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ABSTRACT

Reconstruction-based methods have demonstrated remarkable success in the do-
main of industrial anomaly detection.Recently, Diffusion Models have been
widely applied to industrial anomaly detection, driven by their powerful recon-
struction capabilities. However, existing methods predominantly rely on an ide-
alized Gaussian noise assumption. This creates a significant discrepancy with
the complex and structured characteristics of anomalies in real-world industrial
settings, leading to issues such as unpredictable model behavior and high false
alarm rates. To address the aforementioned challenges, we are the first to in-
troduce the concept of prototype learning into the domain of industrial anomaly
detection. We formulate the Dual-Prototype Noise Repository (DPNR), a frame-
work designed to guide the generation of realistic, structured noise and thereby
replace the simplistic Gaussian noise prior. Specifically, DPNR guides a Dual-
Prototype Guided Structured Noise Injection (DP-SNI) mechanism, enabling a
dynamic and content-aware noise generation process. To address the limitations
of traditional loss functions, we design the Region-adaptive Hybrid Noise Loss
(RHN-Loss). By leveraging dynamic blending and adaptive weighting schemes,
RHN-Loss provides robust and end-to-end optimizeable guidance.

1 INTRODUCTION

Anomaly detection has become a cornerstone technology in industrial manufacturing, enabling pre-
cise identification and localization of subtle anomalies in both product appearance and functional
performance Chen et al. (2023); Liu et al. (2023); Liznerski et al. (2020).This capability is funda-
mental to maintaining stringent quality control standards while ensuring stable operational continu-
ity across production lines.In practical industrial applications, anomalous samples are inherently rare
and exhibit an imbalanced class distribution, whereas embedding-based anomaly detection meth-
ods Chen et al. (2024); Lee et al. (2022)require large-scale annotated anomaly data.Furthermore,
product iterations and production line upgrades lead to the continuous emergence of new anomaly
types.Consequently, supervised models, which are trained on a predefined library of known anoma-
lies Gu et al. (2024); Jeong et al. (2023), has limitations in generalizing to these unknown anoma-
lies. These critical drawbacks render the supervised learning paradigm unsuitable for the demands
of real-world applications.Consequently, supervised reconstruction-based methods He et al. (2024);
Cai et al. (2024)have gained widespread adoption in industrial inspection.These methods effectively
address critical challenges such as high annotation costs and the dynamic evolution of anoma-
lies.Against this backdrop, diffusion models, leveraging their unique noise learning mechanism,
have opened up a new avenue for unsupervised anomaly detection Mousakhan et al. (2024); Zhang
et al. (2024b).Diffusion models achieve unsupervised anomaly detection by reconstructing the fea-
tures of normal samples and then utilizing the reconstruction error to identify anomalies Zhang
et al. (2024b); Yao et al. (2024); Yin et al. (2023).The standard procedure involves two main
stages: a forward diffusion process that progressively transforms the data distribution into stan-
dard Gaussian noise, and a subsequent reverse denoising process that generates the reconstructed
image from this noise.A primary limitation of these methods is their reliance on Gaussian noise
as the standard noise source. Gaussian noise lacks the topological structures and spatial corre-
lations characteristic of real-world defects (e.g., scratches, cracks).Consequently, models trained
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with such noise struggle to effectively locate or identify structured anomalies, revealing a signif-
icant discrepancy between the simplified noise assumption and the complexity of actual anoma-
lies. Real-world noise, such as artifacts from electrical arcing on metal surfaces, is often impul-
sive and heavy-tailed. Unlike unstructured random pixels, these artifacts possess distinct morphol-
ogy, texture, and spatial correlation, posing a significant challenge to conventional denoising meth-
ods. Noise in industrial defect datasets is characteristically diverse, structured, and non-Gaussian.

Figure 1: Feature Distribution of Real Noise vs. Idealized
Gaussian Noise for the Metal Nut Class.

