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Abstract

Self-supervised learning (SSL) models have become crucial in speech processing,
with recent advancements concentrating on developing architectures that capture
representations across multiple timescales. The primary goal of these multi-scale
architectures is to exploit the hierarchical nature of speech, where lower-resolution
components aim to capture representations that align with increasingly abstract con-
cepts (e.g., from phones to words to sentences). Although multi-scale approaches
have demonstrated some improvements over single-scale models, the precise rea-
sons for these enhancements have poor empirical support. In this study, we present
an initial analysis of layer-wise representations in multi-scale architectures, with
a focus on Canonical Correlation Analysis (CCA) and Mutual Information (MI).
We apply this analysis to Multi-Resolution HuBERT (MR-HuBERT) and find that
(1) the improved performance on SUPERB tasks is primarily due to the auxiliary
low-resolution loss rather than the downsampling itself, and (2) downsampling to
lower resolutions neither improves downstream performance nor correlates with
higher-level information (e.g., words), though it does improve computational ef-
ficiency. These findings challenge assumptions about the multi-scale nature of
MR-HuBERT and motivate the importance of disentangling computational efficiency
from learning better representations.

1 Introduction

Self-supervised learning (SSL) has become a cornerstone in state-of-the-art speech processing models
[1, 2, 3]. These models serve as feature extractors or pre-trained encoders for various tasks, including
Automatic Speech Recognition (ASR), Speaker Diarisation, Speech Enhancement, and as inputs to
Large Language Models. The versatility of a single pre-trained model across multiple downstream
tasks has led to concentrated efforts on improving this foundational component.

At the same time, there is growing interest in developing SSL models that more closely emulate
human learning processes, as doing so could unlock more efficient and flexible learning mechanisms
[4, 5]. While significant differences exist between the human brain and deep learning models, SSL
aligns with some aspects of human cognition [6]. One key feature of human learning is the multi-
timescale evolution of our world model [7, 8], resulting in a hierarchical learning structure that is
more efficient than models operating on a single timescale.

Speech presents a particularly compelling domain for investigating these ideas as it is a mature field
with well-established datasets [9, 10, 11, 12] and benchmarks [13] consisting of different downstream
tasks that operate most naturally on varying timescales: longer audio sequences are required for tasks
like language identification and speaker diarisation, in contrast to phoneme recognition. Speech also
exhibits a strong and implicit natural hierarchy [14]: sentences comprise words, which in turn consist
of phones and prosodic features.
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Figure 1: MR-HuBERT framework which incorporates masked unit prediction at multiple resolutions.

Designing architectures that optimally exploit this inherent hierarchy could enhance representation
learning efficiency. Multi-scale architectures have been proposed across various domains [8, 15, 16],
including speech processing [17, 18, 19, 20]. These approaches typically employ modular designs,
with successive modules operating at progressively lower resolutions. Recent works [17, 18, 20, 21,
22, 23] that propose multi-scale architectures for speech processing tasks indicate that increasingly
low-resolution representations align with increasingly abstract speech and language components, but
these claims currently have limited empirical support.

Multi-Resolution HuBERT (MR-HuBERT) [21] is a multi-scale architecture that augments HuBERT
[2] with a low-resolution block and an associated auxiliary loss. MR-HuBERT shows promise across
various benchmarks and its success is attributed to a multi-scale structure. By using standard
representation analysis techniques to examine these claims, we evaluate whether lower-resolution
representations are more correlated with higher level speech and language units in multi-scale models.
Our key contributions are:

• Lower-resolution components in MR-HuBERT models do not, as initially hypothesised, cap-
ture representations that align with increasingly abstract speech units.

• Downsampling to lower resolutions within MR-HuBERT does not improve downstream
performance but improves computational efficiency.

• Improved downstream performance of MR-HuBERT over HuBERT is primarily due to the
auxiliary loss located earlier in the network.

