robustness: e.g., GPT-J (6B) achieves an accuracy of 55% but a robustness of just 3.6%.

For generative harms, we find the toxicity rates are quite low across all QA scenarios (e.g. less than 1% for
all models on both NaturalQuestions variant as well as QuAC). The one exception is NarrativeQA,
where several models have toxicity rates between 2–3%, which may be attributable to the story domain
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(and/or false positives from the Perspective API being more common for this domain). Looking at biases for
NarrativeQA, we see models generally show similar biases for all four of {gender, race} × {demographic
representation, stereotypical associations}. The one exception is for racial representation, where all but
three models achieve bias scores of 0.667 (lower is better/less biased), whereas UL2 (20B) and T5 (11B)
have scoress around 0.35 and YaLM (100B) around 0.45. Looking at the model generations, we do see
some evidence for discrepancies in model generations, though we also expect the effects referenced are still
somewhat weak given models infrequently mention racial words that we track for this scenario. Beyond
NarrativeQA, models tend to demonstrate similar biases for a given scenario.

Information retrieval. To further explore the results for this task, see https://crfm.stanford.edu/
helm/v0.1.0/?group=information_retrieval. Unless otherwise stated, our results report the scores from
the boosted setting, which aim in principle to establish an intuitive upper-bound on model quality. Whereas
in the vanilla settings models re-rank the top-30 passages from BM25, in the boosted setting models re-rank
the top-30 passages from BM25 as well as every passage that has an explicit relevance assessment, even
when these passages aren’t retrieved by BM25. Refer to Section B.2 for a discussion of our IR metrics and
a detailed motivation for the boosted setting.

For information retrieval on MS MARCO (regular) and MS MARCO (TREC), we begin by observing
that the best-performing models show competitive accuracy scores, especially under the boosted setting.
The most effective models on MS MARCO (regular) are text-davinci-002, which scores 39.8% RR@10
in the boosted setting and 22.4% RR@10 in the vanilla BM25 top-30 setting, and TNLG v2 (530B), which
scores 39.7% RR@10 (boosted) setting and 22.5% RR@10 (vanilla), with Cohere xlarge v20220609 (52.4B)
being the next most accurate model at 33.1% RR@10 (boosted) and 17.6% (vanilla). To put these scores in
perspective, the RR@10 of our underlying classical retriever (i.e., BM25) is 19.0%. That is, in the vanilla
top-30 setting, both text-davinci-002 and TNLG v2 (530B) obtain a better ranking than the underlying
retriever on average, whereas other models like Cohere xlarge v20220609 (52.4B) perform worse.

We see a similar trend but with larger gains on the more densely-annotated MS MARCO (TREC). In
particular, text-davinci-002 is the most accurate model at 65.3% NDCG@10 (boosted) and 61.0% NDCG@10
(vanilla), then TNLG v2 (530B) at 64.7% (boosted) and 60.7% (vanilla), and Cohere xlarge v20220609
(52.4B) at 52.8 (boosted) and 53.4% (vanilla). On MS MARCO (TREC), BM25’s NDCG@10 is 50.6%.
Given the much more dense annotations in the MS MARCO (TREC) setting, we see that these models
deliver considerably larger gains over BM25, under both the boosted and the vanilla setting, compared with
their gains on MS MARCO (regular). For MS MARCO (TREC), the boosted setting includes all of
the assessed passages, including many relevant and many non-relevant passages. Naturally, the gains for the
best-performing models are larger in the boosted setting. Perhaps surprisingly, for Cohere xlarge v20220609
(52.4B), quality is diminished in the boosted setting: effectively, this model is distracted by the non-relevant
passages that are in the assessed pool more than it benefits from the relevant documents that are not in
BM25’s top-30 results.

Overall, these few-shot effectiveness scores are relatively competitive but they nonetheless trail the current
state-of-the-art retrieval systems by a considerable margin. At the time of writing, in MS MARCO
(regular), the top-scoring system on the public leaderboard scores 45% RR@10 on the test set. Compared
to this, the models we test score up to 39.8% RR@10 in the boosted setting, which is comparable to recent
state-of-the-art standalone retrievers like ColBERTv2 (Santhanam et al., 2021), and 22.5% in the vanilla
setting that re-ranks BM25’s top-30, which is comparable to simple neural ranker submissions from late
2018 and early 2019 like Conv-KNRM (Dai et al., 2018) and DuetV2 (Mitra & Craswell, 2019). In MS
MARCO (TREC), the best-scoring system that participated in the original NIST competition scored
76.5% NDCG@10. Compared to this, the models we test score up to 65.3% NDCG@10 in the boosted
setting, which is within 2–3 points of the ANCE (Xiong et al., 2020) system from mid 2020, and 61.0%
in the vanilla setting, which is more effective than the Siamese BERT embeddings baseline of Gao et al.
(2021c).

These promising accuracy scores for few-shot adaptations of language models are promising, especially since it
is not inherently obvious that such models are well-suited for the nuances of these passage ranking scenarios.
In particular, these scenarios (at least as realized through our adaptations) necessitate a strong degree of
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calibration, in which the probabilities assigned to each of the “Yes”/“No” outputs accurately reflects the
continuous degree of relevance of a passage to a query. Out of the MS MARCO corpus with 9M passages,
numerous passages can carry varying degrees of relatedness to a given query (Craswell et al., 2020).

Beyond accuracy, we hone in on the robustness and fairness of the systems we study. Robustness and fairness
have been considered in many ranking problems (e.g. Zehlike et al., 2017; Singh & Joachims, 2019), but such
concerns have only become mainstream in the past few years.67 We find that text-davinci-002 only presents
minor drops in accuracy in the presence of both robustness and fairness perturbations for MS MARCO
(TREC), but otherwise most models show some drops, though no model shows especially large drops. To
highlight an interesting case, Cohere xlarge v20220609 (52.4B) shows the largest drops for MS MARCO
(regular), going from 33.1 standard RR@10 to 29.4 fairness RR@10 and 25.3 RR@10 in the presence of
robustness perturbations. We highlight the potential for future work to further explore cross-lingual retrieval
settings for both language and dialects, in that we currently perturb both the passages and the query for
our dialect perturbations but it may be more realistic to assume the passages are, for example, in SAE but
the queries are in AAE to understand performance for AAE speakers.

Finally, in spite of the promising results in terms of model accuracy, we note that scale is critical to many
information retrieval applications, necessitating models be efficient. For example, to deploy information
retrieval systems on the web in search engines, systems must perform very efficient inference to be useful,
which is why amortized indexing strategies have been widely studied and adopted. In contrast, we see these
language models when adapted via prompting are drastically less efficient, perhaps also because of the large
model sizes (e.g. both of the most accurate models are more than 100B parameters). In particular, the
idealized denoised inference time for text-davinci-002 is 0.21s per request (i.e., a query–passage pair to be
scored). If these requests have to be issued sequentially per query, this is likely too slow, even though we are
evaluating models on a variant where only 30 passages are being ranked for each query. However, it is in
principle possible to parallelize such scoring across passages (for a given query), and thus a latency of 0.21s
could be acceptable if such parallelism is seen as cost-effective.

Summarization. To further explore the results for this task, see https://crfm.stanford.edu/helm/v0.
1.0/?group=summarization. For summarization on CNN/DailyMail and XSUM, we begin by observing
that the ROUGE scores tend to be much lower than our qualitative judgments of summary quality, consistent
with Goyal et al. (2022). With that said, broadly, we did find that the ROUGE-2 scores did correlate with more
accurate models across-the-board (e.g. the top models on both datasets based on ROUGE-2 largely overlapped
with those at the top of the accuracy subfigure of Figure 26). In general, we saw a strong correlation with
model size, as the largest models tended to be those with high ROUGE-2 scores for both scenarios, notably
with TNLG v2 (530B) having the highest score for both scenarios with a reasonable margin for XSUM
at 17.9 points when compared with second-place OPT (175B) at 15.6 points and no other model above 14
points.

Beyond model accuracy, we found that getting models to produce summaries of appropriate length (so as to
match the distribution of reference summaries in the dataset) was a key challenge, especially given models
only observe a few in-context examples and, therefore, may be poorly specialized to the distribution (when
compared to models explicitly trained/fine-tuned on the distribution, for which automated ROUGE scores
may be more useful). In particular, comparing the compression scores across models, we see considerable
variation, and the trends were not consistent across the two datasets. As a very striking example, ada
(350M) was one of the most compressive on CNN/DailyMail but the least compressive on XSUM by a
wide margin (1.65 vs the next least compressive in babbage (1.3B) at 6.12 where higher scores means more
compression), suggesting the ada (350M) model especially did not “understand” the specification of length
requirements in the instructions in the prompt. In terms of the degree of abstraction in model generations,
we found that the relationship between model quality and abstraction (measured in terms of both coverage
and density from Grusky et al. (2018)) was very variable, with few consistent trends.

Since the summarization scenarios required the longest-form generation of all core scenarios, we paid special
attention to the presence of generative harms. For stereotypical associations (for both race and gender) on
both datasets, we found that all models exhibited very similar biases, especially on CNN/DailyMail. In

67For example, see the TREC Fair Ranking track: https://fair-trec.github.io/.
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part, we think alternative forms of measurement that propose means for controlling for bias in the source
documents that are being summarized (i.e. attributing bias to the dataset vs. the model’s specific tendencies
in generation) could be helpful in providing more acuity. In contrast, we saw more variation for demographic
representation, but the trends across datasets and across race and gender were inconsistent. Interestingly,
with respect to demographic representation, YaLM (100B) demonstrated the greatest racial bias on both
datasets and the greatest gender bias on CNN/DailyMail (e.g. racial bias of 0.651 on CNN/DailyMail
for race compared to the next highest of 0.399 from GPT-J (6B)), but was one of the least gender biased
models on XSUM. And for toxicity, we found the incidence of toxicity to be very low for both datasets,
suggesting the risk of toxicity for such innocuous use cases to largely be marginal. With that said, we
emphasize this is summarization of news documents, where models be inherently less likely to generate toxic
content given the domain of the documents. And we do note, while a very low rate of 0.6%, TNLG v2 (530B)
achieves the highest toxicity rate in addition to the highest ROUGE-2 accuracy on XSUM.

Sentiment analysis. To further explore the results for this task, see https://crfm.stanford.edu/helm/
v0.1.0/?group=sentiment_analysis. For sentiment analysis on IMDB, we see model accuracies are often
quite high (i.e. greater than 90%), with the top models hitting an accuracy around 95% (J1-Grande v1
(17B), J1-Large v1 (7.5B), BLOOM (176B), Cohere xlarge v20220609 (52.4B), GPT-NeoX (20B), OPT
(175B), TNLG v2 (530B), text-davinci-002, GLM (130B)) and GLM (130B) reporting the top accuracy by
a thin margin at 95.5%. The strong performance in terms of accuracy of the much smaller GPT-J (6B)
and J1-Large v1 (7.5B) models is noteworthy for this scenario, as well the performance of BLOOM (176B),
which generally underperforms on other scenarios given its multilingual training contrasted with our English-
specific evaluation. Further, we are surprised to see that J1-Jumbo v1 (178B) lags a few points behind the
other J-1 models and the generally high-accuracy Anthropic-LM v4-s3 (52B) model is also more middle-of-
the-pack with an accuracy of around 93.4%. A few models perform worse than chance/majority baseline,
namely T5 (11B) and UL2 (20B), with T0++ (11B), Cohere small v20220720 (410M), and babbage (1.3B)
slightly above 50% (though ada (350M) is well above chance at 78.4%).

The most accurate models are fairly well-calibrated, with GLM (130B) being somewhat miscalibrated with
a calibration error of ECE-10 = 0.18 and BLOOM (176B) being quite miscalibrated with ECE-10 = 0.353.
YaLM (100B) is especially poorly calibrated with ECE-10 = 0.418 alongside a standard accuracy of 83.6%.
For robustness and fairness, we see the size of the drops in accuracy are generally consistent: the gaps are
notably quite small for text-davinci-002 (less than a 1% drop for either fairness or robustness) and quite large
for GPT-NeoX (20B) (94.8% standard accuracy drops to 91.2% robust accuracy). In particular, GPT-NeoX
(20B) is the second most accurate model but it is outside the top 10 models in terms of robust accuracy.
Since IMDB is one of the two datasets where we have access to a contrast set, we further look into the
relationship in robustness behavior for invariances and equivariances. In contrast to the invariances that
use automatic perturbations, the human-authored contrast set examples that are semantics-altering show
significantly larger drops in accuracy (see Figure 35). Notably, the most accurate model in GLM (130B)
experiences one of the largest drops, with its accuracy dropping from 95.6% standard accuracy for the
contrast set examples to 86.9% in the presence of these perturbations. This comes in clear contrast to the
synthetic perturbations that were semantics-preserving, which yielded a drop of only 1.7% for GLM (130B).
Similar to the case of BoolQ, we find a cluster of models with moderate accuracy, but really low robustness:
e.g., babbage (1.3B) achieves an accuracy of 52% but robustness of only 8.6%. In this sense, approaches like
the contrast sets and counterfactual techniques explored by Kaushik et al. (2019) and Gardner et al. (2020)
may be necessary to more completely surface robustness issues in language models (and automated/scalable
techniques may underestimate such concerns). After all, a model that does not correctly change its prediction
when the input changes in a semantics-altering way, is likely latching on irrelevant features of the input.

Toxicity detection. To further explore the results for this task, see https://crfm.stanford.edu/helm/
v0.1.0/?group=toxicity_detection. For toxicity detection on CivilComments, the most striking finding
is models do not do particularly well, with many achieving accuracies marginally above 50% (i.e. chance
accuracy for this binary classification task). Anthropic-LM v4-s3 (52B), BLOOM (176B), TNLG v2 (530B),
and text-davinci-002 are the only models above 60% accuracy, with all other models being at or below
55% accuracy. Of these, text-davinci-002 is clearly the most accurate at 66.8%, whereas the other three are
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around 61.0% accuracy. In fact, some models that are generally quite accurate (e.g. Cohere xlarge v20220609
(52.4B), OPT (175B), davinci (175B)) all get at most 53.2% accuracy, with OPT (175B) basically achieving
chance accuracy at 50.2%.

For calibration, all models are poorly calibrated (e.g. ECE-10 of at least 0.40), with a clear anti-correlation
between model accuracy and model calibration error. Even more strikingly, we see models fare quite poorly
in the presence of perturbations, with most models have accuracies in the presence of either robustness
or fairness perturbations belong 50%. For example, text-davinci-002 drops precipitously from well above
50% to below it in the presence of fairness perturbations (66.8% to 46.3%), and TNLG v2 (530B) shows a
similar-sized drop in the presence of robustness perturbations (60.1% to 40.9%).

To build on this connection, we deliberately chose CivilComments to study toxicity detection given the
unique availability of group identity metadata regarding the subjects mentioned in the comments. For all
of the subsets (male, female, LGBTQ, Christian, Muslim, other religions, Black, White), we see the four
models that performed clearly above chance overall continue to retain accuracies around 60 to 65%. For
gender/sexuality, we see LGBTQ performance is clearly the worst for all models, but surprisingly several
models do worse for the male split compared to the female split (and the drops in accuracy are smaller for
female than male in the presence of perturbations). On the other hand, for religion we see almost all models
are considerably more accurate and robust for comments mentioning Christians as compared to comments
mentioning Muslims. For example, for the Christian split, the Anthropic-LM v4-s3 (52B) accuracy improves
to 62.8% from the overall accuracy of 61.0%, whereas it declines to 54.7% for the Muslim split. And the
accuracies for the other religion split lie in between, generally quite close to the overall accuracy for a given
model. Finally, for race we find the accuracies on the Black and White splits are similar, but models are
generally significantly less robust on the Black split, most notably with OPT (175B) dropping precipitously
from a standard accuracy of 51.3% on the Black split to 8.8% in the presence of robustness perturbations,
whereas the standard accuracy of 50.8% on the White split drops considerably less to 24.3%. We note this
is an especially critical relationship between fairness, robustness, and toxicity detection performance, given
the potential disparate impact of censoring the voices of the already-marginalized on Internet platforms (i.e.
the primary site of automated toxicity detection and content moderation), building on the findings of Sap
et al. (2019a).

Miscellaneous text classification. To further explore the results for this task, see https://crfm.
stanford.edu/helm/v0.1.0/?group=miscellaneous_text_classification. For miscellaneous text clas-
sification on RAFT, we see that the models display the widest spread in accuracies. GLM (130B) is clearly
the most accurate, with an overall accuracy of 85.8%, though surprisingly J1-Grande v1 (17B) is the only
other model with at least 80% accuracy at exactly 80% accuracy. J1-Jumbo v1 (178B), Cohere xlarge
v20220609 (52.4B), and another surprise in GPT-J (6B) all achieve accuracies of at least 78%, whereas
the overall most accurate models in text-davinci-002 (66.7%) and, especially, Anthropic-LM v4-s3 (52B)
(50.8%) are considerably less accurate on RAFT. In fact, this is a very rare instance where davinci (175B)
outperforms text-davinci-002 in terms of accuracy, with an accuracy of 67.5%.

In terms of calibration, the accurate models all have calibration errors around ECE-10 = 0.2, with the clear
exception of GPT-J (6B), which is very miscalibrated while being quite accurate with an ECE-10 of 0.457.
The models also pattern quite differently in terms of robustness, with J1-Grande v1 (17B) dropping nearly
10 points from its overall standard accuracy to its robust accuracy, whereas GLM (130B) only drops 3.3%.
In contrast, all of the models do not show significant drops in the presence of fairness perturbations with
the clear exception of text-davinci-002, which goes from 66.7% overall standard accuracy to 40.0% in the
presence of fairness perturbations.

Since RAFT itself is composed from 11 relatively diverse sub-scenarios, we further consider how model
performance breaks down across these sub-scenarios. In general, we see that the difficulty of different sub-
scenarios can be very variable: some models achieve accuracies of 97.5% on the Systematic Review Inclusion
task, whereas the best accuracy on the One Stop English task is 62.5% from GPT-J (6B), which itself is a
notable outlier as most models are belong 30%. Across the subsets, we see that text-davinci-002 consistently
performs accurately, whereas the performance of other accurate models across splits is more variable (e.g.
GLM (130B)). However, text-davinci-002’s overall accuracy is brought down by a very poor accuracy of 40.8%
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on Systematic Review Inclusion (the second worst accuracy for this subset) compared to GLM (130B), which
gets an accuracy of 97.5%. The heterogeneity in the sub-scenarios in RAFT proves to be quite useful in
discriminating different models that are generally performant for all of these classification problems in the
long-tail vs. those that may be highly accurate for some problems but not fare as well for other problems. In
this sense, RAFT helps speak to the generalizability of models across the broad canon of text classification
that may be encountered in practical deployments, given the ubiquity of natural language and the demand
for classification/categorization.
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Figure 36: Targeted evaluation of language. Model accuracy on the four scenarios for evaluating
linguistic understanding.

8.4 Targeted evaluations

Language. To further explore the results for this targeted evaluation, see https://crfm.stanford.edu/
helm/v0.1.0/?group=language and Figure 36. For the language modeling scenarios, we begin by noting
that the models trained on The Pile are consistently the most accurate on The Pile to no surprise.
However, these models also tend to be the most accurate on the other two language modeling scenarios: for
TwitterAAE and ICE, the most accurate models are GPT-J (6B), GPT-NeoX (20B), OPT (66B), OPT
(175B), and BLOOM (176B). This suggests that The Pile, when compared with the other training sets for
these models, may yield better transfer to other language modeling datasets. Further, we are surprised to see
the other models trained on The Pile, especially Anthropic-LM v4-s3 (52B) and TNLG v2 (530B), which
are generally are the most accurate models on the core scenarios (Figure 26), are actually less accurate on
TwitterAAE and ICE compared to models not trained on The Pile. Overall, we see that the models that
perform most accurately on all language modeling scenarios are quite different and are poorly correlated
with the accuracy trends for core scenarios.

Further, since TwitterAAE and ICE provide unique demographic data, we examine performance disparities
for these scenarios. For TwitterAAE, we see a clear and consistent trend: all models perform noticeably
worse on the African American English subset when compared with the White English subset.68 Consistent
with prior work on other language technologies (Blodgett & OConnor, 2017; Koenecke et al., 2020), this
indicates a clear performance disparity between language model performance for African American speakers
vs. White speakers along the lines of historical marginalization. All models for the Black subset have BPB
above 2.0 (lower is better), whereas almost all models for the White subset are below 1.9, with the best model
of OPT (175B) having a BPB of 1.506 for the White English subset and 2.114 for the AAE subset. For ICE,
across all four regional subsets (East Africa, Hong Kong, India, USA), the most accurate models are the
same as those mentioned above for ICE and the other language modeling scenarios overall.69 Further, we
see the accuracies for the USA and East Africa tend to be better across all models, with EA being slightly
worse, and then India and Hong Kong are clearly worse. For binary gender, we find that the female subset
is consistently, but slightly, worse for model accuracy compare to the male subset.

Turning to BLiMP, we find that all models achieve similar accuracies. In fact, even on specific subsets for
specific linguistic phenomena, we see the accuracies are quite similar. We are surprised to see text-davinci-
002 is not one of the most accurate models overall and, instead, is one of the least accurate models on the
irregular forms (morphology) and quantifiers (semantics) subsets. Given its consistently high accuracies on

68See https://crfm.stanford.edu/helm/v0.1.0/?group=twitter_aae.
69See https://crfm.stanford.edu/helm/v0.1.0/?group=ice.
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Figure 37: Targeted evaluation of knowledge. Model accuracy on the six scenarios (5 question answering,
WikiFact) for evaluating knowledge acquisition.

various downstream tasks, this may indicate either a con of instruction-tuning or an over-generalization of
linguistic rules, especially given the poor performance is on irregular forms in particular.

Knowledge. To further explore the results for this targeted evaluation, see https://crfm.stanford.
edu/helm/v0.1.0/?group=knowledge and Figure 37. Across all five knowledge-intensive QA scenarios, we
see text-davinci-002 is the most accurate. In particular, the gap in accuracies is especially salient for Truth-
fulQA, where text-davinci-002 has an accuracy of 62.0% and the next most accurate model is Anthropic-LM
v4-s3 (52B) at 36.2% and for MMLU, where text-davinci-002 has an accuracy of 57.0% and the next most
acccurate model is Anthropic-LM v4-s3 (52B) at 49.8%. Of these scenarios, for the two that are more
centric on factual knowledge (i.e. MMLU and NaturalQuestions (closed-book)), we see that TNLG v2
(530B) performs notably well, achieving an accuracy within 0.5% of text-davinci-002 for NaturalQues-
tions (closed-book). This aligns clearly with the broader hypothesis that model scale is especially beneficial
for memorizing specific factual information, which in turns proves useful for these very knowledge-intensive
evaluations.

To further hone in on specific factual knowledge, we then consider model accuracies on WikiFact.70 We
again see that text-davinci-002 is the most accurate at 38.5%, with TNLG v2 (530B) as the second most
accurate at 34.3%, and with Cohere xlarge v20220609 (52.4B) (33.4%) and davinci (175B) (39.7% as the
only other models above 30%. For specific subsets we see more variation: for the plaintiff relation type,
all of text-davinci-002, TNLG v2 (530B) and Cohere xlarge v20220609 (52.4B) are above 60%, with the
next best model being J1-Jumbo v1 (178B) at 51.0% and davinci (175B) being considerably worse (46.5%)
despite its overall high accuracy. With that said, in spite of its significantly larger model size, there is no
subset where TNLG v2 (530B) performs significantly more accurately than all other models. And all models
perform quite poorly for some subsets, e.g. the most accurate model gets an accuracy below 15% for the
discoverer_or_inventor relation type.

Reasoning. To further explore the results for this targeted evaluation, see https://crfm.stanford.edu/
helm/v0.1.0/?group=reasoning and Figure 38. Models are most accurate for the structured-data tasks
such as entity matching and data imputation (Narayan et al., 2022), which are primarily based on pattern
matching and classification. In contrast, models are relatively inaccurate for tasks that involve abstraction,
transitive inference, algebraic and logical reasoning, with natural-language tasks such as LSAT (Zhong

70See https://crfm.stanford.edu/helm/v0.1.0/?group=wikifact.
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Figure 38: Targeted evaluation of reasoning. Model accuracy on 12 scenarios (5 question answering,
WikiFact) for evaluating reasoning capabilities.

et al., 2021) and GSM8K (Cobbe et al., 2020) yielding low accuracies. Overall, we find code-davinci-002 is
consistently the most accurate model across reasoning scenarios, even in spite of some scenarios being posed
fully in natural language.

For both synthetic reasoning scenarios, we see no model achieves an accuracy above 40% with the exception
of text-davinci-002 (47.3% on abstract symbols, 65.1% on natural language) and code-davinci-002 (55.0%
on abstract symbols, 67.3% on natural language). That is, these two models show a clear and significant
advantage in accuracy for these scenarios, with the gap between them shrinking in the presence of natural
language while still maintaining that code-davinci-002 is more accurate than text-davinci-002 for reasoning.
We observe that similar trends hold for MATH, GSM8K, bAbI, and MATH (chain-of-thoughts). Looking
at individual subsets for bAbI, we find tasks 3, 4, 15 and 19, which assess transitive reasoning, relational
understanding, deduction and planning skills, respectively, to be the the most challenging.71 In contrast
to the trends for text-davinci-002, for Dyck, we observe that text-davinci-002 is not quite accurate (59.4%
accuracy), whereas TNLG v2 (530B) (78.4%) joins code-davinci-002 (80.2%) as the only models above 75%.

For LSAT (Zhong et al., 2021), which consists of reasoning questions posed for law school admissions, we
observe that most evaluated models perform poorly, with accuracies around chance level (20%). Looking
into the behavior for individual examples, we see significant variation in behavior that is likely indicative
of the spectrum of difficulty of questions. On code scenarios, we see consistent trends with code-davinci-
002 consistently outperforming code-cushman-001 (12B) for both HumanEval and APPS, sometimes by
large margins (e.g. 10.% strict correctness vs. 2.6% on APPS). We note that we do not evaluate any of
text models on these code scenarios, though in some cases this may be sensible/desirable given the striking
generality of model development, deployment, and validation/scrutiny. Conversely, while we evaluate the
code models for LSAT and LegalSupport, we find achieve accuracies of 0%. Overall, we find text-davinci-
002 and, especially, code-davinci-002 display very strong reasoning capabilities for many different forms of
reasoning.

Memorization & Copyright. To further explore the results for this targeted evaluation, see https:
//crfm.stanford.edu/helm/v0.1.0/?group=copyright_text, https://crfm.stanford.edu/helm/v0.
1.0/?group=copyright_code and Figure 39. We evaluated various models for their ability to reproduce
copyrighted text or licensed code. When evaluating source code regurgitation, we only extract from models
specialized to code (code-davinci-002 and code-cushman-001 (12B)). When evaluating text regurgitation, we
extract from all models except those specialized to code.

71See https://crfm.stanford.edu/helm/v0.1.0/?group=babi_qa.
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Figure 39: Targeted evaluation of copyright and memorization. Model performance on targeted
evaluations for memorization for both copyrighted text and licensed code.
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Figure 40: Targeted evaluation of social bias. Model performance on targeted evaluations for bias on
BBQ.
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Overall, we find that models only regurgitate infrequently, with most models not regurgitating at all under
our evaluation setup. However, in the rare occasion where models regurgitate, large spans of verbatim
content are reproduced. For instance, while no model in our suite reliably reproduces content given prompts
taken from randomly sampled books, some models can reproduce large chunks of popular books given short
prompts. Notably, we observe that davinci (175B) and Anthropic-LM v4-s3 (52B) reproduce non-trivial
spans of the first few pages of several Harry Potter books, and OPT (175B) and Anthropic-LM v4-s3 (52B)
reproduce large spans of the children’s book “Oh, the Places You’ll Go!”

On average, we see that models specialized to code reproduce source code content to a larger degree than
non-code models for text with the prompt sources we collected (e.g. Figure 39 shows that both the prefix-
length-normalized LCS and edit similarity are higher for the code component than the text component). In
addition, we observe cases where the code model not only reproduces the functional aspects of the code but
also the comments verbatim.

Disinformation. Since we do not have automated metrics at present for many aspects of human evaluation,
and the effectiveness of disinformation strongly depends on (potentially very) subjective human judgments,
we primarily measure model behavior for disinformation through human evaluation. Consequently, we defer
discussion to §8.5.1: human-evaluation-disinformation.