Consequently, models trained exclu-
sively on Gaussian noise often con-
found normal surface textures with
anomalous anomalies, resulting in a
prohibitively high false positive rate.
Training on a simplistic, unimodal
Gaussian distribution is highly sus-
ceptible to overfitting, which severely
compromises the model’s ability to
generalize to the diverse manifold of
real-world anomalies. The intricate
and non-Gaussian nature of industrial
anomaly noise thus necessitates a de-
parture from the conventional Gaus-
sian assumption, calling for both the acquisition of structured noise and its integration into diffusion
models. A critical challenge that inevitably arises from the shift from Gaussian to structured noise
is the design of the loss function.

To bridge the gap between theoretical models and real-world applications, we depart from treating
“noise” as a single, homogeneous distribution. Instead, we reframe it as a learnable and diverse
ensemble. We are the first to introduce prototype learning to the field of industrial anomaly detec-
tion. We propose the Dual-Prototype Noise Repository (DPNR), a framework that learns and distills
representative anomalous and normal prototypes from real-world industrial data. This repository
is then used to guide a generative model in synthesizing high-fidelity, structured noise, effectively
replacing the simplistic Gaussian noise assumption. Furthermore, for the model’s noising process,
we introduce a Dual-Prototype Guided Structured Noise Injection (DP-SNI) mechanism. By decou-
pling and learning separate representations for the background and foreground anomalies, DP-SNI
synthesizes high-fidelity, structured noise that is endowed with spatial semantics.Through a learn-
able dual-noise parameterizer, we transform noise from a static, uninformative prior into a dynamic
generative process that is conditioned on image content, has learnable parameters, and is semanti-
cally disentangled. Finally, both types of structured noise are coherently fused in a spatially-aware
manner and injected into the training process of the diffusion model. This approach addresses the
key limitations of diffusion models trained exclusively on Gaussian noise, namely their poor gen-
eralization to diverse real-world defects, susceptibility to overfitting, and unpredictable behavior.
To address the limitations of conventional loss functions, we propose the Region-Adaptive Hybrid
Noise Loss. This loss is specifically designed to resolve a core dilemma: the model must learn the
global morphology of the complex, injected structured noise, while simultaneously and precisely
predicting the ideal noise component essential for image reconstruction. We summarize our contri-
butions as follows:

• The primary novelty of this work lies in being the first to conceptualize and apply prototype
learning to the challenges of industrial defect detection. To this end, we construct a Dual-
Prototype Noise Repository (DPNR), a framework based on prototype learning. DPNR
learns the characteristics of noise distributions from real-world industrial data, thereby gen-
erating realistic, structured noise.

• Building upon an industrial data-driven approach, dual-prototype learning framework, we
introduce the Dual-Prototype Guided Structured Noise Injection (DP-SNI) mechanism.
This mechanism is specifically designed to inject authentic noise signals into the forward
noising process of diffusion models.

• We formulate the Region-adaptive Hybrid Noise Loss (RHN-Loss) to overcome the limi-
tations of traditional losses in guiding structured noise prediction. By leveraging dynamic
blending, along with spatial and temporal weighting schemes, RHN-Loss balances noise
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morphology reconstruction against the ideal denoising goal. This end-to-end optimizable
loss significantly improves the model’s capability to handle complex noise.

2 RELATED WORK

We briefly review related work about anomaly detection, diffusion models and prototype learning.

Anomaly Detection:The mainstream anomaly detection approaches can be primarily categorized
into two paradigms: Reconstruction-based Methods and Embedding-based Methods.Embedding-
based methods operate by first extracting feature embeddings from images using a pre-trained net-
work. A normative model of the feature distribution is then established using only normal samples.
Subsequently, anomalies are identified by measuring the deviation of a test feature from this normal
model, which yields an anomaly score Wu et al. (2023); Bae et al. (2023); Gudovskiy et al. (2022);
Zhou et al. (2023).

