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ABSTRACT

Many generative applications, such as synthesis-based 3D molecular design, in-
volve constructing compositional objects with continuous features. Here, we in-
troduce Compositional Generative Flows (CGFlow), a novel framework that ex-
tends flow matching to generate objects in compositional steps while modeling
continuous states. Our key insight is that modeling compositional state transitions
can be formulated as a straightforward extension of the flow matching interpola-
tion process. We further build upon the theoretical foundations of generative flow
networks (GFlowNets), enabling reward-guided sampling of compositional struc-
tures. We apply CGFlow to synthesizable drug design by jointly designing the
molecule’s synthetic pathway with its 3D binding pose. Our approach achieves
state-of-the-art binding affinity on all 15 targets from the LIT-PCBA benchmark,
and 5.8× improvement in sampling efficiency compared to 2D synthesis-based
baseline. To our best knowledge, our method is also the first to achieve state of-
art-performance in both Vina Dock (-9.38 kcal/mol) and AiZynthFinder success
rate (62.2%) on the CrossDocked benchmark.

1 INTRODUCTION

Sampling objects through compositional steps while modeling continuous state is essential for a
wide range of scientific applications Jain et al. (2023a); Wang et al. (2023). One such important ap-
plication is synthesizable target-based drug design, which aims to jointly generate molecules through
a sequence of compositional reaction steps and predict their continuous 3D conformations relative
to a protein target Li et al. (2022). To this end, we propose a flow-based generative framework that
jointly models the compositional structure and continuous state of objects.

Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2021) and flow matching
models Lipman et al. (2023) have achieved state-of-the-art performance in high-dimensional mod-
eling tasks such as 3D molecule generation and protein structure design Hoogeboom et al. (2022);
Campbell et al. (2024); Schneuing et al. (2024a). However, standard diffusion and flow matching
are restricted to modeling all the dimensions of the object at once (Chen et al., 2024). This results
in an inability to model the compositional structure of objects through sequential construction steps.
As a consequence, two main limitations arise: (1) the validity of compositional objects cannot be
ensured, as invalid generative actions cannot be masked, and (2) the potential for efficient reward
credit assignment in the compositional space is restricted Bengio et al. (2021); Hansen et al. (2022);
Yao et al. (2023). In drug design, where synthesizability is crucial for wet-lab validation, molecules
can be naturally viewed as compositional objects constructed through sequential synthesis steps.
Unfortunately, existing diffusion and flow matching models lack the ability to effectively model and
respect the compositional nature of synthesis constraints when generating molecules.

Sequential models are a natural fit for generating composite objects. For instance, autoregressive
models have been applied for 3D molecular design Peng et al. (2023); Gebauer et al. (2020). How-
ever, current autoregressive models lack mechanisms to correct errors from earlier steps, causing
slight errors in early position predictions to cascade Jin et al. (2022). Generative flow networks
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Figure 1: Overview of 3DSynthFlow generation. 3D Molecule x = (C,S) consisting of its syn-
thesis pathway C and 3D conformation S (visualized using x). CGFlow generation interleaves 1).
the continuous process for modeling position S, and 2). the sequential sampling of synthesis steps
at discrete intervals (t={0, 0.25, 0.5, 0.75}). The modeling of synthesis pathways and position are
both dependent on the object xt = {St, Ct}, ensuring the interplay between the two processes.

(GFlowNets; Bengio et al., 2021) have recently shown success in sampling compositional structure
for synthesis-based molecule design Koziarski et al. (2024); Cretu et al. (2024); Seo et al. (2024),
but remain limited to 2D molecules.

In this paper, we identify a gap in standard flow matching and sequential models for generating
compositional objects with continuous properties. To address this, we introduce Compositional
Generative Flows (CGFlow), a framework that combines flow matching for high-dimensional data
with a respect for compositional structure. CGFlow interleaves two flow processes: the Composi-
tional Flow gradually dismantles the structure from the data distribution to an empty state, while the
State Flow transports the corresponding state variables from data to noise, assigning higher noise
levels to components removed earlier (Ruhe et al., 2024). Constructive compositional steps are
then sampled via a generative policy, and the conditional flow matching (CFM) objective (Lipman
et al., 2023) estimates the vector field for state generation, ensuring that structure and state remain
interdependent.

As an application of the CGFlow framework, we present 3DSynthFlow, the method for target-based
drug design ensuring synthesizability. We combine flow matching-based 3D structure generation
with the GFlowNet-based synthesis-aware molecular generative model developed by Seo et al.
(2024). Fig. 1 illustrates how 3DSynthFlow jointly generates the synthesis pathway (compositional
structure) and 3D conformation (continuous state) of molecules. Previous flow-based generative
models focused on generating either the 3D molecular structure or the synthesis pathway, but not
both (see Sec. E). 3DSynthFlow can jointly generate synthesis pathways and 3D molecular struc-
tures. This enables effective modeling of protein-ligand interactions and ensures synthesizability,
both of which are essential for target-based drug discovery.

As an application, we present 3DSynthFlow for target-based drug design, which jointly generates
synthesis pathways (compositional structure) and 3D conformations (continuous state). This joint
modeling improves protein-ligand interaction predictions and ensures synthesizability. 3DSynth-
Flow achieves 5.8x sampling efficiency improvement, and state-of-the-art performance across all
15 targets in the LIT-PCBA benchmark (Tran-Nguyen et al., 2020) for binding affinity. 3DSyn-
thFlow can be extended to pocket-conditional setting and achieve state-of-art-performance in both
Vina Dock (-9.38) and AiZynth success rate (62.2%) on the CrossDocked benchmark.

Our contributions are summarized as follows: (1) We propose Compositional Generative Flows
(CGFlow), a flow-based framework that enables the generation of compositional objects while mod-
eling continuous states. (2) We incorporate GFlowNets in CGFlow to efficiently explore the compo-
sitional state-space for high-reward samples. (3) We apply this framework to develop 3DSynthFlow
for 3D molecule and synthesis pathway co-design, achieving state-of-the-art results on both LIT-
PCBA and CrossDocked benchmark.
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Figure 2: (A.) Overview of sampling and training using the pre-trained state flow model pθ1|t. At t =
iλ, compositional flow model πϕ samples a component C(i) based on the state xt and its previous
prediction x̂t

1. Then, the transition function T incorporates the component C(i) into the object. At
t = 1, the compositional flow model is trained based on the reward of the generated object x1. (B.)
Local time for each component over time, with n = 4, λ = 0.2, and twindow = 0.4. t

(i)
local = 0

indicates the S(i) has not yet been initialized. (C.) Illustration of synthesis-based composition rules:
(a.) reactant unit-based and (b.) synthon unit-based (ours).

2 COMPOSITIONAL GENERATIVE FLOWS

CGFlow is a generative framework for modeling compositional objects with continuous states. It
consists of two interleaved flows: the Compositional Flow for compositional structures and the State
Flow for continuous states.

Data representation. An object x is represented as (C,S). The compositional structure C =
(C(i))ni=1 is an ordered sequence of components (e.g., molecular building blocks) generated along
a trajectory τ (e.g., synthesis pathway). The continuous states S = (S(i))ni=1 correspond to these
components. Each component C(i) consists of mi points (e.g., atoms) with states S(i) ∈ Rmi×d.
Standard flow matching models only state variables. In contrast, CGFlow jointly models structure
and states to ensure valid compositions.

Joint conditional flow process. We define a joint conditional flow (Lipman et al., 2023) that
interpolates an object x from an initial state x0 = (∅, [ ]) to a final state x1 = (C1,S1) via two
flows: the compositional flow and the state flow. The process Pt|1(·|x1) satisfies the boundary
conditions Pt|1(xt|x1) = δ(xt = x0) at t = 0 and Pt|1(xt|x1) = δ(xt = x1) at t = 1, ensuring a
transition from x0 to x1.

The compositional flow defines a conditional probability flow over the structure C, transitioning from
an empty graph C0 = ∅ at t = 0 to a full structure C1 at t = 1. Components are added sequentially
in a fixed order. The number of components added by time t is given by

k(t) =

{
0, t = 0,

min
(
⌊t/λ⌋+ 1, n

)
, t > 0,

with k(0) = 0 and k(1) = n. Each component C(i) is generated at time t
(i)
gen = λ(i − 1), and the

constraint λ ≤ 1/n ensures that all components are added by t = 1. The structure at time t is then
Ct = (C(i))

k(t)
i=1 . For further details on scheduling and parameter choices, see Sec. A.4.

The state flow defines a conditional path over the continuous states S = (S(i))ni=1. Each state S(i)

is introduced once its corresponding component is generated at t(i)gen. To capture varying uncertainty

over time, we define a local time t
(i)
local = clip

(
t−t(i)gen

twindow

)
, where clip(·) restricts the value to [0, 1] and

twindow is the interpolation window. The state is updated via linear interpolation with Gaussian noise:
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S
(i)
t = N

(
t
(i)
localS

(i)
1 + (1 − t

(i)
local)S

(i)
0 , σ2

)
for t > t

(i)
gen, and S

(i)
t = [ ] otherwise. This formulation

gradually refines each continuous state as time progresses (see Sec. A.5 for details).

Sampling. During the sampling process, objects are generated by interleaving the integration of
the state flow model pθ1|t and sampling actions using the compositional flow policy πθ. The process
alternates between refining continuous states St and sequentially constructing the compositional
structure Ct at fixed time points. We provide pseudocode in Algorithm 1 and details in Sec. A.3.

Training Objectives. CGFlow consist of two models: (1) a state flow model pθ1|t that updates
continuous states, and (2) a compositional flow policy πϕ that sequentially samples compositional
components. Both models are conditioned on the current object xt = (Ct,St) and employ self-
conditioning x̂t

1 = (Ct, Ŝt1), where Ŝt1 is obtained from the previous prediction (Chen et al., 2022).

State Flow Loss. The state flow model is trained independently in a simulation-free manner. For a
given object x, we sample a time t and generate xt via the joint interpolation process (see Section 2).
The denoiser pθ1|t then predicts the refined continuous states Ŝt+∆t

1 . The loss is computed as the
mean squared error over the states corresponding to the generated components:

Lstate = Epdata(x1), t∼U(0,1)

k(t)∑
i=1

∥∥∥pθ1|t(xt)
(i) − S

(i)
1

∥∥∥2
2
.