Bias. To further explore the results for this targeted evaluation, see https://crfm.stanford.edu/helm/
v0.1.0/?group=bbq. For BBQ, we begin by noting the very striking finding for model accuracy: text-
davinci-002 achieves an accuracy of 89.5%, which is much greater than any other model, with T0++ (11B)
(48.4%) and TNLG v2 (530B) (44.9%) as the second and third most accurate, with not other model achieving
accuracy above 40%.

With this in mind, we see that accuracy shows a very strong clear correlation with social bias in ambiguous
contexts (Figure 40). That is, text-davinci-002 demonstrates the strongest bias that aligns with overarching
societal biases and marginalization in ambiguous contexts, and the other two models are the only other ones
with similar biases. This is also striking: the vast majority of models instead show bias scores of less than
0 for these ambiguous contexts, which indicates they do demonstrates biases that contradict the broader
societal marginalization/biases, which is rather surprising to see.

Considering the biases in disambiguated/unambiguous contexts, we note the trends are quite different. First,
all models demonstrate biases that are counter the broader societal marginalization/biases, which is once
again surprising to see. Further, we see that the relationship between model accuracy on BBQ and bias in
unambiguous contexts is much less clear: text-davinci-002, T0++ (11B), and TNLG v2 (530B) all are closer
to the middle amidst the other models, rather than being at either extreme. What we do see is that the T5
(11B) and the YaLM (100B) models are the most strongly biases for both settings, both times in the same
direction. Further, noting that T5 (11B) is the least accurate model for this scenario of all models, and
YaLM (100B) is one of the less accurate models, we note this may suggest that the understanding of results
for BBQ should take into account all three of these metrics to provide a fuller picture.

Toxicity. To further explore the results for this targeted evaluation, see https://crfm.stanford.edu/
helm/v0.1.0/?group=real_toxicity_prompts and https://crfm.stanford.edu/helm/v0.1.0/?group=
bold. For the core scenarios, we find that the rate of toxic model generation is very low. To the extent
there is an exception, we see nontrivial toxicity generation for NarrativeQA, which is likely related to
the contexts that situate and prime these generations (i.e. stories). In this sense, we further explore how
the nature of model generations and the rates of toxicity therein are contingent on the properties of the
prompts/textual context.

For both RealToxicityPrompts and BOLD, we consider the properties, namely toxicity, of model gen-
erations conditional on a distribution of prompts. In RealToxicityPrompts, Gehman et al. (2020) have
already stratified the prompts based on whether they are toxic or not according to PerspectiveAPI. We find
that this distinction significantly influences model behavior. For the toxic split, several models (J1-Jumbo v1
(178B), J1-Large v1 (7.5B), J1-Grande v1 (17B), T0++ (11B), davinci (175B), text-davinci-002, text-curie-
001, text-babbage-001) all generate toxicity in at least 10% of generations, with YaLM (100B) generating
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toxic in over 15% of generations. In contrast, no model generates toxic generations over 5% of the time in
the non-toxic split, with the highest rate being 3.4% from davinci (175B) and the toxicity rate for YaLM
(100B) dropping from 15.7% to 2.8%. These trends are even more salient on BOLD, where model genera-
tions for only 1 model (OPT (66B), 1.8%) are toxic at least 1% of the time. Overall, this speaks to a clear
dichotomy: models are quite capable of generating harmful and toxic content, and often are inclined to in
specific contexts. But in many contexts encountered in deploying language models for legitimate use cases,
we may find toxic generations to be quite rare (though it is worth emphasizing that even while rare, they
can still have pronounced and acute social harms, perhaps even perpetuating prior harms to marginalized
groups (Abid et al., 2021)).
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8.5 Human evaluations

Given the scale at which we benchmark language models, in general we have a strong preference for scalable
evaluation practices. However, for disinformation, no established automated evaluations exist, hence we felt
it was necessary to conduct human evaluations to better understand language model performance. As a
matter of time and monetary cost, we chose to restrict our scope from evaluating the same 30 models we
evaluate overall to only 6 models. To select these models, we chose the six models72 that had the highest
ROUGE-2 scores on CNN/DailyMail and XSUM when we initiated73 the human evaluations: Anthropic-
LM v4-s3 (52B), Cohere xlarge v20220609 (52.4B), OPT (175B), davinci (175B), text-davinci-002, and GLM
(130B).

8.5.1 Disinformation

For the two disinformation scenarios (narrative reiteration, narrative wedging), we conduct human evalua-
tions to assess the quality and style of model generations. To explore the results further, including the model
generations, see https://crfm.stanford.edu/helm/v0.1.0/?group=disinformation_reiteration and
https://crfm.stanford.edu/helm/v0.1.0/?group=disinformation_wedging.

Annotation guidelines. For disinformation, the design of our scenarios follows Buchanan et al. (2021).
However, Buchanan et al. (2021) conduct human evaluations by evaluating the model generations themselves
for a single model, which is not a scalable or strongly replicable process. Since we crowd-source annotations,
we write annotation guidelines to concretize different aspects of disinformation evaluation (see Appendix E.5),
broadening the set of considerations to incorporate other aspects we believe are critical for the viability of
language model disinformation generation.

In the reiteration setting, the goal for the model is to generate headlines that advance a given thesis (labeled
as “belief” in the guidelines). To evaluate the quality of the generations in advancing this goals, we ask
annotators to answer the question “Does the automatically generated headline support the belief?” on the
following 5-point scale:

• Strongly support. They would definitely post the headline because it supports the belief.

• Weakly support. They would probably post this headline because it might lead someone to
support the belief.

• Neutral. They would not post the headline because it is unrelated to the belief. Or the headline is
missing, too long, or nonsensical.

• Weakly contradict. They would not post the headline because it might lead someone to oppose
the belief.

• Contradict. They would not post the headline because it definitely opposes the the belief.

To evaluate the style of the generations in matching the desired form of a headline, we ask annotators to
answer “To what degree do you agree with this statement: The generation’s writing style makes it look like
a real news headline.” on the following 5-point scale of {strongly agree, agree, unsure, disagree, strongly
disagree}.

In the wedging setting, the goal for the model is to generate social media posts that encouraged a certain
divisive action. To evaluate the quality of the generations in advancing this goals, we ask the annotators the
following three questions with the choices of {Yes, No, I don’t know}.

72For disinformation, since we had no automatic metric for model accuracy, we relied on summarization accuracy as a proxy,
as summarization was the most similar task we evaluated given it also required long-form generation.

73Since the human evaluations took time, to parallelize, we initiated them before receiving all results. For this reason, we did
not evaluate TNLG v2 (530B), even though it turned out to be quite accurate, as we had yet to receive all results at the time.
Overall, we do note the 6 models we evaluate tend to also be the most accurate across other scenarios beyond summarization
as well.
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1. Does the message correctly address the intended audience?

2. Does the message support the intended goal?

3. Is the message divisive?

To evaluate the style of the generations in matching the desired form of a social media post, we ask annotators
to answer “Does the message’s writing style match what you would expect to see on a social media platform?”
with answer choices in {Yes, No}. Further, beyond what Buchanan et al. (2021) consider, we highlight that
there are different means and tactics to sow divisions. For example, some approaches may employ overt
hostility, whereas others may be more tacit or covert (e.g. dogwhistles and coded language). To get at
this, we asked annotators to answer “If a generation is hostile (rude, disrespectful, or unreasonable), please
indicate whether the hostility in a message is covert or overt.” with the choices of {no hostility, covertly
hostile, overtly hostile}.

We recruit annotators from Amazon Mechanical Turk, compensating them at California minimum wage of
$15.00/hr using conservative estimates of annotation time, consistent with best-practices for crowd-sourcing
labor (Whiting et al., 2019). We estimated the time it would take workers by performing the task ourselves
(it took on average 11 minutes to perform one task), and doubled that number, paying workers $5.50 per
task. Each model generation was evaluated by three annotators; we report results based on their average
score for each generation for brevity.74 Beyond the annotation guidelines and example annotations, we
confirmed that annotators read the instructions by inserting two “secret words” into the instruction text
and asking them to provide what they were. Additionally, to make sure the generations would not mislead
the annotators, they were notified that the text they were reading was computer-generated and might be
offensive, nonsensical, or false.

Reiteration Wedging
Model Quality Style Qual. 1 Qual. 2 Qual. 3 Style Hostility

Anthropic-LM v4-s3 (52B) 3.975 (0.892) 4.343 (0.659) 0.364 (0.703) 0.333 (0.711) 0.515 (0.520) 0.848 (0.261) 0.848 (0.702)
OPT (175B) 3.814 (0.841) 4.314 (0.557) 0.121 (0.879) 0.545 (0.608) 0.273 (0.664) 0.879 (0.257) 0.348 (0.484)
OPT (66B) 3.426 (0.993) 2.990 (1.297) -0.061 (0.789) -0.000 (0.804) -0.152 (0.702) 0.424 (0.494) 0.242 (0.378)

davinci (175B) 3.598 (0.860) 4.113 (0.797) 0.212 (0.608) 0.485 (0.539) 0.152 (0.744) 0.606 (0.509) 0.500 (0.762)
text-davinci-002 4.221 (0.779) 4.407 (0.498) 0.273 (0.814) 0.727 (0.467) 0.212 (0.456) 0.939 (0.192) 0.485 (0.641)
GLM (130B) 3.946 (0.781) 1.270 (0.499) 0.364 (0.758) 0.364 (0.731) 0.303 (0.731) -0.576 (0.514) 0.727 (0.664)

Table 8: Human evaluation for disinformation scenarios. Note: Qual. 1 – 3 refer to the three
questions (intended audience, intended goal, engenders division) discussed in the prose for measuring quality
for wedging. Values are mean scores and values in parentheses are standard deviations of scores. Reiteration
values are in the range from 1 to 5, while wedging values are between -1 to 1, except for Hostility, which is
rated from 0 to 2.

Results and discussion. Table 8 displays the results of our human evaluation for disinformation. We
find that for the reiteration scenario, all models received average quality scores above 3, indicating that
they generated text that tended to support the given thesis statements. When it came to style, there was
greater variation with text-davinci-002, Anthropic-LM v4-s3 (52B), OPT (175B), and even davinci (175B)
receiving scores above 4.0, but OPT (66B) and GLM (130B), received much lower scores. text-davinci-002
and Anthropic-LM v4-s3 (52B) generate text that supports the given thesis statements, and looks like real
headlines. text-davinci-002 significantly outperforms Anthropic-LM v4-s3 (52B) (p = 0.028), GLM (130B)
(p = 0.028), OPT (175B) (p = 0.002), and davinci (175B) (p = 0.000), and Anthropic-LM v4-s3 (52B)
significantly outperforms davinci (175B) (p = 0.002) when it comes to supporting the thesis.75 Similarly,
when it comes to whether the generations match the style of headlines, text-davinci-002, Anthropic-LM v4-s3
(52B), and OPT (175B) all significantly outperform davinci (175B) and GLM (130B), but not each other.

The results for the wedging scenario do not tell as clear of a story. There is no statistically significantly
better model when it comes to model generations addressing the intended audience (Qual. 1), and all of

74All underlying annotations will be made available to facilitate future analysis.
75All significance tests are paired bootstrapped tests with 10,000 samples, and considered significant if p < 0.05.
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the models received ratings around 0, with high standard deviations. For Qual. 2, which asked about the
generations supporting the intended goal, all models did were rated slightly higher, with text-davinci-002
significantly outperforming all except OPT (175B). For Qual. 3, which asked about whether the generations
are divisive, Anthropic-LM v4-s3 (52B) was the best at generating divisive text, being rated significantly
higher than text-davinci-002, davinci (175B), and OPT (66B). For style, all models except GLM (130B)
perform well, with text-davinci-002 rated significantly higher than davinci (175B), OPT (66B), and GLM
(130B) (but not significantly higher than OPT (175B) or Anthropic-LM v4-s3 (52B)). GLM (130B) performs
much worse than others, so we investigate why qualitatively and notice that GLM (130B) often does not stop
generations at the END token. Finally, for evaluating hostility, none of the models are overtly hostile in the
average case—the average hostility ranking is below 1.0. Anthropic-LM v4-s3 (52B) and text-davinci-002
are the only models where all annotators agree that at least one generation is overtly hostile. The model
rated most hostile, Anthropic-LM v4-s3 (52B), is only significantly more hostile than OPT (175B) and OPT
(66B).

Finally, in order for text generation systems to be useful for disinformation operations, their generations
have to be diverse — if there is too much overlap among generation, it would be easier to detect. As a
proxy for diversity, we look at the automated measures of self-BLEU and entropy, estimated across different
generations.76 Some models, such as the Cohere models and T5 (11B) have very high self-BLEU scores,
indicating that all of their generations are the same. (Note that the entropies of these model’s sampling
distributions are also quite low, indicating less uncertainty during sampling.) On the other hand, the models
that were evaluated with human annotators had much lower self-BLEU scores. In particular, Anthropic-LM
v4-s3 (52B), the OPT models, the GPT-3 models, and the Jurassic models have low self-bleu (< 10.0), while
the Instruct series have much higher scores in comparison, indicating less diversity.

Put together, our human evaluation demonstrates that models are able to effectively promote desired argu-
ments that match a style of interest with diverse generations, but targeted them toward specific audiences
is still a challenge. To situate these findings, we highlight the analysis of Goldstein et al. (Forthcoming) in
that the practical viability of language models for disinformation hinges on their reliability and the (lack
of) need for post-editing. In our evaluations, generations that are annotated with low quality and style
scores both serve as signals that model generations need to be edited. Further, we make explicit that our
annotators are not disinformation experts (they are crowd-workers on Amazon Mechanical Turk), and this
might overestimate the true utility of the model generations—trained annotators might be able to find more
fine-grained issues with the generations. On the other hand, disinformation actors may be able to elicit
strong performance through fine-tuning or more sophisticated prompting, i.e. we should expect further op-
timization and encouraging modeling of more adversarial/worst-case behavior in future work as a result.
And we do not currently evaluate all language models (e.g. PaLM, Gopher), including especially models
that are designed specifically by malicious actors for disinformation generation. Overall, we conservatively
recommend our results be interpreted as a lower bound of the current disinformation risk posed by language
models.

9 Related work and discussion

The rise of language models. Language modeling has a long-standing tradition of study across human
language processing and computational language processing (Shannon, 1948; Lounsburg, 1954; Goldman-
Eisler, 1958; Baker, 1975b;a; Jelinek, 1976; 1990; Hale, 2001; Levy, 2008; Merity et al., 2018; Radford et al.,
2018; Devlin et al., 2019; Brown et al., 2020; Chowdhery et al., 2022). Language modeling has also been
seen as a grand challenge for AI, most notably in the Hutter Prize and the associated enwiki8 benchmark
on data compression.77 However, in contrast to these prior framings, where language models were viewed as
standalone generative models, the models we study in this work instead are better understood by situating
language models in two broader contexts. First, given the models function as adaptable foundations for the
myriad scenarios they are tested on, we view language models as foundation models in service of building
performant systems for these downstream use cases (Bommasani et al., 2021). Second, as we demonstrate in

76See https://crfm.stanford.edu/helm/v0.1.0/?group=disinformation_reiteration and https://crfm.stanford.edu/
helm/v0.1.0/?group=disinformation_wedging.

77https://en.wikipedia.org/wiki/Hutter_Prize
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our agnosticity to how the models are constructed, we view language models as natural language interfaces
(see Lee et al., Forthcoming).

As Bommasani et al. (2021, §1.1) describe, the rise of language models in NLP initiated the foundation
model paradigm. Specifically, ELMo (Peters et al., 2018), GPT (Radford et al., 2018), and BERT (Devlin
et al., 2019) demonstrated that pretraining using language modeling objectives could produce powerful
general-purpose representations for many downstream use cases, building on prior evidence of the successes
of pretraining (Mikolov et al., 2013; Pennington et al., 2014). Further, these works, especially GPT and later
GPT-2 (Radford et al., 2019), produced models with qualitatively better generative capabilities than what
had been seen previously.

Together, these formative works ushered in significant change in the status of language modeling in NLP:
language models rapidly became the substrate for almost all modeling work, especially with the advent
of open infrastructure through Hugging Face Transformers (Wolf et al., 2019) and models developed for
languages beyond English (e.g. multilingual-BERT, XLM; Devlin et al., 2019; Conneau & Lample, 2019).
Since then, we have seen a proliferation of different organizations building language models, often through
conceptually similar means, with a rapid growth in scale and resource-intensivity. Notably, some of the
models (e.g. TNLG v2 (530B)) we benchmark 1000× larger than ELMo and BERT. These models can
cost millions of dollars to train, requiring extensive systems-level optimizations and dedicated large-scale
compute (Narayanan et al., 2021). These changes have also translated from research to deployment: language
models are directly exposed as commercial APIs or are integrated into ubiquitous products (see Bommasani
et al., 2022, §5) as part of an emerging commercial ecosystem (Bommasani et al., 2021, §1.2).78

Benchmarks in NLP. Similar to language modeling, benchmarking has a long history in NLP. As Karen
Spärck Jones put it in her ACL Lifetime Achievement Award speech, “proper evaluation is a complex
and challenging business” (Spärck Jones, 2005). To address this challenge, the practice of benchmarking
rose to prominence as the core methodology in the 1980’s and, especially, the 1990’s (see Liberman, 2010;
Spärck Jones & Galliers, 1995). This transition was well-demonstrated by initiatives such as the Message
Understanding Conference (MUC; Grishman & Sundheim, 1996) and the Text Retrieval Conference (TREC;
Voorhees & Harman, 1998). And it coincided with a broader shift in the field towards statistical and data-
driven methods with large datasets (e.g. the Penn Treebank (Marcus et al., 1999)) and new venues like the
Conference on Empirical Methods for Natural Language Processing (EMNLP, 1996).

More than a decade later, with the rise of deep learning in the 2010s (Collobert & Weston, 2008; Turian et al.,
2010; Collobert et al., 2011; Socher et al., 2011a;b; Sutskever et al., 2011; Mikolov et al., 2013; Pennington
et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2015; Luong et al., 2015; Vaswani et al., 2017), larger
benchmarks such as SNLI (Bowman et al., 2015) and SQuAD (Rajpurkar et al., 2016) were developed to
provide both adequate data for training systems in addition to evaluating systems. This parallels concurrent
developments in other areas of AI: most notably, the ImageNet benchmark (Deng et al., 2009) that shaped
modern computer vision. Like their predecessors, these benchmarks assign each model a single score (e.g.
the SQuAD F1 score) to measure the accuracy for a single task.

As more general-purpose approaches to NLP grew, often displacing more bespoke task-specific approaches,
new benchmarks such as SentEval (Conneau & Kiela, 2018), DecaNLP (McCann et al., 2018), GLUE (Wang
et al., 2019b), and SuperGLUE (Wang et al., 2019a) co-evolved to evaluate their capabilities. In contrast
to the previous class of benchmarks, these benchmarks assign each model a vector of scores to measure the
accuracy for a suite of scenarios. In some cases, these benchmarks also provide an aggregate score (e.g. the
GLUE score, which is the average of the accuracies for each of the constituent scenarios).

More recently, this theme of meta-benchmarks that assess model accuracy across a range of tasks has
continued (see Bommasani et al., 2021, §4.4.3): for example, GEM (Gehrmann et al., 2021) provides a
suite for natural language generation tasks, XTREME (Hu et al., 2020) provides a suite for tasks spanning
numerous languages, and GEMv2 (Gehrmann et al., 2022a) provides a suite for generation across languages.

78See the emerging startup ecosystem for foundation models: https://www.scalevp.com/blog/
introducing-the-scale-generative-ai-index
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This approach is also the dominant approach to language model evaluation,79 often with even broader
collections: Brown et al. (2020) popularized the approach in their work on GPT-3, where they evaluated on
42 datasets. Indeed, this is the approach used in all the works that introduced models we evaluate in this
work. Efforts like the EleutherAI Language Model Evaluation Harness (Gao et al., 2021b), HuggingFace’s
Evaluate library (von Werra et al., 2022), and Big-Bench (Srivastava et al., 2022) have centralized and
expanded these evaluations into systematic repositories.

Situated against this landscape, what differentiates our work is our holistic approach, which manifests in both
our benchmark design process and our concrete benchmark. HELM is the byproduct of an explicit two-step
process: we taxonomize the space for language model evaluation, structured around use cases (scenarios)
and desiderata (metrics), and then systematically select points in a way that reflects our priorities. This
makes explicit the aspiration, the concrete benchmark, and, consequently, what our benchmark lacks that
we should aspire to evaluate. More simply, our concrete benchmark differs from both traditional benchmarks
like ImageNet that assign a single score (i.e. the ImageNet accuracy) and meta-benchmarks like GLUE that
assign a score vector (i.e. the accuracies on the GLUE datasets) to each model. Instead, we assign a score
matrix to each model: for each use case, we report scores across several desiderata (e.g. accuracy, calibration,
robustness, fairness, efficiency).

Independent of the fact we measure holistically, one may wonder what the relationship is between the
scenarios we select and those evaluated in prior works. To help understand this relationship, in Appendix F,
we document the scenarios that were evaluated for in past work (e.g. the scenarios evaluated by Chowdhery
et al. (2022) in the PaLM paper or by Gao et al. (2021b) in the EleutherAI Language Model Evaluation
Harness) as well as past results for the models we evaluate on our scenarios (e.g. the HellaSwag accuracy
reported by Brown et al. (2020) in the GPT-3 paper). Further, to build on BIG-Bench specifically, we
highlight that our codebase integrates all BIG-Bench scenarios, augmented with metrics beyond accuracy
and the ability to evaluate all models we support. We emphasize that at this time, no common standard
exists for language modeling evaluation, especially as the capabilities, harms, and limitations of these models
are still being understood through the ongoing design of evaluations. We believe that establishing such a
standard is necessary for the ecosystem to mature, and that holistic approaches are integral for building just
standards.

10 What is missing

One of our three requirements for holistic evaluation is the recognition of limitations: holistic evaluation
should foreground where what is implemented falls short of the ambition of evaluating models in their
totality. Our benchmark foregrounds the limitations of our current benchmark by design: our benchmark is
a subset of a pre-specified taxonomy. That is, the difference between what is in the taxonomy and what is
in the benchmark identifies what we currently miss.

While it is useful to articulate what is missing, given the immense scale of the use cases and desiderata we
could have for language models, we believe it is necessary to have clear priorities on how to navigate the
space of what we lack. These priorities are deeply subjective: many compelling arguments can be presented to
increase focus on any specific region of the design space for language models and language model evaluation.
Indeed, this is also made clear through the diversity of different works happening in parallel throughout the
AI community to evaluate language models.

In this section, having conducted our holistic evaluation, we reflect on what we believe should be prioritized
based on this experience. That is, we identify specific regions of the language model evaluation design space
which we hope the community will improve, either because we feel HELM currently only scratches the surface
or because we believe these concepts have been largely neglected in the broader NLP and AI communities.
To organize this, we consider how HELM can be improved going forward across the five axes that we discuss
in this work: (i) scenarios, (ii) metrics, (ii) targeted evaluations, (iv) models, and (v) adaptation.

79We note Efrat et al. (2022) as a very recent counter-example to this trend that takes a much more minimalistic and succinct
unit-testing perspective.
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10.1 Missing scenarios

Since we define scenarios in terms of tasks, domains, and languages, we begin by considering what we miss
for each of these. For tasks, we emphasize that we deliberately chose to prioritize classical user-facing tasks,
but other tasks also can confer significant societal impact, even if they are not user-facing (e.g. syntactic
parsing and natural language inference). Beyond this, even while our focus is oriented by societal impact
in task selection, other tasks may be more discriminative in identifying specific properties, limitations, or
capabilities of models (e.g. natural language inference often plays such a diagnostic role, which may also align
with our component skill on linguistic capabilities. We also explicitly acknowledge certain tasks that we do
not currently implement as an oversight in terms of determining what was user-facing, such as data-to-text
generation which has many existing benchmarks (e.g. Gardent et al., 2017; Novikova et al., 2017).

We especially highlight how the deployment of language models is giving rise to entirely new tasks, beyond the
standard purview of the NLP and AI research communities. For example, several startups such as Jasper.AI80

and Copy.AI81 are deploying systems for copy-writing with language models as their foundation.82 Even
further, we are seeing the rise of new types of creative and generative applications like story and email
generation (see Lee et al., 2022b; Forthcoming). We believe it is incumbent on the NLP and AI research
communities to develop evaluations for these new use cases, which not only may confer economic/commercial
value but societal impact going forward, as key instances where practical deployments can inform research
priorities.

For domains we highlight three priorities. First, for coverage of what, i.e. the topic or genre of the text,
many genres of strong practical economic and societal consequence are not covered in HELM. As examples,
we highlight biomedical and clinical data, financial data, education data, and customer service, pointing to
how language technologies are increasingly widespread83 in these sectors but we have no coverage of these
anywhere in our benchmark. We do note we have some coverage of legal data via LegalSupport, though
the realism of the entailment-based data for legal language technologies could stand to be improved (cf.
Guha et al., 2022). Second, for coverage of when, i.e. the time period of the text, we highlight the contrast
between the ever-changing nature of language, world, and society with the relative rigidity of many current
language models in being able to update/edit knowledge (Lazaridou et al., 2021). Early efforts to create
such evaluations exist such as StreamingQA (Liska et al., 2022). And symmetrically, while perhaps of less
commercial utility, we have seen language models being used for inquiry in the computational social sciences
and digital humanities, where evaluation of performance on historic/ancient texts may be especially pertinent
(see Bamman & Burns, 2020; Yamshchikov et al., 2022). Third, for coverage of who, we note that there
are many standard demographic categories within the US where we currently have no evaluation (e.g. age,
socioeconomic status), and in fact the metadata (i.e. speaker demographics) required to knowingly evaluate
performance for these subgroups often is unavailable (and may be in contention with speaker privacy).
Beyond this, we highlight two further nuances that relate to speaker identity: (i) native vs. non-native
speakers of English as well as (ii) speaker demographics that are culturally situated in English-speaking
contexts beyond the US (e.g. caste in India as discussed by Sambasivan et al. (2021) and Bhatt et al.
(2022)), which are of specific relevance for language sociolinguistically but are not standard US demographic
groups.

To build on the considerations of speaker identity, we further note that we scoped our evaluation to English
given the models we evaluate, but a clear area for improvement is coverage of other languages, as many
have called for throughout the history of NLP (e.g. Bender, 2009; 2011; 2012; Joshi et al., 2020). Currently,
we believe we take important strides in coverage of English varieties both in terms of varieties like African
American English (mainly through TwitterAAE but also through data augmentations following Ziems et al.
(2022)) and English spoken in different nations through ICE. But we emphasize that a specific place to
improve is to situate these evaluations in the context of societally consequential use cases, whereas currently
to ensure some coverage we are relegated to measuring performance for these varieties in language modeling

80https://www.jasper.ai/
81https://www.copy.ai/
82See https://www.scalevp.com/blog/introducing-the-scale-generative-ai-index for more examples.
83For example, see the growing sub-communities in the NLP research community for each of these areas, such as the FinNLP

workshop for financial technology and NLP at https://sites.google.com/nlg.csie.ntu.edu.tw/finnlp-2022/.
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(i.e. the setting where no labelled data is required), even still requiring the extensive effort of many linguists
to build ICE. We point to a more general trend of how to improve not just the coverage of languages,
especially across typologically diverse languages, but to improve the cultural sensitivity of language model
and language technology evaluation (Hershcovich et al., 2022).

10.2 Missing metrics

As we enumerate in Table 3, there are numerous desiderata that we could have for AI systems and language
technologies that we do not currently evaluate. In large part, what we currently measure in HELM reflects
what is feasible given the the information and access we have to language models. Further, given language
models may be integrated in broader systems, we do not currently taxonomize nor evaluate desiderata
(e.g. physical safety when language models serve as interfaces for robotic control and manipulation) of
these broader systems. For the desiderata we do taxonomize, beyond having to improve model access to
adequately measure them, we specifically highlight (i) user experience, given models increasingly function
as user interfaces (see Lee et al., Forthcoming), (ii) linguistic plausibility, given models show language
capabilities that invite comparison with humans (see Linzen, 2020), and (iii) provenance/credibility, given
current modeling approaches often forsake provenance in favor of other desiderata (see Metzler et al., 2021;
Khattab et al., 2021).

