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Abstract

Structure-based drug design (SBDD) stands at the forefront of drug discovery,
focusing on developing molecules that target specific binding pockets. Recent
advances in this area have witnessed the adoption of deep generative models,
modeling SBDD as a conditional generation task where the target structure serves as
context. Despite previous claims that generated ligands outperform their respective
ground truth counterparts in terms of docking score evaluation, our analysis reveals
that these perceived performance improvements are attributed to inherent biases
within the scoring systems themselves, rather than an accurate assessment of the
ligands’ binding affinity. To address this issue, we introduce the delta score, a
new evaluation metric emphasizing docking scores that prioritize specificity. Our
experiments reveal that molecules produced by current deep generative models
significantly lag behind ground truth reference ligands when assessed with the
delta score. This novel metric not only complements existing benchmarks but also
provides a pivotal direction for subsequent research in the domain.

1 Introduction

In the field of drug discovery, the development of novel small molecules that could form stable binding
complexes with a specific disease-related target, known as structure-based drug design (SBDD) tasks,
is of paramount importance. With the availability of an increasing amount of structural data, such as
the PDBbind[21]] and Crossdocked dataset[2]], many deep generative models [12} 17, [11] have been
proposed to address SBDD by formulating it as a target-based conditional generation task, resulting
in remarkable progress.

Specifically, the assessment of these models has predominantly focused on docking scores between
generated molecules and designated targets, using docking software such as Vina [19]]. Despite the
claims made by state-of-the-art models that a majority of the ligands they generate outperform the
docking score of ground truth ligands in test sets [4], it raises the questions: Has the issue of 3D
molecule generation been conclusively resolved? Do these scores align with real-world biological
needs?

To address these inquiries, we conducted an experiment on the CrossDocked2020 dataset to achieve a
fair comparison between various deep generative models. Our reproduced outcomes have exhibited
evident enhancements of these deep generative models compared to the ground-truth, at least for a
certain proportion of targets, which are consistent with previous claims. However, surprisingly, we
discovered that a basic random sampling approach from Zinc also produced superior outcomes when
compared to the ground-truth. This exceptional result prompts us to reevaluate the chosen evaluation
metric.
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Our analysis show the shortcomings of using “docking score” as the primary evaluation metric:
the overall averaged score could be artificially inflated by characterizing certain biases, without
truly capturing the matching degree between the molecules and the target. Therefore, we propose a
complementary metric named "delta score", which allows us to distinguish specificity in binding to
the target by subtracting the average matching degree, thereby better accommodating the requirements
of applications in structure-based drug molecule design.

2 Related Work

With the emergence of geometric models [[18} 13]], the field of Structure-Based Drug Design (SBDD)
has shifted towards 3D neural networks for encoding protein structures and decoding 3D molecule
conformations, representing real-world 3D interactions. Various methods have been proposed,
including voxel-based methods [[15]], auto-regressive models [[13}[17,[10]], and diffusion models [4}|5]].
Most of these works used Vina score [[19]] for binding affinity evaluation, which is a typical docking
software to predict the interactions between a small molecule and a protein target, similar to Glide
[6]] and Gold [20]. However, there is limited discussion on the suitability of this widely used docking
metric in assessment of SBDD methods.

3 Experimental Analysis w.r.t. Docking Score

We first conduct experiments on CrossDocked2020 dataset [2] to compare different deep generative
models, including auto-regressive model[[12] (denoted as AR), Shape2mol[/11]], Pocket2mol[17] and
Targetdiff[4]. In addition, we randomly sample small molecules for each target from Zinc dataset
[8]], to form a baseline named Random_Zinc method. The data preprocessing and splitting are all
following Luo et al. [[12] to ensure a fair comparison. For each method, we generate 100 molecules
for each target pocket in the test set and calculate the affinity score using Glide instead of Vina, since
Glide has demonstrated superior performance in predicting both accurate conformation and binding
affinity [22]]. It is important to note that the Vina evaluation results display a high degree of similarity,
therefore the conclusions drawn can be generalized across different docking scores.

3.1 Experimental Results

From the results in Table[I] we find that: 1) there is relatively little difference in the averaged docking
scores generated by different models, including ground truth and Random_Zinc; 2) Targetdiff
consistently outperforms ground truth; 3) each method is capable of generating molecules that
outperform ground truth performance on different targets, for example, Targetdiff outperforms ground
truth on nearly half targets and even Random_Zinc has the ability to outperform ground truth on
22.4% targets. Evidently, these findings have sparked concerns regarding the reliability of the docking
metrics utilized.