Reconstruction-based methods operate by localizing anomalous regions based on the discrepancy
between an input image and its reconstruction.Classic early methods, such as autoencoders, leverage
an encoder-decoder architecture to learn a low-dimensional manifold of normal data. Anomalies
are subsequently identified based on high reconstruction error, as they deviate from this learned
manifold Zhao et al. (2017); Liu et al. (2020); Bergmann et al. (2018).GAN-based methods Liang
et al. (2023)detect anomalies by training a generator to model the distribution of normal data. For
instance, AnoGAN Schlegl et al. (2019)leverages discrepancies in the discriminator’s feature space
for detection, while GANomaly Akcay et al. (2018)achieves this through reconstruction error in
the latent space.DREAM Zavrtanik et al. (2021)proposes a collaborative generator-discriminator
framework based on a UNet Ronneberger et al. (2015)architecture. Within this framework, the
generator is responsible for reconstruction, while the discriminator is adversarially trained to identify
anomalies within the reconstruction residuals.Driven by their powerful reconstruction capabilities,
Diffusion Models have been increasingly applied to the field of industrial anomaly detection in
recent years.

Diffusion model:Inspired by non-equilibrium thermodynamics, Diffusion Models are a class of
generative models that learn a data distribution by reversing a gradual noising process. Their ca-
pacity for high-fidelity data generation and reconstruction enables their use in anomaly detection,
where anomalous regions are localized by measuring the discrepancy between an input image and
its reconstruction Zhang et al. (2023b); Tebbe & Tayyub (2024); Rombach et al. (2022).Diffu-
sionAD employs standard-guided Gaussian mixture noise Zhang et al. (2023a).AnomalyDiffusion
formulates few-shot conditioned Gaussian noise Hu et al. (2024).DiAD presents a hybrid strategy
of class-conditioned Gaussian noise and frequency-domain adaptive noise Wyatt et al. (2022).All
these current methods are built upon a “Gaussian noise prediction” training framework. However,
the noise distribution in real-world industrial scenarios is often non-Gaussian.Since the noise added
to each image varies, the reconstruction process becomes uncontrollable.Our formulated DPNR
method replaces Gaussian noise with real structured noise, thereby overcoming the inherent limita-
tions of the methods above and proving more effective for real-world industrial anomaly detection
scenarios. Prototype Learning:Prototype learning is the process of learning a set of representative
samples from large-scale data, which can effectively summarize the core characteristics of the data
distribution.Owing to its high efficiency and inherent interpretability, prototype learning has been
widely applied in various fields of computer vision.In the field of few-shot learning, some studies
have proposed constructing a global prototype to capture generic visual knowledge that transcends
single-class boundaries Liu et al. (2024).In segmentation tasks, researchers have proposed an adap-
tive prototype learning and assignment mechanism, which allows prototypes to adjust based on the
image content dynamically Li et al. (2021).Recently, some works have begun to incorporate external
knowledge, for instance, by leveraging semantic information to enhance the discriminative power of
prototypes Zhang et al. (2024a).In semantic segmentation, PRCL combines prototype learning with
contrastive learning Xie et al. (2024).PEM efficiently generates segmentation masks by using class
prototypes as queriesCavagnero et al. (2024).

These studies demonstrate the significant role of prototypes in pixel-level understanding tasks. How-
ever, they share a common characteristic: prototypes are primarily used as a discriminative tool, with
the ultimate goal of classification or matching, to determine which known prototype a pixel or region
belongs to. This paper is the first to introduce prototype learning to the field of industrial anomaly
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Figure 2: Overview of our three-stage framework. (1) A Dual-Prototype Noise Repository (DPNR)
is built from representative prototypes distilled from real images. (2) The DP-SNI mechanism then
uses these prototypes to dynamically generate content-aware structured noise. (3) This realistic
structured noise, rather than Gaussian noise, is used to corrupt clean images, training the Denoising
U-Net to learn robust, discriminative representations.

detection, and it elevates the application of prototypes to a new dimension: from a discriminative
tool to a mechanism for generative guidance.By using disentangled normal and anomalous proto-
types, we can generate specifically structured noise to replace traditional Gaussian noise, making
the training process more targeted and controllable.