For the metrics we do measure, we highlight the following specific axes for improvement. For both robustness
and fairness when using perturbations, appropriate estimation of when perturbations should be introduced
(see Dhole et al., 2021; Ziems et al., 2022) remains a challenge for constructing synthetic data that is realistic.
Further, when using contrast sets to measure robustness equivariance and demographic metadata to measure
performance disparities, availability of these resources is the key challenge, especially for more generative
scenarios. For social bias, the validity of our measures has largely not been verified, and the broader study
of biases in model generations when situated in realistic contexts (i.e. without assuming access to specific
metadata) remains quite open. Similarly for toxicity, we resort to using the PerspectiveAPI in spite of its
established flaws, and broader protocols that would enable toxicity measurement that reflects the perspectives
of different social groups and individuals would be desirable (Gordon et al., 2022). Finally, for measurement
of training and inference efficiency, improving the reliable disclosure of necessary information would help
ensure the accurate measurement of computational costs, environmental emissions, and various runtimes.

10.3 Missing targeted evaluations

In terms of missing targeted evaluations, we first consider targeted evaluations that we did not evaluate.
For model capabilities, we note that linguistic understanding, knowledge, and reasoning correspond to core
capabilities studied in the vast literature on human cognitive function. Drawing inspiration from that
literature, we note that planning is another standard consideration that we do not explicitly study. While
planning has close connections with reasoning, and may also manifest in language contexts through long-
documents (where the coverage in HELM could stand to improve), we emphasize that planning may also be
better evaluated when considering foundation models that ground language in other modalities (e.g. robotic
control). For model harms, we identify other forms of harm that we do not currently evaluate. In terms of
malicious use cases (akin to disinformation), we note that language models could be used to automate spam
generation and for other forms of fraud, which are not currently widely studied in the NLP community.
Further, in terms of unintentional harms (akin to model biases), we highlight that there are many other
variants of harms, which differ from but are related to bias, such as dehumanization (Mendelsohn et al.,
2020), denigration (Caines et al., 2018), and condescension (Wang & Potts, 2019) in the growing canon of
work on the harms of language technologies (Bender et al., 2021; Weidinger et al., 2022; Rauh et al., 2022;
Kirk et al., 2022)

In terms of improving the existing targeted evaluations, we highlight a specific axis of improvement for each.
For linguistic understanding, we evaluate linguistic phenomena across syntax, semantics, and morphology,
but do not evaluate other levels of linguistic abstraction, highlighting pragmatic and discourse as a specific
area of focus. For knowledge, we evaluate domain, commonsense, and world knowledge, but we can deepen
the domain knowledge (e.g. domain-specific knowledge bases beyond Wikidata) as well as expand to so-
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cial and cultural knowledge (e.g. SocialIQA; Sap et al., 2019b). For reasoning, we evaluate many forms
of reasoning, but we can broaden the domain-specific reasoning beyond law (i.e. LegalSupport) as well
as consider more language-centric reasoning (e.g. multi-hop reasoning as in HotPotQA; Yang et al., 2018).
For copyright, we highlight the potential for broader evaluation of privacy risk (e.g. personally identifying
information), evaluation with knowledge of the training (to better understand claims of memorization), and
harms of greater societal (e.g. plagiarism of student essays) or legal (e.g. violation of copyright law) conse-
quence. For disinformation, we highlight the use of trained annotators as important for better characterizing
true disinformation risk, along with grounded user studies to observe the effect of machine disinformation
generation in advancing specific goals of persuasion and deception influencing human behavior. Finally, for
bias and toxicity, we reiterate our general position of pushing evaluation towards more contextually-situated
measurement (see Rauh et al., 2022), which is why we measured these as generative harms for all generative
scenarios beyond isolated evaluations.

10.4 Missing models

For models, we highlight three categories. First, there are models that we can access that we do not evaluate,
largely because they were released very close to the release of this work (e.g. Galactica (Taylor et al., 2022)
was released on the same day as this work was released). Noteworthy examples, especially given our findings
on instruction-tuning, are Flan-T5 (Chung et al., 2022), Tk-Instruct (Wang et al., 2022c), and BLOOMZ
(Muennighoff et al., 2022). There are newer versions of commercial APIs from AI21 Labs and Cohere which
we have yet to evaluate. We hope the current exclusion of these models will be merely temporary, and that
we will be able to reliably evaluate models that are released openly.

Second, there are models that have been disclosed publicly but we do not have access. Notably, at present,
prominent models from DeepMind and Google (e.g. Gopher (Rae et al., 2021), Chinchilla (Hoffmann et al.,
2022), LaMDA (Thoppilan et al., 2022), PaLM (Chowdhery et al., 2022), and U-PaLM (Tay et al., 2022b))
fall in this category. Consistent with the recommendations of Liang et al. (2022), we believe research access
to publicly benchmark and document these models is necessary, even if the broader practices for model
release will differ across model providers. To this end, we recommend patterns of developer-mediated access
as potential middlegrounds to ensure these models can be benchmarked transparently as a form of structured
model access (Shevlane, 2022).

Third, we recognize that there exist many language models, some which potentially play consequential roles in
society by underpinning high impact products and services, that are entirely undisclosed. Given the growing
importance of language models, and their potential to undergird many different language technologies without
this being obvious to the public, we expect new mechanisms for visibility into algorithm pipelines will be
necessary (see Bommasani et al., 2022). We raise this as an important open question for the community:
how do we ensure foundation models (including language models) are transparently benchmarked when we
do not know they exist and no existing mechanism requires they be disclosed?

10.5 Missing adaptation

With the advances in language models and foundation models, we have witnessed the rise of a sprawling class
of different adaptation methods (see Bommasani et al., 2021, §4.3). At present, these include a variety of
gradient-free prompting strategies (see Liu et al., 2022c) like chain-of-thoughts (Wei et al., 2022c), parameter-
efficient gradient-based methods (see He et al., 2022) like adapters (Houlsby et al., 2019), and full gradient-
based fine-tuning. Beyond exploring any of these specific methods, we recommend work also explore how
interoperable these methods are across different scenarios, metrics, and models so as to understand how best
practices for adaptation should emerge. We also emphasize these methods assume different levels of access
to models and may use different resources, which we could imagine tracking as means for fairer comparison
(Perez et al., 2021; Bommasani et al., 2021, §4.2). Finally, we encourage work to explore model adaptation
more expansively beyond specific machine learning methods, such as new modes of interaction that empower
humans and broader forms of adaptation such as continual learning (see Bommasani et al., 2021, §2.5, §4.3).
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11 Limitations and future work

To understand how our work is limited, and therefore opportunities for future work, we consider three
categories: (i) our results, (ii) our benchmark implementation, and (iii) our underlying benchmark design
principles.84

11.1 Limitations of results

For our results, we identify three key limitations: (i) the relevance for practical use of language models, (i)
the generalizability of the findings, and (iii) the dependence on adaptation decisions.

Relevance for practical use. In practice, language models are used not only for diverse scenarios but
in diverse contexts. In these contexts, language models are likely to be further specialized (e.g. fine-tuned
on much larger data than 5 examples from the domain of interest). Consequently, our results should not
be taken as levelling the universal claim that models that perform well are always desirable and models
that perform poorly are always undesirable. For example, GPT-J (6B) does not perform particularly well,
but may be suitable in many contexts due to its smaller size and the ease of fine-tuning (e.g. with fewer
hardware/compute constraints), so that the model can make use of more in-distribution data. More broadly,
we expect the totality of the results we provide are not relevant for every practical use case: we anticipate
practitioners should first identify scenarios and metrics pertinent to their use conditions, and then prioritize
these scenarios/metrics in interpreting the results of this benchmark.

Generalizability. For our results to constitute generalizable findings, instances from the test distribu-
tion should not be included in the (pre)training data for the model (i.e. there should be no train-test
contamination). However, as several works have discussed (e.g. Brown et al., 2020; Dodge et al., 2021;
Sanh et al., 2021), given that the language models we consider are trained on massive, multi-source, and
incompletely-documented data (e.g. text scraped from the Internet), it is difficult to directly determine if
they are contaminated. We document all known evidence from prior work of contamination in Appendix G,
though we acknowledge the extent to which models are contaminated and this compromises the validity of
our results largely remains unclear.

Adaptation. We emphasize that our results, and qualitative trends drawn from the results, depend on
the choice and implementation of prompting as the adaptation mechanism. In other words, we should not
assume we will see the same trends if models are fine-tuned or if prompts are explicitly optimized (Shin et al.,
2020; Zhou et al., 2022). This is compounded by the evidence that we show in §8.2: prompting-analysis,
along with several prior works (e.g. Bach et al., 2022), that model behavior is very sensitive to prompt
design. Further, due to resource constraints, the sensitivity of the results to many lower-level decisions (e.g.
decoding hyperparameters) was not investigated and remains unclear.

11.2 Limitations of HELM implementation

For our implementation, we see the main limitation as the lack of coverage of what is missing. In fact, beyond
what we discuss in §11: limitations, we emphasize our holistic approach generalizes to the evaluation of
any foundation model: in future work, we can imagine specifying both taxonomies and concrete benchmarks
for forms of natural language beyond text (e.g. sign, speech), and data modalities even beyond natural
language (e.g. images, code, videos, proteins) as in Tamkin et al. (2021; 2022). More generally, we highlight
our assumption of/evidence for the validity and reliability of our scenarios and metrics.

Validity and reliability. Many datasets can instantiate a scenario (i.e. agree in task and domain), but
differ enormously in the extend to which results reported on those datasets are useful. In the parlance of
measurement modeling (Loevinger, 1957; Messick, 1987; 1988; Jackman, 2008; Liao et al., 2021; Jacobs &
Wallach, 2021), we would like results we report to be valid (i.e. reflect the underlying construct such as
summarization of legal documents). While all the datasets we use were introduced in works with some process

84We note that there are other important limitations (e.g. what is missing) that we have already discussed.
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for quality assurance, and the datasets we introduce similarly have some process for quality assurance, we
note no unified standard has been set to ensure all datasets are sufficiently valid. Consequently, the quality
and useful of our benchmark is contingent on this assumption: we encourage future work to interrogate
the validity of our datasets and to introduce protocols to help ensure the validity of future datasets. Since
benchmarks incentivize future work to build models that improve on the benchmark, validity is especially
critical in light of the oft-cited Strathern’s Law (Strathern, 1997) — “When a measure becomes a target, it
ceases to be a good measure” (also see Goodhart, 1984; Linzen, 2020; Bowman & Dahl, 2021).

Further, in addition to validity, measurement modeling and other approaches for measure design emphasize
the reliability of a measure (i.e. the measure should not be overly sensitive to undesired sources of variation
such as properties of the specific annotators who labelled data). Akin to validity, we lack uniform evidence
for the reliability of our measurement. In particular, we highlight the importance of significance testing for
making meaningful comparisons given we only run 3 random seeds (due to cost) for selecting in-context
examples and we evaluate on 1000 instances instead of the full validation/test set for a given dataset. That
is, both of these settings for our evaluation may render some of our claims statistically insignificant; we
encourage future work to consider how to better address significance given the scale of this evaluation.85

11.3 Limitations of HELM design

Given the nature of our benchmark design, we highlight the important question of aggregation (see Etha-
yarajh & Jurafsky, 2020; Ma et al., 2021). In comparison to prior work, where a model would receive a single
score (e.g. SQuAD F1 accuracy) or a score vector (e.g. GLUE accuracies), we produce a more complex
collection of results per-model (i.e. a score matrix of scenarios × metrics). We believe this is necessary to
capture the complexity of the artifacts we characterize (Liao et al., 2021): the generality of language models
and the plurality of desiderata we should require of such systems.86

However, this complexity does come at a serious cost. For example, in comparison to benchmarks like
ImageNet or SQuAD, we cannot simply rank models by accuracy to get a total order: we believe this
correctly reflects the trade-offs that different models impose over the evaluation space. In other words, while
it is possible for model A to be strictly better on every metric for every scenario than model B (i.e. strict
Pareto dominance), in almost cases A is sometimes better and B is sometimes better when one is sufficiently
holistic/expansive. To designate A or B as better requires making a judgment that (implicitly/explicitly)
weighs the circumstances in which each is better than the other.

Practically, by significantly increasing the volume of results we report for each model, our benchmark could
overload a consumer of the results, making it difficult to interpret or act upon them. By providing structure
(e.g. taxonomizing scenarios and metrics, factorizing into core scenarios vs. specific components), we hope to
retain clarity as we provide nuance. Overall, the detail of our benchmark exposes decision points for different
stakeholders to prefer one model over the other based on their values, preferences, and circumstances (e.g.
an organization deploying a model on mobile should assign higher priority to the efficiency results).

We leave the question of aggregating model performance to a single number (or a single number per scenario,
or per metric) to future work. We do not believe there exists a universal aggregation that satisfies all
preferences, reflects all values, or captures all circumstances appropriately. However, we do believe single-
number metrics, though reductive, are useful practical tools to simplify decision-making. 87

85We do note that we perform paired bootstrap tests for all model comparisons made in the human evaluations (§8.5: human-
evaluations).

86We this said, we note that using our holistic evaluation as an oracle of sorts, one then may be able to identify minimal
evaluations that discriminate between different models. In other words, holistic, broad, and expansive evaluations like HELM
complement and possibly could inform succinct unit-testing approaches like HANS (McCoy et al., 2019), CheckList (Ribeiro
et al., 2020) and LMentry (Efrat et al., 2022).

87By analogy, single-number metrics like GDP and calories are very helpful in practice, albeit flawed and reductive in encoding
the true complexities of the economy and nutrition.

82



Published in Transactions on Machine Learning Research (08/2023)

12 Conclusion

Language models have transformed AI, ushering in the paradigm of foundation models. The reach of modern
language models extends well beyond research, with language models being rapidly productionized into
consequential and ubiquitous language technologies, which we expect to only increase in the near-term
future. We lack transparency on language models at present, which is especially concerning given their rapid
growth and burgeoning impact: as a community, we do not understand language models in their totality.
For this reason, we have pushed for holistic evaluation in this effort, as we believe holistic evaluation is a
critical means for providing the necessary transparency for language models.

Transparency begets trust and standards. Viewing benchmarks as models for social change, given they orient
the development of AI systems, our broader objective is to transform foundation models from immature
emerging technologies to reliable tools that support human flourishing. With this objective in mind, we
recognize the history and trajectory of AI benchmarking aligns with institutional privilege (Koch et al., 2021).
Benchmarks set the agenda and orient progress: we should aspire for holistic, pluralistic and democratic
benchmarks (Birhane et al., 2022). Given the understated but significant power of benchmarks to drive
change, which in turn indicates benchmark design confers power, we foreground our objectives for HELM
along with its limitations. We hope the community will interrogate, adopt, and improve HELM going forward
to actualize the ambition of holistic evaluation. In this way, we hope holistic evaluations for language models
and for other classes of foundation models will give rise to useful, responsible, and societally beneficial
technology.
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Reflexivity. This work was developed at the Center for Research on Foundation Models (CRFM), a
center at Stanford University borne out of the Stanford Institute for Human-Centered Artificial Intelligence
(Stanford HAI). It is accompanied by a policy brief on how evaluations substantively improve transparency.88

This work was made possible by two unique positions that CRFM occupies. First, to develop the framework,
build the benchmark, and execute the evaluation, CRFM serves as an interdisciplinary hub for coordinating
and uniting the many authors of this work at Stanford University. Second, to acquire the access and resources
required to evaluate all the models in this work, CRFM leverages its relationships with the associated
foundation model developers.

We further highlight that this work continues a trend documented by Koch et al. (2021) that many works
that introduce (influential) benchmarks come from privileged, high-resourced, and powerful institutions, such
as Stanford (e.g. Socher et al., 2013; Bowman et al., 2015; Rajpurkar et al., 2016; Srivastava et al., 2021).
We actively encourage community-driven approaches to benchmark design, as well as mechanisms to center
and drive adoption for benchmarks developed at other institutions. This is of specific importance given how
benchmarks embed values and priorities (Ethayarajh & Jurafsky, 2020; Birhane et al., 2022), which should
be interrogated, as they are often developed by a small subset of the AI community but go on to orient the
work of the broader AI community. For this reason, we are very explicit about our design decisions (e.g.
prioritizing user-facing tasks in scenario selection) and directly foreground the limitations of our work with
respect to the breadth of considerations in the AI community. By fully releasing the open-source tools and
raw model predictions, we invite everyone to contribute further scenarios, metrics, and models as we evolve
HELM to better reflect the values of the AI community.
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the open models.
Bobby Yan (Robustness): Implemented the RAFT scenario as part of the evaluation of robustness.
Ce Zhang (Infrastructure): Managed the Together Research Computer infrastructure for evaluating all
the open models.
Christian Cosgrove (Microsoft Turing): Implemented and managed API support for TNLG v2 (6.7B)
and TNLG v2 (530B) in support of this project.
Christopher D. Manning: Provided overall guidance on framing the project.
Christopher Ré: Provided overall guidance on the project.
Deepak Narayanan (Efficiency): Led the efficiency team through the design, implementation, and
analysis of the efficiency metrics, along with important contributions to the core infrastructure.
Diana Acosta-Navas (Harms): Contributed to the design and analysis of the disinformation scenarios
and metrics.
Dilara Soylu (Harms, Visualization, Infrastructure): Led the design and implementation of the fairness
perturbations. Also made important contributions to the core infrastructure, visualization, and led the
designs and implementation of TruthfulQA and MS MARCO scenarios.
Dimitris Tsipras (Robustness, Visualization, Infrastructure): Led the robustness team through the design,
implementation, and analysis of the robustness perturbations and metrics. Also made many important
contributions to the core infrastructure, visualization, and led the implementation of many core scenarios,
including QuAC. Designed and created all the plots for the paper.
Drew A. Hudson (Reasoning): Contributed to the planning, design and task selection of the reasoning
component. Implemented and analyzed the bAbI and LSAT scenarios as part of the targeted evaluation of
reasoning capabilities.
Eric Zelikman (Reasoning): Implemented the GSM8K and synthetic reasoning scenarios as part of the
targeted evaluation of reasoning capabilities. Wrote documentation for how to implement new scenarios
and metrics.
Esin Durmus (Summarization): Helped with the design and analysis of the summarization scenarios,
including the human evaluation of summarization.
Faisal Ladhak (Summarization): Led the design, implementation, and analysis of the summarization
scenarios, including leading the human evaluation of summarization.
Frieda Rong (Reasoning): Implemented the MATH scenario as part of the targeted evaluation of reasoning
capabilities.
Hongyu Ren (Knowledge): Designed and implemented the WikiFact scenario as part of the targeted
evaluation of world knowledge.
Huaxiu Yao (Robustness): Implemented the IMDB scenario and the typos perturbation for evaluating
robustness.
Jue Wang (Infrastructure): Helped set up the Together Research Computer and ran evaluations on all the
open models.
Keshav Santhanam (Efficiency): Helped design and implement the synthetic efficiency scenario and
associated metrics.
Laurel Orr (Reasoning): Implemented the entity matching and data imputation scenarios as part of the
targeted evaluation of reasoning capabilities.
Lucia Zheng (Knowledge): Conducted the data annotation and preprocessing for the WikiFact scenario
as part of the targeted evaluation of world knowledge.
Mert Yuksekgonul (Robustness): Implemented the BoolQ and NarrativeQA scenarios as well as the
contractions perturbation for evaluating robustness.
Michihiro Yasunaga (Knowledge): Led the knowledge team through the design, implementation, and
analysis of the knowledge targeted evaluation and knowledge-centric core scenarios. Implemented MMLU,
HellaSwag, Openbook QA, and WikiFact scenarios. Created the figures for the paper.
Mirac Suzgun (Reasoning): Designed and implemented the Dyck scenario as part of the targeted
evaluation of reasoning capabilities.
Nathan Kim (Language): Designed and implemented the ICE scenario as part of the targeted evaluation
of linguistic understanding and analyzed results on ICE, TwitterAAE and BLiMP.
Neel Guha (Reasoning, Knowledge): Designed and implemented the LegalSupport scenario as part of the
targeted evaluation of reasoning capabilities and the WikiFact scenario as part of the targeted evaluation of
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world knowledge.
Niladri Chatterji (Robustness): Implemented the NewsQA scenario and the synonyms perturbation for
evaluating robustness to invariance.
Omar Khattab (Information retrieval): Designed and guided the implementation of the information
retrieval (MS MARCO) scenarios.
Percy Liang: Led and managed the overall project. Designed the core abstractions of the benchmarking:
scenarios as instances with references, adaptation strategies with different methods of converting instances
to API requests, metrics that are computed on API responses; these abstractions are reflected in the
conceptual framing and implementation. Created the initial version of the codebase and managed and
contributed to its development. Designed and implemented the website visualization of scenarios and
predictions. Worked with partners to obtain access to models.
Peter Henderson (Harms, Efficiency): Helped with the design and analysis of the copyright targeted
evaluation. Also designed and implemented efficiency metrics to measure CO2 costs of training.
Qian Huang (Reasoning): Implemented the HumanEval and synthetic reasoning scenarios as part of the
targeted evaluation of reasoning capabilities.
Rishi Bommasani: Led the writing process and wrote most of the paper, conducted many of the analyses
including the main findings, co-designed the conceptual framework, provided all annotations (e.g. prior
evaluation tables), led the harms team, created priority system and set priorities for all runs, and provided
overall project management. Conceptual framework: Co-designed the three elements of holistic evaluation
and their implementation (e.g. create taxonomies and led selection for both core scenarios and metrics).
Harms: Framed the overall approach for harms in HELM, with special focus on the integrated/multi-metric
approach to harm measurement. Designed and managed the general metrics for fairness, bias, toxicity.
Designed and managed the targeted evaluations for language (specifically ICE, TwitterAAE, BLiMP),
copyright, disinformation, fine-grained bias, and fine-grained toxicity. Managed and helped design the
summarization and information retrieval scenarios, as well as the summarization and disinformation human
evaluations.
Ryan Chi (Harms): Implemented the BBQ, BOLD, and CivilComments scenarios for the targeted
evaluation of fine-grained model biases and toxicity. Implemented the bias metrics.
Sang Michael Xie (Robustness): Implemented the typos perturbation for evaluating robustness.
Shibani Santurkar (Robustness): Implemented the NaturalQuestions scenario as well as the contrast sets
used for measuring robustness to equivariance.
Surya Ganguli (Robustness): Provided overall guidance for the robustness team.
Tatsunori Hashimoto (Robustness): Provided guidance for the robustness team, helped supervise the
analysis of the summarization experiments.
Thomas Icard (Reasoning): Provided overall guidance for the reasoning team.
Tianyi Zhang (Summarization): Helped with the implementation, design and analysis of the summariza-
tion scenarios, including the human evaluation of summarization.
Tony Lee: Managed and ran all experiments. Co-designed and implemented the data augmentation
framework, which determines how to apply and evaluate perturbations. Added support for most models
and tokenizers in HELM. Led the implementation of tokenization, prompt construction and truncation.
Implemented toxicity metrics, including the Perspective API client. Implemented the RealToxicityPrompts
scenario and contributed to the implementation of the CivilComments scenario as part of the overall toxicity
evaluation. Worked with partners to evaluate models. Contributed significantly to the codebase and built
the core infrastructure for running experiments.
Vishrav Chaudhary (Microsoft Turing): Led the process and provided overall guidance for the access
and usage of TNLG v2 (6.7B) and TNLG v2 (530B) in support of this project.
William Wang (Knowledge): Helped with the evaluation of question answering scenarios.
Xuechen Li (Harms, Reasoning): Led the design, implementation, and analysis of the targeted evaluation
of copyright and memorization. Implemented the APPS scenario as part of the targeted evaluation of
reasoning capabilities. Helped with the implementation of the disinformation scenario.
Yian Zhang (Language): Led the language team through the implementation of The Pile, WikiText-103,
BLiMP, and TwitterAAE language modeling scenarios for the targeted evaluation of linguistic understand-
ing. Implemented prompt construction for language modeling. Work done when at Stanford University.
Yuhuai Wu (Reasoning): Led the reasoning team through the design, implementation, and analysis of the
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targeted evaluation of reasoning capabilities. Implemented the MATH, pattern induction, and synthetic
reasoning scenarios.
Yifan Mai (Infrastructure): Built core infrastructure needed for the short-term and long-term maintenance
of this effort. Contributed to the website visualization. Wrote documentation for the codebase.
Yuhui Zhang (Knowledge): Implemented two key adaptation methods for multiple choice tasks. Also
implemented the HellaSwag and OpenBookQA scenarios and contributed to the WikiFact scenario.
Yuta Koreeda (Robustness): Helped with implementation of the perturbations for evaluating robustness.

B Core scenarios

B.1 Question answering

B.1.1 BoolQ

Scenario Description. BoolQ (Clark et al., 2019) is a question answering scenario that features
naturally-occuring yes/no questions. As an example, an input for the scenario looks like: “Elmendorf Air
Force Base (IATA: EDF, ICAO: PAED, FAA LID: EDF) is a United States military facility in Anchorage,
the largest city in Alaska. Originally known as Elmendorf Field, it became Elmendorf Air Force Base after
World War II, and in 2010 it merged with nearby Fort Richardson to form Joint Base Elmendorf-Richardson.
Question: Is there an air force base in anchorage alaska?”, with the desired output: “Yes”. In general, for
this scenario, inputs will be a passage followed by a yes/no question, and outputs will be yes/no. Accuracy
for this scenario is measured using whether the model generated the correct output, i.e. “Yes” or “No”.

Data. Clark et al. (2019) created the dataset by obtaining questions from queries to the Google search
engine and heuristically filtering for yes/no questions. Next, human annotators provided answers using
Wikipedia articles. The train-dev-test splits for the dataset are 9427-3270-3245 samples.

Pre-processing. Apart from downloading the passage/question/answer triplets from https://github.
com/google-research-datasets/boolean-questions and tokenizing the instances, no special pre-
processing is performed for this dataset. In the few-shot learning setup, due to the limitations of the
context length, we limit the number of in-context examples by 5, whereas prior work (Brown et al., 2020)
reports using 32 in-context examples.

Data Resources. We access the dataset at https://github.com/google-research-datasets/
boolean-questions. The dataset is made available through our benchmark. The dataset has no datasheet
available.

B.1.2 NewsQA

Scenario Description. NewsQA (Trischler et al., 2017) is a question answering scenario that features
factual questions related to a given news article. An input for this scenario consists of a news article, and
question and answer pairs. For example, a news article “Article: NEW DELHI, India (CNN) – A high court
in northern India on Friday acquitted a wealthy businessman...”, accompanied with the question “Who was
acquitted?” and the associated answer “A wealthy businessman.”

In general, for this scenario, inputs will be news articles from CNN along with questions written by crowd-
workers related to the article, and the and outputs answers to the questions from the span of the provided
news article. Performance for this scenario is measured as the best F1-score of the model output with respect
to the reference answers.

Data. Trischler et al. (2017) created this reading comprehension dataset that comprises of 12,744 news
articles (90% train, 5% dev, 5% test) and 119,633 question-answer pairs (92549 train, 5166 dev and 5126
test). The news articles and their summaries are scraped from CNN, while the questions were generated
by crowdworkers who see the headlines and the article summaries. The answers to these questions were
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generated by crowdworkers who saw the entire article. These crowdworkers either select a span of the article
as the answer or say that there is “No Answer”. A random subset of these question-answer pairs were then
validated.

On average, the inputs (article and question) are 856.47 tokens and outputs (reference answers) on average
are 2.12 tokens based on the GPT-2 tokenizer.

Pre-processing. We downloaded the dataset by following the instructions at https://github.com/
Maluuba/newsqa. We process the dataset to only keep news articles where there is at least one valid
question. We consider a question to be valid if all of the crowdworkers considered the question to be valid.
For each valid question, all of the answers given by crowdworkers, including ‘No Answer’, are considered to
be correct reference outputs.

Data Resources. We accessed the dataset at https://github.com/Maluuba/newsqa. The dataset is not
made available through our benchmark since each user needs to download the dataset themselves due to
legal reasons. The dataset has no datasheet available.

B.1.3 NarrativeQA

Scenario Description. NarrativeQA (Kočisky et al., 2017) is a question answering scenario that features
long documents and summaries collected from books and movie scripts. Books were obtained from Project
Gutenberg, and movie scripts are scraped from the web. In this work, we focus on the task of question
answering using the summaries and we do not use the long documents. Given the summary of a long
document, the task is to answer non-localized questions. As an example, an input for the scenario looks like:
“Mark Hunter (Slater), a high school student in a sleepy suburb of Phoenix, Arizona, starts an FM pirate
radio station that broadcasts from the basement of his parents’ house. Mark is a loner, an outsider, whose
only outlet for his teenage angst [omitted for brevity]... Question: Who is Mark Hunter?”, with the desired
output: “A loner and outsider student with a radio station.” or “He is a high school student in Phoenix.”.
In general, for this scenario, inputs will be summaries of books or movie scripts that are long texts, and
outputs will be human-written, short responses to non-localized questions that are not restricted to spans
from the documents. Accuracy for this scenario is measured using the F1 score.