Table 1: Glide Docking Scores

Dataset CrossDocked 2020
Methods Mean of mean (]) Median of mean (|) Better than GT (1)
Ground Truth | -6.367 -6.581 -

AR \ -5.833 -5.666 0.359
Pocket2mol | -6.282 -6.170 0.382
Shape2mol \ -5.631 -5.663 0.265

Targetdiff \ -6.670 -6.742 0.489
|

Random_Zinc -5.543 -5.564 0.224

3.2 Case Study

Upon further analysis of the small molecules generated by Targetdiff, particularly those exhibiting
favorable docking scores, we have discovered some intriguing properties:



e These molecules typically exhibit highly intricate cyclic structures, implying their extremely
low likelihood of existing in reality and the significant challenges to synthesize.

e These molecules typically have promising docking scores against most of pockets in the test
set, rather than only their specific target, which means they may be pan-assay interference
compounds (PAINS) or have poor specificity.

More specifically, we randomly select 20 pockets in the test set and generate 100 small molecules
for each pocket. We select the one with the best docking score on each pocket, totaling 20 small
molecules. All these small molecules have a docking score of over -9 on their true targets. We cross
dock them with all the pockets in the test set, the results are shown as Figure[I] We notice that out
of the 20 small molecules, only 2 have a top 1 docking score for their true targets. Furthermore, we
have observed that for almost a quarter of the molecules, the docking scores are higher for over 10
other pockets as compared to their true targets. For a more detailed demonstration, we choose to
display one generated molecule with a glide docking score of up to -10.111 against its target pocket
in Appendix B.
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Figure 1: In the left image, each line represents the sorted docking score of a small molecule against
all pockets in the test set. The highlighted red represents its true target. The right image displays
the number of test pockets for each small molecule in which the docking score is higher than their
respective true target.

3.3 Analysis

Based on previous experimental results and case studies, we have concluded that current docking
scores have limitations in accurately evaluating the binding relationships between generated molecules
and targets, leading to false positive issues.

According to [14 |1} [16], docking software generally employs force field models to assess the
interaction energy between molecules and receptors. However, these models are often empirical
and trained on known structures and properties, resulting in inherent limitations. They may fail to
accurately capture all molecular features and types of interactions, leading to biases. One consequence
of this bias is that docking software may assign high scores to small molecules with some certain
specific structures, such as PAINS, even if they are actually false positives.

While docking scores can offer insights into the binding affinity between small molecules and target
proteins, they may not provide a complete assessment of selectivity. It is crucial to consider the
off-target effects, which arise when a drug molecule interacts with unintended targets, leading to
potential adverse reactions and impacting the overall therapeutic outcome [[7, 23} 9].

To develop an metric that can effectively counteract bias, a straightforward yet effective way is to
consider the difference in scores between positive pairs and negative pairs rather than solely focusing
on the score of one pair of molecule and receptor. Based on this, we introduce delta score in Section
4.1. By incorporating the variation in affinity scores across different targets, this metric can also
assess the specific binding capacity of a small molecule to its target.



4 Delta Score

4.1 Definition

Suppose the test set contains n target pockets p1, pa...D;..., Pn, for each pocket p; the model generates
m molecules x;1, T;2...Tij..., Tim. Using docking software mentioned in Section 3.1, we calculate
the affinity score between a molecule and a pocket: S(z;;, p;). We define the binding ability of small
molecules generated by the model for target p; to target py, as:

BindingAbility,;, = E e (1 m)[S (i, pi)] M

In order to strengthen specificity and reduce the effect of PAINS fragments, we defined a novel metric,
the delta score for SBDD. The metric is defined as follow:

DeltaScore(p;) = BindingAbility,; — BindingAbility, ke kti 2

= IEje(l,m) [S(xijvpi)] - ]Ejeu,m) [S<xijapk)k;éi]
We have also proposed a sampling technique in Appendix A, to improve the computational efficiency
of approximating this expectation.

4.2 Experimental Results w.r.t. Delta Score

Table 2: Results on CrossDocked dataset with delta score.
Best results are underlined.