2 Multi-Resolution HuBERT

Hidden-Unit BERT (HuBERT) [2] has established itself as the leading architecture for audio SSL
models. For this reason, we focus here on Multi-Resolution HuBERT (MR-HuBERT) [21, 24], a model
that aims to improve HuBERT through a multi-resolution architecture by introducing:

• Downsample and upsample modules between encoder blocks to process features at
different resolutions (skip connections are applied to link encoders of the same resolution);1

• An auxiliary loss at low-resolutions, applied at the end of each decoder and computed
through a projection layer. Targets are formed by sub-sampling the base target stream.

We illustrate MR-HuBERT’s architecture in Fig. 1. In this paper, we analyse the layer-wise acoustic
and linguistic information content of a series of ablations of the MR-HuBERT-base model2, listed in
Table 1 , and HuBERT-base3. To do so, we employ methods used in previous representation analysis
studies [25, 26, 27], such as Canonical Correlation Analysis (CCA) [28], Mutual Information (MI)
[29], and spoken Semantic Textual Similarity (STS) [30]4. We also run Speech processing Universal
PERformance Benchmark (SUPERB) [13] downstream tasks and analyse learnt layer weightings.
We provide further details on our methodology in Appendix A.

1We note a potential error in the official implementation of MR-HuBERT (see Appendix C).
2MR-HuBERT models are downloaded from the Fairseq MR-HuBERT page.
3HuBERT models are downloaded from the Fairseq HuBERT page.
4We use the official implementation, available on the Layerwise Analysis repository.
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Model Resolutions (ms) Layers Downsampling Auxiliary loss
HuBERT-base 20 12 ✗ ✗

MR-HuBERT-base5 20, 40 4, 4, 4 ✓ ✓
MR-HuBERT B2-a 20, 40, 80 3, 2, 2, 2, 3 ✓ ✓
MR-HuBERT B2-b 20, 40, 80 2, 2, 4, 2, 2 ✓ ✓
MR-HuBERT B4-a 20, 40 4, 4, 4 ✓ ✗
MR-HuBERT B5-a 20 4, 4, 4 ✗ ✓

Table 1: HuBERT and MR-HuBERT models used for analysis in this work. The total number of layers
is the same for all models. In B2-a and B2-b a third resolution is introduced. B4-a is only trained on
a single loss. B5-a has a single resolution but retains an auxiliary loss.
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Figure 2: Impact of auxiliary loss, downsampling and added resolutions on information content
and importance in downstream performance. Fig. 2a shows CCA scores for HuBERT and multiple
MR-HuBERT variants. Comparing these models, we see that the auxiliary loss is the primary factor in
increasing the word level information in earlier layers. Fig. 2b shows SUPERB weights for the ASR
and SF tasks, and again shows that the auxiliary loss is responsible for middle layers being useful for
downstream tasks. 6

3 Findings

3.1 Lower-resolution layers fail to capture abstract speech units

In Fig. 2a, we show the layerwise word-level CCA values of HuBERT and MR-HuBERT models. We
observe most MR-HuBERT models feature two peaks: one near the end of the network (a feature of
HuBERT models generally), and another near the middle (a feature of other SSL models [26]). Notably,
downsampling alone does not change this pattern. We see no difference in word-level CCA between
MR-HuBERT-base (two-resolutions, downsampling) and B5-a (single resolution, no downsampling)
nor do we see differences between MR-HuBERT and three-resolution ablations (B2-a and B2-b).

This pattern is consistent across other word-level measures (see Fig. 3 and 5 for further plots on other
metrics and model sizes) as well as different speech units. We see no increase in learned word (Fig.
2), phone or semantic (Fig. 3) information in MR-HuBERT when downsampling to various degrees
(MR-HuBERT-base, B2-a, B2-b, B4-a) compared to not downsampling at all (B5-a).