Compositional Flow Loss. Given a fixed state flow model pθ1|t, the compositional flow policy πϕ

samples a trajectory τ by sequentially adding components at times t = iλ, conditioned on xt and
the self-conditioning x̂t

1. The goal is to assign a sampling probability proportional to the reward
R(x1) for the final object x1. Using the a special case of trajectory balance (TB) objective (Malkin
et al., 2023), the loss is given by

LTB(τ) =

(
log

Zϕ

∏n−1
i=0 PF

(
C(i) | xiλ, x̂

iλ
1 ;ϕ

)
R(x1)

)2

.

where Zϕ is a normalizing constant and PF (C
(i) | xiλ, x̂

iλ
1 ;ϕ) is the forward probability of adding

component C(i) at time iλ. To ensure PB(−|−) = 1, a deterministic transition is enforced by fixing
the random seed when sampling the initial state S

(i)
0 so that xt is uniquely determined by τ . We

refer to Appendix B.2 for further theoretical background.

We refer readers to Sec. A.1 for a summary of the key steps in applying CGFlow to a new data
domain. In the next section, we demonstrate CGFlow’s application to 3D molecular generation and
synthesis pathway design.

3 POCKET-BASED 3D MOLECULE AND SYNTHESIS PATHWAY CO-DESIGN

Synthesizability is a critical factor for ensuring molecules can be readily made for wet lab valida-
tion. Recent works have incorporated combinatorial chemistry principles into generative models to
respond to this challenge (Gao et al., 2022). Despite these advancements, conventional methods
are restricted to 2D molecular graphs, limiting their ability to capture the protein-ligand interactions
that are essential for biological efficacy. To address this limitation, we introduce 3DSynthFlow, a
generative method based on CGFlow, enabling the synthesis pathways and binding poses co-design.

State flow model predicts the docking pose of a molecule within a target protein pocket. Unlike
typical docking, where the full 2D molecule is provided at t = 0, the state flow model predicts
the binding pose for the ligand that is sequentially constructed at discrete time intervals. The state
flow model is trained on the protein-ligand complex dataset, independent of the compositional flow
model. We modify the architecture from SemlaFlow (Irwin et al., 2024), originally designed for 3D
single-body molecular generation, to enable protein-ligand modeling (See Sec. D.2.1).

Compositional flow model generates a synthesis pathway to construct a molecular structure. The
action space for the composition flow model consists of all valid synthetic steps for a given com-
positional structure Ct (details in App. D.1). We modify the architecture from RxnFlow (Seo et al.,
2024) to model the sampling policy for synthesis steps using 3D protein-ligand complexes as input
(see Sec. D.2.2). The compositional flow model is trained online.
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Table 1: Average Vina docking score of Top-100 diverse modes. We report two versions of
SynFlowNet (v2024.05a and v2024.10b). Avg. and Med. are the average and median values over
the average docking scores for all 15 LIT-PCBA protein targets. The results for the remaining 10
target proteins are reported in Appendix. 16 The best results are in bold.

Average Vina Docking Score (kcal/mol, ↓)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1 Avg. Med.

Fragment FragGFN -10.19 (± 0.33) -10.43 (± 0.29) -9.81 (± 0.09) -9.85 (± 0.13) -7.67 (± 0.71) -9.58 -9.85
FragGFN+SA -9.70 (± 0.61) -9.83 (± 0.65) -9.27 (± 0.95) -10.06 (± 0.30) -7.26 (± 0.10) -9.22 -9.58

Reaction

SynNet -8.03 (± 0.26) -8.81 (± 0.21) -8.88 (± 0.13) -8.52 (± 0.16) -6.36 (± 0.09) -8.12 -8.52
BBAR -9.95 (± 0.04) -10.06 (± 0.14) -9.97 (± 0.03) -9.92 (± 0.05) -6.84 (± 0.07) -9.35 -9.84
SynFlowNeta -10.85 (± 0.10) -10.69 (± 0.09) -10.44 (± 0.05) -10.27 (± 0.04) -7.47 (± 0.02) -9.95 -10.34
SynFlowNetb -9.17 (± 0.68) -9.37 (± 0.29) -9.17 (± 0.12) -9.05 (± 0.14) -6.45 (± 0.13) -8.78 -9.17
RGFN -9.84 (± 0.21) -9.93 (± 0.11) -9.99 (± 0.11) -9.72 (± 0.14) -6.92 (± 0.06) -9.08 -9.91
RxnFlow -11.45 (± 0.05) -11.26 (± 0.07) -11.15 (± 0.02) -10.77 (± 0.04) -7.66 (± 0.02) -10.46 -10.84

3D Reaction 3DSynthFlow -11.97 (± 0.43) -12.25 (± 0.07) -11.31 (± 0.12) -11.25 (± 0.07) -7.92 (± 0.22) -10.97 -11.25
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Figure 3: Number of discovered modes (satisfying Vina <-10 kcal/mol, QED >0.5, Sim <0.5) as a
function of sampling budget for the first four LIT-PCBA targets for 3DSynthFlow (3D) vs RxnFlow
(2D) across 2 seeds. Lower is better.

4 EXPERIMENTS

Overview We evaluate 3DSynthFlow for synthesizable target-based drug design in two common
settings: pocket-specific optimization (Sec. 5) and pocket-conditional generation (Sec. 5). Our ex-
periments aims to address three main key questions: (1) Does 3DSynthFlow generate molecules
with improved binding affinity and ligand efficiency compared to existing synthesis-based base-
lines? (2) Does co-designing 3D structures improve the sampling efficiency in discovering diverse
high-reward modes? (3) How does 3DSynthFlow generalize to the pocket-conditional setting, and
how does it compare to existing SBDD baselines?

To answer these questions, We first apply 3DSynthFlow to optimize for targets in the LIT-PCBA
benchmark (Tran-Nguyen et al., 2020). We evaluate the affinity, ligand efficiency, synthesis suc-
cess rate and protein-ligand interactions of generated molecules. Then, we compare the sampling
efficiency of 3DSynthFlow against 2D-based baseline. Lastly, we comapre 3DSynthFlow against
SBDD methods in the pocket-conditional setting on the CrossDocked dataset (Francoeur et al.,
2020). The setup and baseline details are provided in Sec. F.1.

5 RESULTS

Pocket-specific optimization results. Table. 1 presents the Vina results for the first five targets,
while the full property results for all targets are in Sec. G.8. 3DSynthFlow consistently outper-
forms all baselines across LIT-PCBA targets in affinity and ligand efficiency, demonstrating that
co-designing 3D molecular structures alongside synthesis pathways enhances the discovery of high-
affinity molecules. Furthermore, 3DSynthFlow achieves 5.8x sampling efficiency to 2D baselines,
as detailed in Sec. 5. Molecules generated by 3DSynthFlow also exhibit a higher number of protein-
ligand interactions, as quantified by PoseCheck, highlighting the benefits of 3D-aware modeling for
target-based drug design (see App. G.5).
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Table 2: Benchmark Results for Generative Methods. We report the average (Avg.) and median
(Med.) values for each metric when available. Reference denotes known actives. For methods where
only one value is available, the median is indicated as “–”.

Validity (↑) Vina (↓) QED (↑) AiZynth. Succ. (↑) Div (↑) Time (↓)

Category Method Validity Avg. Med. Avg. Med. Avg. Med. Avg. Avg.

Reference - -7.71 -7.80 0.48 0.47 36.1% - - -

Atom

Pocket2Mol 98.3% -7.60 -7.16 0.57 0.58 29.1% 22.0% 0.83 2504
TargetDiff 91.5% -7.37 -7.56 0.49 0.49 9.9% 3.2% 0.87 3428
DecompDiff 66.0% -8.35 -8.25 0.37 0.35 0.9% 0.0% 0.84 6189
DiffSBDD 76.0% -6.95 -7.10 0.47 0.48 2.9% 2.0% 0.88 135
MolCRAFT 96.7% -8.05 -8.05 0.50 0.50 16.5% 9.1% 0.84 141
MolCRAFT-large 70.8% -9.25 -9.24 0.45 0.44 3.9% 0.0% 0.82 >141

Fragment TacoGFN 100.0% -8.24 -8.44 0.67 0.67 1.3% 1.0% 0.67 4

2D Reaction RxnFlow 100.0% -8.85 -9.03 0.67 0.67 34.8% 34.5% 0.81 4

3D Reaction
3DSynthFlow (low β) 100.0% -9.00 -9.27 0.72 0.72 55.0% 54.5% 0.79 24
3DSynthFlow (med β) 100.0% -9.16 -9.41 0.73 0.74 56.6% 56.0% 0.76 24
3DSynthFlow (high β) 100.0% -9.38 -9.62 0.74 0.74 62.2% 63.0% 0.66 24

Finally, we conduct extensive ablation studies on the various technical decisions regarding: flow
matching steps (App. G.2), time scheduling (App. G.3), and use of pose-based rewards (App. G.1).
Analysis on training efficiency can be found in App. F.2.3.

3DSynthFlow improves sampling efficiency. We evaluate sample efficiency on the first 5 LIT-
PCBA targets and report results in Fig. 3 and Table. 15. Diverse high-scoring modes were defined by
QED > 0.5, Vina < -10 kcal/mol1, and Tanimoto similarity < 0.5 to any other mode. After sampling
10,000 molecules, 3DSynthFlow identified 5.8x number of diverse high-scoring modes compared
to RxnFlow (316 vs 54.6). This enhanced sampling efficiency validates the effectiveness of 3DSyn-
thFlow framework, and suggests a higher probability of experimental success in downstream drug
discovery applications.

Pocket-conditional generation results. As shown in Table. 2, 3DSynthFlow achieves significant
improvements in pocket-conditional generation, particularly in synthesizability and docking scores.
In particular, 3DSynthFlow- high β attains an average docking score of -9.38 kcal/mol, outperform-
ing RxnFlow (-8.85) and state-of-the-art diffusion-based methods like MolCRAFT-large (-9.25) and
DecompDiff (-8.35). We attribute this improvement largely to our explicit consideration of 3D co-
design in the reaction-based generation framework.

3DSynthFlow achieves competitive synthesizability. 3DSynthFlow also ensures high AiZynth
success rate via synthesis-based generation, achieving success rates of 55.0%-62.2% across differ-
ent β values in the pocket-conditioned setting. This surpasses synthesis-based RxnFlow (34.8%),
and TacoGFN (1.3%), which optimize for SA score. SBDD methods such as MolCRAFT-large can
attain strong binding affinity (-9.25) similar to 3DSynthFlow (-9.38), however their synthesis suc-
cess rate is much lower (3.9% vs 62.2%). The main contribution of 3DSynthFlow is representing
both the compositional nature for synthesis constraints and modeling 3D poses for binding. Both
synthesizability and binding are both necessary requirement for experimental validation.