3 METHOD

Existing diffusion models, due to their reliance on Gaussian noise, are unable to model real-world
industrial anomalies effectively. To address this issue, we are the first to introduce prototype learn-
ing to the field of industrial anomaly detection and formulate a comprehensive anomaly detection
framework based on it. This framework guides the generation of realistic noise through a Dual-
Prototype Noise Repository (DPNR). Based on the aforementioned prototype repository, we design
a Structured Noise Injection mechanism (DP-SNI) that replaces the traditional process of injecting
Gaussian noise. Meanwhile, to address the training difficulties introduced by structured noise, we
propose a Region-wise Hybrid Noise Loss (RHN-Loss) function. This function effectively balances
the dual objectives of noise prediction and image reconstruction, ensuring that the entire framework
can be optimized end-to-end.

Problem Definition

First, we provide some background knowledge on diffusion models for subsequent analysis. In a
standard diffusion model, the forward process progressively adds Gaussian noise to the original data
x0. After T steps, the noised sample xt can be directly obtained using the following equation:

xt =
√
αtx0 +

√
1− αtϵ (1)

αt ∈ (0, 1) is a predefined noise scheduling coefficient that decreases as t increases. However,
in the reverse denoising process, the noise ϵ is unknown. A neural network ϵθ(xt, t) controlled
by parameters θ is used to approximate this unknown true noise. By replacing ϵ with the model’s
prediction ϵθ, we obtain an estimate of x0, which is denoted by X̂t→0. This demonstrates that
predicting the noise ϵθ is equivalent to directly predicting the initial x0. The relationship is expressed
by the following formula:

xt =
√
ᾱtx̂t→0 +

√
1− ᾱtϵθ(xt, t) (2)
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The state at each step of the generation process is represented by X̂t.The state after performing one
denoising step is X̂t−1.The process is expressed as follows:

x̂t−1 =
√
ᾱt−1x̂t→0 +

√
1− ᾱt−1ϵθ(x̂t, t) (3)

where x̂t is the intermediate result computed by the model from m of the previous step in the reverse
denoising process. In real-world industrial scenarios, the noise is not unstructured random noise,
but rather structured noise with complex spatial characteristics.Relying solely on a single type of
Gaussian noise often leads to poor model controllability or the generation of unintended artifacts.To
overcome the limitations above, we modify this process to handle real-world noise.Replace the
Gaussian noise ϵ with a real structured noise sample η.The generalized forward equation is given
by:

xt =
√
ᾱtx0 +

√
1− ᾱtη (4)

Correspondingly, the model’s prediction target is shifted from Gaussian noise to the structured real
noise, which is denoted as ηθ.The original clean signal xt can be recovered from the image x0, as
follows:

x̂t→0 =
xt −

√
1− ᾱtηθ(xt, t)√

ᾱt
(5)

where the model’s prediction ηθ(xt, t) is substituted for the unknown real noise η.By predicting and
subtracting the structured noise component ηθ, the clean image x̂t→0 is isolated.

Dual-Prototype Noise Repository

To enable our model to learn noise with complex spatial structures found in real-world scenarios,
we construct a Dual-Prototype Structured Noise Memory. This memory serves as a compact, non-
redundant repository to provide diverse structured noise for downstream tasks. We partition the
original dataset of noise image patches D, into two mutually exclusive subsets: the foreground
noise set Dfg , the background noise set Dbg , satisfying D = Dfg ∪ Dbg and Dfg ∩ Dbg = ∅.
The objective is to construct a compact prototype memory for each of these two subsets, denoted as
Mfg and Mbg .