These results suggest that downsampling at these rates does not affect the information content of
the representations learned. Most importantly, downsampling does not align with more abstract
speech units. Whilst we find that middle layers of MR-HuBERT are more heavily associated with more

5MR-HuBERT-base refers to the mono-base model on the Fairseq MR-HuBERT page.
6To explain the difference in number of layers between Figs. 2a and 2b: as discussed in appendix D.4 of [21],

MR-HuBERT encompasses transformer layers as well as outputs of the sampling modules, so a two-resolution
MR-HuBERT adds two layers, denoted by D0 and U0 in Fig. 2b. Additionally, Fig. 2a does not include the layer
before the first transformer layer, denoted by T0.
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Model ASR SF SE IC KS SD
(WER ↓) (F1/CER ↑ / ↓) (STOI [34]/PESQ [35] ↑ / ↑) (Acc ↑) (Acc ↑) (Acc ↑)

HuBERT-base+ 6.34 89/23 0.93/2.55 98.4 96.5 N/A
MR-HuBERT-base 5.85 89/24 0.94/2.53 98.6 95.7 94.8
MR-HuBERT B4-a 6.35 89/24 0.94/2.53 98.1 96.7 95.1
MR-HuBERT B5-a 5.82 88/26 0.94/2.55 98.3 96.3 94.9

Table 2: Performance on SUPERB downstream tasks with various upstream models based on
MR-HuBERT. The results for HuBERT-base+ are taken from [21].

abstract information such as words, this appears to be independent of downsampling (B5-a) and
unaffected by the resolution at which these layers operate, see e.g. Fig. 2b.

3.2 Down-sampling is only helpful from an efficiency perspective

Not only does downsampling in MR-HuBERT not enhance the information content of representations,
it also does not improve downstream performance. Table 2 shows that performance in downstream
tasks is hardly affected when downsampling is removed (B5-a). This suggests downsampling is not
responsible for improvements seen in MR-HuBERT [21]. Nevertheless, it is important to note that
downsampling is still useful for improving model inference speed and training time. The current
downsampling methods, however, appear too limited in scope to effectively capture broader linguistic
units which naturally vary across time scales up to 50 times larger [17]. This suggests more aggressive,
context-aware downsampling techniques [31] could better capture higher-level speech information,
leading to both improvements in downstream performance as well as further efficiency gains.

3.3 The auxiliary loss improves downstream performance

In contrast, the removal of the auxiliary loss impacts our analysis significantly. We see worse
performance of the B4-a model compared to MR-HuBERT-base and B5-a on ASR tasks in Table 2.
We also see clear differences in the content of the model representations in Fig. 2 which could explain
the observed difference in performance. In Fig. 2a, we find the additional early peak typical of
MR-HuBERT entirely disappears when the auxiliary loss is removed (B4-a; see also Fig 3). Moreover,
middle layers of the network are more useful for phonetic-based tasks, such as ASR and Slot Filling
(SF), when the auxiliary loss (B5-a) is present, independent of downsampling as shown in Fig. 2b.
We also find that B4-a results are closer to those of HuBERT than any other MR-HuBERT model. This
is the case for both ASR performance as shown in Table 2) as well as CCA scores as shown in 2a7.

These results strongly suggest that the auxiliary loss is the key driver of downstream performance
improvements [21]. By encouraging the model to learn more diverse and relevant features at earlier
layers, the auxiliary loss enhances the model’s ability to capture crucial phonetic and linguistic
information. Notably, this loss mirrors the approach used in Deeply Supervised Nets [32], where
early losses are thought to improve gradient flow and feature robustness. It may also act as a regulariser
[33], helping the model learn more stable, generalised representations by adding constraints during
training — a benefit that could be especially important in low-resource settings like LibriSpeech.

4 Conclusion

In this study, we find that the improved downstream performance of MR-HuBERT is primarily due to
the auxiliary loss function, rather than downsampling in the multi-resolution architecture. Empirically,
the auxiliary loss promotes better learning in intermediate layers, leading to superior downstream
task performance. While downsampling enhances computational efficiency, it does not improve
linguistic representations or downstream performance. Additionally, we find no evidence that lower-
resolution layers capture more abstract speech information, highlighting the need for more effective
unsupervised learning. This paper highlights the importance of analysing representation quality to
gain deeper insights into how well multi-scale architectures capture different abstractions of speech
information. We leave the exploration of improved architectures based on this analysis to future work.