Data. Kočisky et al. (2017) created the dataset by collecting passages from books and movie scripts, where
books were obtained from Project Gutenberg and movie scripts were scraped from the web. The dataset has
1,567 stories (1,102 training, 115 dev, 355 test). Extracted from these stories, the train-dev-test splits for
the dataset have 32,747-3,461-10,557 question-answer pairs.

Pre-processing. To process the dataset, we download the summaries and question/answer pairs from
https://github.com/deepmind/narrativeqa. Since there are multiple questions per document and testing
every question is prohibitively expensive for long-range reasoning tasks, we randomly sample one question
per document. No further pre-processing other than tokenization is performed on the dataset.

Data Resources. We access the dataset at https://github.com/deepmind/narrativeqa. The dataset
is made available through our benchmark. The dataset has no datasheet available.

B.1.4 NaturalQA

Scenario Description. NaturalQuestions (Kwiatkowski et al., 2019) is a question answering scenario
that features factual naturally-occurring questions. An input for this scenario consists of (question, wikipedia
page, long answer, short answer) tuples. For instance, the question “What color was john wilkes booth’s
hair?”, is accompanied by the “John_Wilkes_Booth” Wikipedia page, as well as one or more annotator-
provided long answers, e.g. “[omitted for brevity]...He stood 5 feet 8 inches (1.73 m) tall, had jet-black hair,
and was lean and athletic...”. Further, for each long answer, a short answer is also provided which most
directly answers the question, e.g.: “jet-black” for the example above.
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In this work, we focus on the task of predicting the short answer(s) for a given question in both closed- and
open-book settings. For the latter setting, we provide the model with the corresponding long answer, rather
than the entire Wikipedia page, as the context due to restrictions posed by models’ context windows. Thus,
inputs to the model will be an optional passage (only in open-book) followed by a question, and the target
output will be the annotated short answer(s). Performance for this scenario is measured as the best F1-score
of the model output with respect to the correct (short) answers.

Data. Kwiatkowski et al. (2019) created the dataset by obtaining questions based on frequent Google
search queries with a Wikipedia page in the top-5 search results. They then relied on annotators to: (i)
filter unambiguous factual questions, (ii) provide a long answer : an HTML bounding box (if any) within
the Wikipedia page that answered the question, and (iii) identify a short answer : the span within (ii) that
answered the question. For the short answer, annotators could also respond with “Yes”, “No” or NULL.
The train-dev-test splits for the dataset are 307,373-7,830-7,842, with single and five-way annotations for
the train and dev/test splits respectively.

Pre-processing. We download the question/long answer/short answer triplets from https://storage.
googleapis.com/natural_questions/v1.0/ using the dev set exclusively for all our analysis. As described
above, in the open-book setting, we provide the long answer as the context to the model. Other than
tokenizing the instances, no special pre-processing is performed for this dataset.

Data Resources. We access the dataset at https://storage.googleapis.com/natural_questions/v1.
0/, and is made available through our benchmark. The dataset has no datasheet available.

B.1.5 QuAC

Scenario Description. QuAC (Choi et al., 2018) is a question answering scenario which incorporates
dialogue-based context. Specifically, instances are generated through a dialogue between a teacher and a
student, where the student tries to learn information about a Wikimedia article that only the teacher has
access to. As an example, an input for the scenario looks like: “Title: Daffy Duck, Background: <background
section>, Section: Origin & History, Passage: <target section>, Question: What is the origin of Daffy Duck?
Answer: first appeared in Porky’s Duck Hunt, Question: What was he like in that episode? Answer:” with
the desired output: “assertive, unrestrained, combative”. In general, for this scenario, inputs will consist of
(a) the title of the article, (b) a background paragraph, (c) the title of the target section, (d) the text of the
target section, and (e) a sequence of question-answer pairs, where the desired output is the answer to the
last question. Accuracy for this scenario is measured using F1-score.

Data. Choi et al. (2018) created the dataset by employing crowd-workers to engage in the dialogue discussed
above. The train-dev-test splits for the dataset are 83567 questions for training, 7354 for development, and
7353 for testing.

Pre-processing. To process the dataset, we remove the “CANNOTANSWER” span of text (meant to
allow teachers to abstain via span selection) since we will prompt the model for a free-form response anyway
(for questions without answers, we also add [“Not enough information”, “Cannot answer”, “Do not know”]
as valid answers.

In order to prompt the model with dialogue-based context, we randomly choose a question in the conversation
to query the model and provide the previous question-answer pairs as part of the instance. We make sure
to provide at least 2 such pairs in order to simulate question answering in the context of dialogue.

Data Resources. We access the dataset at http://quac.ai/ and we also make it available through our
benchmark. The dataset has a datasheet available at http://quac.ai/datasheet.pdf. Further analyses of
the dataset were provided by Yatskar (2019).
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B.1.6 HellaSwag

Scenario Description. HellaSwag (Zellers et al., 2019) is a question answering scenario that features
commonsense natural language inference. As an example, an input for the scenario looks like: “A woman
is outside with a bucket and a dog. The dog is running around trying to avoid a bath. She (A) rinses the
bucket off with soap and blow dries the dog’s head. (B) uses a hose to keep it from getting soapy. (C) gets
the dog wet, then it runs away again. (D) gets into the bath tub with the dog. ”, with the desired output:
(C). In general, for this scenario, an input will be a question and four answer choices, and outputs will be
one of the choices. Accuracy for this scenario is measured using the exact match of the answer choice.

Data. Zellers et al. (2019) created the dataset by crowd-sourcing questions based on ActivityNet and
WikiHow articles and using Adversarial Filtering to create difficult incorrect answers for multiple-choice
questions. The train-dev-test splits for the dataset are 39905 training, 10042 development, and 10050 testing
examples.

Pre-processing. We downloaded the dataset from https://leaderboard.allenai.org/open_book_qa/
submissions/get-started and used it without further pre-processing.

Data Resources. We access the dataset at https://leaderboard.allenai.org/hellaswag/
submissions/get-started.

B.1.7 OpenBookQA

Scenario Description. OpenBookQA (Mihaylov et al., 2018) is a question answering scenario that tests
scientific commonsense knowledge. As an example, an input for the scenario looks like: “Which of these
would let the most heat travel through? (A) a new pair of jeans (B) a steel spoon in a cafeteria (C) a cotton
candy at a store (D) a calvi klein cotton hat”, with the desired output: (B). In general, for this scenario, an
input will be a question and four answer choices, and outputs will be one of the choices. Accuracy for this
scenario is measured using the exact match of the answer choice.

Data. Mihaylov et al. (2018) created the dataset by first collecting 1326 elementary science facts from
the WorldTree corpus, and then crowd-sourcing 5957 questions using these science facts. The train-dev-test
splits for the dataset are 4957 training, 500 development, and 500 testing.

Pre-processing. We downloaded the dataset from https://leaderboard.allenai.org/open_book_qa/
submissions/get-started and used it without further pre-processing.

Data Resources. We access the dataset at https://leaderboard.allenai.org/open_book_qa/
submissions/get-started.

B.1.8 TruthfulQA

Scenario Description. TruthfulQA (Lin et al., 2021b) is a question answering scenario that tests the
truthfulness of language models. The questions in the TruthfulQA dataset are specifically constructed to
elicit false beliefs and misconceptions hold by some humans. An input for this scenario consists of a question
and a set of answer choices, only one of which is correct, while the output is one of the answer choices.
Shared below is an example input with the desired output of “B”:

Question: Is tap water safe to drink?
A. No, tap water is unsafe to drink.
B. It depends on your current location.
C. Yes, tap water is safe to drink.
Answer:
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Accuracy for this scenario is measured using exact match of the answer choice selected by the model.

Data. The TruthfulQA dataset consists of 817 questions on 38 categories (e.g. misconceptions, law, bi-
ology) in diverse styles. Authors of (Lin et al., 2021b) crafted the questions to elicit answers that reveal
misconceptions or false beliefs in some humans. The original dataset is meant to be used under the zero-shot
settings, and hence the train-dev-test splits aren’t specified. In our experiments, we use 5 in-context exam-
ples sampled from the 1/5th of the dataset along with each evaluation example in the remaining portion of
the dataset. On average, the inputs are 509 tokens long, while the outputs are 1 token long.

Pre-processing. We directly use the questions and options choices from the TruthfulQA dataset without
any pre-processing, aside from tokenization.

Data Resources. We access the dataset at https://github.com/sylinrl/TruthfulQA, which is also
made available through our benchmark.

B.1.9 MMLU

Scenario Description. MMLU (Hendrycks et al., 2021c) is a question answering scenario that features
57 subjects ranging from humanities to social sciences to STEM (science, technology, engineering and math).
As an example, an input for the scenario looks like: “Which of the following is true for Br2 at standard
temperature and pressure? (A) It is a colorless gas. (B) It is a red-brown volatile liquid. (C) It is a colorless
volatile liquid. (D) It is a yellow metallic solid.”, with the desired output: (B). In general, for this scenario,
an input will be a question and four answer choices, and outputs will be one of the choices. Accuracy for
this scenario is measured using the exact match of the answer choice.

Data. Hendrycks et al. (2021c) created the dataset by 15908 total questions manually scraped from online
sources, such as practice GRE, USMLE, and AP exams, with 5 questions per subject for the few-shot
development set, 1540 validation, and 14079 testing questions.

Pre-processing. To process the dataset, we followed the preprocessing scripts of Hendrycks et al. (2021c):
https://github.com/hendrycks/test.

Data Resources. We access the dataset at https://github.com/hendrycks/test.

B.2 Information retrieval

B.2.1 MS MARCO (regular)

Scenario Description. MS MARCO (regular) (Nguyen et al., 2016) MS MARCO (regular) is an
information retrieval scenario that features real Bing search queries and a collection of around 9M passages
from the Web, some of which are deemed relevant to each query through human annotation. As described
in the scenario section, we focus on the passage re-ranking setting, ranking only the topk-k passages from a
set retrieved for a given q (i.e. M(q) where |M(q)| ≪ |C|) using the BM25 retriever (Robertson & Zaragoza,
2009).89 As an example, an input for the scenario is a (query, set of passages to rank, relevance judgment of
each passage to be ranked) tuple.

For a given input, the task of the model is to rank the passages given the query. Using the ranking adaptation
method explained in more detail in Appendix J.4, a single input for this scenario results in several requests,
each evaluating the relevance of a single passage for a query, with the expected model output being “Yes” if
the passage is relevant and “No” otherwise. For example, for the following input:

Passage: Its 25 drops per ml, you guys are all wrong. If it is water, the standard was changed
15 - 20 years ago to make 20 drops = 1mL. The viscosity of most things is temperature
dependent, so this would be at room temperature. Hope this helps.

89We use the pyserini library at https://github.com/castorini/pyserini, which is based on Anserini (Yang et al., 2017).
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Query: how many eye drops per ml
Does the passage answer the query?
Answer:

The desired output would be “Yes”. Accuracy for this scenario is measured using standard binary information
retrieval metrics: Recall@k, Success@k, and RR@k, the last one being the main one.

We compute two versions of each metric: (1) the vanilla top-k version, where the model scores the passages
that appear in the top-k passages from a BM25 retriever (e.g., the metric we refer to as RR@10(topk = 30);
(2) the boosted version, the model scores the passages in (1) and any passages annotated as relevant for
the query even if they were not retrieved by BM25 (e.g., what we refer to as simply RR@10). We think of
(1) as providing an easy-to-realize lower-bound on the quality of the re-ranking system (i.e., the metrics are
capped due to the limited recall by the BM25 retriever), whereas the boosted metrics in (2) aim to establish
an intuitive upper-bound where the re-ranking system is guaranteed to score the relevant passages within a
larger, distracting set. In practice, higher-recall retrievers can approximate the setting in (2), although they
also likely retriever harder distracting (i.e., non-relevant) passages.90

Data. There are two datasets used: the query dataset and the passage collection dataset, both created
by Nguyen et al. (2016), drawing from the Bing logs. The query dataset contains anonymized questions
asked by real users using the Bing search engine. The passage collection contains passages extracted from
the websites returned by the Bing search engine given the queries. For each query, the passage collection
contains 0 or more passages deemed relevant by human annotators.

The query dataset is split into 808,731 training queries, and 6980 development queries. The evaluation
dataset is withheld, but systems can be evaluation on it through a submission to a public leaderboard.91

Since the access to the evaluation dataset is limited, we evaluate the models on the development dataset in
our experiments. The passage collection contains 8,841,823 passages.

We use 4 in-context examples in our prompts, generated from 2 training queries we randomly sample. For
each training query we sample, we include 2 examples, one containing a relevant paragraph and the other
containing an irrelevant paragraph. Including the 4 in-context examples, the inputs contain 497 tokens on
average, while the outputs contain 1 token (Yes/No) on average using the GPT-2 tokenizer.

Pre-processing. We directly use the query dataset without any pre-processing, aside from tokenization.
For the passage collection, we used a the ir_datasets library (MacAvaney et al., 2021) to fix the double
encoding problem, a known issue in the MS MARCO passage collection.

Data Resources. We access the dataset at https://microsoft.github.io/msmarco/. The dataset is
also made available through our benchmark.

B.2.2 MS MARCO (TREC)

Scenario Description. MS MARCO (TREC) (Craswell et al., 2020) is a variant of the regular MS
MARCO scenario, differing only in the evaluation queries used. For the TREC track queries, passage
annotations are richer where a query can have over a 100 passages annotated as opposed to 1 or 2 in the
regular track. Moreover, instead of the binary annotation of the regular track (i.e., a passage is either
annotated as relevant or otherwise assumed not relevant), passages in the TREC track are graded on their

90In MS MARCO (regular), the success@30 of BM25 is 54.1%. In other words, for about half of the queries, the top-30
passages obtained by BM25 do not include passages assessed as relevant, motivating our inclusion of the boosted setting in
which the relevant passages are guaranteed to be scored by the re-ranking model. In principle, we can re-rank many more
passages (e.g., top-1000 per query) to induce higher recall, but imposes costs that exceed the resources we have available.
Alternatively, we could instead re-rank the top-30 passages of one of the recent retrieval models trained on MS MARCO, which
exhibit higher recall than BM25. We opted against this choice as it conflicts with the essence of our few-shot comparison and,
moreover, ties our comparisons to one of many recent retrievers. We instead use the standard classical BM25 algorithm to
conduct this retrieval.

91https://microsoft.github.io/msmarco/
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relevance: a grade of 0 marks irrelevant passages, while higher grades (i.e., 1, 2, and 3) mark more relevant
passages. To account for this difference, we use the Normalized Discounted Cumulative Gain (NDCG)
metric as the main for the TREC track results. The format and the construction of the inputs are the same
as the regular track.

Similar to the regular track, we compute two versions of each metric: (1) the vanilla top-k version, where
the model scores the passages that appear in the top-k passages from a BM25 retriever (e.g., the metric we
refer to as NDCG@10(topk = 30); (2) the boosted version, the model scores the passages in (1) and any
passages that has an annotation in the relevance assessments provided (0, 1, 2, or 3) for that query even if
they were not retrieved by BM25 (e.g., what we refer to as simply NDCG@10).

Data. The data generation steps for the TREC track are the same as the regular track. Both of the tracks
use the same training dataset. We evaluate the models on the 2019 Deep Learning passage ranking track
queries. This dataset has 200 queries, only 47 of which has associated judgments. The inputs for the TREC
track are 488 tokens long on average, while the output is 1 token on average. We construct our prompts the
same way for both of the tracks.

Pre-processing. The pre-processing steps for the TREC track are the same as those for the regular track.

Data Resources. We access the passage collection resource as in the regular track. We obtain the
queries and the relevance assessments from https://trec.nist.gov/data/deep2019.html and https:
//microsoft.github.io/msmarco/TREC-Deep-Learning-2019.html.

B.3 Summarization

B.3.1 CNN/DM

Scenario Description. CNN/DailyMail (Hermann et al., 2015b) is a summarization scenario that
contains news article from CNN and the DailyMail along with highlights which act as a summary for the
article. As an example, an input for the scenario looks like: “(CNN) – An American woman died aboard a
cruise ship that docked at Rio de Janeiro on Tuesday, the same ship on which 86 passengers previously fell
ill, according to the state-run Brazilian news agency, Agencia Brasil. The American tourist died aboard the
MS Veendam, owned by cruise operator Holland America. Federal Police told Agencia Brasil that forensic
doctors were investigating her death. The ship’s doctors told police that the woman was elderly and suffered
from diabetes and hypertension, according the agency. The other passengers came down with diarrhea prior
to her death during an earlier part of the trip, the ship’s doctors said. The Veendam left New York 36 days
ago for a South America tour.”, with the desired output: “The elderly woman suffered from diabetes and
hypertension, ship’s doctors say . Previously, 86 passengers had fallen ill on the ship, Agencia Brasil says .”
In general, for this scenario, inputs will contain a news article and outputs will contain 2-4 sentences that
represent the highlights of the information in the news article. Performance for this scenario is measured
using the ROUGE-2 metric (Lin, 2004), for overall summary quality. Faithfulness of generated summaries
are measured using SummaC (Laban et al., 2022) and QAFactEval (Fabbri et al., 2022).

Data. CNN/DM is created by adapting the CNN and Dailymail articles in the Qusetion Answering dataset
collected by Hermann et al. (2015b). The original articles are treated as the source articles to be summarized
and the highlights are treated as the ground-truth summaries. The standard train-dev-test splits for the
dataset are 287K examples for training, 13K for validation, 11K for testing. The average length of input
articles is 868 tokens and average length of output summaries is 65 tokens based on the GPT-2 tokenizer.
Since we are operating in the few-shot setting, we sampled training articles that were between 50 and 150
tokens in length, in order to be able to fit examples within the context token constraints.

Pre-processing. To process the dataset, we replace new lines with space and truncate the input article
at 512 tokens, following standard practices in prior work (Zhang et al., 2020a).
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Data Resources. We access the dataset at https://huggingface.co/datasets/cnn_dailymail. The
dataset is made available through our benchmark. The dataset has a datasheet available at https://
huggingface.co/datasets/cnn_dailymail. Further analyses of the dataset were provided by Jung et al.
(2019), Bommasani & Cardie (2020) and Tejaswin et al. (2021).

B.3.2 XSUM

Scenario Description. XSUM (Narayan et al., 2018) is a summarization scenario that features articles
from the British Broadcasting Corporation (BBC). As an example, an input for the scenario looks like:
“Authorities said the incident took place on Sao Joao beach in Caparica, south-west of Lisbon. The National
Maritime Authority said a middleaged man and a young girl died after they were unable to avoid the plane.
[6 sentences with 139 words are abbreviated from here.] Other reports said the victims had been sunbathing
when the plane made its emergency landing. [Another 4 sentences with 67 words are abbreviated from here.]
Video footage from the scene carried by local broadcasters showed a small recreational plane parked on the
sand, apparently intact and surrounded by beachgoers and emergency workers. [Last 2 sentences with 19
words are abbreviated.]”. For this example, the reference summary is “A man and a child have been killed
after a light aircraft made an emergency landing on a beach in Portugal.” In general, for this scenario, inputs
will contain news articles from BBC and outputs will contain a one sentence summary. Performance for
this scenario is measured using the ROUGE-2 metric (Lin, 2004), for overall summary quality. Faithfulness
of generated summaries are measured using SummaC (Laban et al., 2022) and QAFactEval (Fabbri et al.,
2022). Since we are operating in the few-shot setting, we sampled training articles that were between 50 and
150 tokens in length, in order to be able to fit examples within the context token constraints.

Data. Narayan et al. (2018) created the XSUM dataset by harvesting online articles from the British
Broadcasting Corporation (BBC). For each article, the first sentence is treated as the summary for the
rest of the article text. The train-dev-test splits for the dataset are 204K examples for training, 11K for
validation, and 11k for testing. Gehrmann et al. (2021) filter the original dataset using a faithfulness classifier
and remove instances that are deemed unfaithful by the classifier. The filtered training set contains 23K
training instances. We do a further manual inspection and whitelist a set of 50 instances, from which we
sample the few-shot instances. The average length of input articles is 567 tokens and average length of
output summaries is 25 tokens based on the GPT-2 tokenizer.

Pre-processing. To process the dataset, we replace new lines with space and truncate the input article
at 512 tokens, following standard practices in prior work (Zhang et al., 2020a).

Data Resources. We access the dataset at https://huggingface.co/datasets/GEM/xsum. The dataset
is made available through our benchmark. The dataset has a datasheet available at https://huggingface.
co/datasets/GEM/xsum. Further analyses of the dataset were provided by Jung et al. (2019), Bommasani
& Cardie (2020) and Tejaswin et al. (2021).

B.4 Sentiment analysis

B.4.1 IMDB

Scenario Description. IMDB (Maas et al., 2011) is a sentiment analysis scenario that features the
positive/negative sentiment in movie review. As an example, an input for the scenario looks like: “Bromwell
High is a cartoon comedy. It ran at the same time as some other programs about school life, such as
“Teachers”. My 35 years in the teaching profession lead me to believe that Bromwell High’s satire is much
closer to reality than is “Teachers”. The scramble to survive financially, the insightful students who can
see right through their pathetic teachers’ pomp, the pettiness of the whole situation, all remind me of the
schools I knew and their students. When I saw the episode in which a student repeatedly tried to burn down
the school, I immediately recalled ......... at .......... High. A classic line: INSPECTOR: I’m here to sack one
of your teachers. STUDENT: Welcome to Bromwell High. I expect that many adults of my age think that
Bromwell High is far fetched. What a pity that it isn’t!”, with the desired output: “Positive”. In general,
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for this scenario, inputs will be a movie review and outputs will be Positive/Negative. Accuracy for this
scenario is measured using whether the model generated the correct output, i.e. “Positive” or “Negative”.

Data. Maas et al. (2011) created the dataset by creating positive and negative reviews, where a positive
review has a score >= 7 out of 10 and a negative review has a score <= 4 out of 10. Reviews with neutral
ratings are not included in the train/test sets. The train-test splits for the dataset are 25000-25000 with
inputs on average being 1,309 tokens and outputs on average being 1 token based on the GPT-2 tokenizer.

Pre-processing. Apart from downloading the datasets and tokenizing the instances, no special pre-
processing is performed for this dataset.

Data Resources. We access the dataset at https://ai.stanford.edu/~amaas/data/sentiment/. The
dataset is made available through our benchmark. The dataset has no datasheet available.

B.5 Toxicity detection

B.5.1 CivilComments

Scenario Description. CivilComments (Borkan et al., 2019a) is a text classification scenario that
features examples from the Civil Comments platform, a commenting plugin for independent news sites. As
an example, an input for the scenario looks like: “Blame men. There’s always an excuse to blame men for the
failures of women. \n Question: Is the passage above toxic?” with the desired output: “True.” In general,
for this scenario, inputs will start with a comment (either toxic or non-toxic) followed by “Question: Is the
passage above toxic?” and outputs will be either “True” or “False.” Accuracy for this scenario is measured
using exact match accuracy and quasi-exact match accuracy.

Data. Borkan et al. (2019a) created the dataset by scraping anonymized public comments from the Civil
Comments platform. The train-dev-test splits for the dataset are 80% train, 20% test with inputs on average
being 583.482 tokens and outputs on average being 1 token based on the GPT-2 tokenizer.

Pre-processing. We follow the pre-processing steps described in Koh et al. (2021). In following these steps,
we also upload subsets that only comprise comments targeting a specific category, for each of the following
categories: [“male”, “female”, “LGBTQ”, “christian”, “muslim”, “other_religions”, “black”, “white”].

Data Resources. We access the dataset at https://www.kaggle.com/c/
jigsaw-unintended-bias-in-toxicity-classification/data. The dataset is made available through
our benchmark. The dataset has a datasheet available at https://huggingface.co/datasets/civil_
comments (the HF dataset is taken directly from the Kaggle dataset).

B.6 Miscellaneous text classification

B.6.1 RAFT

Scenario Description. RAFT (Alex et al., 2021) is a text classification scenario that features tasks
naturally occurring in real-world settings. As an example, an input for the scenario looks like: “ In law, an
overruling sentence is a statement that nullifies a previous case decision as a precedent, by a constitutionally
valid statute or a decision by the same or higher ranking court which establishes a different rule on the
point of law involved. Label the sentence based on whether it is overruling or not. Possible labels: 1. not
overruling 2. overruling Sentence: consequently, it is overthrow. ”, with the desired output: “overruling.”
In general, for this scenario, inputs will include a task-specific instruction followed by the target example
to classify, and outputs will be one of the classes provided in the instructions. Accuracy for this scenario is
measured using exact match.
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Data. Alex et al. (2021) created the dataset by curating from 11 real-world datasets. The train-dev-test
splits for the dataset are 550 training and 28712 development examples. Since the true test set is hidden,
we report results on the development split.92

Pre-processing. To process the dataset, we extract the task-specific instructions from the original ex-
amples provided by Alex et al. (2021) at https://github.com/oughtinc/raft-baselines/tree/master/
example_prompts.

Data Resources. We access the dataset at https://huggingface.co/datasets/ought/raft. The
dataset is made available through our benchmark. The dataset has a datasheet available at https:
//huggingface.co/datasets/ought/raft.

C General metrics

C.1 Accuracy

By accuracy, we refer to the average correctness of models across all evaluation instances. Critically, for
different scenarios, the notion of correctness may differ. Consequently, we enumerate the primary accuracy
metrics we consider in this work, the scenarios for which they serve as the main accuracy metric, and the
formal definition where relevant.

C.1.1 General

Exact match. The correctness condition for exact match is that the model generation match the correct
reference exactly as strings. This is the default accuracy metric for HellaSwag, OpenBookQA, Truth-
fulQA, MMLU, and BLiMP.

Quasi-exact match. The correctness condition for quasi-exact match expands the exact match condition
to identical strings up to some slightly post-processing of the model generation (i.e. lower-casing, removing
whitespace and punctuation and articles). This is the default accuracy metric for BoolQ, IMDB, Civil-
Comments, RAFT, WikiFact, synthetic reasoning (abstract symbols), bAbI LegalSupport, LSAT,
EntityMatching, DataImputation.

F1. In contrast to the exact match methods, the correctness condition for F1 is more graded/not all-or-
nothing to tolerate partial string overlap (see Rajpurkar et al., 2016). This is the default accuracy metric
for NaturalQuestions (open-book), NaturalQuestions (closed-book), NarrativeQA, and QuAC.

C.1.2 Information Retrieval

RR@K. The correctness condition for RR@K depends on the reciprocal rank of the first relevant document,
and is the default accuracy metric for MS MARCO (regular) for K=10.

Given rank ∈ {1, 2, 3, ...} is the position of the first relevant document:

RR@K =
{

1/rank, if rank ≤ K.

0, otherwise.
(1)

NDCG@K. The correctness condition for Normalized Discounted Cumulative Gain (NDCG; Järvelin &
Kekäläinen, 2002) depends on the quality the quality of a set of graded rankings (i.e. assessing more than
just binary relevance), and is the default accuracy metric for MS MARCO (TREC) for K=10.

The Cumulative Gain CG@K measures the total value of relevant documents in a set with K documents by
summing all the graded relevance values. To favor better results appearing earlier in the rankings, DCG@K

92The true test set accepts submissions at https://huggingface.co/datasets/ought/raft-submission.
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discounts the graded_relevance value of a document according to the rank that it appears at. That is, given
that graded_relevance(di) is the graded relevance (e.g., 0, 1, 2, or 3, where higher is more relevant) of the
ith document:

DCG@K =
K∑

i=1

graded_relevance(di)
log2(i + 1) (2)

NDCG@K normalizes DCG@K by dividing DCG@K by the IDCG@K, which is the DCG@K of ideal
ordering of the documents (i.e., sorted according to relevance grades in descending order).93

C.1.3 Summarization

ROUGE-2. For summarization, we use the standard ROUGE score (Lin, 2004), which consider 2-gram
overlap to determine correctness. This is the default accuracy metric for CNN/DailyMail and XSUM.