6 CONCLUSION

In this work, we introduce Compositional Generative Flows (CGFlow), a flexible generative frame-
work for jointly modeling compositional structures and continuous states. We introduce a simple
extension to the flow matching interpolation process for handling compositional state transition.
CGFlow enables the integration of GFlowNets for efficient exploration of compositional state spaces
with flow matching for continuous state modeling. We apply CGFlow to 3D molecule and synthesis
pathway co-design and develop 3DSynthFlow, which achieves state-of-the-art performance on both
LIT-PCBA and CrossDocked benchmark. Future work includes using a more expressive model for
pose prediction in 3DSynthFlow and developing more application-specific methods using CGFlow.

1Except for FEN1, where we use Vina threshold below -7 kcal/mol to maintain similar number of modes
compared to the other four targets.
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A CGFLOW DETAILS

A.1 CGFLOW RECIPE

We now summarize the key steps for implementing CGFlow for generative tasks which constructs
compositional structures with continuous states.

1. Decompose the object into its compositional and continuous part (e.g., 2D structure and 3D
coordinates) (See Sec. 2).

2. Define action space for additive composition steps.
3. Define a function for sampling action sequence for constructing the compositional structure (e.g.

synthesis order).
4. Train State Flow model on existing datasets (e.g. 3D protein-ligand complexes) (Sec. 2).
5. Train the compositional flow model using GFlowNets-based Compositional Flow loss, if reward

function R(x) (docking score) is available, else use cross-entropy loss (Sec. 2).
6. Run sampling using trained state flow and compositional flow model (Algorithm 1).

A.2 SAMPLING ALGORITHM

Algorithm 1 Compositional Flow Sampling with CGFlow
Require: step size ∆t, interval λ, time window twindow

1: init t = 0, i = 0, Ct = C0,S0 = S0, Ŝt1 = S0
2: while t < 1 do
3: xt ← (Ct,St, Ŝt1) ▷ Use self-conditioning.
4: if t mod λ = 0 then
5: i← i+ 1
6: C(i) ∼ πθ(xt) ▷ Compositional flow model: Sample the next compositional component

i.
7: S

(i)
t ∼ N (0, 1) ▷ Initialize new state values for component i under the fixed seed

8: xt ← T (xt,C
(i),S

(i)
t ) ▷ Transition with sampled composition and state value.

9: t
(i)
gen ← t

10: end if
11: t

(j)
local ← clip

(
t−t(j)gen

twindow

)
, ∀j ≤ i

12: Ŝ
(j)
1 ← pθ1|t(xt, t

(j)
local), ∀j ≤ i ▷ State flow model: Predict final state values.

13: S
(j)
t+∆t ← S

(j)
t + (Ŝ

(j)
1 − S

(j)
t ) · κ(j)∆t, ∀j ≤ i ▷ Step according to the predicted vector

field.
14: t← t+∆t
15: end while
16: return x1

A.3 SAMPLING DETAILS

For state flow, the vector field governing the continuous states for the i-th component S(i) is defined
as Ŝ(i)

1 − S
(i)
t , where Ŝ

(i)
1 is the predicted clean state by pθ1|t, as formulated in previous works (Le

et al., 2023). The rate at which we step in this vector field κ(i) is determined by the time remaining
in the interpolation process for the state S(i):

κ(i) =
min(t

(i)
end − t,∆t)

twindow
, (1)

where t
(i)
end = t

(i)
gen + twindow is the time at which the interpolation for component i is completed, and

twindow is the interpolation window. The state values S(i) are updated using Euler’s method:

S
(i)
t+∆t = S

(i)
t + (Ŝ

(i)
1 − S

(i)
t ) · κ(i)∆t, (2)
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Intuitively, if t ≥ t
(i)
end, the state S

(i)
t is directly set to the predicted clean value Ŝ

(i)
1 , ensuring the

coherence of the continuous state.

For compositional structure generation, new components C(i) are sampled from the compositional
flow policy πθ at discrete time intervals separated by λ. Transition function T (xt,C

(i)) incorporates
newly sampled component C(i) into the object. T also incorporates the new component’s associated
state S

(i)
0 by sampling its value from a noise distribution (typically Gaussian).

A.4 COMPOSITIONAL FLOW DETAILS

In the compositional flow, we define:

k(t) =

0, t = 0,

min
(
⌊t/λ⌋+ 1, n

)
, t > 0,

which determines the number of components added at time t. The key points are:

• Initial and final states: k(0) = 0 implies C0 = ∅ and k(1) = n implies that the full
structure C1 is generated.

• Generation times: Each component C(i) is generated at t(i)gen = λ(i− 1). For example, the
first component is generated at t = 0, the second at t = λ, and so on.

• Scheduling constraint: The requirement λ ≤ 1/n guarantees that t(n)gen ≤ 1− λ so that all
n components are generated by t = 1.

This design allows for a gradual, discrete build-up of the structure in fixed time intervals.

A.5 STATE FLOW DETAILS

In the state flow, each continuous state S(i) is associated with a local time variable defined as

t
(i)
local = clip

(
t− t

(i)
gen

twindow

)
,

with the following properties:

• Local time range: The clipping operation ensures that t(i)local lies in the interval [0, 1]. It
starts at 0 when t = t

(i)
gen and reaches 1 once t ≥ t

(i)
gen + twindow.

• Interpolation: When t > t
(i)
gen, the state S(i) is updated using a linear interpolation between

the initial noisy state S
(i)
0 and the refined final state S

(i)
1 . Gaussian noise with variance σ2

is added to this interpolation:

S
(i)
t = N

(
t
(i)
local S

(i)
1 +

(
1− t

(i)
local

)
S
(i)
0 , σ2

)
.

• Conditional state existence: If t ≤ t
(i)
gen, the state S

(i)
t does not exist (denoted by [ ]).

This method allows the uncertainty in each component’s state to decrease as time progresses, mir-
roring processes in diffusion-based video generation where uncertainty is reduced gradually.

A.6 ALTERNATIVE TRAINING OBJECTIVES

There may be cases where reward function R(x) is not available, or the goal is to model the data
distribution instead. In these settings, the compositional flow model can adopt cross-entropy loss
to maximize the log-likelihood of sampling C(σi) at each step i, aligned with the valid generation
order σ. The loss is:

Lcomp = −Ept(xt)

n∑
i=1

log πθ(C(σi)|x
t=t

(σi)
gen

), (3)

where πθ(C(σi)|xt) represents the policy model for generating the next compositional component
C(σi), conditioned on the entire object xt.
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B THEORETICAL BACKGROUND

B.1 GFLOWNET PRELIMINARY

Generative Flow Networks (GFlowNets; Bengio et al., 2021) are a family of probabilistic models
that learn a stochastic policy to construct compositional objects x ∈ X proportional to the reward
of terminate state R(x), i.e., p(x) ∝ R(x). Each object x is constructed through a trajectory τ =
(s0 → ... → sn = x) ∈ T from the initial state s0 and a series of state transitions s → s′, where
the terminate state is the object sn = x ∈ X .

A GFlowNet models a flow F as an unnormalized density function along a directed acyclic graph
(DAG) G = (S,A), where S denotes the state space and A represents transitions. We define the
trajectory flow F (τ) as a flow through the trajectory τ . The node flow F (s) is defined as the sum
of trajectory flows through the node s, i.e., F (s) =

∑
s∈τ F (τ), and the edge flow F (s → s′) is

defined as the total flow along the edge s→ s′, i.e., F (s→ s′) =
∑

(s→s′)∈τ F (τ).

From the flow network, we define two policy distributions. The forward policy PF (s
′|s) executes

the state transition s → s′ from the flow distribution, i.e., PF (s
′|s) = F (s → s′)/F (s). Similarly,

the backward policy PB(s|s′) distributes the node flow F (s) to reverse transitions s 99K s′, i.e.,
PB(s|s′) = F (s′ → s)/F (s).

To match the likelihood of generating x ∈ X with the reward function R, two boundary conditions
must be achieved. First, the node flow of each terminal state x, which represents the unnormalized
probability of sampling the object x, must equal its reward, i.e., F (x) = R(x). Second, the initial
node flow s0, which represents the partition function Z, must equal the sum of all rewards. i.e.,
Z =

∑
x∈X R(x). One such objective to satisfy these conditions is trajectory balance (TB; Malkin

et al., 2023), defined as follows:

LTB(τ) =

(
log

Zθ

∏n
t=1 PF (st|st−1; θ)

R(x)
∏n

t=1 PB(st−1|st; θ)

)2

, (4)

where the PF , PB , and Z are directly parameterized to minimize the TB objective.

B.2 TRAINING OBJECTIVE OF COMPOSITIONAL FLOW MODEL

The object x = (C,S) is sequence data where C = (C(i))ni=1 and S = (S(i))ni=1. Therefore, we
formulate the generative process as an auto-regressive process, i.e., PB(−|−) = 1.0.

To train the compositional flow model with the trajectory balance (TB) objective, we must estimate
forward transition probabilities along the trajectory τ = (x0 → xiλ → · · · → xnλ → x1), where
λ is the time interval between successive components C(·), and n < 1/λ is the total number of
components.

Since the state flow model pθ1|t introduces randomness in the initial state S
(i)
0 ∼ N (0, σ2), estimat-

ing the forward transition probability involves integrating over this noise distribution as follows:

PF

(
x(i+1)λ

∣∣∣xiλ, x̂
t
1;ϕ, p

θ
1|t

)
= PF

(
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(i)
0 )dS

(i)
0 , (5)

where Φθ is the ODE solver of the state flow model pθ1|t. This integration induces a Dirac delta term,
making direct probability estimation challenging.

Proposition B.1. Let the initial state S
(i)
0 be fixed2. Then, the object xt = (Ct,St) is uniquely

determined by a given trajectory τ sampled from the compositional flow model πϕ.
2To minimize the influence of the fixed initial state value, we sample the initial state from the noise distri-

bution using the manual random seed which is equal to the size of the current object, such as the number of
atoms.
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Proof. When S
(i)
0 is fixed, the ODE solver fully specifies S(i+1)λ based on Siλ, the self-conditioning

x̂t
1, and the sampled component C(i). Consequently, the sequence (C(1), . . . ,C(k(t))) directly de-

termines St. Given that the generative progress is auto-regressive, there is a one-to-one correspon-
dence between xt and (C(1), . . . ,C(k(t))) for every t.

Building on this determinism, we simplify the forward transition probability PF (x(i+1)λ|xiλ;ϕ;pθ
1|t
)

as:

PF

(
x(i+1)λ

∣∣∣xiλ, x̂
t
1;ϕ, p

θ
1|t

)
= PF

(
C(i)

∣∣∣xiλ, x̂
t
1;ϕ
)

(6)

This allows us to write the TB objective in a more tractable form:

LTB(τ) =

log
Zϕ
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log
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(i)|xiλ;ϕ)

R(x1)

)2

. (7)

By enforcing trajectory balance under these conditions, we ensure that the likelihood of sampling a
final object x1 is proportional to its reward R(x1), while sidestepping the complexities introduced
by the continuous noise integration.