Random_Zinc -0.019 -0.018

Dataset CrossDocked 2020

Methods mean of mean (/) median of mean (|)

Ground Truth | -0.810 -1.062

AR \ -0.535 -0.296

Pocket2mol | -0.309 -0.231

Shape2mol | 0.052 -0.072

Targetdiff | -0.382 -0.505

|

We have conducted a reevaluation of state-of-the-art deep generative models on CrossDocked2020
with a focus on delta score. As indicated in Table[2] we have observed the correction of all exceptional
results in Table|1| Firstly, there are significant differences among different methods, with ground
truth being the best and random being the worst. This is reasonable because Random_Zinc could
be considered as an unconditional random sampling method, its target aware binding performance
is expected to close to zero. This reaffirms our belief that the delta score can incisively evaluate
the conditional components of molecules, pinpointing those elements that genuinely and effectively
engage with the target structure. Secondly, even the best generative models, e.g. AR and Targetdiff,
shows significant differences from the ground truth, indicating that there is still a considerable
research and development space in this direction.

5 Conclusion

While contemporary deep generative techniques have elevated the docking score, our analysis
indicates that this enhancement predominantly pertains to the non-conditional aspects. Such im-
provements, we deduce, can be attributed to the methods learning biases that might mislead docking
software, occasionally leading to the generation of anomalous molecular structures. We envision
this pioneering metric—delta score—as a valuable addition to the current set of benchmarks. By
providing deeper insights, we hope it will pave the way for more informed advancements in the realm
of Structure-Based Drug Design.
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A Delta Score

To mitigate off-target effects, our new metric is designed to emphasize molecules with a specific
binding affinity to the target protein pockets, as opposed to binding to multiple similar pockets
without selectivity. As a result, we anticipate that all generated molecules should exhibit a negative
score, as follows:

BindingAbility;; — minge(1,n) k2:BindingAbility;, =

) 3)
Ejc,m)[S(@ij, pi)] — minge ) kziBie1,m)[S(@ij, pr)] <0

Notice that to calculate minge (1 n)k2ilfje1,m)[S(ij, px)], we need to perform docking for
molecules with all possible pockets which is of quadratic complexity. To address this challenge,
instead of docking molecules with every pockets, we randomly sample » pockets outside of the
pocket p;: {p1/...par} C {p1,P2, .-, 0n} \ {pi} and define Delta Score for p; as:

DeltaScoreﬁ(pi) = EjG(l,m) [S(atm,pz)] — minke(l/ﬁ/)Eje(Lm) [S(xm,pk)] (4)

When 77 = n — 1, the Delta Score is defined as equivalent to Eq. 2] In order to save computing
resources, we set 7 = 1 in which case the delta score becomes:

DeltaScore (p;) = Eje(1,m)[S(wij, 0i)] — Eje,m)[S(Tij, Pr) ki) (5)

It can be readily demonstrated that, in terms of statistical significance, this is equivalent to the
difference between the model’s binding affinity for a specific target and the model’s average binding
affinity for other targets:

1
E;[DeltaScore; (p;)] = E;[BindingAbility;; — —— > BindingAbility, | (6)
ke(1,n),k#i

Proof. According to equation



Eie(1,n) [DeletaScore; (p;)] @)
=EicamEjcq,m 5@, pi)] — Bicm) Eje,m)[S(@ij, i)kl ®)
| ik
= [;[BindingAbility,;] — = > " E;[S(x;, pr)] )
"k
1 1 &
= Ei[BindingAbility,] — — Z — Zk: E;[S(zij, pr)] (10)
= E,[BindingAbility,;,] — E;|—— Z BindingAbility,, | (11)
T T ke(,n) ki
= E,;[BindingAbility,, — e Z BindingAbility, ] (12)
ke(1,n), ki
O

B Case Study

We choose one generated molecule against 41fu_A_rec.pdb pocket for a more detailed display. It is
questionable and has many issues as depicted in Figure[2] On the one hand, the molecular skeleton
of the compound is complicated, consisting of multiple non-aromatic ring structures. The chemical
reactions that could directly obtain this molecular skeleton are limited. The lipid rings exhibit poor
water solubility and is easy to be metabolized. The N-hydroxamide is not common in drugs. On the
other hand, we observe that it exhibits fairly good docking scores for the majority of the pockets in
the test set, with an average of -7.02. Two pockets even surpass its actual target receptor on docking
score, which indicates this molecule is highly likely to be a pan-assay interference compound or
prone to off-target effect. Similar phenomenon occurs on almost all generated molecules with good
docking scores, which indicates that only using docking score metric is far from enough to evaluate
the effectiveness of current generative model.
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Figure 2: One molecule generated by Targetdiff Model against 41fu_A_rec.pdb pocket. The left
image shows its 2D structure. The right image shows its docking scores against pockets in the test set
(after sorted). The column highlighted in red indicates its actual target.
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