C.1.4 Language

BPB. The correctness condition for bits-per-byte (BPB) depends on the average number of bits per byte
according to model probabilities; see Gao et al. (2021a). This is the default accuracy metric for The Pile,
ICE, and TwitterAAE.

C.1.5 Reasoning

F1 (set match). The correctness condition for F1 (set match) is the F1 score when computed between
the sets predicted by the model and the correct reference, which is the default accuracy metric for synthetic
reasoning (natural).

Exact match (up to specified indicator). The correctness condition for exact match (up to a specified
indicator) is the same as exact match, expect when only looking at the prefix of the prediction and prefix
of the reference between the first mention of the specified indicator. This is the default accuracy metric for
Dyck and GSM8K.

Code. For HumanEval (Chen et al., 2021) and APPS (Hendrycks et al., 2021c), we use the associated
code metrics defined in their respective papers.

Equivalent. The correctness condition for equivalent is if the model generation is mathematically equiva-
lent to the correct reference, which is the default accuracy metric for MATH.

Equivalent (chain-of-thought). The correctness condition for equivalent (chain-of-thought) is if the
model generation is mathematically equivalent to the correct reference, which is the default accuracy metric
for MATH (chain-of-thought).

C.2 Calibration and uncertainty

We first setup some formal notation, then state the metrics in the population (“infinite data”) setting, and
finally give formulas for the metrics that we actually compute on finite data.

Formal setup. We measure calibration metrics for classification tasks. Given an input x, let the true label
be y ∈ [k] = {1, . . . , k} and the model’s predicted probability be p ∈ [0, 1]k where

∑
j pj = 1. Here, pj denotes

the model’s confidence that the true label is j. Let ŷ = arg maxj∈[k] pj be the model’s predicted label, and
pmax = maxj∈[k] pj denote the model’s confidence in its predicted label ŷ (the model’s “top probability”).
Note that x, y, p, ŷ, pmax are all random variables.

93More information on these and other ranking metrics can be found at https://ir-measur.es/en/latest/measures.html.
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Population metrics. We first define the metrics in the population setting—intuitively, the population
setting corresponds to having infinite data. The expected calibration error (ECE) examines the difference
between the model’s top probability pmax and the probability the model is correct (y = ŷ) given pmax:

ECE = E
[∣∣pmax − E[y = ŷ | pmax]

∣∣] (3)

For selective classification, we first need to define two key concepts: coverage and accuracy. Given a threshold
t ≥ 0, the coverage c(t) is the fraction of examples for which the model’s predicted confidence is at least t:

c(t) = P (pmax ≥ t). (4)

The coverage c(t) is non-increasing in t because when t is higher there will be fewer examples where the
model is more confident than t.

The selective accuracy a(t) at a threshold t ≥ 0 is the accuracy for all examples where the model’s predicted
confidence is at least t:94

a(t) =
{

P (y = ŷ | pmax ≥ t) if c(t) > 0
1 otherwise

. (5)

The selective accuracy a(t) is often increasing in t for most machine learning models, however this need not
be the case (Jones et al., 2021).

The selective coverage-accuracy area (SCAA) plots the selective accuracy (on the y-axis) against the coverage
(on the x-axis), and calculates the area under the curve. Formally, we have:

SCAA =
∫ ∞

t=0
a(t)dc(t) (6)

=
∫ ∞

t=0
a(t)c′(t)d(t). (7)

The selective-accuracy at 10% (acc@10%) is the selective accuracy at the threshold t′95 where the coverage
c(t′) is 10%—this corresponds to the accuracy on the 10% of examples that the model is most confident on
(the model is allowed to abstain on all the remaining examples where it is less confident).

acc@10% = a(t′), where c(t′) = 0.1. (8)

Finite sample metrics. Suppose we have an evaluation dataset [(p1, y1, ŷ1, pmax
1 ), . . . , (pn, yn, ŷn, pmax

n )],
where each (pi, yi, ŷi, pmax

i ) is sampled independently from the same distribution as (p, y, ŷ, pmax) defined
in the Setup above. Recall that p is the model’s predicted probability vector, y is the true label, ŷ is the
model’s predicted label, and pmax = pŷ is the model’s probability for its prediction ŷ (the model’s “top
probability”). For convenience, suppose that the evaluation dataset is sorted in decreasing order of the
model’s top-probability pmax, that is for all i ≤ j, we have pmax

i ≥ pmax
j .

Following prior work, we evaluate the ECE by binning the model’s predictions into m bins. Note that some
form of binning is necessary, otherwise we cannot estimate the conditional expectation E[y = ŷ | pmax]. We
select a set of m intervals (“bins”) I1, . . . Ik that partition [0, 1] (that is, the intervals do not overlap and
they cover [0, 1]). We choose uniform-mass bins (Kumar et al., 2019), where an equal number of pmax values
fall into each bin.

Formally, we define the bin-count ni of a bin i as:

ni =
n∑

j=1
I(pmax

j ∈ Ii) (9)

94We have a special case in the definition when c(t) = P (pmax ≥ t) = 0. This is because the definition of the selective
accuracy involves a conditional expectation, which would be undefined if the condition never holds. However, this is just for
mathematical convenience and the reader should feel free to ignore the edge case for simplicity.

95There can be multiple values t where c(t) = 0, however this will in fact not change the definition because if c(t1) = c(t2)
where t1 ≤ t2 then P (t1 ≤ pmax ≤ t2) = 0, because c(t2) = c(t1) + P (t1 ≤ pmax ≤ t2) = 0 and all these quantities are
non-negative. The reader should feel free to ignore this edge case for simplicity.
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We choose bins such that the ni are equal for every bin.96 The model’s average top probability p̂i in bin i
is the average of its top probabilities pmax

j that fall in the i-th bin Ii.

p̂i = 1
ni

n∑
j=1

I(pmax
j ∈ Ii)pmax

j (10)

The accuracy âi of the model in bin i is the number of examples the model gets correct when its top
probability falls in the i-th bin Ii.

âi = 1
ni

n∑
j=1

I(pmax
j ∈ Ii)I(yj = ŷj) (11)

Then the estimated ECE (m-bins) is given by:

ÊCEk =
m∑

i=1

ni

n
(p̂i − âi) (12)

For the selective classification metrics, let ar denote the accuracy for the r most confident examples (recall
that the examples are sorted in decreasing order of pmax

j )

ar = 1
r

r∑
i=1

I(yi = ŷi) (13)

The estimated selective-accuracy at C% ( ̂acc@C%) is given by the accuracy of the 10% of examples in the
evaluation data that the model is most confident on:̂acc@C% = a⌊nC/100⌋ (14)

The estimated selective coverage-accuracy area ( ̂SCAA) is the average of the am for all m. Graphically,̂SCAA is equivalent to plotting the selective accuracy (on the y-axis) and coverage (on the x-axis) for the
evaluation data, and taking the area under the curve.

̂SCAA = 1
n

n∑
i=1

ai (15)

C.3 Robustness

In order to measure the performance of a model, we need some basic metric m that quantifies the quality
of a model prediction on a specific instance x (e.g., exact match, F1-score)—that is m(model(x), x). Given
this basic metric m, for a scenario with instances (xi)n

i=1, the standard performance of the model on this
scenario can be evaluated as

Accuracy = 1
n

n∑
i=1

m(model(xi), xi).

Now, in order to measure the robustness of a model, be it invariance or equivariance, we use a set of trans-
formations T1, . . . , Tk, which map an instance x to a perturbed instance Tj(x). Given these transformations,
we compute the robustness of the model as the worst-case performance across all transformations of each
input (assuming higher m corresponds to better performance)

Robustness = 1
n

n∑
i=1

min
j

m(model(Tj(xi)), yi).

For instance, if the basic metric is accuracy, we consider a model correct on a specific instance if and only if
it predicts correctly on all perturbations of it.

We choose to always consider the identity Transformation, and thus the Robustness of a model is upper
bounded by its Accuracy.

96Because of rounding errors, they may not be exactly equal. We choose them so that for all i, j, |ni − nj | ≤ 1.
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C.4 Fairness

Counterfactual fairness. For counterfactual fairness, we compute the accuracy (using the standard ac-
curacy metric for the scenario that is described in Appendix C.1) on the perturbed instances for each group
as well as the worst-case accuracy that is described in the robustness section (Appendix C.3).

Performance disparities. For performance disparities, we compute the accuracy for each subgroup and
manually compare these accuracies across subgroups. While numerous fairness metrics have been forth in
the literature to aggregate the subgroup accuracies into one score for fairness (e.g. Narayanan, 2018), given
most of the prevailing wisdom is that the appropriate choice of metric should depend on the context of the
use case, we defer selecting specific metrics thoughtfully for the different scenarios to future work.

C.5 Bias and stereotypes

To measure social bias, we consider two specific forms: demographic representation and stereotypical asso-
ciations.

Demographic representation. To measure demographic representation, we measure the extent to which
observed rate at which different demographic groups are mentioned deviates from a reference distribution.
In this work, we will consider the reference distribution to be the uniform distribution, which encodes that a
model will be deemed to have no bias (in terms of demographic representation) if the different social groups
are mentioned at equal rate.

Let Y be the set of model generations for a scenario, y ∈ Y be a specific model generation, and C(w, y) be
the count of how many times the token w appears in the sequence y.

To measure demographic representation, we will consider k demographic groups, where each group i ∈ [k]
is associated with a set Ai of words that represent the group. In this work, we consider binary gender (i.e.
male and female, so k = 2) and three-class race (i.e. White, Hispanic, Asian, so k = 3). The word lists we
use for these groups are stated below.

For each group i, we compute its count C(i) as follows:

C(i) =
∑

w∈Ai

∑
y∈Y

C(w, y) (16)

In other words, it is the count of words for the group across all model generations. Then, given this vector
C = [C(1), . . . , C(k)], we normalize this vector to be a probability distribution Pobs = C∑

i∈[k]
C(i)

. Finally,

to measure demographic representation, we compute the distance (using total variation distance) between
the observed distribution Pobs and the reference distribution Pref:

demographic representation = TV D(Pobs, Pref) (17)

Total variation difference is bounded between 0 and 1, but since the reference distribution we consider is
specifically the uniform distribution, the TVD is effectively bounded between 0 and k−1

k . So, since we
consider binary gender, the maximum bias for demographic representation is 0.5 and since we consider
three-class race, the maximum bias for demographic representation is 2

3 .

Overall, the full computation of the metric is as follows:

∀i ∈ [k], C(i) =
∑

w∈Ai

∑
y∈Y

C(w, y) (18)

C = [C(1), . . . , C(k)] (19)

Pobs = C∑
i∈[k] C(i) (20)

demographic representation = TV D(Pobs, Pref) (21)
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Stereotypical associations. To measure stereotypical associations, we modify the measure for demo-
graphic representation in two ways. First, fundamentally, we measure stereotypical associations with respect
to a specific concept (e.g. stereotypical associations for the term t = mathematician). Consequently, we
modify the way we count C(w, y) to be the count when the C(t, y) > 0 (i.e. t appears in y), whereas
C(w, y) = 0 otherwise. So, given this change, we will measure bias for a specific term. Second, to report
a single number as an overall measure of stereotypical associations for a model, we compute the average of
the per-term measurements across a collection of terms T (e.g. a list of professions). We provide these lists
below.

Overall, the full computation of the metric is as follows:

∀t ∈ T , ∀i ∈ [k], Ct(i) =
∑

w∈Ai

∑
y∈Y

C(w, y)I [C(t, y) > 0] (22)

Ct = [Ct(1), . . . , Ct(k)] (23)

P t
obs = Ct∑

i∈[k] Ct(i) (24)

stereotypical associationt = TV D(P t
obs, Pref) (25)

stereotypical association = 1
|T |

∑
t∈T

stereotypical associationt (26)

Word Lists. Consistent with the recommendation of Antoniak & Mimno (2021), we report the exact word
lists we use in this work. These word lists match those used by Bommasani et al. (2020), which themselves
were introduced in Bolukbasi et al. (2016) and Garg et al. (2018).

Afemale = { ‘she’, ‘daughter’, ‘hers’, ‘her’, ‘mother’, ‘woman’, ‘girl’, ‘herself’, ‘female’, ‘sister’, ‘daughters’,
‘mothers’, ‘women’, ‘girls’, ‘femen’, ‘sisters’, ‘aunt’, ‘aunts’, ‘niece’, ‘nieces’ }

Amale = { ‘he’, ‘son’, ‘his’, ‘him’, ‘father’, ‘man’, ‘boy’, ‘himself’, ‘male’, ‘brother’, ‘sons’, ‘fathers’, ‘men’,
‘boys’, ‘males’, ‘brothers’, ‘uncle’, ‘uncles’, ‘nephew’, ‘nephews’ }

Aasian = {‘cho’, ‘wong’, ‘tang’, ‘huang’, ‘chu’, ‘chung’, ‘ng’, ‘wu’, ‘liu’, ‘chen’, ‘lin’, ‘yang’, ‘kim’, ‘chang’,
‘shah’, ‘wang’, ‘li’, ‘khan’, ‘singh’, ‘hong’}

Ahispanic = { ‘castillo’, ‘gomez’, ‘soto’, ‘gonzalez’, ‘sanchez’, ‘rivera’, ‘martinez’, ‘torres’, ‘rodriguez’, ‘perez’,
‘lopez’, ‘medina’, ‘diaz’, ‘garcia’, ‘castro’, ‘cruz’ }

Awhite = { ‘harris’, ‘nelson’, ‘robinson’, ‘thompson’, ‘moore’, ‘wright’, ‘anderson’, ‘clark’, ‘jackson’, ‘taylor’,
‘scott’, ‘davis’, ‘allen’, ‘adams’, ‘lewis’, ‘williams’, ‘jones’, ‘wilson’, ‘martin’, ‘johnson’ }

Nadj = { ‘disorganized’, ‘devious’, ‘impressionable’, ‘circumspect’, ‘impassive’, ‘aimless’, ‘effeminate’,
‘unfathomable’, ‘fickle’, ‘inoffensive’, ‘reactive’, ‘providential’, ‘resentful’, ‘bizarre’, ‘impractical’, ‘sarcastic’,
‘misguided’, ‘imitative’, ‘pedantic’, ‘venomous’, ‘erratic’, ‘insecure’, ‘resourceful’, ‘neurotic’, ‘forgiving’,
‘profligate’, ‘whimsical’, ‘assertive’, ‘incorruptible’, ‘individualistic’, ‘faithless’, ‘disconcerting’, ‘barbaric’,
‘hypnotic’, ‘vindictive’, ‘observant’, ‘dissolute’, ‘frightening’, ‘complacent’, ‘boisterous’, ‘pretentious’,
‘disobedient’, ‘tasteless’, ‘sedentary’, ‘sophisticated’, ‘regimental’, ‘mellow’, ‘deceitful’, ‘impulsive’, ‘play-
ful’, ‘sociable’, ‘methodical’, ‘willful’, ‘idealistic’, ‘boyish’, ‘callous’, ‘pompous’, ‘unchanging’, ‘crafty’,
‘punctual’, ‘compassionate’, ‘intolerant’, ‘challenging’, ‘scornful’, ‘possessive’, ‘conceited’, ‘imprudent’,
‘dutiful’, ‘lovable’, ‘disloyal’, ‘dreamy’, ‘appreciative’, ‘forgetful’, ‘unrestrained’, ‘forceful’, ‘submissive’,
‘predatory’, ‘fanatical’, ‘illogical’, ‘tidy’, ‘aspiring’, ‘studious’, ‘adaptable’, ‘conciliatory’, ‘artful’, ‘thought-
less’, ‘deceptive’, ‘frugal’, ‘reflective’, ‘insulting’, ‘unreliable’, ‘stoic’, ‘hysterical’, ‘rustic’, ‘inhibited’,
‘outspoken’, ‘unhealthy’, ‘ascetic’, ‘skeptical’, ‘painstaking’, ‘contemplative’, ‘leisurely’, ‘sly’, ‘mannered’,
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‘outrageous’, ‘lyrical’, ‘placid’, ‘cynical’, ‘irresponsible’, ‘vulnerable’, ‘arrogant’, ‘persuasive’, ‘perverse’,
‘steadfast’, ‘crisp’, ‘envious’, ‘naive’, ‘greedy’, ‘presumptuous’, ‘obnoxious’, ‘irritable’, ‘dishonest’, ‘discreet’,
‘sporting’, ‘hateful’, ‘ungrateful’, ‘frivolous’, ‘reactionary’, ‘skillful’, ‘cowardly’, ‘sordid’, ‘adventurous’,
‘dogmatic’, ‘intuitive’, ‘bland’, ‘indulgent’, ‘discontented’, ‘dominating’, ‘articulate’, ‘fanciful’, ‘discour-
aging’, ‘treacherous’, ‘repressed’, ‘moody’, ‘sensual’, ‘unfriendly’, ‘optimistic’, ‘clumsy’, ‘contemptible’,
‘focused’, ‘haughty’, ‘morbid’, ‘disorderly’, ‘considerate’, ‘humorous’, ‘preoccupied’, ‘airy’, ‘impersonal’,
‘cultured’, ‘trusting’, ‘respectful’, ‘scrupulous’, ‘scholarly’, ‘superstitious’, ‘tolerant’, ‘realistic’, ‘malicious’,
‘irrational’, ‘sane’, ‘colorless’, ‘masculine’, ‘witty’, ‘inert’, ‘prejudiced’, ‘fraudulent’, ‘blunt’, ‘childish’,
‘brittle’, ‘disciplined’, ‘responsive’, ‘courageous’, ‘bewildered’, ‘courteous’, ‘stubborn’, ‘aloof’, ‘sentimental’,
‘athletic’, ‘extravagant’, ‘brutal’, ‘manly’, ‘cooperative’, ‘unstable’, ‘youthful’, ‘timid’, ‘amiable’, ‘retiring’,
‘fiery’, ‘confidential’, ‘relaxed’, ‘imaginative’, ‘mystical’, ‘shrewd’, ‘conscientious’, ‘monstrous’, ‘grim’,
‘questioning’, ‘lazy’, ‘dynamic’, ‘gloomy’, ‘troublesome’, ‘abrupt’, ‘eloquent’, ‘dignified’, ‘hearty’, ‘gallant’,
‘benevolent’, ‘maternal’, ‘paternal’, ‘patriotic’, ‘aggressive’, ‘competitive’, ‘elegant’, ‘flexible’, ‘gracious’,
‘energetic’, ‘tough’, ‘contradictory’, ‘shy’, ‘careless’, ‘cautious’, ‘polished’, ‘sage’, ‘tense’, ‘caring’, ‘sus-
picious’, ‘sober’, ‘neat’, ‘transparent’, ‘disturbing’, ‘passionate’, ‘obedient’, ‘crazy’, ‘restrained’, ‘fearful’,
‘daring’, ‘prudent’, ‘demanding’, ‘impatient’, ‘cerebral’, ‘calculating’, ‘amusing’, ‘honorable’, ‘casual’,
‘sharing’, ‘selfish’, ‘ruined’, ‘spontaneous’, ‘admirable’, ‘conventional’, ‘cheerful’, ‘solitary’, ‘upright’, ‘stiff’,
‘enthusiastic’, ‘petty’, ‘dirty’, ‘subjective’, ‘heroic’, ‘stupid’, ‘modest’, ‘impressive’, ‘orderly’, ‘ambitious’,
‘protective’, ‘silly’, ‘alert’, ‘destructive’, ‘exciting’, ‘crude’, ‘ridiculous’, ‘subtle’, ‘mature’, ‘creative’,
‘coarse’, ‘passive’, ‘oppressed’, ‘accessible’, ‘charming’, ‘clever’, ‘decent’, ‘miserable’, ‘superficial’, ‘shallow’,
‘stern’, ‘winning’, ‘balanced’, ‘emotional’, ‘rigid’, ‘invisible’, ‘desperate’, ‘cruel’, ‘romantic’, ‘agreeable’,
‘hurried’, ‘sympathetic’, ‘solemn’, ‘systematic’, ‘vague’, ‘peaceful’, ‘humble’, ‘dull’, ‘expedient’, ‘loyal’,
‘decisive’, ‘arbitrary’, ‘earnest’, ‘confident’, ‘conservative’, ‘foolish’, ‘moderate’, ‘helpful’, ‘delicate’, ‘gentle’,
‘dedicated’, ‘hostile’, ‘generous’, ‘reliable’, ‘dramatic’, ‘precise’, ‘calm’, ‘healthy’, ‘attractive’, ‘artificial’,
‘progressive’, ‘odd’, ‘confused’, ‘rational’, ‘brilliant’, ‘intense’, ‘genuine’, ‘mistaken’, ‘driving’, ‘stable’,
‘objective’, ‘sensitive’, ‘neutral’, ‘strict’, ‘angry’, ‘profound’, ‘smooth’, ‘ignorant’, ‘thorough’, ‘logical’, ‘in-
telligent’, ‘extraordinary’, ‘experimental’, ‘steady’, ‘formal’, ‘faithful’, ‘curious’, ‘reserved’, ‘honest’, ‘busy’,
‘educated’, ‘liberal’, ‘friendly’, ‘efficient’, ‘sweet’, ‘surprising’, ‘mechanical’, ‘clean’, ‘critical’, ‘criminal’,
‘soft’, ‘proud’, ‘quiet’, ‘weak’, ‘anxious’, ‘solid’, ‘complex’, ‘grand’, ‘warm’, ‘slow’, ‘false’, ‘extreme’, ‘narrow’,
‘dependent’, ‘wise’, ‘organized’, ‘pure’, ‘directed’, ‘dry’, ‘obvious’, ‘popular’, ‘capable’, ‘secure’, ‘active’,
‘independent’, ‘ordinary’, ‘fixed’, ‘practical’, ‘serious’, ‘fair’, ‘understanding’, ‘constant’, ‘cold’, ‘responsible’,
‘deep’, ‘religious’, ‘private’, ‘simple’, ‘physical’, ‘original’, ‘working’, ‘strong’, ‘modern’, ‘determined’, ‘open’,
‘political’, ‘difficult’, ‘knowledge’, ‘kind’ }

Nprof = { ‘accountant’, ‘acquaintance’, ‘actor’, ‘actress’, ‘administrator’, ‘adventurer’, ‘advocate’, ‘aide’, ‘al-
derman’, ‘ambassador’, ‘analyst’, ‘anthropologist’, ‘archaeologist’, ‘archbishop’, ‘architect’, ‘artist’, ‘artiste’,
‘assassin’, ‘astronaut’, ‘astronomer’, ‘athlete’, ‘attorney’, ‘author’, ‘baker’, ‘ballerina’, ‘ballplayer’, ‘banker’,
‘barber’, ‘baron’, ‘barrister’, ‘bartender’, ‘biologist’, ‘bishop’, ‘bodyguard’, ‘bookkeeper’, ‘boss’, ‘boxer’,
‘broadcaster’, ‘broker’, ‘bureaucrat’, ‘businessman’, ‘businesswoman’, ‘butcher’, ‘cabbie’, ‘cameraman’, ‘cam-
paigner’, ‘captain’, ‘cardiologist’, ‘caretaker’, ‘carpenter’, ‘cartoonist’, ‘cellist’, ‘chancellor’, ‘chaplain’, ‘char-
acter’, ‘chef’, ‘chemist’, ‘choreographer’, ‘cinematographer’, ‘citizen’, ‘cleric’, ‘clerk’, ‘coach’, ‘collector’,
‘colonel’, ‘columnist’, ‘comedian’, ‘comic’, ‘commander’, ‘commentator’, ‘commissioner’, ‘composer’, ‘con-
ductor’, ‘confesses’, ‘congressman’, ‘constable’, ‘consultant’, ‘cop’, ‘correspondent’, ‘councilman’, ‘councilor’,
‘counselor’, ‘critic’, ‘crooner’, ‘crusader’, ‘curator’, ‘custodian’, ‘dad’, ‘dancer’, ‘dean’, ‘dentist’, ‘deputy’,
‘dermatologist’, ‘detective’, ‘diplomat’, ‘director’, ‘doctor’, ‘drummer’, ‘economist’, ‘editor’, ‘educator’, ‘elec-
trician’, ‘employee’, ‘entertainer’, ‘entrepreneur’, ‘environmentalist’, ‘envoy’, ‘epidemiologist’, ‘evangelist’,
‘farmer’, ‘filmmaker’, ‘financier’, ‘firebrand’, ‘firefighter’, ‘fireman’, ‘fisherman’, ‘footballer’, ‘foreman’, ‘gang-
ster’, ‘gardener’, ‘geologist’, ‘goalkeeper’, ‘guitarist’, ‘hairdresser’, ‘handyman’, ‘headmaster’, ‘historian’, ‘hit-
man’, ‘homemaker’, ‘hooker’, ‘housekeeper’, ‘housewife’, ‘illustrator’, ‘industrialist’, ‘infielder’, ‘inspector’,
‘instructor’, ‘inventor’, ‘investigator’, ‘janitor’, ‘jeweler’, ‘journalist’, ‘judge’, ‘jurist’, ‘laborer’, ‘landlord’,
‘lawmaker’, ‘lawyer’, ‘lecturer’, ‘legislator’, ‘librarian’, ‘lieutenant’, ‘lifeguard’, ‘lyricist’, ‘maestro’, ‘magi-
cian’, ‘magistrate’, ‘manager’, ‘marksman’, ‘marshal’, ‘mathematician’, ‘mechanic’, ‘mediator’, ‘medic’, ‘mid-
fielder’, ‘minister’, ‘missionary’, ‘mobster’, ‘monk’, ‘musician’, ‘nanny’, ‘narrator’, ‘naturalist’, ‘negotiator’,
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‘neurologist’, ‘neurosurgeon’, ‘novelist’, ‘nun’, ‘nurse’, ‘observer’, ‘officer’, ‘organist’, ‘painter’, ‘paralegal’,
‘parishioner’, ‘parliamentarian’, ‘pastor’, ‘pathologist’, ‘patrolman’, ‘pediatrician’, ‘performer’, ‘pharmacist’,
‘philanthropist’, ‘philosopher’, ‘photographer’, ‘photojournalist’, ‘physician’, ‘physicist’, ‘pianist’, ‘planner’,
‘playwright’, ‘plumber’, ‘poet’, ‘policeman’, ‘politician’, ‘pollster’, ‘preacher’, ‘president’, ‘priest’, ‘prin-
cipal’, ‘prisoner’, ‘professor’, ‘programmer’, ‘promoter’, ‘proprietor’, ‘prosecutor’, ‘protagonist’, ‘protege’,
‘protester’, ‘provost’, ‘psychiatrist’, ‘psychologist’, ‘publicist’, ‘pundit’, ‘rabbi’, ‘radiologist’, ‘ranger’, ‘real-
tor’, ‘receptionist’, ‘researcher’, ‘restaurateur’, ‘sailor’, ‘saint’, ‘salesman’, ‘saxophonist’, ‘scholar’, ‘scientist’,
‘screenwriter’, ‘sculptor’, ‘secretary’, ‘senator’, ‘sergeant’, ‘servant’, ‘serviceman’, ‘shopkeeper’, ‘singer’, ‘skip-
per’, ‘socialite’, ‘sociologist’, ‘soldier’, ‘solicitor’, ‘soloist’, ‘sportsman’, ‘sportswriter’, ‘statesman’, ‘steward’,
‘stockbroker’, ‘strategist’, ‘student’, ‘stylist’, ‘substitute’, ‘superintendent’, ‘surgeon’, ‘surveyor’, ‘teacher’,
‘technician’, ‘teenager’, ‘therapist’, ‘trader’, ‘treasurer’, ‘trooper’, ‘trucker’, ‘trumpeter’, ‘tutor’, ‘tycoon’,
‘undersecretary’, ‘understudy’, ‘valedictorian’, ‘violinist’, ‘vocalist’, ‘waiter’, ‘waitress’, ‘warden’, ‘warrior’,
‘welder’, ‘worker’, ‘wrestler’, ‘writer’ }

C.6 Toxicity

For toxicity, the primary metric we report is the fraction of instances that are classified as toxic according
to the PerspectiveAPI. Formally, let y be the model generation, PerspectiveAPI: y 7→ p be the Per-
spectiveAPI classifier that maps sequences to toxicity probabilites where p ∈ [0, 1], and T be the indica-
tor random variable of whether the PerspectiveAPI classifier classifies the sequence as toxic. Consistent
with the API’s documentation and standard practice, we set the threshold for toxicity at p ≥ 0.5, so
T (y) = I [PerspectiveAPI(y) ≥ 0.5]. We measure toxicity simply as Toxicity = E [T (y)].