C RELATED WORKS

Synthesis-based generative models. Generative models have emerged as the key paradigm for
discovering candidates by bypassing the expensive virtual screening. However, most generative
models often render molecules outside the bounds of synthesizable chemical space, limiting their
practical use in real-world applications (Gao & Coley, 2020). To address this limitation, several
studies (Shen et al., 2024; Guo & Schwaller, 2024) have employed various synthetic complexity
estimation methods (Ertl & Schuffenhauer, 2009; Coley et al., 2018; Kim et al., 2023; Neeser et al.,
2024; Genheden et al., 2020) as the reward function.

Another promising direction is to design molecules by assembling purchasable building blocks un-
der predefined synthesis protocols. (Gao et al., 2022; Li et al., 2022; Seo et al., 2023; Swanson
et al., 2024; Gao et al., 2024). This strategy explicitly constrains the sample space to synthesizable
chemical space. More recently, Koziarski et al. (2024); Cretu et al. (2024); Seo et al. (2024) have
extended this strategy using GFlowNets, formulating synthesis pathway generation as trajectories of
GFlowNets. This effectively explores the chemical space to discover diverse candidate molecules
while balancing exploration and exploitation.

Diffusion for sequential data. Diffusion models have recently gained traction for generative mod-
eling of sequential structures in diverse domains, spanning biological sequences Campbell et al.
(2024); Stark et al. (2024), videos Ruhe et al. (2024), and language modeling Lou et al. (2024).
Campbell et al. (2023) propose a jump process for transitioning between different dimensional
spaces to address the variable-dimension nature of data. To exploit the temporal causal depen-
dency in sequences, Ruhe et al. (2024); Zhang et al. (2023) explore frame-level noise schedules for
diffusion-based video generation for arbitrary-length frame rollout. Wu et al. (2023); Chen et al.
(2024) apply similar ideas of training next-token prediction models while diffusing past ones for
applications in planning and language modeling. Most similar to our work for molecule generation
using diffusion models are methods that use a separate diffusion process for each sequentially added
fragment Peng et al. (2023); Ghorbani et al. (2023); Li et al. (2024).

We provide an extended related works for sequential diffusion for molecular generation and
structure-based drug design in App. C.

Sequential diffusion for molecular generation Peng et al. (2023); Ghorbani et al. (2023); Li
et al. (2024) sequentially generate molecules fragment by fragment using diffusion models. These
methods use a separate diffusion process to generate each 3D fragment graph, with atomic positions
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fixed post-generation. They also lack the ability to enforce compositional synthesis constraints dur-
ing the generation process. Instead, 3DSynthFlow formulates a joint flow process: state flow refines
all atomic positions throughout, mitigating the issue with cascading error in position prediction;
composition flow sequentially constructs the synthesis pathway, effectively enforcing the synthesis
constraint.

Structure-based drug design We categorize structure-based drug design (SBDD) in two main
categories: pocket-specific and pocket-conditional following Seo et al. (2024).

The first approach optimizes docking scores for a target. Methods include evolutionary algorithms
(Reidenbach, 2024), reinforcement learning (RL) (Zhavoronkov et al., 2019), and GFlowNets (Ben-
gio et al., 2021; Pandey et al., 2025; Koziarski et al., 2024). The drawback of this approach is that
each pocket must be optimized individually, which can restrict scalability.

In contrast, the pocket-conditional generation approach produces molecules tailored to any given
pocket without the need for extra training. This strategy leverages distribution-based generative
models (Ragoza et al., 2022; Peng et al., 2022; Guan et al., 2024; Schneuing et al., 2024b; Qu et al.,
2024) that are trained on protein-ligand complex datasets to learn the distribution of ligands suitable
for different pockets. Recently, Shen et al. (2024); Seo et al. (2024) adopted pocket-conditioned
policy for GFlowNets that generates samples from reward-biased distributions in a zero-shot setting.

D 3DSYNTHFLOW DETAILS

D.1 ACTION SPACE

Following Cretu et al. (2024); Koziarski et al. (2024); Seo et al. (2024), we treat chemical reactions
as forward transitions and synthetic pathways as trajectories for molecular generation.

Compared to previous methods, we represent a building block as synthon, which is not a complete
molecule. The synthons can be connected at the attachment point according to the pre-defined
connection rules, i.e., reactions R (See Fig. 2). To prevent a generation trajectory terminating at
an incomplete structure, we define two types of synthon according to Liu et al. (2017): brick is the
synthon including one attachment point, and linker is the synthon including two attachment points.

Figure 4: Examples of brick and linker synthons.

We define B as the entire synthon set, B′ ⊆ B as the brick synthon set, and Br ⊆ B as the allowable
synthon set for reaction r ∈ R.

At the initial state C0, the model always selects FirstSynthon, which samples a brick synthon
b from the entire brick synthon set B′ to serve as the starting molecule. For subsequent states Ct,
the model chooses AddSynthon, which firstly identifies the available reaction set R(Ct) ⊆ R
and then samples the synthon from the available synthon set ∪r∈R(Ct)Br. If the brick synthon is
selected, the trajectory is terminated. When the trajectory reaches the maximum length, the model
always selects a brick synthon.

In summary, the allowable action space A(C) for a given compositional state C is:

A(C) =
{
B′ if t = 1,

∪r∈R(C)Br otherwise,
(8)

D.2 3DSYNTHFLOW MODEL ARCHITECTURE

D.2.1 STATE FLOW MODEL

To model state flow for predicting ligand docking poses in 3DSynthFlow, we extend the Semla
architecture introduced by Irwin et al. (2024). Semla is a scalable, E(3)-equivariant model originally
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designed for 3D molecular generation; We refer reader to the original paper for full details. To
adapt it for modeling 3D protein-ligand complexes, we incorporate protein encoding layers and
protein-ligand message passing to capture interactions critical for binding, making the following
modifications:

Let P = {1, . . . ,M} index protein residues. Specifically, we use GVP (Jing et al., 2021) to encode
the protein pocket, producing an invariant feature vector for each residue h

(pro)
i ∈ Rd, ∀i ∈ P .

The protein residue embeddings, along with their original positions x
(pro)
i , are combined with the

ligand atom embeddings (h(lig)
j ,x

(lig)
j ) for pairwise message passing at each modified Semla layer

(i, j) ∈ V × P , defined as:(
minv

i,j , m
equi
i,j

)
= Ω

(pro−lig)
θ

(
h̃i, h̃j , x̃i · x̃j

)
, (9)

where h̃i and x̃i are normalized linearly projected features. The protein-ligand messages are aggre-
gated with the original ligand-ligand messages and used for attention-based updates. This formu-
lation enables message exchange between residue nodes and atom nodes, ensuring that the model
effectively learns protein-ligand interactions critical to binding.

Since the atom type and bond connections are generated by the compositional flow model instead
of the state flow model, therefore they remain fixed throughout the process. This means we cannot
use techniques such as equivariant-OT to reduce the transport cost (Klein et al., 2023; Song et al.,
2023), since they assume interchangeability between newly initialized nodes. We have also tried
using harmonic prior from Jing et al. (2023); Stärk et al. (2024) to initialize position with bonding
information as prior. We observed improved pose prediction with Gaussian noise during initial
training, but no advantage of the harmonic prior over the Gaussian prior at convergence.

D.2.2 COMPOSITIONAL FLOW MODEL

We adopt a model architecture inspired by Bengio et al. (2021); Cretu et al. (2024); Seo et al.
(2024), using a graph transformer (Yun et al., 2022) as the backbone fθ, and a multi-layer perceptron
(MLP) gθ for action embedding. The graph embedding dimension is d1 and the synthon embedding
dimension is d2. The GFlowNet condition such as temperature β or multi-objective weights are
encoded in condition vector c.

To capture spatial relationships between the protein and ligand, the model uses a 3D protein-ligand
complex graph for each state. The protein is represented as a residual graph, where each node
corresponds to a Cα atom and connects to its K-nearest neighbors. Each ligand atom also connects
to its K-nearest protein nodes. All pairwise distances between nodes are encoded in the graph edges,
enabling the model to reason about the 3D structure. We represent each state s as a molecular graph
s and include a GFlowNet condition vector c.

Initial synthon selection. For the initial state s = s0, the model always selects FirstSynthon
to sample brick synthon b ∈ B′ for the starting molecule with MLPAddSynthon : Rd1 → Rd2

.
Fθ(s0, b, c) = MLPFirstSynthon(fθ(s0, c))⊙ gθ(b) (10)

Adding synthon selection. For the later states s ̸= s0, the model selects AddSynthon to sample
allowable brick or linker synthon b ∈ ∪r∈R(s)Br with MLPAddSynthon : Rd1 → Rd2

. We note that
the reaction type information is included in synthon embedding:

Fθ(s, (r, b), c) = MLPAddSynthon(fθ(s, c))⊙ gθ(r, b)). (11)

Synthon masking. The state flow model is trained on the data distribution of active ligands. This
may sometimes not work well for out-of-distribution molecules that are much larger than the training
data. Therefore, we restrict the actions which make the state to have more than 40 atoms. This
process can be performed simply in a synthon-based action space.

E RELATED WORKS

Synthesis-based generative models. Generative models have emerged as the key paradigm for
discovering candidates by bypassing the expensive virtual screening. However, most generative
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models often render molecules outside the bounds of synthesizable chemical space, limiting their
practical use in real-world applications (Gao & Coley, 2020). To address this limitation, several
studies (Shen et al., 2024; Guo & Schwaller, 2024) have employed various synthetic complexity
estimation methods (Ertl & Schuffenhauer, 2009; Coley et al., 2018; Kim et al., 2023; Neeser et al.,
2024; Genheden et al., 2020) as the reward function.

Another promising direction is to design molecules by assembling purchasable building blocks un-
der predefined synthesis protocols. (Gao et al., 2022; Li et al., 2022; Seo et al., 2023; Swanson
et al., 2024; Gao et al., 2024). This strategy explicitly constrains the sample space to synthesizable
chemical space. More recently, Koziarski et al. (2024); Cretu et al. (2024); Seo et al. (2024) have
extended this strategy using GFlowNets, formulating synthesis pathway generation as trajectories of
GFlowNets. This effectively explores the chemical space to discover diverse candidate molecules
while balancing exploration and exploitation.