We begin by embedding each raw noise patch p ∈ D into a high-dimensional latent space. The
features are extracted using the extractor Φ : RH×W×C → RD. For each noise patch pi in the set,
we compute its corresponding feature vector fi as follows:

fi = Φ(pi) where fi ∈ RD (6)

This process yields the feature set F = {f1, f2, . . . , fN}, where N = |D|. Directly operating
on the vast feature set F is inefficient. Our goal is to identify a set of K representative points
(i.e., initial prototypes) that summarize the entire feature space.We employ the K-Means clustering
algorithm to achieve this objective. The K-Means algorithm partitions the feature set F into K
clusters, S = {S1, S2, . . . , SK}, by finding the centroid ck for each cluster. These centroids, which
serve as our initial prototypes, are optimized to minimize the within-cluster sum of squares, as
formulated below:

arg min
S,{ck}K

k=1

K∑
k=1

∑
fi∈Sk

∥fi − ck∥22 (7)

where ck = 1
|Sk|

∑
fi∈Sk

fi is the centroid of the cluster Sk. The resulting set of centroids Cinitial =

{c1, c2, . . . , cK}, constitutes the initial prototype memory. The initial prototype set Cinitial, may
contain semantic redundancy, meaning that multiple prototypes could represent highly similar noise
patterns. To perform redundancy removal, we measure the semantic similarity between any two
initial prototypes ci and cj , using cosine similarity.

S(ci, cj) =
c⊤i cj

∥ci∥2 · ∥cj∥2
(8)

We define a similarity relation, denoted by ∼. We say ci ∼ cj that if S(ci, cj) > τ , where τ is a
predefined high-similarity threshold.

ηl =
1

|Gl|
∑

cj∈Gl

cj (9)
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Based on this relation, we partition the initial prototype set Cinitial into M mutually exclusive
equivalence classes:G1, G2, . . . , GM . For each equivalence class Gl, a single, refined prototype ηl
is generated by computing the mean of all the initial prototypes it contains. Through this process,
the initial K prototypes are refined into M final prototypes (where M ≤ K), which constitute the
final prototype memory M = {η1, η2, . . . , ηM}.

Dual-Prototype Guided Structured Noise Injection

To overcome the performance bottleneck of diffusion models in anomaly detection, which stems
from their reliance on unstructured Gaussian noise, we propose a dual-prototype-guided structured
noise injection mechanism. This mechanism shifts the noise generation process from a fixed, data-
agnostic prior to a learnable, dynamic process that is guided by the input image content. The process
begins by projecting a normal image xs and an anomalous image xa into a latent space via a pre-
trained encoder ϵ. This projection results in the latent vectors zs and za respectively.

zs = cscale · E(Xs) (10)

za = cscale · E(Xa) (11)
The scaling factor is denoted by cscale.

We dynamically bridge the normal and anomalous representations by performing a linear interpola-
tion between their latent vectors. The interpolation ratio is controlled by the timestep t ∈ [0, T − 1],
resulting in a synthetic vector zsyn(t) that smoothly evolves from normal to anomalous.

zsyn(t) = (1− αt)zs + αtza where αt = t/T (12)

This vector zsyn(t) is then fed into the diffusion process, where the model is trained on the self-
reconstruction task of restoring the original zsyn(t) from its noisy variants. Our data-driven dual-
prototype representation learning component is designed to disentangle the input normal image xs

into distinct background and foreground feature representations, which in turn serve as guidance
signals. We first preprocess the normal image and then pass it through the feature extractor Φ to
obtain its hierarchical feature representations. These multi-level features are then integrated through
weighted fusion to yield a single, semantically rich, dense feature map, denoted as F ∈ RN×D.

F =
∑
l∈L

wl · Φ(l)(xs) (13)

where L is the set of selected layers, wl are the fusion weights for each layer, N is the number of
image patches, D is the feature dimension.

The prototype matching and feature disentanglement step introduces two sets of learnable proto-
types: a set of background prototypes Pbg and a set of foreground prototypes Pfg . We design a
Prototype Matcher, denoted as H, which calculates the relevance between each image patch fea-
ture and the two prototype sets via an attention mechanism. It outputs three key components: (1)
a disentangled global background feature fbg , (2) a disentangled global foreground feature fαfg , and
(3) a foreground attention map Afg ∈ RN , which represents the confidence score of each patch
belonging to the foreground.