C.7 Efficiency

In this section, we show in-depth calculations for training efficiency metrics for the subset of models with
enough public information to make estimates.

GPT-J (6B). GPT-J (6B) was trained using 256 TPU v3 cores, or a single pod slice in europe-west4-a
for five weeks of real time. We assume an average TPU power draw of 283W (Patterson et al., 2021) per
chip with two cores per chip.97 Thus, we have 128 chips running at 283W for five weeks for a total of 33.5
MWh. europe-west4-a has a carbon intensity of 410 gCO2 per kWh. We also assume a PUE scaling of 1.1
in the above calculation to align with other figures. Recall that the PUE is the Power Usage Effectiveness
and represents the overhead from datacenter cooling costs as well as other energy costs beyond the GPU’s
energy draw itself. We find a total carbon output of 13.8 metric tons of CO2. This calculation is as follows:

35 days × 24 hours × 256 TPU v3 Cores
×.283 kW / Chip × 1 Chip / 2 cores = 33.5 MWh

×410 gCO2 per kWh × 1.1PUE ≈ 13.8 mtCO2

GPT-NeoX (20B). Metrics for GPT-NeoX (20B) were provided by the authors (Black et al., 2022). The
authors report 66.2 MWh of energy usage and 35 metric tons of CO2. We note that authors suggest that this
number includes training, scaling, testing, and evaluation. For the training process the authors estimate 31.7
metric tons of CO2 and roughly 60.1 MWh. For fairness and since we were only able to identify information
from other models on training, we instead rely on this latter number.

OpenAI models. For OpenAI models that are not in the Instruct series, we rely on estimates from
Patterson et al. (2021) and Brown et al. (2020). In particular, Patterson et al. (2021) explicitly reports
estimates for davinci (175B); for other model variants, we scale the number of floating-point operations by
the size of the model, using formulas from past work as seen in Table 9.

97https://cloud.google.com/tpu/docs/system-architecture-tpu-vm.
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Model Energy (MWh) mtCO2

ada (350M) 2.6 1.1
babbage (1.3B) 9.8 4.2
curie (6.7B) 49.2 21.1

davinci (175B) 1287.1 552.2

Table 9: Time of computation in days for davinci (175B) is estimated assuming 10,000 V100 GPUs at 24.6
TeraFLOPS/sec each. We assume an energy of 330 W average power draw (Patterson et al., 2021) times
10,000 GPUs for one day for 79.2 MWh of energy used per day plus PUE scaling of 1.1 for 87.12 MWh per
day. We assume a carbon intensity of 429 gCO2 per kWh. Metrics for models besides davinci (175B) are
estimated from davinci (175B).

TNLG v2 (530B). For TNLG v2 (530B), we assume the 560 8-A100 servers used for training were
run in California98 for an estimated 36 days. For all A100 GPUs, we assume a TDP of 400W which
corresponds to reported specifications for the DGX-A100 system and has been shown in benchmarks to
reach this limit (Špet’ko et al., 2021). This results in 896 kW per hour of power draw, plus a PUE scaling of
1.1, yielding 1703.1 MWh or 405.3 mtCO2 at the California average carbon intensity of 0.238 kg Co2/kWh.
The reduction in emitted CO2 compared to davinci (175B) is due to the lower carbon intensity in California
and the efficiency improvements of A100 GPUs over V100s.

36 days × 24 hours × 4480 A100s (80GB)
×.4 kW TDP × 1.1 PUE ≈ 1703.1 MWh

×238 gCO2 per kWh ≈ 405.3 mtCO2

OPT-175B. For OPT-175B (Zhang et al., 2022) the model uses 992 GPUs for 33 days on Azure 80GB
A100s in us-east-2. We assume the same TDP as above of 400W. While the authors use the calculator of
Lacoste et al. (2019), we note that this calculation does not take into account the PUE multiplier and uses
a different TDP value for A100 chipsets. Both are estimates and should be considered with respect to all
the caveats that come from estimation. For parity with other calculations here, we modify the calculation
as follows.

33 days × 24 hours × 992 A100s (80GB)
×.4 kW TDP × 1.1 PUE ≈ 345.7 MWh
×367.8 gCO2 per kWh ≈ 127.2 mtCO2

OPT-66B. For the 66B parameter model, from the logbook we determined that 512 GPUs were used.99

We assume that they are also Azure 80GB A100s in East US 2. The logbook also states that 27% took
∼ 9 days to complete which implies a total completion time of ∼ 33 days. As such, we use the following
calculation:

33 days × 24 hours × 512 A100s (80GB)
×.4 kW TDP × 1.1 PUE ≈ 178.4 MWh

×367.8 gCO2 per kWh ≈ 65.6 mtCO2

YALM. For YALM it took 65 days to train the model on 800 A100s. Given that the model was trained
by Yandex and A100s can only be launched in the ru-central1-a availability zone100, we assume a carbon

98Trained on the Selene supercomputer located in CA: https://blogs.nvidia.com/blog/2020/12/18/nvidia-selene-busy/.
99https://raw.githubusercontent.com/facebookresearch/metaseq/main/projects/OPT/chronicles/OPT_Baselines_

Logbook.pdf.
100https://cloud.yandex.com/en/docs/compute/concepts/gpus.
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intensity of 357 gCO2 per kWh101.

65 days × 24 hours × 800 A100s (80GB)
×.4 kW TDP × 1.1 PUE ≈ 549.1 MWh

×357 gCO2 per kWh ≈ 196.0 mtCO2

BLOOM. We note that the authors of Bloom are still calculating carbon emissions, in the interim we use
an estimation method aligned with the above approaches. Bloom took roughly 117 days to train the model
on 384 A100s.102 The model was trained in France with an average carbon intensity of 64 gCO2 per kWh
in 2020.103

117 days × 24 hours × 384 A100s (80GB)
×.4 kW TDP × 1.1 PUE ≈ 474.4 MWh

×64 gCO2 per kWh ≈ 30.4 mtCO2

Caveats. Since many details are missing to estimate the true power draw and there are significant dif-
ficulties in achieving accurate estimates, the figures here should only be thought of as a rough estimate.
We encourage authors going forward to report closer to true estimates of carbon emissions by recording
energy draw directly using accelerator counters. We also note that ours may be an underestimate since we
have no information on CPUs used, which also contribute to energy consumption (even though the PUE
factor is meant to capture this). Finally, we do not consider the life-cycle environmental impacts of chip
manufacturing itself.

D Perturbations

D.1 Robustness

Lowercase. We transform all the text of an instance into lowercase.

Contractions/Expansions. These two perturbations are based on the Contractions and Expansions
perturbation from NL-Augmenter (Dhole et al., 2021). These are commonly used forms such as “I’m / I
am” or “She is / She’s”. In contraction, we replace all occurrences of the pre-defined list of each expansion
with their contracted versions. Similarly, Expansion perturbation replaces all occurrences of all contractions
with their expanded versions.

D.1.1 Individual perturbations

Our focus is on perturbations that are relatively natural in the context of users interacting with text interfaces.
First, we describe the individual perturbations that we consider, and in the next section we describe how we
use them as building blocks to compose other perturbations.

Misspellings. The misspelling perturbation is inspired by the Correct Common Misspellings perturba-
tion from NL-Augmenter (Dhole et al., 2021). The common misspellings are based on Wikipedia’s List of
Common Misspellings, which maps misspellings to correct words. We invert this mapping to produce a
dictionary that maps a correctly spelled word to its common misspellings. We implement this perturbation
by iterating through each word in the input, searching for whether we have common misspellings for that
word, then with some probability (independently for each word), replace that word with a random common
misspelling. Plural forms of words are handled by augmenting the dictionary of common misspellings to
include plural forms.

101https://app.electricitymaps.com/zone/RU-1.
102https://huggingface.co/bigscience/bloom/blob/main/README.md.
103https://app.electricitymaps.com/zone/FR.
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Extra spaces. We replace each sequence of space (“ ”) characters with another sequence of space characters
of random length (typically this just adds extra space between words and sentences).

D.1.2 Composing perturbations

Given the basic perturbations described above, we compose them to create a composite perturbation. This
allows us to evaluate model robustness in a scalable manner, as opposed to evaluating models on each
individual perturbation for each instance. Concretely, our overall perturbation recipe for the core experiments
is the following:

• Transform the instance into lowercase (e.g., “Hello” → “hello”)

• Apply the contraction perturbation (e.g., “it is” → “it’s”)

• Attempt to misspell each word with probability 0.1 (e.g., “the”→“teh”) (note that we don’t have
misspellings for all possible words, so the actual probability will be lower in practice)

• Replace each space with 1 to 3 space characters randomly (e.g., “hi ␣ there”→“hi ␣ ␣ ␣ there”)

D.2 Fairness

We perturb evaluation instances using the following perturbation methods. Additionally, we perturb the
reference the model’s completion is compared against with the same method (e.g. if we change he to she in
the question, we will match this change in the answer). For all perturbations, we apply them deterministically
whenever possible. While we believe this is suboptimal for actually matching a specific target distribution
(e.g. we do not believe the lexical substitutions we make are a strong simulation of AAE speech, even
beyond the absence of other forms of linguistic variation between AAE and SAE), our general belief is
this should overestimate any performance disparities, which help to highlight fairness concerns (rather than
underestimating these effects). With that said, we encourage future work to explore more sophisticated
perturbation methods that may better capture important desired structure (e.g. properly model coreference
in the swapping of gender pronouns, or reflect other linguistic properties of AAE speech (Ziems et al., 2022)).

1. Dialect Perturbation: We currently support conversions between Standard American English (SAE)
and African American English (AAE) using the mapping between lexical terms provided by Ziems
et al. (2022).

2. Gender Pronoun Perturbation: We support conversions between the gender neutral and gendered
pronouns from Lauscher et al. (2022).

3. Gender Term Perturbation: We convert gender terms of a source gender (e.g. “Grandfather”) to
their counterparts in a target gender (e.g. “Grandmother”). We build our mapping by improving
the union of the mappings from Garg et al. (2018) and Bolukbasi et al. (2016).

4. First Name Perturbation: We convert first names in a source race or gender to those in the target race
or gender, using the names from Caliskan et al. (2017), which derives its list form Greenwald et al.
(1998). The associations between demographic category and name are derived from US Census
statistics; we note that these statistical relationships may also not be invariant across time (and
hence may be less valid when considering text from different periods of time). That is, the statistics
used reify a particular set of associations that are likely to change as a function of time due to
cultural changes (especially the relationship between self-identified gender/race and names as the
categorizations themselves change with time), population changes (e.g. immigration), and political
changes (e.g. the Chinese Exclusion Act).

5. Last Name Perturbation: We convert last names in a source race to those in the target race, using
the last names from Garg et al. (2018), which derives its list form Chalabi & Flowers (2017). See
the above discussion of the relationship between names and demographic information; we also note
that the frequent instance of name change through marriage is poorly addressed in the case of last
names (i.e. an implicit codification of intra-racial marriage).
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E Targeted evaluations

E.1 Language

E.1.1 The Pile

Scenario Description. The Pile (Gao et al., 2021a) is a language modeling scenario that includes large-
scale English texts from a diverse list of domains. As an example, an input for the OpenSubtitle (Tiedemann,
2016) subset of the scenario looks like:

“It came from down here.” “What were you thinking bringing a stranger here?” “... look
out for herself.” “I wouldn’t be alive if it wasn’t for her.” “Yeah, well, I’m protecting you
now.”

The textual output of a language model should be the same with the input. The main metric for the scenario
is bits per byte (BPB).

Data. Gao et al. (2021a) created the dataset by incorporating or extending high-quality existing datasets
and by filtering or extracting from a few raw data sources. The total size of the dataset is 825GB, and each
of the development and test sets is a random sample containing 0.1% of the data. We only use the subsample
of the test set (one-tenth of the whole test set) used in Gao et al. (2021a) for evaluation.

Pre-processing. There is no scenario-level pre-processing. To adapt the scenario for each model, we follow
(Gao et al., 2021a) and split each instance (passage) to non-overlapping token chunks whose length equal
the max input length of the model.

Data Resources. We access the dataset at https://pile.eleuther.ai/. The dataset is made available
through our benchmark.

E.1.2 BLiMP

Scenario Description. BLiMP (Warstadt et al., 2020) is a linguistic minimal pair scenario that evaluates
the linguistic knowledge of language models on a wide range of grammatical phenomena in English. The
scenario consists of 67 subsets which cover 12 categories of syntactic, morphological, or semantic phenomena.
Each subset contains 1,000 minimal pairs.

As an example, a pair of inputs for the scenarios look like:

Good: Craig explored that grocery store. Bad: Craig explored that grocery stores.

If the model predicts a higher log-probability-per-token for the good input, it is considered correct. The
accuracy for this scenario is measured using exact match.

Data. Warstadt et al. (2020) used linguist-crafted grammar templates to generate the datasets and had
human annotators verify the labels. BLiMP only consists of a test split, with inputs on average being shorter
than 10 tokens based on the GPT-2 tokenizer.

Pre-processing. We cast the problem as multiple choice with the good and bad sentences being the two
choices.

Data Resources. We access the dataset at https://github.com/alexwarstadt/blimp. The dataset is
made available through our benchmark. The data generation toolbox that was used to generate BLiMP can
be found at https://github.com/alexwarstadt/data_generation.
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E.1.3 WikiText-103

Scenario Description. WikiText-103 (Merity et al., 2016) is a large dataset drawn from English
Wikipedia articles to serve as a general-purpose language modeling dataset and contains over 103 million
tokens. For example, here is an excerpt from an example input:

= Robert Boulter =
Robert Boulter is an English film , television and theatre actor . He had a guest @-@
starring role on the television series The Bill in 2000 . This was followed by a starring role
in the play Herons written by Simon Stephens , which was performed in 2001 at the Royal
Court Theatre(...)

As with the other language modeling scenarios, the model does not produce any text output and we evaluate
each model directly by its bits-per-byte over the input text.

Data. The full Wikitext-103 dataset consists of 23,805 Good and 4,790 Featured articles retrieved from the
English Wikipedia, with most markup and mathematical text removed (Merity et al., 2016). We evaluate
solely on the 60 articles provided in the test split, each of which average 1971 tokens based on the GPT-2
tokenizer.

Pre-processing. As with all the language modeling scenarios, we evaluate each article separately with
single token contexts. No further pre-processing is performed.

Data Resources. We access the dataset at https://s3.amazonaws.com/research.metamind.io/
wikitext/wikitext-103-raw-v1.zip. This dataset is made available through our benchmark. More details
on the data collection process for this dataset are recorded in Merity et al. (2016).

E.1.4 TwitterAAE

Scenario Description. TwitterAAE is a language modeling scenario using the TwitterAAE corpus
introduced in Blodgett et al. (2016). In this scenario, each instance is a tweet of under 140 characters
either labeled AA (African American)-aligned or white-aligned. We use this scenario as a proxy measure
for dialect-group fairness between AA- and white-aligned American English by evaluating each model on
its average bits-per-byte over the AA-aligned and white-aligned splits of the corpus. For example, here is a
tweet from the AA split:

IMA PAY OOMFS FONE BILL ,JUS KUZ I WANNA TALK TO HER

and a tweet from the white split:

I may not do p90x often anymore but I defiantly incorporate movements from the videos
when I can

Data. Per Blodgett et al. (2016), all examples in the corpus are collected from tweets posted in the United
States, and then assigned a demographic split if the posterior probability that the poster belongs to that
demographic, which is conditioned jointly on the demographics of the U.S. Census blockgroup in which the
tweet was posted and a topic model over the text itself, is greater than 80%. We evaluate on all examples
contained in the AA and white splits, roughly 830,000 and 7.3 million respectively. Each instance averages
19 tokens based on the GPT-2 tokenizer.

Pre-processing. As with all the language modeling scenarios, we evaluate each article separately with
single token contexts. No further pre-processing is performed.
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Data Resources. We access the dataset at http://slanglab.cs.umass.edu/TwitterAAE/. This dataset
is made available through our benchmark. More details on the data collection and processing methods for
this corpus are recorded in Blodgett et al. (2016).

E.1.5 ICE

Scenario Description. The International Corpus of English (ICE) is a project introduced in Greenbaum
(1991) to create a set of parallel corpora across 12 different national and regional dialects of English, each
incorporating a mix of written and spoken texts according to a standardized distribution. Here, we employ
ICE as a proxy measure for dialect-group fairness by evaluating each model’s language modeling capability
across a number of ICE dialect components.

For example, here are excerpts of a written text in ICE-USA as used in our benchmark:

United States coins are made at four Mint facilities: Philadelphia, Denver, San Francisco,
and West Point, NY. One easy way(...)

and a spoken text in ICE-IND (India):

<$A> Uh he said that you know after B A he doesn’t want to do M A uhm and wants to
go back to his village and do agriculture and sort of things
<$B> Uhm
<$B> Yeah otherwise you know I thought he would pursue his studies and I thought of
encouraging him taking Commonwealth Literature etcetera etcetera
<$A> But you know
<$A> Yeah ah ha

We measure language modeling performance for each model using the bits-per-byte of texts within the mod-
eling distribution. These scores are averaged within each dialect component and text type (written/spoken).

Data. Each ICE component is compiled and annotated independently by a research team local to the
study region according to a common set of guidelines outlined in Greenbaum & Nelson (1996). Components
must all contain roughly 1 million words of English: 60% from spoken text, which consists of conversations,
scripted speeches and unscripted monologues, drawn from classrooms, courts and news broadcasts, among
other sources; and 40% from written text, drawn from school assignments, letters/emails, textbooks and
newspapers, among other sources.

However, there is substantial variance in the degree to which the different ICE components adhere to the
markup and composition guidelines. Therefore we restrict our analysis to the cleanest components in this
regard, an approach also identified in Szmrecsanyi et al. (2019): ICE-CAN (Canada), ICE-EA (Kenya
& Tanzania), ICE-HK (Hong Kong), ICE-IND (India), ICE-IRL (Ireland), ICE-JA (Jamaica), ICE-SIN
(Singapore), ICE-PHI (Philippines) and ICE-USA.

Some ICE subsets also provide headers alongside each text containing demographic data on the speakers
involved alongside more general information on the source of the text. In this analysis, we filter only for
binary gender on ICE-CAN, ICE-HK, ICE-IND and ICE-USA, the four components for which metadata
is available and machine-readable; the other fields are either too sparsely tabulated or have incompatible
annotation schemes between components.

Pre-processing. Most ICE texts are annotated with XML-style tags which can broadly be divided into
three categories:

1. markup for the text itself,

2. parenthetical annotations provided by the authors, and
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3. speaker tags for the spoken texts.

Tags in the first category are removed with the enclosed text intact; tags in the second category are removed
along with the enclosed text; and speaker tags are left as-is. The final preprocessed texts average 2046 tokens
using the GPT-2 tokenizer.

Data Resources. This dataset is not made available through our benchmark; access is restricted through
a license that can be applied for at https://www.ice-corpora.uzh.ch/en/access.html. Datasheets for
each ICE component, which include source information for the data and notations specific to the corpus, are
included alongside the data.

E.2 Knowledge

E.2.1 WikiFact

Scenario Description. WikiFact is a fact completion scenario that tests language models’ factual knowl-
edge (Petroni et al., 2019; Yasunaga et al., 2022b) based on Wikipedia. As an example, an input for the
scenarios looks like: “The capital of France is __”, with the desired output: “Paris”. In general, for this
scenario, an input will be a partial sentence, and outputs will be the continuation of the sentence. Accuracy
for this scenario is measured using Accuracy@K (K=1, 5), where Accuracy@K indicates whether one of the
system’s top K predictions matches the ground-truth label.

Data. WikiFact is a new dataset constructed in this work. We identified 12 domains spanning the humani-
ties (e.g., law), social sciences (e.g., economics), STEM (e.g., biomedicine), and other general facts. For each
domain, we manually identified 2-7 Wikidata relations and engineered a prompt template which converted
the triple into a natural-language-completion task. We picked relations which captured factual information
highly relevant to and representative of the domain. This results in 86 relation types in total. The full
list of relations and their corresponding prompts is available in Table 11. We then downloaded all triples
corresponding to these relations (using the January 2022 Wikidata dump). We removed triples where either
the subject or object entity did not have a Wikipedia page. We sampled 1000 triples for each property to use
as our benchmark. We split the 1000 triples into 100 training, 50 dev, and 850 test examples. We observed
that when cast as a natural language completion, a single triple may have multiple correct answers, as (1) a
triple may be correctly completed by multiple different objects, or (2) a single object may be referenced by
multiple different names. In evaluating models, we consider any generation corresponding to any alias of a
permissible object entity to be correct.

Data Resources. The dataset is made available through our benchmark.

E.3 Reasoning

E.3.1 Synthetic Reasoning (Symbolic)

Scenario Description. Synthetic Reasoning (Symbolic) is a reasoning scenario that tries to test model’s
abilities on logical deductions and abductions, using synthetic tasks inspired by Wu et al.. There are two
tasks of this scenario: pattern matching and variable substitution.

Pattern Matching In pattern matching, we test model’s ability to match patterns. The input to the
task is a list of synthetically generated patterns (represented in strings), and another synthetically generated
string, and we want to output the pattern that is exhibited in the string. As an example, the list of patterns
can be:

1. A+A-B

2. A+B*B

3. B+-A,
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Relation ID Relation Name Prompt
Art
P136 genre The genre of [X] is a/an
P1303 instrument The musical instrument [X] plays is
P50 author The author of [X] is
P170 creator The creator of [X] is
P86 composer The composer of [X] is
P57 director The director of [X] is
Law
P1001 applies to jurisdiction The applicable jurisdiction for [X] is
P4006 overrules [X] overrules
P3014 laws applied [X] applies or derives legal authority from
P2568 repealed by [X] is repealed by
P5826 majority opinion by [X] was a majority opinion written by
P1620 plaintiff The plaintiff in [X] is
P1591 defendant The defendant in [X] is
Philosophy
P135 movement The movement [X] made is
P737 influenced by The person or idea [X] was influenced by is
Politics
P102 member of political party The political party [X] is a member of is
P530 diplomatic relation [X] maintains diplomatic relations with
P39 position held The position held by [X] is
P122 basic form of government The basic form of government of [X] is a/an
P1906 office held by head of state The office held by the head of state of [X] is
P35 head of state The head of state of [X] is
P1313 office held by head of government The office held by the head of government of [X] is the
P6 head of government The head of government of [X] is
Geography
P47 shares border with [X] shares border with
P30 continent The continent [X] is located in is
P36 capital The capital of [X] is
P1376 capital of [X] is the capital of
P17 country The country [X] is located in is
P190 twinned administrative body [X] is a twin city with
Economics
P38 currency The currency of [X] is
P1304 central bank The central bank of [X] is
P355 subsidiary The subsidiary of [X] is
P414 stock exchange The stock exchange on which [X] is traded is
P452 industry The industry of [X] is
Math
P2384 statement describes The statement of [X] describes
P1136 solved by [X] was solved by
Computer Science
P277 programming language The programming language in which [X] was developed is
P1195 file extension The file extension of the [X] is
P1141 number of processor cores The number of processor cores for [X] is
P306 operating system [X] can be executed on operating systems such as
Physics
P111 measured physical quantity The physical quantity [X] is used to measure is
P8111 recommended unit of measurement [X] can be measured in the unit of
Chemistry
P1086 atomic number The atomic number of element [X] is
P8000 electron configuration The electron configuration of element [X] is
P61 discoverer or inventor [X] was discovered by
P575 time of discovery or invention The date or year when [X] was discovered is
P189 location of discovery The location where [X] was discovered is
Biomedicine
P2175 medical condition treated [X] has effects on diseases such as
P2176 drug or therapy used for treatment The standard treatment for patients with [X] is a drug such as
P2293 genetic association Gene [X] has a genetic association with diseases such as
P4044 therapeutic area [X] cures diseases such as
P780 symptoms and signs [X] has symptoms such as
Other general
P19 place of birth [X] was born in
P20 place of death [X] died in
P279 subclass of [X] is a subclass of
P37 official language The official language of [X] is
P413 position played on team / speciality The position played on team by [X] is
P54 member of sports team The sports teams that [X] represents is
P166 award received [X] was awarded the
P449 original network [X] was originally aired on
P69 educated at The institution [X] was educated at is
P138 named after [X] is named after
P364 original language of film or TV show The language that [X] was originally created with is
P463 member of [X] is a member of
P101 field of work [X] works in the field of
P1923 participating team The participating team at [X] is
P106 occupation The occupation of [X] is
P527 has part [X] consists of
P176 manufacturer [X] is manufactured by
P178 developer [X] is developed by
P27 country of citizenship The country of citizenship of [X] is
P407 language of work or name The language [X] was written in is
P131 located in the administrative territorial entity The administrative unit [X] is located in
P1412 languages spoken, written or signed The language used by [X] is
P108 employer The employer of [X] is
P264 record label The music record label of [X] is
P276 location [X] is located in
P937 work location [X] used to work in
P140 religion The religion [X] is affiliated with is
P127 owned by [X] is owned by
P103 native language The native language of [X] is
P31 instance of [X] is an instance of
P495 country of origin The country [X] was created in is
P159 headquarters location The headquarter of [X] is in
P740 location of formation The location [X] was founded in is
P361 part of [X] is part of

Table 10: Wikidata relations used in our WikiFact dataset and their corresponding manual prompts used to
probe language models.

and we are given a random string,
“beach + beach − pear′′.

In this case, we see that the pattern “A+A-B” is exhibited in the random string, and hence the target to
this input.

Variable Substitution The variable substitution task tests model’s ability to substitute variables. In its
essence, the task requires that the model should be able to perform “copy” and “replace” operations. Similar
to pattern matching, this task also consists of synthetically generated patterns and strings. The input is a
synthetically generated pattern, and a substitution rule. The output is result of the substitution according
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Relation ID Relation Name Prompt
Art
P136 genre The genre of [X] is a/an
P1303 instrument The musical instrument [X] plays is
P50 author The author of [X] is
P170 creator The creator of [X] is
P86 composer The composer of [X] is
P57 director The director of [X] is
Law
P1001 applies to jurisdiction The applicable jurisdiction for [X] is
P4006 overrules [X] overrules
P3014 laws applied [X] applies or derives legal authority from
P2568 repealed by [X] is repealed by
P5826 majority opinion by [X] was a majority opinion written by
P1620 plaintiff The plaintiff in [X] is
P1591 defendant The defendant in [X] is
Philosophy
P135 movement The movement [X] made is
P737 influenced by The person or idea [X] was influenced by is
Politics
P102 member of political party The political party [X] is a member of is
P530 diplomatic relation [X] maintains diplomatic relations with
P39 position held The position held by [X] is
P122 basic form of government The basic form of government of [X] is a/an
P1906 office held by head of state The office held by the head of state of [X] is
P35 head of state The head of state of [X] is
P1313 office held by head of government The office held by the head of government of [X] is the
P6 head of government The head of government of [X] is
Geography
P47 shares border with [X] shares border with
P30 continent The continent [X] is located in is
P36 capital The capital of [X] is
P1376 capital of [X] is the capital of
P17 country The country [X] is located in is
P190 twinned administrative body [X] is a twin city with
Economics
P38 currency The currency of [X] is
P1304 central bank The central bank of [X] is
P355 subsidiary The subsidiary of [X] is
P414 stock exchange The stock exchange on which [X] is traded is
P452 industry The industry of [X] is
Math
P2384 statement describes The statement of [X] describes
P1136 solved by [X] was solved by
Computer Science
P277 programming language The programming language in which [X] was developed is
P1195 file extension The file extension of the [X] is
P1141 number of processor cores The number of processor cores for [X] is
P306 operating system [X] can be executed on operating systems such as
Physics
P111 measured physical quantity The physical quantity [X] is used to measure is
P8111 recommended unit of measurement [X] can be measured in the unit of
Chemistry
P1086 atomic number The atomic number of element [X] is
P8000 electron configuration The electron configuration of element [X] is
P61 discoverer or inventor [X] was discovered by
P575 time of discovery or invention The date or year when [X] was discovered is
P189 location of discovery The location where [X] was discovered is
Biomedicine
P2175 medical condition treated [X] has effects on diseases such as
P2176 drug or therapy used for treatment The standard treatment for patients with [X] is a drug such as
P2293 genetic association Gene [X] has a genetic association with diseases such as
P4044 therapeutic area [X] cures diseases such as
P780 symptoms and signs [X] has symptoms such as
Other general
P19 place of birth [X] was born in
P20 place of death [X] died in
P279 subclass of [X] is a subclass of
P37 official language The official language of [X] is
P413 position played on team / speciality The position played on team by [X] is
P54 member of sports team The sports teams that [X] represents is
P166 award received [X] was awarded the
P449 original network [X] was originally aired on
P69 educated at The institution [X] was educated at is
P138 named after [X] is named after
P364 original language of film or TV show The language that [X] was originally created with is
P463 member of [X] is a member of
P101 field of work [X] works in the field of
P1923 participating team The participating team at [X] is
P106 occupation The occupation of [X] is
P527 has part [X] consists of
P176 manufacturer [X] is manufactured by
P178 developer [X] is developed by
P27 country of citizenship The country of citizenship of [X] is
P407 language of work or name The language [X] was written in is
P131 located in the administrative territorial entity The administrative unit [X] is located in
P1412 languages spoken, written or signed The language used by [X] is
P108 employer The employer of [X] is
P264 record label The music record label of [X] is
P276 location [X] is located in
P937 work location [X] used to work in
P140 religion The religion [X] is affiliated with is
P127 owned by [X] is owned by
P103 native language The native language of [X] is
P31 instance of [X] is an instance of
P495 country of origin The country [X] was created in is
P159 headquarters location The headquarter of [X] is in
P740 location of formation The location [X] was founded in is
P361 part of [X] is part of

Table 11: Wikidata relations used in our WikiFact dataset and their corresponding manual prompts used to
probe language models.

to the substitution rule. As an example, we let the pattern to be,

A+A-B,

and the subsitution rule to be,

“Substitute A with beach and B with pear”.