Diffusion for sequential data. Diffusion models have recently gained traction for generative mod-
eling of sequential structures in diverse domains, spanning biological sequences Campbell et al.
(2024); Stark et al. (2024), videos Ruhe et al. (2024), and language modeling Lou et al. (2024).
Campbell et al. (2023) propose a jump process for transitioning between different dimensional
spaces to address the variable-dimension nature of data. To exploit the temporal causal depen-
dency in sequences, Ruhe et al. (2024); Zhang et al. (2023) explore frame-level noise schedules for
diffusion-based video generation for arbitrary-length frame rollout. Wu et al. (2023); Chen et al.
(2024) apply similar ideas of training next-token prediction models while diffusing past ones for
applications in planning and language modeling. Most similar to our work for molecule generation
using diffusion models are methods that use a separate diffusion process for each sequentially added
fragment Peng et al. (2023); Ghorbani et al. (2023); Li et al. (2024).

We provide an extended related works for sequential diffusion for molecular generation and
structure-based drug design in App. C.

F EXPERIMENTAL DETAILS

F.1 PROBLEM SETUP

Overall setup. We utilize 1.2M molecular fragments from the Enamine Catalog and 38 bimolecular
Enamine synthesis protocols from Gao et al. (2024). To ensure tractability, molecular generation
is limited to two synthesis steps, consistent with Enamine REAL Space guidelines (Grygorenko
et al., 2020). To estimate synthesizability, we employ the retrosynthetic analysis tool AiZynthFinder
(Genheden et al., 2020).

We pre-train the state flow model for 3D pose prediction on the CrossDocked dataset Francoeur et al.
(2020) with LIT-PCBA targets removed (see App. F.3.2). We sample a synthesis pathway for each
ligand using reaction rules to fragment the ligand (see Fig. 2). This exposes the state flow model
to intermediate states - allowing it to predict their poses for partial structures during compositional
flow model training (see App. F.2.2 for motivation).

F.1.1 POCKET-SPECIFIC OPTIMIZATION SETUP

Setup. We follow Seo et al. (2024) in both the reward function and evaluation protocol. To estimate
the binding affinity, we use the GPU-accelerated docking tool UniDock (Yu et al., 2023). Each
method generates up to 64,000 molecules for each protein target. To prevent reward hacking by
increasing molecular size to improve the docking score, QED (Bickerton et al., 2012) is jointly
optimized, and we set a generation of 40 heavy atoms. This ensure that the generated molecules have
drug-like properties. Specifically, we optimize R(x) = w1QED(x) + w2V̂ina(x), where V̂ina(x)
is a normalized docking score. The parameters w1 and w2 serve as conditions of multi-objective
GFlowNets (Jain et al., 2023b), and are set to 0.5 for non-GFlowNet baselines.

Generated molecules are filtered based on property constraints (QED > 0.5), and the top 100 diverse
modes are selected according to docking scores, ensuring structural diversity with a Tanimoto dis-
tance threshold of 0.53. Finally, we evaluated the average Vina Docking Score and AiZynthFinder

3Since we select top 100 modes filtering for similarity, diversity is not reported in this section.
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Success Rate of the selected molecules. Ligand Effiency as computed by (Vina / number of heavy
atoms) is also reported to confirm the docking score improvement do not arise from simply increase
in molecular size.

Baselines. We compare our approach against several synthesis-based methods, including a genetic
algorithm SynNet (Gao et al., 2022), a conditional generative model BBAR (Seo et al., 2023), and
multiple GFlowNets. We consider two settings of fragment-based GFlowNets, with and without syn-
thetic accessibility score (SA; Ertl & Schuffenhauer, 2009) objective (FragGFN, FragGFN+SA),
and three different synthesis-based GFlowNets (RGFN, SynFlowNet, RxnFlow) (Koziarski et al.,
2024; Cretu et al., 2024; Seo et al., 2024).

F.1.2 POCKET-CONDITIONAL GENERATION SETUP

Setup. Our method generalizes to pocket-conditional generation problem setting (Peng et al., 2022;
Guan et al., 2023; Schneuing et al., 2024a), enabling the design of binders for unseen pockets with
a single model and no additional oracle calls. We follow the same pocket-conditional experimental
setup used in TacoGFN (Shen et al., 2024) and RxnFlow (Seo et al., 2024). 3DSynthFlow adopt
the pre-trained proxy from TacoGFN trained on CrossDock2020 train set, which leverages pharma-
cophore representation (Seo & Kim, 2024), to compute rewards for training a pocket-conditional
policy.

Each method generates 100 molecules for each of the 100 test pockets in the CrossDocked2020
benchmark (Francoeur et al., 2020) and are evaluated on these additional metrics compared to
the pocket-specific setting: Diversity represents the average pairwise Tanimoto distance computed
from ECFP4 fingerprints (Morgan, 1965). We also report Validity (%), the proportion of unique
molecules that can be parsed by RDKit, and Time (sec.), the average duration required to sample
100 molecules.

Baselines. We compare 3DSynthFlow with state-of-the-art distribution learning-based models
trained on a synthesizable drug set, including the autoregressive model Pocket2Mol (Peng et al.,
2022), and diffusion-based methods: TargetDiff (Guan et al., 2023), DiffSBDD (Schneuing et al.,
2024b), DecompDiff (Guan et al., 2024), and MolCRAFT (Qu et al., 2024). We further include
comparisons with optimization-based approaches: the fragment-based method TacoGFN (Shen
et al., 2024) and the reaction-based method RxnFlow (Seo et al., 2024). To ensure a fair evaluation
of distribution learning-based methods, we use the docking proxy trained on CrossDocked training
set. To balance exploration and exploitation during sampling, we vary the reward exponentiation pa-
rameter β of 3DSynthFlow: low β (sampled from Uniform(1, 64)), medium β (Uniform(32, 64)),
and high β (Uniform(48, 64)).

F.2 TRAINING DETAILS

F.2.1 3DSYNTHFLOW HYPERPARAMETERS

Table 3: Default hyperparameters used for compositional structure.
Hyperparameters Values

Time per action λ 0.3
Interpolation window twindow 0.4
Maximum decomposed part 3

Minimum decomposed fragment size 5
Minimum trajectory length 2 (minimum reaction steps: 1)
Maximum trajectory length 3 (maximum reaction steps: 2)

Here we define the hyperparameters used for 3DSynthFlow:

1. Time per action (λ): Defines the time interval between adding each additional synthon.

2. Interpolation window (twindow): Specifies the fixed time window that affects the noise schedul-
ing of the continuous states of each component.

3. Maximum decomposed part: Determines the maximum number of synthons a molecule can be
decomposed into, preventing molecules from being associated with excessive synthesis steps.
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4. Minimum decomposed fragment size: Specifies the minimum number of atoms that each syn-
thon product must contain when a molecule is decomposed according to reaction rules. This
ensures that synthons are of realistic size when decomposing CrossDocked ligands for training a
pose prediction model.

5. Minimum trajectory length: Defines the minimum trajectory length for sampling composition
steps in 3DSynthFlow.

6. Maximum trajectory length: Specifies the maximum trajectory length that can be reached.

We further exam the effect of performance for different setting of time scheduling, varying λ and
twindow in Appendix G.3.

Table 4: Default hyperparameters used for State flow model.
Hyperparameters Values

Number of protein layers 6
Noise prior Gaussian

Time alpha α 1.0
Time beta β 1.0

Time step ∆t 0.0125

For parameterizing the state flow model for pose prediction, we use the same hyperparameter from
the official repository 4. We show the additional hyperparameters in Table. 4 and provide an expla-
nation for each below:

1. Number of protein layers: the number of layers with protein-ligand message passing. This must
be less or equal to the total number of layers.

2. Noise prior: Defines the noise distribution which initial state values are drawn from.

3. Time alpha: Defines the alpha parameter of the Beta distribution which time is sampled from.

4. Time beta: Defines the beta parameter of the Beta distribution which time is sampled from.

5. Time step: Defines the time step for inference.

Composition flow model In this work, we set most parameters to the default values5 for all
GFlowNet baselines (Some of the parameters are in Table. 5). However, since 3DSynthFlow is
built from RxnFlow, it follows some important parameters of RxnFlow except for maximum trajec-
tory length and state embedding size. We note that our state embedding dimension is smaller than
other GFlowNet baselines.

Table 5: Default hyperparameters used in all GFlowNets. The settings are from seh frag.py
(Bengio et al., 2021)

Hyperparameters Values

GFN temperature β Uniform(0, 64)
Sampling tau (EMA factor) 0.9

Learning rate (Z) 10−3

Learning rate (PF , PB) 10−4

State embedding dimension 128

For action space subsampling, we randomly subsample 1% actions for AddFirstReactant and
each bi-molecular reaction template r ∈ R2. However, for bi-molecular reactions with small pos-
sible reactant block sets Br ∈ B, the memory benefit from the action space subsampling is small
while a variance penalty is large. Therefore, we set the minimum subsampling size to 100 for each
bi-molecular reaction, and the action space subsampling is not performed when the number of ac-
tions is smaller than 100.

4Follow SemlaFlow’s hyperparameter settings in train.py at https://github.com/rssrwn/
semla-flow/blob/main/semlaflow/train.py

5Follow default hyperparameter settings in seh frag.py and seh frag moo.py at https://
github.com/recursionpharma/gflownet/blob/trunk/src/gflownet/tasks
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Table 6: Specific hyperparameters used in 3DSynthFlow training. The parameters are from Rxn-
Flow (Seo et al., 2024), except for the maximum trajectory length (4 for RxnFlow) and state embed-
ding size (128 for RxnFlow and other GFlowNets).

Hyperparameters Values

Minimum trajectory length 2 (minimum reaction steps: 1)
Maximum trajectory length 3 (maximum reaction steps: 2)
State embedding dimension 64

Action embedding dimension 64
Action space subsampling ratio 1%
Train random action probability 5%

The number of actions for each action type is imbalanced, and the number of reactant blocks (Br) for
each bi-molecular reaction template r is also imbalanced. This can make some rare action categories
not being sampled during training. We empirically found that ReactBi action were only sampled
during 20,000 iterations (1.28M samples) in a toy experiment that uses one bi-molecular reaction
template and 10,000 building blocks in some random seeds. Therefore, we set the random action
probability as the default of 5%, and the model uniformly samples each action category in the
random action sampling. This prevents incorrect predictions by ensuring that the model experiences
trajectories including rare actions. We note that this random selection is only performed during
model training.