7Remaining differences between B4-a and HuBERT may be due to MR-HuBERT’s extra training iteration [21].
This may also explain why the peak scores for most CCA metrics are higher for MR-HuBERT than HuBERT.
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A Analysis methods

In this section, we discuss the various metrics used to assess the acoustic and linguistic information
present in the representations of different layers of a self-supervised model.

A.1 Canonical correlation analysis

Following previous layer-wise comparative studies [25, 26], we employ Projection Weighted Canoni-
cal Correlation Analysis (PWCCA), referred to throughout this paper as simply CCA, in order to
correlate the model’s internal representations with phonetic and word information and investigate how
this varies across layers in the model. The internal representation for each word/phone is calculated
by averaging the model’s representations across the time steps corresponding to the span of that
word/phone in the input sequence. Averaging across the time dimension effectively condenses the
sequence information into a single vector representation for each word/phone, facilitating a more
straightforward comparison of model behaviour across different layers. This process is then repeated
to compare these internal representations against a range of external representations, capturing
different linguistic and phonetic characteristics. Specifically, we perform comparisons using the
following sets of representations: CCA mel (representations based on MFCCs to capture phonetic
features), CCA phone (one-hot encoded phoneme embeddings), CCA word (one-hot encoded word
embeddings), CCA glove (GloVe word embeddings [36] to capture semantic similarity), CCA agwe
(acoustically grounded word embeddings [37] reflecting spoken word characteristics). For each of
these, we follow [26] by using 7000 samples of words/phones from Librispeech.

A.2 Mutual information

Mutual information (MI) measures the information one random variable contains about another
random variable. High MI is equivalent to a large reduction in uncertainty of one random variable
given knowledge of the other, which implies dependence [38].

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(1)

We assess the dependence of phone and word labels on hidden representations in MR-HuBERT as
described in [25, 29]. We first obtain averaged model features (as described above for CCA) which
are then clustered using K-means to obtain a discrete distribution for MI analysis. Similarly to [26],
we cluster phone representations with k = 500 and word representations with k = 5000 centres.

A.3 Spoken sentence-level semantic textual similarity

The spoken Semantic Textual Similarity (STS) allows us to examine the extent to which SSL
representations capture utterance-level semantic content [39]. Following [27] we calculate Spearman’s
ρ correlation between annotated human judgments and the predicted similarity scores of utterance
pairs. Sentence-level similarity scores are extracted by taking the cosine similarity between the
mean-pooled representation of each utterance in a pair [27].

A.4 SUPERB

Speech processing Universal PERformance Benchmark (SUPERB) [13] is a set of benchmarking
resources to evaluate the performance of a shared model across a variety of speech processing tasks.
We report on the following SUPERB downstream tasks to give results across a broad spectrum of
speech-related tasks: Automatic Speech Recognition (ASR), Slot Filling (SF), Speech Enhancement
(SE), Intent Classification (IC), Keyword Spotting (KS) and Speaker Diarisation (SD).

We examine downstream performance as well as the learned weightings inside the downstream
adaptor for each layer in the pre-trained model to gain insights into where the most useful information
is located for specific downstream tasks. When training downstream models, we use the default
hyperparameters, including the learning rate. SUPERB learns a weighted average of the representa-
tions from the different layers from the self-supervised upstream model. Following previous work
[40, 41, 42, 43, 44, 45, 24, 46, 3], we use these learned weightings to determine if certain layers
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Model Final Train Loss Final Validation Loss
post-residual (baseline) 7.312 6.784

pre-residual 7.302 6.757

Table 3: Effect on pre-train losses of altering the residual connection when added before the decoder.

contain significant information important to a specific downstream task and if so, which layers those
are.