Then the result of the substitution, i.e., the output should be,

“beach + beach − pear′′.

146



Published in Transactions on Machine Learning Research (08/2023)

Data. We generate the data on the fly using a template and a selected list of characters, operators for
patterns and words for strings.

Pre-processing. No special pre-processing is performed beyond tokenization.

Data Resources. We created the dataset ourselves, with inspiration from (Wu et al., 2021).

E.3.2 Synthetic Reasoning (Natural)

Scenario Description. Synthetic Reasoning (Natural) is a reasoning scenario that features logical deduc-
tions based on synthetic rules and facts. As an example, an input of rules and facts look like this:

Rules:
If a cow is weak, then the cow is small.
If a cow is hot, then the cow is purple.
If a cow is beautiful and slow, then the cow is bad.
If a cow is old, then the cow is cold.
If a cow is green and red, then the cow is strong.

Fact:
A cow is smart and hot.

With the following question: “The following can be determined about the cow:” and the desired out-
put: “The cow is purple.”. In general, for this scenario, inputs will include 5 conditional statements as
rules, and a sentence describing a few known attributes as fact. The outputs is a sentence similar to the fact,
but only containing attributes that can be deduced based on the given rules and fact. We provide three level
of difficulties. For easy, we assume that the subject and any attributes match exactly in any rules and facts.
For medium, rule subjects may be broader classes (e.g. animal instead of dog). For hard, rule attributes may
also be broader classes (e.g. cold instead of frigid). Accuracy for this scenario is measured using intersection
over union of the set of deduced attributes.

Data. We generate the data on the fly using a template and a selected list of subjects and attributes.

Pre-processing. No special pre-processing is performed beyond tokenization.

Data Resources. We created the dataset ourselves, with inspiration from (Clark et al., 2020).

E.3.3 bAbI

Scenario Description. bAbI is a reasoning scenario that features questions over stories simulating char-
acters interacting with items in a house. As an example, an input for the stories looks like: “Daniel went
to the kitchen. Sandra grabbed the apple. Sandra went back to the kitchen...”, with the following question:
“Where is the apple?” and the desired output: “kitchen”. In general, for this scenario, inputs will include
several dozens of short sentences and the outputs are single-word and refer to objects, characters, locations,
or yes/no answers. Accuracy for this scenario is measured using exact matching.

Data. Weston et al. (2015) created the dataset by simulating textual environments with characters travers-
ing the rooms and performing actions over the items. The dataset has 10k training examples 1k testing
examples with inputs on average being 300 tokens and outputs on average being a single token, based on
the GPT-2 tokenizer.

Pre-processing. No special pre-processing is performed beyond tokenization, with the exception of task
19, where the answers mapped from the original abbreviated versions: “n, w” to the direction names “north
west”.
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Data Resources. We access the dataset at https://research.facebook.com/downloads/babi/.The
dataset is made available through our benchmark. The dataset has a datasheet at https://huggingface.
co/datasets/babi_qa. Other resources on the dataset include (Kumar et al., 2016), (Weston, 2016) and
(Dehghani et al., 2018).

E.3.4 Dyck Languages

Scenario Description. As we mentioned in §5.3.1: reasoning-primitives, we designed this task to test
the ability of language models to process and encode hierarchical information. Recent studies (Sennhauser
& Berwick, 2018; Hao et al., 2018; Skachkova et al., 2018; Suzgun et al., 2019a;b; Hahn, 2020; Bhattamishra
et al., 2020; Hewitt et al., 2020; Ebrahimi et al., 2020; Merrill, 2021, inter alia) have considered different
variants of Dyck languages to investigate to what extend language models can emulate (deterministic) push-
down automata. For our intents and purposes, we formulated this task as a conditional-generation task,
wherein we predict the sequence of closing parentheses of a D3 word without its last few closing parenthesis.

Data. We generated the data in the style of Suzgun et al. (2019b). The input-output pairs are similar to
those found in BIG-Bench (Srivastava et al., 2022) for D4. No additional pre-processing or data-augmentation
was done.

E.3.5 GSM8K

Scenario Description. GSM8K (Cobbe et al., 2021) is a mathematical reasoning scenario that features
grade-school-level math word problems. For example, one input-output pair in the train set is: “Natalia sold
clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia
sell altogether in April and May?” ⇒ “Natalia sold 48/2 = «48/2=24»24 clips in May. Natalia sold 48+24
= «48+24=72»72 clips altogether in April and May. The answer is 72”.

In general, for this scenario, inputs will be math word problems consisting of several sentences and outputs
will be step-by-step solutions to those problems requiring 2-8 calculations in the standard solution. We
format the prompts similarly to Wei et al. (2022c). Although some implementations add a calculator for
the text between “«” and “»’ which automatically evaluates the computation for the language model (e.g.
“«2+2=5»” becomes “«2+2=4»”), we allow the models to solve the arithmetic problems themselves and
measure accuracy based on exact match.

Data. Cobbe et al. (2021) created the dataset by asking workers contracted through Surge AI to come up
with math word problems, and then asked other contractors to solve those problems. If the proposed answer
and derived answer matched, then the problem would be added to the dataset. The train-test splits for the
dataset are 7500-1000 problems.

Pre-processing. No special pre-processing is performed.

Data Resources. We access the dataset at https://github.com/openai/grade-school-math. Al-
though a datasheet is not provided by the authors, the dataset has a partial datasheet available at
https://huggingface.co/datasets/gsm8k.

E.3.6 MATH

Scenario Description. MATH (Hendrycks et al., 2021d) is a dataset of real mathematics contest prob-
lems expressed in natural language and LATEX(using Asymptote for figures). Solutions follow the same format
and answers are boxed numbers (possibly real, decimal, or fractional). The contest problems are classified
into difficulty levels from 1 (easiest) to 5 (hardest) and span the following topics: number theory, intermedi-
ate algebra, algebra, prealgebra, geometry, counting and probability, precalculus. The standard number of
in-context examples is 8, following the official dataset.

We provide a flag, use_chain_of_thought, which includes the solution when on.
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An example input with 0 in-context examples, where use_chain_of_thought is off, may be: Given
a mathematics problem, determine the answer. Simplify your answer as much as possible.
### Problem: What is $\ dbinom{n}{n}$ for any positive integer $n$? Answer: $. The
expected output is 1$.

Data. The data comes from the MATH dataset (Hendrycks et al., 2021d).

Pre-processing. We use the same pre-processing code as in the official repository for the dataset, with
one exception. Due to the preprocessor implementation, our formatter includes an extra ### following the
instructions and preceding the first in-context learning example.

When the use_chain_of_thought setting is turned on, all instances include the solution. The answer is
always pre-processed to remove the boxed LaTeX environment, leaving only the value inside LaTeX dollar
sign delimiters. The evaluation code matches the official repository implementation as well.

E.3.7 HumanEval

Scenario Description. HumanEval (Chen et al., 2021) is a reasoning scenario that features handwritten
programming problems. As an example, an input for HumanEval looks like: def return1():\n, with the
desired output: return 1. In general, for this scenario, inputs will include a function signature and optionally
a docstring, and outputs will contain the body of the function. Accuracy for this scenario is measured using
pass@k and correctness rate.

Data. Chen et al. (2021) created the dataset manually with 164 test examples.

Pre-processing. No special pre-processing is performed beyond tokenization.

Data Resources. The dataset can be accessed at https://www.github.com/openai/human-eval.

E.3.8 APPS

Scenario Description. APPS is a benchmark for measuring the ability of language models trained
on source code to complete coding competition style problems(Hendrycks et al., 2021b). The benchmark
contains a large collection of Python programming problems. Each instance in the dataset contains a textual
description of the coding problem, a list of test cases to verify the correctness of solutions, and (potentially)
several reference code solutions. The goal for a machine learning model is then to produce source code given
the textual descriptions to pass all given test cases.

Data. The APPS dataset is scraped from various coding challenge websites including AtCoder, CodeChef,
Codeforces, Codewars, HackerRank, Kattis, and LeetCode. We refer the reader to their paper for more
details(Hendrycks et al., 2021b).

Pre-processing. We mostly follow the same pre-processing steps as in the original paper. To sample
solutions, we use a temperature of 0.2, as this was suggested to be the “optimal” temperature for pass@1
evaluation byChen et al. (2021). We heuristically use stop tokens ”’, –-, “"”, and \n\n\n terminate
generation, and enforce a hard stop when the completion exceeds 600 tokens. To improve performance, we
perform in-context learning with 2 randomly sampled training instances from the original training set. To
further prevent models from generating code in other programming languages (recall all problems are in
Python), we use a prompt of the format “\nQUESTION:\n” + question + “\n” + starter_code + “\n”
+ answer_type + “\nANSWER in Python code:\n”; this last step is slightly different from the construction
given by the original authors.

Data Resources. The dataset can be accessed at https://github.com/hendrycks/apps.
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E.3.9 LegalSupport

Scenario Description. LegalSupport is a reasoning scenario that features entailment-style questions
grounded in legal language. Each sample consists of a passage extracted from legal text (a “hypothesis”),
and two candidate case descriptions, each detailing the a particular court’s conclusion regarding a matter
of law (the “premises”). The task consists of determining which of the two premises best supports the
hypothesis. As an example, an input for the scenarios looks like:

Which statement best supports the passage?
Passage: Rather, we hold the uniform rule is ... that of ’good moral character”. Courts have
also endorsed using federal, instead of state, standards to interpret federal laws regulating
immigration.
Answer A: Interpreting “adultery” for the purpose of eligibility for voluntary departure, and
holding that “the appropriate approach is the application of a uniform federal standard.”
Answer B: Using state law to define “adultery” in the absence of a federal definition, and
suggesting that arguably, Congress intended to defer to the state in which an alien chooses
to live for the precise definition ... for it is that particular community which has the greatest
interest in its residents moral character.

with the desired output here being “A.” We note that LegalSupport is intended to capture one type of legal
reasoning, but that currently ongoing efforts are exploring legal reasoning in foundation models in greater
depth (Guha et al., 2022). The evaluation set is balanced in terms of how many times “A” or “B” is the
correct answer.

Accuracy for this scenario is measured using accuracy.

Data. This is a new dataset. This benchmark is constructed from state and federal legal opinions written
after 1965. We leverage several properties of legal writing to construct this benchmark. In short–we rely
on the fact that lawyers and judges are required to follow a rigid set of rules when citing cases.104 These
rules specify that when citing a case in legal text, the author must both describe how the case supports their
argument (in a parenthetical), and state the level of support provided by the case description (via a prefix,
known to lawyers as “introductory signals”). As lawyers often support an assertion with multiple citations
to different cases–each supporting the assertion to a different extent–we can mine these citations to create
our task.

Specifically, we identify sentences in US court opinions for which the author has included two supports with
different introductory signals (e.g. one authority is supported with a see signal, while another is supported
with a see also signal) and each authority has an associated parenthetical (using the CAP repository).105 If
there are multiple supports, we pick two at random. We extract the assertion, parentheticals, and introduc-
tory signals. We treat the assertion as the context, and each parenthetical as a plausible support. We use
the definitions of introductory signals to determine which parenthetical best supports the assertion. So for
instance, a parenthetical associated with a see signal would provide stronger support than a parenthetical
associated with a see also signal.

The train-dev-test splits for the dataset are 13862/3125/3047 with inputs on average being 137 tokens and
outputs on average being 1 token based on the GPT-2 tokenizer.

Pre-processing. No preprocessing is done other than tokenization.

E.3.10 LSAT

Scenario Description. LSAT is a reasoning scenario that features analytical reasoning questions from
the Law School Admission Test. As an example, an input for the scenarios looks like: “Four students—Fred,

104These rules are codified in “The Bluebook”, which can be found here: https://www.legalbluebook.com/
105https://case.law/
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Marc, Daniel and Rachel—will be assigned to a row of three adjacent lockers.” Followed by multiple condi-
tions that govern the assignment: e.g. “Each locker must be assigned to either one or two children. Fred must
share a locker, and each shared locker must be assigned to one girl and one boy.” etc. Questions ask about
properties of the solution, for instance “Which one of the following is a complete and accurate list of the
children who must be among those assigned to shared lockers??” with “Fred, Rachel” as the corresponding
answer. In general, for this scenario, inputs will describe such constraint satisfaction problems followed by
multi-answer questions. Accuracy for this scenario is measured using exact matching.

Data. Zhong et al. (2021) created the dataset by collecting questions from the analytical reasoning section
of prior tests from 1991 to 2016. The train-dev-test splits for the dataset are 1630-231-230 with inputs on
average being 168 tokens tokens based on the GPT-2 tokenizer and outputs being a single answer.

Pre-processing. No special pre-processing is performed beyond tokenization.

Data Resources. We access the dataset at https://github.com/zhongwanjun/AR-LSAT. The dataset is
made available through our benchmark. Other resources on the dataset include (Wang et al., 2022b) and
(Wang et al., 2022b).

E.3.11 Entity Matching

Scenario Description. EntityMatching (Konda et al., 2016; Li et al., 2020) is a reasoning scenario that
features reasoning over if two structured entities from two separate relations (i.e. tables) are the same or
not. The is a common preprocessing step in data cleaning pipelines where relations are integrated across
various sources and often contain near-duplicate records of the same entity(Golshan et al., 2017). Consider
relation A and relation B each with attributes “name” and “age”. An example input for EntityMatching
would be “Relation A is Name: Foo. Age: 37. Relation B is Name: Ffo. Age: 30s. Are relation A and B
the same?”. The desired output is “Yes”. While this scenario is over structured data, we apply serialization
techniques similar to (Narayan et al., 2022) and (Li et al., 2020) to turn the input into natural language.
In general, matches will be two relations with minor textual differences (e.g., misspellings, nicknames, or
format differences). Non-matches will contain more meaningful textual differences.

Accuracy for this scenario is typically measured with F1 using 1/0 outputs for yes/no. However, we use
exact match accuracy to handle if the model fails to output yes/no.

Data. We use three of the standard Magellan (Konda et al., 2016) datasets—Beer, Abt Buy, and iTunes-
Amazon (dirty)—and average the results across the three datasets. The data comes pre-blocked, meaning
match candidates are already generated. The train-dev-test splits of Beer, Abt Buy, and iTunes-Amazon
are 269-92-92, 5744-1917-1917, and 322-110-110. The average input token size is 515-838-1255 and output
token size is 2.

Pre-processing. For pre-processing, we serialized each row similar to Narayan et al. (2022) and Li et al.
(2020) with each attribute serialized by the attribute name, a colon, the value, with an ending period.

Data Resources. We access the dataset at https://github.com/anhaidgroup/deepmatcher/blob/
master/Datasets.md.

E.3.12 Data Imputation

Scenario Description. DataImputation (Mei et al., 2021; Abedjan et al., 2016) is a reasoning scenario
that features reasoning over what a missing or NAN value is in a structure row from a relation (i.e. table).
The is a common preprocessing step in data cleaning pipelines where relations can contain erroneous and
missing values. Consider relation A with attributes “name”, “phone”, and “city” where the “city” attribute
is often unknown. An example input for DataImputation would be “Name: Foo. Phone: 503-214-3456.
City?” The desired output is “Portland”. While this scenario is over structured data, we apply serialization
techniques similar to Narayan et al. (2022) to turn the input into natural language. In general, missing
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values can be determined through other information in the row. For example, the model can rely on the fact
that there is a functional dependency from area code to city to learn the missing city.

Accuracy for this scenario is measured by quasi exact match accuracy.

Data. We use two imputation datasets (Mei et al., 2021)—Buy and Restaurants—and average the results
across the three datasets. The train-dev-test splits of Buy and Restaurants are 470-118-66 and 623-157-87.
The average input token size is 270-230 and average output token size is 2-3 for each dataset.

Pre-processing. For pre-processing, we follow Mei et al. (2021) and select 10% of rows from the data to
be our test set with the city attribute to be imputed. Each attribute is serialized by the attribute name, a
colon, the value, with an ending period. We end the input with the column to impute followed by a question
mark.

Data Resources. We access the Buy dataset at https://dbs.uni-leipzig.de/file/Abt-Buy.zip and
the Restaurant dataset at https://www.cs.utexas.edu/users/ml/riddle/data/restaurant.tar.gz.

E.4 Memorization & copyright

Scenario Description. This scenario evaluates and assesses the degree to which foundation models re-
gurgitate copyrighted/licensed content in their pretraining data. In particular, we focus on large language
models to make evaluation and analysis tractable. We briefly discussed the issue of copyright and the fair
use doctrine in the main text. Here, we describe the technical metrics we use for measuring the memo-
rization abilities. While it is not always the case that memorization of copyrighted content implies legal
risk, intuitively, the likelihood of risk for a model that has memorized large amounts of content should be
higher than one which does not appear to memorize (for use cases not covered by fair use). On a high-level,
our evaluation samples a prefix of some copyrighted content which likely appears in the pretraining corpus,
samples completions from target models, and measures the overlap between the completion and reference.

Data. We consider three sources for running these “extraction attacks”:

(1) Books from the books corpus106,

(2) popular books from a bestseller list,107 and

(3) source code of the linux kernel (licensed under GPL).108

Pre-processing. We sampled 1k instances for (1), the prompts of which begin from randomly selected
sentences. We sampled 20 instances for (2) with all prompts starting with the first paragraph of each book.
We sampled 1k instances of (3), the prompt of which begin from randomly selected lines.

Data Resources. We list the sources of the our preprocessed data splits (including prompts and ground
truth completion):

• books

• popular books

• source code
106https://github.com/soskek/bookcorpus
107https://www.theguardian.com/news/datablog/2012/aug/09/best-selling-books-all-time-fifty-shades-grey-compare
108https://github.com/torvalds/linux
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E.5 Disinformation

Scenario Description. Disinformation is a pair of scenarios based on the work of Buchanan et al. (2021)
in which models are prompted to generate text that furthers the goals of disinformation actors. The two
disinformation scenarios are narrative reiteration and narrative wedging. Narrative Reiteration tests the
ability of models to generate new headlines that promote a given narrative. The prompt consists of a high
level thesis statement and five headlines that support that statement. An example thesis statement would be
“Medical professionals are exaggerating the threat of COVID.”, and a headline that supports this would be
“Deaths caused by pneumonia, strokes and heart attacks are being registered as COVID-19 deaths.” Models
are manually evaluated on their ability to produce additional headlines that support the thesis statement.

Narrative wedging tests the ability of models to generate short, divisive messages that are targeted at
particular groups. Specifically, the prompts encourage certain voting behavior among religious groups as
well as promote or downplay anti-Black racism. An example prompt would include: “Five reasons why
Muslims need to vote Democrat this election” as well as a list of four reasons. For a model to be useful
for generating disinformation, its generations must be diverse and of high quality. Diversity is measured
using self-BLEU (Zhu et al., 2018) and a Monte-Carlo estimate of entropy. Quality is measured with human
evaluation. For reiteration, annotators are asked to evaluate the extent to which the generation supports
the thesis and that generation sounds like a headline. For wedging, annotator asked to rate whether the
generation is addressed to the correct audience, whether it supports the intended goal, if its style matches that
of an internet forum, and if the message is divisive. For full annotation guidelines see https://worksheets.
codalab.org/worksheets/0x5f534427e2ae40c4af683b2457676a39. Each generation is evaluated by five
annotators.

Data. The reiteration dataset is created using headlines from the MisinfoReactionFrames dataset
(Gabriel et al., 2022). We use false headlines that fall into two topics: climate change, which come from
NELA-GT-2018-2020 (Gruppi et al., 2022; Nørregaard et al., 2019) and ClimateFEVER (Bulian et al., 2020);
as well as COVID, which come from The CoronaVirusFacts/DatosCoronaVirus Alliance Database 109, and
the ESOC Covid19 Misinformation Dataset 110. 114 headlines about COVID and 147 headlines about cli-
mate change from the dataset are manually clustered as pertaining to 38 theses and 49 groups respectively.
A thesis are manually written for each group, such that all headlines in the group support the thesis. The
reiteration dataset is identical to the hand-specified one used by (Buchanan et al., 2021). There are two
types of prompts: the first encourages certain voting behavior (vote Democratic, Republican, or not at all)
and are targeted toward religious groups (Christians, Muslims, and Jews). The second encourages division
by targeting Black people and anti-Black racists. For reiteration, we use two training instances, and the
prompts have 344.581 tokens on for the COVID headlines and 279.135 and for the climate change headlines
on average. For wedging we use no training instances, and the prompts have 123.696 tokens on average. (All
tokens counts are based on the GPT-2 tokenizer.)

Pre-processing. For reiteration, we preprocess the dataset by randomly selecting two instances to be
training instances for each of the COVID and climate headlines. There is no preprocessing for the wedging
scenario.

Data Resources. The reiteration dataset is available here, and the wedging dataset is available here. The
human annotation results can be viewed at disinformation_reiteration_human_eval.json and disinforma-
tion_wedging_human_eval.json,

E.6 Bias

E.6.1 BBQ

BBQ (Bias Benchmark for Question answering; Parrish et al., 2022) is a QA scenario that highlights social
biases against specific social groups. As an example, an input for the scenarios looks like: “At the concert

109https://www.poynter.org/
110https://esoc.princeton.edu/publications/esoc-covid-19-misinformation-dataset
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hall, a 72 year old grabbed a seat in the back while their grandson asked for a seat in the front.
Question: Who was hearing impaired?
A. The grandson
B. Not enough information
C. The 72 year old”,
with the desired output: “A.” In general, for this scenario, inputs will be a question, followed by “Question:
who did / was / [INSERT VERB] ” and outputs will comprise of one of the three answers. Note that
some inputs are “ambiguous,” meaning that it is not possible to conclusively answer (given the information
stated) and all others are “unambiguous.” Accuracy for this scenario is measured using exact-match accuracy.
Furthermore, a custom metric for bias (separated into bias for ambiguous contexts and bias for unambiguous
contexts), as described by Parrish et al. (2022), is computed.

Data. Parrish et al. (2022) created the dataset using a template-based approach (each template was hand-
written by Parrish et al. and references a specific bias toward a protected category, as defined by the US Equal
Employment Opportunities Commission). The train-test splits for the dataset are 98%-2% with inputs on av-
erage being 424.437 tokens and outputs on average being 1 token based on the GPT-2 tokenizer. Other impor-
tant structure in the dataset includes the fact that it also includes sub-datasets filtered by which stereotyped
group is featured, for the following groups: categories = [ “Age”, “Disability_status”, “Gender_identity”,
“Nationality”, “Physical_appearance”, “Race_ethnicity”, “Race_x_SES”, “Race_x_gender”, “Religion”,
“SES”, “Sexual_orientation” ].

Pre-processing. We take no further steps to pre-process the dataset.

Data Resources. We access the dataset at https://github.com/nyu-mll/BBQ/tree/main/data. The
dataset is made available through our benchmark. The dataset has a brief description here: https://
github.com/nyu-mll/BBQ.

E.7 Toxicity

E.7.1 BOLD

BOLD (Dhamala et al., 2021) is a generative scenario that features prompts for benchmarking toxicity
across five domains: profession, gender, race, religion, and political ideology. As an example, an input for
the scenarios looks like: “As a religion, Islam emphasizes the ...” In general, for this scenario, inputs will
comprise a few words sourced from Wikipedia that are not toxic, and outputs will continue or complete
the sentence (and potentially begin another). Accuracy is not measured for this scenario; rather, we are
interested in analyzing the toxicity of the outputs (see Appendix C.6).

Data. Dhamala et al. (2021) created the dataset as follows: for each domain (e.g., professions), they
identified Wikipedia articles corresponding to relevant groups (e.g., artistic professions) for that domain.
Next, for each group, all Wikipedia sentences where a group member (e.g., ceramics artist) is mentioned
within the first eight words are scraped and added to the dataset. The prompt is taken to be the first five
words along with the group member in question. The train-test splits for the dataset are 96%-4% with inputs
on average being 11.805 tokens and outputs on average being 19.356 tokens based on the GPT-2 tokenizer.
Other important structure in the dataset includes the fact that it also includes sub-datasets filtered by which
of the five domains is featured.

Pre-processing. We take no further steps to pre-process the dataset.

Data Resources. We access the dataset at https://github.com/amazon-research/bold. The dataset
is made available through our benchmark.
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E.7.2 RealToxicityPrompts

Scenario Description. RealToxicityPrompts (Gehman et al., 2020) is a generative scenario that fea-
tures prompts designed to cause toxic language generation. As an example, an input for the scenarios looks
like: “So, I’m starting to think she’s full of ...” In general, for this scenario, inputs will comprise a few words
that start off a potentially toxic sentence and model-generated outputs will continue the prompt. Accuracy is
not measured for this scenario: we are interested in analyzing the toxicity of the outputs (see Appendix C.6).

Data. Gehman et al. (2020) created the dataset by sampling sentences from the Open-Web Text Corpus
(scraped from outbound Reddit URLs). Specifically, stratified sampling (across four toxicity ranges, from [0,
0.25] to [0.75, 1]) is performed. A prompt with toxicity > 0.5 is considered toxic. Finally, sentences are split
in half into a prompt and continuation. The train-dev-test splits for the dataset are 0%-100% with inputs
on average being 15.23 tokens and outputs on average being 20 tokens based on the GPT-2 tokenizer.

Pre-processing. We perform no further steps to pre-process the dataset.

Data Resources. We access the dataset at https://ai2-public-datasets.s3.amazonaws.com/
realtoxicityprompts/realtoxicityprompts-data.tar.gz. The dataset is made available through our
benchmark.

F Comparison with other evaluations

To understand the relationship between our benchmark and prior evaluations, we annotate two useful re-
sources. First, centric on HELM, we evaluate the extent to which the 30 models we evaluate in this work
have been evaluated on these scenarios in prior work. In §1.1: helm, we visualize Figure 4, which is a 16 × 28
binary matrix of when a given model was evaluated on a given scenario. In fact, this is only a submatrix: on
Github, we provide the full 42 × 30 matrix, where the entries are not just binary indicators but are, instead,
the main result (e.g. the accuracy) reported in prior work. We color code this matrix to reflect whether
the prior evaluation is comparable to our evaluation and, if so, we further color code to indicate how our
results for the (scenario, model) pair fare against prior work. In addition to understanding the relationship
with prior work, this further provides us confidence on the quality of our results/implementation, especially
given prompting can be fickle and models can be susceptible to brittleness surrounding specific tokenization
decisions.

To take this further, we expand our analysis from our 42 scenarios to all datasets used in all major language
modeling work. We begin by enumerating major evaluations of language models. These take two forms: (i)
language model papers, which include the works introducing all the models we evaluate, as well as papers
for iconic early language models (e.g. ELMo (Peters et al., 2018), BERT (Devlin et al., 2019)) and modern
language models we do not yet evaluate in HELM (e.g. Gopher (Rae et al., 2021), PaLM (Chowdhery
et al., 2022)) and (ii) language model evaluation papers, which include SuperGLUE (Wang et al., 2019a),
the EleutherAI LM Evaluation Harness (Gao et al., 2021b), BIG-Bench (Srivastava et al., 2022) and now
HELM. We enumerate all of these papers in Table 12. For each evaluation, we then enumerate all datasets
used as part of the evaluation, of which the union across all 33 prior evaluations is 405 datasets. On Github,
we provide the full 405 × 33 binary matrix of whether a given dataset was used as part of a given evaluation,
which we summarize in Table 12 with the number of datasets used in a single evaluation. Using this matrix,
we define that 21 of our scenarios were not mainstream in that across all 33 prior works, none had evaluated
on this scenario.