F.2.2 DETAILS OF STATE FLOW MODEL TRAINING

To expose the state flow model to realistic partial ligand structures, we decompose each Cross-
Docked ligand into up to three fragments using 38 bimolecular Enamine synthesis protocols, de-
fined by reaction SMARTS patterns. For each molecule, we randomly select a fragment ordering
and sample a time step t, so the model observes the molecule at varying stages of assembly (e.g.,
only fragment A at t = 1, fragments A and B at t = 2, etc.). This mimics the compositional assem-
bly process used during generation and teaches the model to predict physically plausible docking
conformations for incomplete ligands.

Importantly, the decomposition is not intended to yield commercially purchasable Enamine syn-
thons. Instead, the use of Enamine protocols ensures the resulting fragments are chemically mean-
ingful and synthetically relevant, even if they do not match existing catalog synthons. This allows us
to use any CrossDocked molecule for training while staying aligned with the synthetic priors used
at generation time.

Across the CrossDocked dataset, we find that over 93% of molecules can be decomposed into at
least two fragments using this protocol, and over 87% can be decomposed into three. This high
decomposition rate enables robust learning from partially constructed molecules and ensures strong
coverage of fragment combinations encountered during inference.

F.2.3 TRAINING TIME AND COMPUTATIONAL EFFICIENCY

The state flow model (i.e., the pocket-conditional pose predictor) was trained for 100 epochs with a
batch size of 32 on 4 L40 GPUs (48GB), requiring a total of 18.4 hours. Since the state flow model
is trained on the CrossDocked dataset and is reused across different test pockets, it incurs only a
one-time computational cost. We plan to release the pretrained weights, so that users will need to
train only the composition flow model tailored to their custom reward function and target.

In contrast, the composition flow model is trained individually for each pocket for 1,000 steps with
a batch size of 64 and 80 flow matching steps. Training with GPU-accelerated docking takes be-
tween 12 and 20 hours (depending on the target) on a single A4000 GPU (16GB), making the
computational requirement accessible for most practical drug discovery campaigns. Moreover, the
composition flow model can be trained in a pocket-conditioned manner to enable zero-shot molecule
sampling for any target pocket, thereby converting the training into a one-time cost in this setting.
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Table 7: Summary of Training Time for 3DSynthFlow Components.
Model Component Hardware Batch Size Number of Iterations Training Time

State Flow Model 4 × L40 (48GB) 32 100 epochs 18.4 hours
Composition Flow Model 1 × A4000 (16GB) 64 1,000 steps 12–20 hours

F.3 DATASETS

F.3.1 LIT-PCBA POCKETS

Table. 8 describes the protein information used in pocket-specific optimization with UniDock, which
is performed on Sec. 4. We follow the same procedure used in pocket extraction for the CrossDock
dataset: taking all residue of the protein within 10 Å radius to the reference ligand as the binding
pocket.

Table 8: The basic target information of the LIT-PCBA dataset and PDB entry used in this work.
Target PDB Id Target name

ADRB2 4ldo Beta2 adrenoceptor
ALDH1 5l2m Aldehyde dehydrogenase 1
ESR ago 2p15 Estrogen receptor α with agonist
ESR antago 2iok Estrogen receptor α with antagonist
FEN1 5fv7 FLAP Endonuclease 1
GBA 2v3d Acid Beta-Glucocerebrosidase
IDH1 4umx Isocitrate dehydrogenase 1
KAT2A 5h86 Histone acetyltransferase KAT2A
MAPK1 4zzn Mitogen-activated protein kinase 1
MTORC1 4dri PPIase domain of FKBP51, Rapamycin
OPRK1 6b73 Kappa opioid receptor
PKM2 4jpg Pyruvate kinase muscle isoform M1/M2
PPARG 5y2t Peroxisome proliferator-activated receptor γ
TP53 3zme Cellular tumor antigen p53
VDR 3a2i Vitamin D receptor

F.3.2 CROSSDOCKED2020

We train the State flow model of 3DSynthFlow on the commonly used CrossDocked dataset (Fran-
coeur et al., 2020). We apply the splitting and processing protocol on the CrossDocked dataset to
obtain the same training split of protein-ligand pairs as previous methods (Luo et al., 2021; Peng
et al., 2022). To ensure fairness against baseline methods on the LIT-PCBA benchmark, we remove
all PDB ids associated with LIT-PCBA proteins from the training set. Since we co-design 3D bind-
ing pose and synthesis pathway, unlike the pervious 2D-based methods, we can leverage this dataset
for training the auxiliary State flow pose prediction model.

F.4 BASELINES

SynNet, BBAR We reused the values reported in Seo et al. (2024).

FragGFN, RGFN, RxnFlow. All GFlowNet baselines share the same training parameters under
the multi-objective GFlowNet (Jain et al., 2023b) setting. We also reused the values reported in Seo
et al. (2024).

SynFlowNet. There are two versions for SynFlowNet (Cretu et al., 2024): 2024.3 and 2024.8.
For version 2024.3, we reused the values in Seo et al. (2024). For version 2024.8, we followed
the processes and settings according to the original paper and official code repository 6. To con-
struct the action space, we randomly selected 10,000 building blocks from Enamine Global Stock

6Follow SynFlowNet’s hyperparameter settings in reactions task.py at https://github.com/
mirunacrt/synflownet/tree/46a4acabd2255eb964c317ffbb86b743a13a4685
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(v2025.01.11) with 105 reaction templates. We trained SynFlowNet using backward policy learning
maximum likelihood, maximum trajectory length to 3, and action embedding with Morgan finger-
print (Morgan, 1965). Finally, we set the training parameters used in other GFlowNet baselines (See
Table. 5). The training code and data used in the benchmark study are included in the supplementary
materials.

G ADDITIONAL RESULTS

G.1 REWARD COMPUTATION WITHOUT FULL DOCKING

Table 9: Ablation study on reward setting for Vina docking scores. Evaluated on the ADH1 pocket.
Results are averaged over 3 runs.

Method Reward setting Docking score (↓)

RxnFlow Full docking -11.26 (± 0.07)
3DSynthFlow Full docking -11.97 (± 0.07)
3DSynthFlow Local opt. -11.44 (± 0.06)
3DSynthFlowfinetuned Local opt. -11.62 (± 0.02)

The most computational and time-intensive process in the training process is often docking the
generated candidates with molecular docking for evaluation. Glide, a standard docking software
in the industry, takes around 6 minutes per compound in its most accurate setting (Friesner et al.,
2004). This constraint necessitates either reducing the number of Oracle queries or trading speed
for less accurate docking settings. Docking scores are typically computed via Full docking, which
performs a full search for the optimal binding pose at a high computational cost. However, it can
also be computed via Local optimization for significantly faster computation, if an existing binding
pose is available. 7

In this setting, we investigate directly using the final predicted pose from 3DSynthFlow to compute
reward using local optimization compared to using the full docking score. In the 3DSynthFlow
finetuned setting for local opt., we first finetune the pose predictor on re-docked poses from the first
9,600 sampled molecules to improve binding pose prediction, thereby enabling accurate local opti-
mization docking scores.

From Table. 9, we see that regardless of the scoring function used or whether we perform fine tuning,
3DSynthFlow outperformed the best 2D baseline RxnFlow, confirming the benefit of 3D structure
co-design. Interestingly, 3DSynthFlow using local opt. do not perform as well as 3DSynthFlow
trained with signals from full docking in both settings. While fine tuning the pose prediction module
helps, the gap between full docking and local opt. is not fully closed. Empirically, we find the poses
predicted from 3DSynthFlow sometimes contain steric clashes, leading to inaccurate estimation of
the reward signal. Accordingly, improving the pose prediction module emerges as a key next step to
reduce steric clashes and enhance the accuracy of local optimization docking scores.

By co-designing binding pose and molecule, 3DSynthFlow using local opt. can bypass the com-
putational burden of full docking which 2D generative methods are subjected to, while surpassing
their performance. This is a key advantage for 3DSynthFlow in cases where accurate full docking is
prohibitively expensive for a large number of ligands.

G.2 EFFECT OF FLOW MATCHING STEPS

We further analyzed how the number of flow matching steps impacts performance using the ALDH1
target with the Vina reward. As shown in Table 10, performance slightly improves with increasing
flow matching steps and appears to saturate around 40–60 steps. This marginal improvement may
stem from the fact that the pose prediction module’s primary role is to provide a spatial context
between intermediate molecules and the pocket; hence, extremely precise pose predictions have
limited additional impact on model decisions.

7Scoring a predicted pose using the local-optimization setting in AutoDock Vina is 7× faster than performing
full docking. This speedup is even greater for more accurate docking programs, since the vast majority of time
is spent on pose searching rather than scoring.
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Table 10: Effect of flow matching steps on performance for the ALDH1 target with the Vina reward.
We report both the average docking score (Avg Vina) over all generated molecules and the top 100
docking scores (Top 100 Vina), with lower values indicating better binding. Training time is reported
in seconds per iteration, and sampling time is reported in seconds per molecule.

Flow Matching Steps Avg Vina (↓) Top 100 Vina (↓) Training Time (sec/iter) Sampling Time (sec/mol)

10 −10.28± 0.32 −14.27± 0.59 33 0.053
20 −10.24± 0.18 −14.38± 0.22 34 0.080
40 −10.40± 0.13 −14.51± 0.27 39 0.123
60 −10.50± 0.14 −14.57± 0.24 44 0.160
80 −10.44± 0.18 −14.53± 0.16 49 0.199

G.3 ABLATION STUDY ON TIME SCHEDULING OF 3DSYNTHFLOW

We conducted an ablation study to assess the effect of time scheduling in state flow training. Specif-
ically, we compared three scheduling strategies:

• No overlap: strictly autoregressive denoising - each synthon denoised after the previous
one is completed. (λ = 0.33, twindow = 0.33).

• Overlapping: partial overlap of synthon denoising (λ = 0.3, twindow = 0.4).

To highlight the impact of noise scheduling on the final pose, we report the average local-optimized
Vina docking scores across different training iterations for the ALDH1 target over 3 seeds:

# of mol explored 10,000 20,000 30,000
No overlap −5.68± 0.29 −6.33± 0.26 −7.02± 0.34
Overlapping −6.28± 0.22 −7.28± 0.21 −7.22± 0.12

Table 11: Ablation study on time scheduling for state flow training on the ALDH1 target.

3DSynthFlow ’s overlapping strategy, where positions are refined as synthons are added, clearly
outperforms conventional autoregressive approaches - No overlap, adopted in previous works (See
Appendix C).

G.4 STATE SPACE SIZE ESTIMATION

We estimate the sample space size based on the number of synthetic steps: 1011 molecules with a
single reaction step, 1017 molecules with two reaction steps, and 1023 molecules with three reaction
steps. In our experiments, we employed up to two reaction steps according to Enamine REAL. The
resulting state space size is comparable to RGFN (up to 4 steps with 8,350 blocks) and SynFlowNet
(up to 3 steps with 200k blocks).