(fbg, ffg,Abg,Afg) = H(F, Pbg, Pfg) (14)

The primary objective of the “Learnable Structured Noise Generation and Mixing” stage is to trans-
form the abstract feature vectors fbg and ffg , obtained from the previous step, into a concrete, in-
jectable structured noise εs. We design two independent Noise Parameterizers, denoted as Ψbg

and Ψfg . They map the disentangled feature vectors to the statistical parameters of a Gaussian
distribution: the mean µ and the log-variance log σ2.

(µbg, logσ
2
bg) = Ψbg(fbg) (15)

(µfg, logσ
2
fg) = Ψfg(ffg) (16)

We then generate two noise bases εbg base and εfg base, by sampling from these two learned distribu-
tions using the reparameterization trick. The resulting samples are passed through a tanh activation
function to enhance their structural properties and constrain their value range.

σ = exp(0.5 · logσ2) (17)
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z ∼ N (0, I) (18)

εbase = C · tanh(µ+ z⊙ σ) (19)

where C is a scaling constant and ⊙ denotes element-wise multiplication.

To fuse the two noise bases, we propose a Spatially-Aware Noise Blending method. First, the
foreground attention map Afg to generate a foreground mask Mfg at the latent space resolution.
We then apply Gaussian smoothing to this mask. This step is crucial for modeling the gradual,
natural-looking transitions between foreground anomalies and the background, as detailed in the
formula below:

Msmooth = Gblur(Mfg) (20)

Simultaneously, the low-dimensional noise bases εbg base and εfg base, are upsampled to the latent
space dimensions using bicubic interpolation Ubicubic.The final structured noise Es, is obtained
through a spatial weighted blend using the smoothed mask:

εs = (1−Msmooth)⊙ Ubicubic(εbg base) + wfg ·Msmooth ⊙ Ubicubic(εfg base) (21)

where wfg is a hyperparameter that controls the intensity of the foreground noise.Finally, we inject
the generated structured noise Es, into the synthetic latent feature zsyn(t) to simulate the forward
noising step of the diffusion process.

Region-adaptive Hybrid Noise Loss

To effectively guide the diffusion model’s learning process under our structured noise injection
mechanism, we designed the Region-Adaptive Mixed-Noise Loss function. The model must not
only learn the injected structured noise εs, but also accurately predict the ideal noise component
ε, which is essential for image inpainting.We decouple the model’s learning task into two parallel
distribution-matching objectives. The first, the ε-prediction objective, follows the standard train-
ing paradigm of diffusion models, aiming for the accurate reconstruction of the original noise-free
image x0. This is equivalent to minimizing the Mean Squared Error (MSE) between the model’s
prediction ϵθ(xt, t) and the ground-truth sampled noise ϵ.

Leps = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
(22)

where Leps represents the ideal denoising objective.

The structured noise matching objective is designed to compel the model to learn and recognize the
structured noise ϵs. We model this problem as minimizing the Kullback-Leibler (KL) divergence
between the two Gaussian distributions defined by the model’s prediction εs and the target noise
ϵs.Under simplifying assumptions, this is equivalent to:

Lstruct = Eϵs,t

[
∥ϵθ(xt, t)− ϵs∥2

2 · Var(ϵs)

]
(23)

where Var(ϵs) calculates the variance of the target structured noise ϵs.Lstruct represents the structured
noise reconstruction loss.

To reconcile these two inherently conflicting objectives, we design an adaptive mechanism. The first
component is a learnable dynamic blending strategy, which is realized by introducing a learnable
parameter ∀α ∈ R. It is mapped to the (0,1) interval via the Sigmoid function σ(·) to serve as the
convex combination weight for two losses, forming the mixed loss Lhybrid:

Lhybrid = σ(α) · Lstruct + (1− σ(α)) · Leps (24)

where α is a hyperparameter that controls the weight of the background region.