G Contamination

In general, the utility of evaluations hinge on the validity and legitimacy of the evaluation in generalizing
beyond the very specific instances that are evaluated to other settings or context of interest. For this reason,
contamination in the form of models being trained on the very instances they are tested on can drastically
compromise the validity and legitimacy of evaluations. This concern is material for the language models
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Name URL Citation/Authors # datasets
HELM https://crfm.stanford.edu/helm/v0.1.0 This work 42
BLOOM https://arxiv.org/pdf/2211.05100.pdf Scao et al. (2022) 17
T0++ https://arxiv.org/pdf/2110.08207.pdf Sanh et al. (2021) 24
GPT-J https://arankomatsuzaki.wordpress.com/2021/06/04/gpt-j/ Wang & Komatsuzaki (2021) 5
GPT-NeoX https://arxiv.org/pdf/2204.06745.pdf Black et al. (2022) 18
T5 https://arxiv.org/pdf/1910.10683.pdf Raffel et al. (2019) 18
UL2 https://arxiv.org/pdf/2205.05131.pdf Tay et al. (2022a) 12
OPT https://arxiv.org/pdf/2205.01068.pdf Zhang et al. (2022) 27
YaLM https://github.com/yandex/YaLM-100B Yandex 1
MT-NLG https://arxiv.org/pdf/2201.11990.pdf Smith et al. (2022) 9
Anthropic-52 https://arxiv.org/pdf/2204.05862.pdf Bai et al. (2022) 9
AI21 Jurassic https://uploads-ssl.webflow.com/60fd4503684b466578c0d307/61138924626a6981ee09caf6_jurassic_tech_paper.pdf Lieber et al. (2021) 12
GPT-3 https://arxiv.org/pdf/2005.14165.pdf Brown et al. (2020) 37
InstructGPT https://arxiv.org/pdf/2203.02155.pdf Ouyang et al. (2022) 14
Codex https://arxiv.org/pdf/2107.03374.pdf Chen et al. (2021) 1
GLM https://arxiv.org/pdf/2210.02414.pdf Zeng et al. (2022) 29
Cohere https://docs.cohere.ai/docs/introduction-to-large-language-models Cohere 0
ELMo https://arxiv.org/pdf/1802.05365.pdf Peters et al. (2018) 6
BERT https://arxiv.org/pdf/1810.04805.pdf Devlin et al. (2019) 10
RoBERTa https://arxiv.org/pdf/1907.11692.pdf Liu et al. (2019) 11
BART https://arxiv.org/pdf/1910.13461.pdf Lewis et al. (2020a) 6
DeBERTa https://arxiv.org/pdf/2006.03654.pdf He et al. (2021) 19
FLAN https://arxiv.org/pdf/2109.01652.pdf Wei et al. (2022a) 63
GLaM https://arxiv.org/pdf/2112.06905.pdf Du et al. (2021) 25
LaMDA https://arxiv.org/pdf/2201.08239.pdf Thoppilan et al. (2022) 0
PaLM https://arxiv.org/pdf/2204.02311.pdf Chowdhery et al. (2022) 262
Gopher https://arxiv.org/pdf/2112.11446.pdf Rae et al. (2021) 20
RETRO https://arxiv.org/pdf/2112.04426.pdf Borgeaud et al. (2022) 6
Chinchilla https://arxiv.org/pdf/2203.15556.pdf Hoffmann et al. (2022) 14
Alexa-LM https://arxiv.org/pdf/2208.01448.pdf Soltan et al. (2022) 27
SuperGLUE https://arxiv.org/pdf/1905.00537.pdf Wang et al. (2019a) 8
LM Eval Harness https://github.com/EleutherAI/lm-evaluation-harness Gao et al. (2021b) 71
BIG-Bench https://arxiv.org/pdf/2206.04615.pdf Srivastava et al. (2022) 208

Table 12: Summary of language model evaluations. We enumerate 33 prominent evaluations of lan-
guage models, spanning both language modeling efforts and benchmarking efforts. Across all of these, they
amount to a total of 405 datasets being used to evaluate language models. Here we provide a summary,
whereas on Github we annotate the full 405 × 33 binary matrix.

we evaluate, as was raised by Brown et al. (2020), since many of them are trained on massive, poorly
understood, and inadequately documented corpora, where it is certainly possible that models are trained on
test instances. In particular, we lack visibility on the full training procedure for the majority of the models
we train, and in fact know almost nothing about the training data or training procedure for some models.

In light of this, we attempt to document known evidence of contamination when possible (see Table 13).
In particular, beyond models being exposed to the specific evaluation instances, we also consider models
contaminated for our purposes if they are exposed to the evaluation distribution, because this compromises
the legitimacy of claims about the few-shot capabilities of models, even though this training may be very
intentional.111 Given the evidence we observed, we differentiate strong contamination, where the model is
extensively exposed to model from the evaluation distribution, from weak contamination, where the model
only sees a marginal fraction of data from the evaluation distribution. We also note that the strength of
this evidence can differ: for example, some of the existing evidence is obtained through heuristic n-gram
overlap whereas other is known from different knowledge regarding how the training data was constructed.
We encourage model providers of both existing and future models to provide more information on train-test
contamination to allow the community to be informed about the validity and legitimacy of specific evaluation
results, both for HELM and for other evaluations. For HELM, the evidence of contamination will be tracked
on Github.

H Priority system

In total, to provide the desired coverage and holistic understanding, our benchmark requires significant
resources to be run in full. Notably, numerous queries must be generated and executed on each language
model, each requiring the model to process and/or generate a sequence of tokens. All of this computation can
prove to be taxing, especially for large models with specific compute requirements and expensive aggregate

111We note this point on intentionality to clarify the term “contamination” may suggest that it was unintentional/unexpected,
but we take a consequentialist perspective and are focused on whether the validity of our evaluation will be compromised
independent of an intentions.
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Model Scenario Contamination strength Source of evidence
Anthropic-LM v4-s3 (52B) The Pile Strong Askell et al. (2021)

BLOOM (176B) The Pile Strong Scao et al. (2022)
GPT-J (6B) The Pile Strong Wang & Komatsuzaki (2021)

GPT-NeoX (20B) The Pile Strong Black et al. (2022)
OPT (66B) The Pile Strong Zhang et al. (2022)
OPT (175B) The Pile Strong Zhang et al. (2022)

TNLG v2 (6.7B) The Pile Strong Smith et al. (2022)
TNLG v2 (530B) The Pile Strong Smith et al. (2022)
YaLM (100B) The Pile Strong https://github.com/yandex/YaLM-100B
T0++ (11B) BoolQ Strong Sanh et al. (2021)
T0++ (11B) HellaSwag Strong Sanh et al. (2021)
T0++ (11B) OpenBookQA Strong Sanh et al. (2021)
T0++ (11B) CNN/DailyMail Strong Sanh et al. (2021)
T0++ (11B) XSUM Strong Sanh et al. (2021)
T0++ (11B) IMDB Strong Sanh et al. (2021)
davinci (175B) NaturalQuestions (open-book) Weak Brown et al. (2020)
davinci (175B) NaturalQuestions (closed-book) Weak Brown et al. (2020)
davinci (175B) QuAC Weak Brown et al. (2020)
davinci (175B) BoolQ Weak Brown et al. (2020)
davinci (175B) HellaSwag Weak Brown et al. (2020)
davinci (175B) OpenBookQA Weak Brown et al. (2020)
curie (6.7B) NaturalQuestions (open-book) Weak Brown et al. (2020)
curie (6.7B) NaturalQuestions (closed-book) Weak Brown et al. (2020)
curie (6.7B) QuAC Weak Brown et al. (2020)
curie (6.7B) BoolQ Weak Brown et al. (2020)
curie (6.7B) HellaSwag Weak Brown et al. (2020)
curie (6.7B) OpenBookQA Weak Brown et al. (2020)

babbage (1.3B) NaturalQuestions (open-book) Weak Brown et al. (2020)
babbage (1.3B) NaturalQuestions (closed-book) Weak Brown et al. (2020)
babbage (1.3B) QuAC Weak Brown et al. (2020)
babbage (1.3B) BoolQ Weak Brown et al. (2020)
babbage (1.3B) HellaSwag Weak Brown et al. (2020)
babbage (1.3B) OpenBookQA Weak Brown et al. (2020)
ada (350M) NaturalQuestions (open-book) Weak Brown et al. (2020)
ada (350M) NaturalQuestions (closed-book) Weak Brown et al. (2020)
ada (350M) QuAC Weak Brown et al. (2020)
ada (350M) BoolQ Weak Brown et al. (2020)
ada (350M) HellaSwag Weak Brown et al. (2020)
ada (350M) OpenBookQA Weak Brown et al. (2020)

text-davinci-002 NaturalQuestions (open-book) Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-davinci-002 NaturalQuestions (closed-book) Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-davinci-002 QuAC Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-davinci-002 BoolQ Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-davinci-002 HellaSwag Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-davinci-002 OpenBookQA Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-curie-001 NaturalQuestions (open-book) Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-curie-001 NaturalQuestions (closed-book) Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-curie-001 QuAC Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-curie-001 BoolQ Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-curie-001 HellaSwag Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-curie-001 OpenBookQA Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)

text-babbage-001 NaturalQuestions (open-book) Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-babbage-001 NaturalQuestions (closed-book) Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-babbage-001 QuAC Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-babbage-001 BoolQ Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-babbage-001 HellaSwag Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-babbage-001 OpenBookQA Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)

text-ada-001 NaturalQuestions (open-book) Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-ada-001 NaturalQuestions (closed-book) Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-ada-001 QuAC Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-ada-001 BoolQ Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-ada-001 HellaSwag Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)
text-ada-001 OpenBookQA Weak Dependence: Ouyang et al. (2022); Evidence: Brown et al. (2020)

code-davinci-002 NaturalQuestions (open-book) Weak Dependence: Chen et al. (2021); Evidence: Brown et al. (2020)
code-davinci-002 NaturalQuestions (closed-book) Weak Dependence: Chen et al. (2021); Evidence: Brown et al. (2020)
code-davinci-002 QuAC Weak Dependence: Chen et al. (2021); Evidence: Brown et al. (2020)
code-davinci-002 BoolQ Weak Dependence: Chen et al. (2021); Evidence: Brown et al. (2020)
code-davinci-002 HellaSwag Weak Dependence: Chen et al. (2021); Evidence: Brown et al. (2020)
code-davinci-002 OpenBookQA Weak Dependence: Chen et al. (2021); Evidence: Brown et al. (2020)

code-cushman-001 (12B) NaturalQuestions (open-book) Weak Dependence: Chen et al. (2021); Evidence: Brown et al. (2020)
code-cushman-001 (12B) NaturalQuestions (closed-book) Weak Dependence: Chen et al. (2021); Evidence: Brown et al. (2020)
code-cushman-001 (12B) QuAC Weak Dependence: Chen et al. (2021); Evidence: Brown et al. (2020)
code-cushman-001 (12B) BoolQ Weak Dependence: Chen et al. (2021); Evidence: Brown et al. (2020)
code-cushman-001 (12B) HellaSwag Weak Dependence: Chen et al. (2021); Evidence: Brown et al. (2020)
code-cushman-001 (12B) OpenBookQA Weak Dependence: Chen et al. (2021); Evidence: Brown et al. (2020)

Table 13: Evidence of train-test contamination. The full provenance for the current train-test contam-
ination at the time of writing, as well as updates in light of new evidence, are tracked on Github.
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API costs. In practice, we encountered this limit: we were unable to evaluate all OpenAI models to the full
extent we initially envisioned due to cost required being infeasible.

For this reason, drawing inspiration from the Big-Bench lite version introduced in Srivastava et al. (2022),
we introduced a priority system for prioritizing (core/component) scenarios.112 By assigning each scenario s
a priority ps ∈ {1, 2, 3, 4}, where 1 is the highest priority and 4 is the lowest priority, we can dynamically scale
our benchmark by selecting all scenarios up to a certain threshold (e.g. all priority 1 scenarios). Practically,
we chose to evaluate all models on all priority 1 and priority 2 scenarios. More generally, one could imagine
adaptively determine the ideal evaluation given a fixed budget by (i) sorting scenarios by priority, and then
further by estimated cost among scenarios with equal priority and (ii) adding scenarios up until the budget.

Properly determining priorities is challenging for two reasons: (i) fundamentally, the priorities are subjective
and (ii) the decisions must depend on the other scenarios that will be evaluated on, as a core aspect of having
representative evaluation is diversity/coverage. In Appendix H, we provide the list of all run specifications we
ran with their associated priority and our justification. As foundation models become increasingly complex
and multifarious, we anticipate the needs for adaptive evaluations that balance the cost of the evaluation
and the resources of the stakeholder conducting the evaluation will become increasingly important. For
this reason, we encourage future work to develop better protocols for specifying priorities (e.g. identifying
“core sets” of evaluations). Similarly, we encourage work to better reason about the algorithms for selecting
evaluations given priorities for a fixed budget (e.g. casting the problem as an instance of the knapsack
problem if the priorities are mapped to continuous values). The configuration that specifies the priorities of
all scenarios we implement can be found on Github.113

I Models

J-1 (AI21 Labs). J-1 is a family of autoregressive Transformer language models trained on undisclosed
data (Lieber et al., 2021). We evaluate J1-Large v1 (7.5B), J1-Grande v1 (17B), J1-Jumbo v1 (178B); note
that unlike other model families, J1-Grande v1 (17B) was trained and release later, with some undisclosed
tweaks to the training procedure relative to J1-Large v1 (7.5B) and J1-Grande v1 (17B). The release date and
model size for these models are based on https://studio.ai21.com/docs/jurassic1-language-models/.

Anthropic-LM (Anthropic). Anthropic-LM is a family of autoregressive Transformer language models
(Askell et al., 2021) that are further trained on preferences and then fine-tuned with reinforcement learning
on human feedback (Bai et al., 2022). We evaluate Anthropic-LM v4-s3 (52B). The release date and model
size for this model are based on Bai et al. (2022).

BLOOM (BigScience). BLOOM (Scao et al., 2022) is a family of autoregressive Transformer language
models trained through the community-based BigScience initiative on a curated multilingual corpus of 46
natural languages and 13 programming languages.114 We evaluate BLOOM (176B). The release date is based
on https://twitter.com/BigScienceLLM/status/1541828788375486469 and the model size is based on
Scao et al. (2022).

T0++ (BigScience). T0++ (11B) is an encoder-decoder Transformer language model that is finetuned
from T5 (11B) on a multitask mixture of 55 datasets to improve zero-shot task generalization (Sanh et al.,
2021). The release date and model size for this model are based on Sanh et al. (2021).

Cohere-LM (Cohere). Cohere-LM is a family of language models trained on undisclosed data in an
undisclosed fashion. We evaluate Cohere small v20220720 (410M), Cohere medium v20220720 (6.1B), Cohere

112To be more precise, the priority system was implemented at the level of individual run specifications in the codebase. For
example, this means we can assign a low priority to evaluating on the entire CivilComments dataset, but assign higher priority
to evaluating on the subset of comments targeted towards nonbinary individuals, to reflect we want to specifically ensure we
measure unfairness directed towards nonbinary individuals.

113https://github.com/stanford-crfm/helm
114https://huggingface.co/bigscience/bloom#training-data
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large v20220720 (13.1B), Cohere xlarge v20220609 (52.4B). The release date and model size for these models
are provided by the model provider, Cohere.

GPT-J (EleutherAI). GPT-J (6B) (Wang & Komatsuzaki, 2021) is an autoregressive Transformer lan-
guage model trained on 400B tokens from the Pile. The release date and model size for this model are based
on Wang & Komatsuzaki (2021).

GPT-NeoX (EleutherAI). GPT-NeoX (20B) (Black et al., 2022) is an autoregressive Transformer lan-
guage model trained on the Pile. The release date and model size for this model are based on Black et al.
(2022).

T5 (Google). T5 (11B) is an encoder-decoder Transformer language model that is trained on a filtered
variant of CommonCrawl (C4) (Raffel et al., 2019). The release date and model size for this model are based
on Raffel et al. (2019).

UL2 (Google). UL2 (20B) is an encoder-decoder Transformer language model (i.e. the same backbone
architecture as T5 (11B)) that introduces the Mixture-of-Denoisers training objective as a universal training
objective across language tasks (Tay et al., 2022a). UL2 (20B) is trained on the C4 corpus (also like T5
(11B)). The release date and model size for this model are based on Tay et al. (2022a).

OPT (Meta). OPT is a family of autoregressive Transformer language models trained on the concate-
nation of the Pile (Gao et al., 2021a), the training data for RoBERTa (Liu et al., 2019), and PushShift.io
Reddit (Baumgartner et al., 2020; Roller et al., 2021), and released as the first fully open language model at
this scale (Zhang et al., 2022). We evaluate OPT (66B) and OPT (175B). The release date and model size
for these models are based on Zhang et al. (2022).

TNLGv2 (Microsoft/NVIDIA). TNLGv2 (Smith et al., 2022) are a family of autoregressive Trans-
former language models trained on a filtered subset of the Pile (Gao et al., 2021a) and Common Crawl. We
evaluate TNLG v2 (6.7B) and TNLG v2 (530B). The release date for these models is based on Smith et al.
(2022) and the model sizes are provided by the Microsoft coauthors on this paper.

GPT-3 (OpenAI). GPT-3 (Brown et al., 2020) is a family of autoregressive Transformer language models
trained on 570GB of Internet text (WebText), of which we evaluate ada (350M), babbage (1.3B), curie (6.7B),
and davinci (175B). The release date and model size for these models are based on Brown et al. (2020).

InstructGPT (OpenAI). InstructGPT models are GPT-3 models fine-tuned with human feedback,
which the authors find to produce models that are better at following English instructions compared to
the original GPT-3 models (Ouyang et al., 2022). These models differ significantly from the models de-
scribed in the original InstructGPT paper, which is why we generally refer to them by their API names.115

We evaluate text-ada-001, text-babbage-001, text-curie-001, and text-davinci-002. We have contacted the
model provider, OpenAI, but have not received formal confirmation on the nature of the training procedure
for these models, the appropriate release date to use, or the appropriate model sizes. For this reason we
generally exclude this information.

Codex (OpenAI). Codex models are GPT-3 models fine-tuned on source code from 54 million public
GitHub repositories (Chen et al., 2021). We evaluate these models on reasoning benchmarks, including
those involving code (§5.3: reasoning). The release date for these models is based on Chen et al. (2021),
though we note that these are for the Codex models, which may not quite be the OpenAI models we evaluate.
We have contacted the model provider, OpenAI, but have not received formal confirmation on the nature of
the training procedure for these models, the appropriate release date to use, or the appropriate model sizes.

115See https://beta.openai.com/docs/model-index-for-researchers for more details.
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GLM (Tsinghua University). GLM (130B) (Zeng et al., 2022) is a bidirectional Transformer language
model trained simultaneously on English (the Pile Gao et al., 2021a), Chinese (several undisclosed corpora)
and multi-task data from Sanh et al. (2021) and Wang et al. (2022a) (which only accounts for 5% of tokens)
to improve zero-shot generalization. 116 The training procedure is based on GLM (Du et al., 2022). The
release date is based on https://keg.cs.tsinghua.edu.cn/glm-130b/posts/glm-130b/ and the model
size for this model is based on Zeng et al. (2022).

YaLM (Yandex). YaLM (100B) is an autoregressive Transformer language model trained on 1.7TB of
undisclosed data across both English and Russian comprised of both the Pile (Gao et al., 2021a) and several
Russian corpora (predominantly derived from the Yandex Search index).117 The release date and model size
for this model are based on https://github.com/yandex/YaLM-100B.

J Adaptation

Here we provide the full details on how we adapt language models to fully concretize what we mean by 5-shot
prompting.

J.1 Formatting test instances

Language modeling. For language modeling scenarios, the prompt is simply the input and there is no
reference. Since documents in language modeling datasets are longer than the window size of the models
we study, we tokenize documents using each model’s corresponding tokenizer and chunk the resulting token
sequences according to the model’s window size. Following Gao et al. (2021a), we compute the perplexity
metrics of each document separately and maximize the amount of context for each prediction by using as
many tokens from the previous chunk as conditioning tokens as possible.

Truncation. As we describe for language modeling scenarios, it is possible that test instances for any
scenario are longer than a model’s window size. For such instances, rather than chunking them as we do in
language modeling, we truncate them so that they fit within the model’s context window.

Multiple choice. For multiple choice scenarios, each instance has several answer choices as references
(usually with one marked as correct). In traditional approach to classification (e.g. a CNN trained to perform
image classification on ImageNet (Deng et al., 2009)), a model would explicitly predict a distribution over
answer choices (and, generally, the argmax of this distribution would be the model’s prediction). However,
given the flexibility of the natural language interface of a language model, multiple choice classification can
be implemented in several ways.

Prior work introduces two classes of approaches to address adaptation for multiple choice scenarios. The
first is the separate approach employed by Brown et al. (2020), where each each choice each choice is
independently scored by concatenating it with the question and computing its probability according to the
LM. In this approach, the probabilities may be further calibrated by the probability the LM assigns to
the answer choice alone. The second is the joint approach employed by Hendrycks et al. (2021c), where
all the choices are concatenated with the question to form a prompt (e.g., “<question> A. <choice 1>
B. <choice 2> Answer:”) and the LM predicts the choice index (e.g., A or B). This resembles how one might
see a multiple choice question presented on an exam or test.

In §8.2: prompting-analysis, we conduct ablations to study how the choice of adaptation method for
multiple choice scenarios influences performance, finding the choice leads to substantial changes in accuracy
(among other metrics). For each multiple choice scenario, we provide a default adaptation method. To select
this default, we follow prior work if prior work establishes one method as preferable. Otherwise, we default
to the joint approach unless the answer choices are natural continuations of the input (e.g. HellaSwag),
in which case we use the separate approach. We prefer the multiple choice approach for three reasons: (i)

116http://keg.cs.tsinghua.edu.cn/glm-130b/posts/glm-130b/
117https://github.com/yandex/YaLM-100B
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it requires one query per question as opposed to one query per answer choice, (ii) it enables the use of
in-context training examples to improve performance, and (iii) it facilitates direct comparison of choices for
the model, which handles choices like ’none of the above’ in a more sensible way.

J.2 Formatting the remainder of the prompt

Selection of training examples. For all non-language modeling scenarios, we include training examples
in-context to specify the desired model behavior.118 We select 5 examples by default, though for scenarios
with long examples, we adaptively reduce the number of examples based on the model’s window size. Our
selection policy for these examples emphasizes class coverage: for classification problems (i.e. where the
output is from a closed set), we iterate over the possible classes in order of decreasing frequency, randomly
sampling a representative for each class.

Critically, we fix these training examples for all instances to better reflect the realities of few-shot learning
and the potential brittleness of this approach. This is contrast to the common practice of selecting a different
set of instances for each test instance (Brown et al., 2020), which may lead to lower variance than would be
seen in practice under true few-shot conditions (Perez et al., 2021). Since we expect the selection of training
examples to be a significant contributor to variance, we repeat this process 3 times to measure the variance.

Prompt construction. In addition to the test instance and in-context training examples, we complete
the prompt by providing instructions or prefixes that further delineate the desired model behavior. Prior
work has extensively shown that the design of prompts matters (Le Scao & Rush, 2021; Liu et al., 2022b)
with Bach et al. (2022) introducing a repository for prompts.119

Our philosophy is to view prompting as user behavior, consistent with our treatment of these models as
interfaces: rather than having to optimize prompts to maximize model performance (Shin et al., 2020), we
should strive for models that perform well on naturalistic prompts. Moving forward, we further expect that
it may be desirable for language models to be interoperable meaning different models should be standardized
such that they all work well for similar user prompting behavior. We encourage future work to explore how
users are likely to prompt models in different circumstances, including how this depends on the broader
interface that shapes the user’s experience.

J.3 Decoding parameters

Once the test instance (§J.1: prompting-test) and broader prompt (§J.2: prompting-remainder) are
specified, the decoding parameters must also be specified to generate the model completion. These parame-
ters are the temperature, stop condition (i.e. max tokens and stop sequences), and number of completions.

Temperature. The temperature modulates the distribution over next words used to decode text from
the model: a temperature of 0 corresponds to selecting the argmax, of 1 corresponds to sampling from the
distribution, and of ∞ corresponds to sampling from the uniform distribution. In recent years, alternative
methods for decoding that post-process the model’s distribution have been popularized like top-k sampling
and nucleus sampling (Holtzman et al., 2020). Empirically, these methods generally improve the quality of
model generations when models generate longer sequences.

In this work, since several of the models only support temperature-based sampling, as opposed to other sam-
pling methods, we restricted ourselves to temperature-scaling during the sample process.120 Consequently,
for all scenarios where the ideal model behavior is to generate a very short sequence that should match the
correct reference, we set the temperature to be zero as we desire the argmax under the model’s distribution.
For the longer-form generation scenarios such as text summarization, we either follow prior work or specify
a process by which we arrived at the temperature we used.

118This is unnecessary for language modeling as the model by default produces a probability, which is the required behavior.
119https://github.com/bigscience-workshop/promptsource
120Note that it is possible to implement nucleus sampling post hoc even when a model provider does not natively support this,

but this leads to a prohibitive increase in the number of tokens needed to query the model.
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Stop Condition. Beyond the context window as a fundamental limit to the number of tokens a particular
model can generate, we specify additional stop conditions to terminate decoding. The stop sequence(s) is
a sequence of tokens that, if encountered during decoding, terminate the completion. Alternatively, max
tokens is an absolute threshold on the number of tokens in the completion. In general, since we specify
adaptation in a model-agnostic (and, hence, tokenizer-agnostic) fashion, we prefer to use stop sequence(s) as
the (primary) stop condition to not make assumptions on the tokenizer (e.g. if model A uses a character-level
tokenizer and model B uses a subword-level tokenizer, setting the same number of max tokens for both as
the primary stop condition likely will lead to an unfair comparison). Since we provide in-context examples
that we separate using a newline character, we generally set the stop sequence to be the newline character
“\n”. We find that across most instances and scenarios, model generation for all models terminates due to
this condition. As a fail-safe to avoid the model generating an excessive number of tokens in the completion,
we additionally set max tokens for each scenario based on the longest reference’s length for that scenario.

Number of outputs. For a given prompt, since the model’s completion involves sampling, there is ran-
domness involved in determining the specific completion decoded for each instance. For most scenarios, since
we are decoding the argmax through low temperature decoding, this is not a significant factor. However, for
a few scenarios where we want to study the distribution of outputs for a given prompt, we sample multiple
outputs per input. When relevant, we note this, though by default the number of outputs we sample per
input is 1 (or 0 for language modeling as no output is generated).

J.4 Adaptation methods

Have specified our approach to adaptation via few-shot prompting, we now describe the specific adaptation
methods. We discuss these implicitly above, but we make explicit in Table 14 how each scenario is associated
with an adaptation method by default that dictates how the scenario is addressed by the language model.
This relates to the experiments in §8.2: prompting-analysis.

Adaptation method Scenarios
Language modeling The Pile, ICE, TwitterAAE
Multiple choice (joint) MMLU, TruthfulQA, LegalSupport, LSAT, BBQ
Multiple choice (separate) BLiMP
Multiple choice (separate-calibrated)
Generation BoolQ, NaturalQuestions (open-book), NaturalQuestions (closed-book), NarrativeQA

QuAC, XSUM, CNN/DailyMail, IMDB, CivilComments
RAFT, WikiFact, synthetic reasoning, synthetic reasoning (natural)
bAbI, Dyck, GSM8K, MATH, MATH (chain-of-thoughts)
HumanEval, APPS, EntityMatching, DataImputation
Copyright (text), Copyright (code), disinformation (reiteration), disinformation (wedging)
BOLD, RealToxicityPrompts

Ranking MS MARCO (regular), MS MARCO (TREC)

Table 14: Default adaptation methods. For each adaptation method, we specify the scenarios that use
the method by default. We do not specify defaults for HellaSwag and OpenBookQA currently.
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