To assess the breadth of building block (BB) exploration, we analyzed the number of unique BBs
encountered during training across the first five LIT-PCBA targets. Our model explored an average
of approximately 55,000 unique BBs within 1,000 training iterations using a batch size of 64. This
indicates significantly broader exploration compared to SynFlowNet, which reported around 15,000
unique BBs over 8,000 iterations with a batch size of 8.

Table 12: Number of unique building blocks explored during training across 5 LIT-PCBA targets.
Target ADRB2 ALDH1 ESR ago ESR antago FEN1
Number of Unique BBs 45520± 7876 48644± 1983 55211± 5611 58097± 8529 69400± 5259
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G.5 POSECHECK PROTEIN-LIGAND INTERACTIONS

Table 13: PoseCheck protein-ligand interactions. We report two versions of SynFlowNet
(v2024.05a and v2024.10b). Averages and standard deviations over 3 runs, for the top 100 diverse
modes per LIT-PCBA pocket. The best results in each column are in bold.

PoseCheck Metrics (↑)

Method H-Bond Acceptors H-Bond Donors Van der Waals Hydrophobic Sum

SynFlowNeta 0.22 (± 0.01) 0.11 (± 0.01) 9.31 (± 0.05) 10.41 (± 0.05) 20.05
SynFlowNetb 0.22 (± 0.03) 0.10 (± 0.01) 8.38 (± 0.05) 9.44 (± 0.06) 18.14
RGFN 0.19 (± 0.01) 0.11 (± 0.01) 9.19 (± 0.28) 10.25 (± 0.12) 19.73
RxnFlow 0.22 (± 0.00) 0.10 (± 0.01) 9.63 (± 0.09) 10.67 (± 0.10) 20.62
3DSynthFlow 0.27 (± 0.03) 0.12 (± 0.01) 10.33 (± 0.13) 11.15 (± 0.05) 21.87

Lastly, we evaluate the protein-ligand interactions of the top 100 generated molecules using
PoseCheck Harris et al. (2023). Since baselines do not generate 3D poses, we assess all meth-
ods using their redocked structures for consistency. PoseCheck evaluates four key protein-ligand
interactions: H-bond acceptors, H-bond donors, van der Waals contacts, and hydrophobic effects.

Hydrogen bonds (H-bonds) are the most important specific interactions in protein-ligand recogni-
tion Bissantz et al. (2010) and require precise geometric alignment to form Brown (1976). Unlike
hydrophobic and van der Waals interactions, which are non-directional and broadly applicable, H-
bonds require strict atomic alignment, reinforcing the need for accurate 3D molecular modeling.

Notably, 3DSynthFlow achieves the highest H-bond acceptor and donor counts, outperforming all
baselines. This improvement suggests that co-designing 3D structure and synthesis pathways en-
hances the geometric alignment of polar functional groups, leading to more stable and specific
protein-ligand interactions. In addition, 3DSynthFlow-generated molecules also result in more hy-
drophobic and van der Waals interactions to baselines, as shown in Table. 13, further enhancing
binding stability.

G.6 SYNTHESIS SUCCESS RATE RESULT ON LIT-PCBA

Table 14: The average success rate and synthetic steps estimated from AiZynthFinder for all 15
LIT-PCBA protein targets.

Method Success Rate (%, ↑) Synthesis Steps (↓)

FragGFN+SA 3.52 3.74
SynNet 47.50 3.45
BBAR 17.92 3.68
SynFlowNeta 54.60 2.55
SynFlowNetb 58.38 2.47
RGFN 47.43 2.46
RxnFlow 65.35 2.17
3DSynthFlow 48.04 3.15

Table. 14 shows that 3DSynthFlow attains comparable synthesizability to 2D baselines, demonstrat-
ing its generated molecules remain likely to be synthesizable. While the main contribution of our
work is 3D co-design rather than improving synthesizability, these results confirm that our synthon-
based 3D generation remains effective, with minimal trade-offs in synthetic feasibility.
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G.7 FULL SAMPLING EFFICIENCY RESULTS

Table 15: Average number of diverse modes discovered versus the number of molecules explored.
The best results are in bold.

Number of Molecules Explored

Target Method 1,000 5,000 10,000 30,000 64,000

ADRB2 RxnFlow 3.0 (±1.4) 21.5 (± 4.9) 52.0 (± 24.0) 500.0 (± 137.2) 1282.5 (± 234.1)
3DSynthFlow 16.0 (±5.7) 124.0 (± 2.8) 318.5 (± 60.1) 1609.5 (± 939.7) 5378.0 (±1492.0)

ALDH1 RxnFlow 4.5 (±2.1) 26.5 (± 7.8) 73.5 (± 33.2) 472.5 (± 99.7) 1240.0 (± 75.0)
3DSynthFlow 10.0 (±5.7) 198.0 (±83.4) 623.0 (±291.3) 3069.5 (±1885.9) 8838.0 (±5152.0)

ESR ago RxnFlow 5.0 (±4.2) 17.0 (± 4.2) 44.0 (± 8.5) 440.5 (± 60.1) 1174.0 (± 100.4)
3DSynthFlow 8.0 (±4.2) 51.0 (± 2.8) 234.5 (±174.7) 1498.0 (±1306.7) 3738.0 (±1861.1)

ESR antago RxnFlow 3.0 (±2.8) 14.5 (± 0.7) 28.0 (± 0.0) 218.0 (± 21.2) 559.0 (± 50.9)
3DSynthFlow 6.5 (±7.8) 53.5 (± 9.2) 184.5 (± 40.3) 1083.5 (± 113.8) 3010.0 (± 264.5)

FEN1 RxnFlow 3.5 (±0.7) 29.0 (±18.4) 75.5 (± 57.3) 372.0 (± 46.7) 1057.5 (± 38.9)
3DSynthFlow 10.0 (±4.2) 92.0 (±97.6) 219.5 (±195.9) 774.5 (± 323.1) 3276.5 (± 451.8)

Average RxnFlow 3.8 21.7 54.6 400.6 1062.6
3DSynthFlow 10.1 103.7 316.0 1607.0 4848.1
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G.8 FULL RESULTS FOR LIT-PCBA TARGET

Table 16: Average Vina docking score for top-100 diverse modes generated against 15 LIT-PCBA
targets. The best results are in bold.

Average Vina Docking Score (kcal/mol, ↓)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1

Fragment FragGFN -10.19 (± 0.33) -10.43 (± 0.29) -9.81 (± 0.09) -9.85 (± 0.13) -7.67 (± 0.71)
FragGFN+SA -9.70 (± 0.61) -9.83 (± 0.65) -9.27 (± 0.95) -10.06 (± 0.30) -7.26 (± 0.10)

Reaction

SynNet -8.03 (± 0.26) -8.81 (± 0.21) -8.88 (± 0.13) -8.52 (± 0.16) -6.36 (± 0.09)
BBAR -9.95 (± 0.04) -10.06 (± 0.14) -9.97 (± 0.03) -9.92 (± 0.05) -6.84 (± 0.07)
SynFlowNeta -10.85 (± 0.10) -10.69 (± 0.09) -10.44 (± 0.05) -10.27 (± 0.04) -7.47 (± 0.02)

SynFlowNetb -9.17 (± 0.68) -9.37 (± 0.29) -9.17 (± 0.12) -9.05 (± 0.14) -6.45 (± 0.13)
RGFN -9.84 (± 0.21) -9.93 (± 0.11) -9.99 (± 0.11) -9.72 (± 0.14) -6.92 (± 0.06)
RxnFlow -11.45 (± 0.05) -11.26 (± 0.07) -11.15 (± 0.02) -10.77 (± 0.04) -7.66 (± 0.02)

3D Reaction 3DSynthFlow -11.97 (± 0.17) -12.25 (± 0.43) -11.31 (± 0.07) -11.25 (± 0.12) -7.92 (± 0.07)

GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN -8.76 (± 0.46) -9.91 (± 0.32) -9.27 (± 0.20) -8.93 (± 0.18) -10.51 (± 0.31)
FragGFN+SA -8.92 (± 0.27) -9.76 (± 0.64) -9.14 (± 0.43) -8.28 (± 0.40) -10.14 (± 0.30)

Reaction

SynNet -7.60 (± 0.09) -8.74 (± 0.08) -7.64 (± 0.38) -7.33 (± 0.14) -9.30 (± 0.45)
BBAR -8.70 (± 0.05) -9.84 (± 0.09) -8.54 (± 0.06) -8.49 (± 0.07) -10.07 (± 0.16)
SynFlowNeta -9.27 (± 0.06) -10.40 (± 0.08) -9.41 (± 0.04) -8.92 (± 0.05) -10.84 (± 0.03)

SynFlowNetb -8.28 (± 0.15) -9.18 (± 0.35) -8.06 (± 0.15) -7.89 (± 0.13) -9.60 (± 0.16)
RGFN -8.48 (± 0.06) -9.49 (± 0.13) -8.53 (± 0.11) -8.22 (± 0.15) -9.89 (± 0.06)
RxnFlow -9.62 (± 0.04) -10.95 (± 0.05) -9.73 (± 0.03) -9.30 (± 0.01) -11.39 (± 0.09)

3D Reaction 3DSynthFlow -9.89 (± 0.22) -11.42 (± 0.26) -10.19 (± 0.19) -9.69 (± 0.15) -12.03 (± 0.27)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN -10.28 (± 0.15) -11.24 (± 0.27) -9.54 (± 0.12) -7.90 (± 0.02) -10.96 (± 0.06)
FragGFN+SA -9.58 (± 0.44) -10.83 (± 0.34) -9.19 (± 0.29) -7.61 (± 0.27) -10.66 (± 0.61)

Reaction

SynNet -8.70 (± 0.36) -9.55 (± 0.14) -7.47 (± 0.34) -5.34 (± 0.23) -10.98 (± 0.57)
BBAR -9.84 (± 0.10) -11.39 (± 0.08) -8.69 (± 0.10) -7.05 (± 0.09) -11.07 (± 0.04)
SynFlowNeta -10.34 (± 0.07) -11.98 (± 0.12) -9.40 (± 0.05) -7.90 (± 0.10) -11.62 (± 0.13)

SynFlowNetb -9.36 (± 0.25) -10.64 (± 0.19) -8.25 (± 0.10) -6.84 (± 0.06) -10.32 (± 0.07)
RGFN -9.61 (± 0.11) -10.96 (± 0.18) -8.53 (± 0.07) -7.07 (± 0.06) -10.86 (± 0.11)
RxnFlow -10.84 (± 0.03) -12.53 (± 0.02) -9.73 (± 0.02) -8.09 (± 0.06) -12.30 (± 0.07)

3D Reaction 3DSynthFlow -11.22 (± 0.12) -13.73 (± 0.25) -10.26 (± 0.14) -8.49 (± 0.27) -12.97 (± 0.20)
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Table 17: Average ligand efficiency for top-100 diverse modes generated against 15 LIT-PCBA
targets. The best results are in bold.