Finally, we re-weight the loss according to the diffusion timestep t. This is motivated by the fact
that denoising steps at different stages contribute differently to the final generation quality. We
employ a re-weighting scheme based on the Signal-to-Noise Ratio (SNR) for each timestep. The
noise scheduler defines the cumulative variance ᾱt.For a given timestep t, the Signal-to-Noise Ratio
(SNR) can then be defined as SNR(t) = ᾱt

1−ᾱt
. Our weighting function w(t), is set to be the Signal-

to-Noise Ratio (SNR). In our method, we adopt a cosine schedule for ᾱt, and consequently, the

7
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Figure 3: Qualitative results of our proposed method on several categories from the MVTec AD
dataset. From top to bottom, the categories shown are: tile, grid, pill, leather, and wood. For each
sample, we display the original image, the anomaly heatmap, the ground-truth defect mask, and the
final predicted mask generated by our model. The results demonstrate that our model can effectively
localize and segment various types of anomaly.

weighting function is formulated as:

ᾱt = cos2
(
πt

2T

)
(25)

w(t) =
ᾱt

1− ᾱt
(26)

Multiplying the loss by w(t) effectively increases the weight for timesteps with a low Signal-to-
Noise Ratio (SNR), a practice that has been shown to help stabilize training and improve generation
quality.

By combining all the above components, we arrive at the final, complete loss function expression
computed in each training step. This expression integrates the dual objectives, learnable mixing,
spatial weighting, and timestep weighting to form a comprehensive optimization objective:

Ltotal = Ex0,ϵr,M,t [clamp(w(t)) · mean(Lspatial)] (27)

The expanded form is:

Ltotal = Ep(x0,ϵ,M,t)

[
clamp

(
αt

1− αt

)

· mean

(
(σ(α)Lstruct + (1− σ(α))Leps)

⊙ (σ(β)M + c(1−M))

)] (28)

The clamp operation is used to limit the maximum value of the timestep weight, which increases
training stability. This loss function is key to the successful implementation of the entire framework.

4 EXPERIMENTS

Comparison with SOTAs

8
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Non-Diffusion Method Diffusion-based Method
Category PaDiM MKD DRAEM UniAD DDPM LDM Ours

Bottle 96.1/- 91.8/- 87.6/62.95/56.9/- 98.1/66.0/69.2/- 59.9/4.9/11.7/43.4 86.9/49.1/50.0/- 89.2/52.2/52.9/80.0
Cable 81.0/- 89.3/- 71.3/14.7/17.8/- 97.3/39.9/45.2/- 66.5/ 6.7/10.6/19.5 89.3/18.5/26.2/- 65.0/ 7.7/14.3/28.1

Capsule 96.9/- 88.3/- 50.5/ 6.0/10.0/- 98.5/43.4/50.0/- 63.1/ 6.2/ 9.7/ 9.3 90.0/ 7.9/27.3/- 72.0/ 7.5/19.0/21.2
Hazelnut 96.3/- 91.2/- 96.9/70.0/60.5/- 98.1/55.2/56.8/- 91.2/24.1/28.3/21.0 95.1/51.2/53.5/- 90.4/12.6/18.2/75.6
Metal Nut 84.4/- 64.2/- 62.2/31.1/21.0/ 94.8/55.5/66.4/- 62.7/14.6/29.2/16.5 70.5/19.3/30.7/- 78.7/ 4.1/10.1/52.7

Screw 94.1/- 92.1/- 95.5/33.8/40.6/- 98.3/28.7/37.6/- 91.1/ 1.8/ 3.8/16.0 91.7/ 2.2/ 4.6/- 79.6/ 7.6/13.6/45.1
Toothbrush 95.6/- 88.9/- 97.7/55.2/55.8/- 98.4/34.9/45.7/- 76.9/ 4.0/ 7.7/16.0 93.7/20.4/ 9.8/- 92.1/ 8.3/ 3.9/71.5
Transistor 92.3/- 71.7/- 64.5/23.6/15.1/- 97.9/59.5/64.6/- 53.1/5.8/11.4/23.3 85.5/25.0/30.7/- 91.1/ 8.9/19.1/49.6