B Layer-wise analysis of single and multi-resolution models

In this section, we present the metric-specific results of the layer-wise analyses conducted on
MR-HuBERT ablations (see Table 1) and HuBERT baselines. In addition to the findings reported
in the paper, we observe in Fig. 4 that consistent with [25], the correlation between frame-level
representations and fbanks increases with depth in the convolution layers of the feature extractor, but
then decreases towards the mid-transformer layers for both HuBERT and MR-HuBERT models. While
there are no significant differences between two- and three-resolution models in frame, word, and
sentence-level metrics, we do see a notable decrease in phone-level scores in the mid-layers of the
three-resolution models (specifically B2-a and B2-b in panels B and C of Fig. 3).

C Modifying the residual connection

The diagram and equations from the MR-HuBERT paper [21] show that the residual for a given
resolution is added before the decoder. However, the official implementation8 contradicts this and
adds the residual after the decoder. We do not modify this in our experiments to retain consistency
with the original results. However, we ran separate experiments which show an improvement in
pre-train validation losses when the residual is added before the decoder (see Table 3).

These exploratory experiments used smaller MR-HuBERT model sizes due to resource constraints.
Models were trained for only 10% of the usual 400k steps and the changes in architecture compared
to MR-HuBERT-base are as follows: layers per encoder: 2, encoder embedding dim: 192, encoder
feed-forward dim: 768.

D SUPERB layer weight analysis

Here, we provide further details on our layer weightings analysis of various SUPERB downstream
tasks for a subset of the models listed in table 1. We show a layer weight analysis for MR-HuBERT,
B4-a and B5-a in Figs. 6a, 6b and 6c respectively to ablate the effects of auxiliary loss and the down-
and upsampling modules further. The layer weightings in Fig. 6a support the same conclusions as in
[21], e.g., MR-HuBERT allocates over 40% of its attention to low-resolution layers 8 and 9 for ASR.
As discussed in the main text, this number decreases when downsampling is removed. We see a
similar effect for the SF task, where focus is shifted away from the low-resolution encoder towards
the second high-resolution encoder. The low-resolution MR-HuBERT layers are associated to semantic
context in the data and these results suggest that these semantics are pushed into the middle layers by
training on the low-resolution loss and to a lesser extent by the downsampling.

The SE task generally focuses on the early layers - at least 66% of the weightings are assigned to
the first three layers in all models. All the layers are used relatively evenly for SD and KS across all
models. Weightings are slightly less concentrated towards the end of the network for B5-a compared
to the other models.

8https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/multires_hubert/multires_hubert.py#L783
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Figure 3: Layer-wise analyses of base models of MR-HuBERT and HuBERT models. (A) MI scores
between mean-pooled word-level representations and word identities. (B) MI scores between mean-
pooled phone-level representations and phone identities. (C) CCA similarity between mean-pooled
phone-level representations and phone identities (one-hot encoded). (D) CCA similarity between
mean-pooled word-level representations and AGWE embeddings. (E) CCA similarity between mean-
pooled word-level representations and GloVE embeddings. (F) Spearman’s ρ correlation between
annotated human judgments and cosine similarity of spoken utterance pairs.
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Figure 5: Layer-wise analyses of large models of MR-HuBERT and HuBERT models. (A) MI scores
between mean-pooled word-level representations and word identities (one-hot encoded). (B) MI
scores between mean-pooled phone-level representations and phone identities (one-hot encoded).
(C) CCA similarity between mean-pooled word-level representations and AGWE embeddings and
GloVE embeddings. (D) CCA similarity between mean-pooled frame-level representations and
fbanks as well as phone-level representations and phone identities (one-hot encoded). (E) CCA
similarity between mean-pooled word-level representations and word identities (one-hot encoded)
as well as Spearman’s ρ correlation between annotated human judgments and cosine similarity of
spoken utterance pairs.
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Figure 6: Layer importance-weightings for all SUPERB downstream tasks we study in this work, for
MR-HuBERT and two of its ablations.
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