Zipper 94.8/- 86.1/- 98.3/74.3/69.3/- 96.8/40.1/49.9/- 67.4/ 3.5/ 7.6/36.7 66.9/ 5.3/ 7.4/- 71.2/12.4/15.9/25.8

Carpet 97.6/- 95.5/- 98.6/78.7/73.1/- 98.5/49.9/51.1/- 89.2/18.8/44.3/20.1 99.1/70.6/66.0/- 93.2/54.2/57.3/84.3
Grid 71.0/- 82.3/- 98.7/44.5/46.2/- 96.5/23.0/28.4/- 63.1/ 0.7/ 1.9/12.3 52.4/ 1.1/ 1.9/- 93.2/53.6/57.8/84.3

Leather 84.8/- 96.7/- 97.3/60.3/57.4/- 98.8/32.9/34.4/- 97.3/38.9/43.2/25.9 99.0/45.9/44.0/- 81.7/7.15/14.8/52.5
Tile 80.5/- 85.3/- 98.0/93.6/86.0/- 91.8/42.1/50.6/- 87.0/35.2/36.6/21.4 90.1/43.8/51.2/- 99.2/48.7/51.3/95.6

Wood 89.1/- 80.5/- 96.0/81.4/74/6/ 93.2/37.2/41.5/- 84.7/30.9/37.3/16.0 92.3/44.1/46.6/- 96.5/78.4/74.9/93.8

Table 1: Comparison with SOTA methods on MVTec-AD dataset for multi-class anomaly localiza-
tion with AUROC/AP/F1max metrics.

For our comparative analysis, we categorize the competing methods into two main types: non-
diffusion and diffusion-based methods. We then evaluate performance against a suite of models,
including DRAEM, MKD, UniAD, DDPM, and LDM, across the MVTec-AD, VisA, and MPDD
datasets, reporting results for every category.

Ablation Studies

The architectural design of DPNR is distinct from current methods. While existing approaches
commonly add synthetic Gaussian noise, our model is engineered to incorporate real-world noise.
Accordingly, we have designed a novel noise injection mechanism and a corresponding loss func-
tion for the model. Our ablation study demonstrates the effectiveness of our proposed components.
When we bypass the noise injection mechanism and conduct experiments directly with unprocessed
noise, the model’s reconstruction capability is impaired. Similarly, when our designed loss function
module is replaced by the standard loss used in conventional diffusion models, the model’s perfor-
mance degrades significantly. Furthermore, when we use Gaussian noise for the noising process
while still employing our designed loss function, the model’s performance also declines. This in-
dicates that our loss function is specifically optimized for the characteristics of real-world noise.
These experiments demonstrate that when applying real-world noise to diffusion models, a corre-
sponding loss function is indispensable for achieving performance improvements. This validates the
effectiveness of our proposed method.

DPNR DP-SNI RHN-Loss Tile Wood Grid

✓ 67.3 75.6 70.46
✓ ✓ 82.3 89.3 79.3
✓ ✓ ✓ 99.2 96.5 93.2

Table 2: Ablation studies on the design of DPNR with AUROC metrics.

5 CONCLUSION

This paper proposed DPNR addresses a core limitation in current diffusion-based methods for indus-
trial anomaly detection: their fundamental reliance on Gaussian noise, which leads to unpredictable
model behavior and high false positive rates. Pioneering the use of prototype learning in industrial
anomaly detection, we introduce the DP-SNI mechanism to dynamically inject structured noise.
This novel approach is complemented by our specifically designed RHN-Loss function, creating a
cohesive and effective framework. Extensive experiments on the MVTec-AD, MPDD, and VisA
benchmark datasets have empirically validated the effectiveness of our proposed DPNR framework.
As this work represents a pioneering effort in replacing the traditional Gaussian noise with a struc-
tured noise learning paradigm, we acknowledge that there is room for enhancement in handling
certain anomaly categories. In our future work, we will focus on further exploration to improve the
quality of the noise repository and to design more fine-grained processing methods for structured
noise, ultimately aiming to achieve higher reconstruction performance.
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