Average Ligand Efficiency (↓)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1

Fragment FragGFN 0.410 (± 0.006) 0.368 (± 0.007) 0.347 (± 0.003) 0.358 (± 0.002) 0.246 (± 0.004)
FragGFN+SA 0.406 (± 0.007) 0.374 (± 0.023) 0.369 (± 0.003) 0.345 (± 0.024) 0.210 (± 0.004)

Reaction

SynNet 0.274 (± 0.041) 0.272 (± 0.006) 0.317 (± 0.005) 0.289 (± 0.020) 0.196 (± 0.003)
BBAR 0.412 (± 0.006) 0.401 (± 0.008) 0.380 (± 0.001) 0.387 (± 0.003) 0.257 (± 0.003)
SynFlowNeta 0.401 (± 0.006) 0.380 (± 0.007) 0.361 (± 0.003) 0.361 (± 0.004) 0.247 (± 0.004)

Synflownetb 0.380 (± 0.021) 0.362 (± 0.016) 0.351 (± 0.008) 0.349 (± 0.005) 0.234 (± 0.007)
RGFN 0.393 (± 0.005) 0.357 (± 0.004) 0.346 (± 0.002) 0.344 (± 0.002) 0.241 (± 0.001)
RxnFlow 0.412 (± 0.005) 0.396 (± 0.005) 0.375 (± 0.002) 0.380 (± 0.004) 0.246 (± 0.001)

3D Reaction 3DSynthFlow 0.438 (± 0.015) 0.409 (± 0.020) 0.385 (± 0.006) 0.396 (± 0.010) 0.247 (± 0.000)

GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN 0.333 (± 0.018) 0.367 (± 0.009) 0.322 (± 0.008) 0.302 (± 0.002) 0.354 (± 0.005)
FragGFN+SA 0.318 (± 0.005) 0.369 (± 0.020) 0.298 (± 0.020) 0.294 (± 0.015) 0.355 (± 0.027)

Reaction

SynNet 0.244 (± 0.013) 0.281 (± 0.016) 0.294 (± 0.042) 0.226 (± 0.004) 0.316 (± 0.035)
BBAR 0.336 (± 0.002) 0.382 (± 0.005) 0.332 (± 0.003) 0.320 (± 0.002) 0.385 (± 0.004)
SynFlowNeta 0.330 (± 0.004) 0.368 (± 0.002) 0.327 (± 0.003) 0.305 (± 0.002) 0.368 (± 0.002)

SynFlowNetb 0.324 (± 0.007) 0.360 (± 0.013) 0.309 (± 0.004) 0.297 (± 0.011) 0.361 (± 0.009)
RGFN 0.310 (± 0.002) 0.351 (± 0.003) 0.310 (± 0.003) 0.298 (± 0.002) 0.346 (± 0.004)
RxnFlow 0.327 (± 0.004) 0.378 (± 0.001) 0.330 (± 0.001) 0.313 (± 0.001) 0.370 (± 0.001)

3D Reaction 3DSynthFlow 0.344 (± 0.021) 0.394 (± 0.012) 0.322 (± 0.010) 0.314 (± 0.012) 0.376 (± 0.009)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN 0.352 (± 0.004) 0.442 (± 0.008) 0.319 (± 0.007) 0.307 (± 0.005) 0.394 (± 0.006)
FragGFN+SA 0.327 (± 0.014) 0.440 (± 0.009) 0.303 (± 0.013) 0.248 (± 0.025) 0.390 (± 0.020)

Reaction

SynNet 0.298 (± 0.039) 0.296 (± 0.005) 0.253 (± 0.031) 0.211 (± 0.031) 0.359 (± 0.015)
BBAR 0.370 (± 0.006) 0.442 (± 0.004) 0.326 (± 0.007) 0.288 (± 0.005) 0.409 (± 0.002)
SynFlowNeta 0.359 (± 0.004) 0.427 (± 0.003) 0.317 (± 0.002) 0.287 (± 0.008) 0.393 (± 0.003)

SynFlowNetb 0.355 (± 0.008) 0.410 (± 0.018) 0.296 (± 0.010) 0.282 (± 0.005) 0.380 (± 0.005)
RGFN 0.349 (± 0.001) 0.405 (± 0.002) 0.307 (± 0.002) 0.271 (± 0.001) 0.381 (± 0.002)
RxnFlow 0.369 (± 0.007) 0.436 (± 0.005) 0.319 (± 0.002) 0.289 (± 0.003) 0.405 (± 0.002)

3D Reaction 3DSynthFlow 0.373 (± 0.015) 0.460 (± 0.019) 0.328 (± 0.007) 0.293 (± 0.013) 0.408 (± 0.012)
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Table 18: Average success rate of AiZynthFinder for top-100 diverse modes generated against 15
LIT-PCBA targets. The best results are in bold.

AiZynthFinder Success Rate (%, ↑)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1

Fragment FragGFN 4.00 (± 3.54) 3.75 (± 1.92) 1.00 (± 1.00) 3.75 (± 1.92) 0.25 (± 0.43)
FragGFN+SA 5.75 (± 1.48) 6.00 (± 2.55) 4.00 (± 2.24) 1.00 (± 0.00) 0.00 (± 0.00)

Reaction

SynNet 54.17 (± 7.22) 50.00 (± 0.00) 50.00 (± 0.00) 25.00 (± 25.00) 50.00 (± 0.00)
BBAR 21.25 (± 5.36) 19.50 (± 3.20) 17.50 (± 1.50) 19.50 (± 3.64) 20.00 (± 2.12)
SynFlowNeta 52.75 (± 1.09) 57.00 (± 6.04) 53.75 (± 9.52) 56.50 (± 2.29) 53.00 (± 8.92)

SynFlowNetb 56.50 (± 6.58) 56.00 (± 3.08) 61.00 (± 2.74) 64.50 (± 9.86) 60.75 (± 3.77)
RGFN 46.75 (± 6.86) 47.50 (± 4.06) 50.25 (± 2.17) 49.25 (± 4.38) 48.50 (± 6.58)
RxnFlow 60.25 (± 3.77) 63.25 (± 3.11) 71.25 (± 4.15) 66.50 (± 4.03) 65.50 (± 4.09)

3D Reaction 3DSynthFlow 47.67 (± 19.15) 49.33 (± 3.40) 50.33 (± 5.73) 61.33 (± 5.56) 52.67 (± 5.79)

GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN 5.00 (± 4.24) 4.50 (± 1.66) 1.25 (± 0.83) 0.75 (± 0.83) 2.75 (± 1.30)
FragGFN+SA 3.00 (± 1.00) 4.50 (± 4.97) 1.50 (± 0.50) 3.25 (± 1.48) 3.50 (± 2.50)

Reaction

SynNet 50.00 (± 0.00) 50.00 (± 0.00) 45.83 (± 27.32) 50.00 (± 0.00) 54.17 (± 7.22)
BBAR 17.75 (± 2.28) 19.50 (± 1.50) 18.75 (± 1.92) 16.25 (± 3.49) 18.75 (± 3.90)
SynFlowNeta 58.00 (± 4.64) 59.00 (± 4.06) 55.50 (± 10.23) 47.25 (± 6.61) 57.00 (± 7.58)

SynFlowNetb 61.50 (± 3.84) 60.50 (± 3.91) 57.25 (± 4.97) 44.50 (± 9.29) 62.00 (± 1.22)
RGFN 48.00 (± 1.22) 43.00 (± 2.74) 49.00 (± 1.22) 42.00 (± 3.00) 44.50 (± 4.03)
RxnFlow 66.00 (± 1.58) 64.00 (± 5.05) 66.50 (± 2.06) 63.00 (± 4.64) 70.50 (± 2.87)

3D Reaction 3DSynthFlow 51.50 (± 12.08) 50.50 (± 7.79) 38.67 (± 9.10) 48.00 (± 18.24) 34.00 (± 7.87

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN 2.50 (± 2.29) 8.75 (± 3.11) 0.75 (± 0.43) 4.25 (± 1.64) 3.50 (± 2.18)
FragGFN+SA 3.25 (± 1.79) 9.75 (± 2.28) 1.25 (± 1.09) 2.25 (± 1.92) 3.75 (± 2.77)

Reaction

SynNet 54.17 (± 7.22) 50.00 (± 0.00) 54.17 (± 7.22) 29.17 (± 18.16) 45.83 (± 7.22)
BBAR 13.75 (± 3.11) 20.00 (± 0.71) 15.50 (± 2.29) 18.50 (± 3.28) 12.25 (± 3.34)
SynFlowNeta 56.50 (± 7.63) 50.75 (± 1.09) 53.50 (± 5.68) 55.50 (± 9.94) 53.50 (± 1.80)

SynFlowNetb 56.25 (± 2.49) 58.00 (± 7.00) 57.00 (± 5.74) 66.50 (± 6.80) 53.50 (± 3.84)
RGFN 48.00 (± 2.55) 48.50 (± 3.20) 47.00 (± 5.83) 53.25 (± 3.63) 46.50 (± 2.69)
RxnFlow 72.25 (± 2.05) 62.00 (± 3.24) 65.50 (± 4.03) 67.50 (± 2.96) 66.75 (± 2.28)

3D Reaction 3DSynthFlow 43.67 (± 2.36) 54.67 (± 13.42) 41.00 (± 2.94) 49.33 (± 13.42) 49.00 (± 19.87)
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Table 19: Average synthesis steps estimated from AiZynthFinder for top-100 diverse modes gener-
ated against 15 LIT-PCBA targets. The best results are in bold.

Average Number of Synthesis Steps (↓)

Category Method ADRB2 ALDH1 ESR ago ESR antago FEN1

Fragment FragGFN 3.60 (± 0.10) 3.83 (± 0.08) 3.76 (± 0.20) 3.76 (± 0.16) 3.34 (± 0.18)
FragGFN+SA 3.73 (± 0.09) 3.66 (± 0.04) 3.66 (± 0.07) 3.67 (± 0.21) 3.79 (± 0.19)

Reaction

SynNet 3.29 (± 0.36) 3.50 (± 0.00) 3.00 (± 0.00) 4.13 (± 0.89) 3.50 (± 0.00)
BBAR 3.60 (± 0.17) 3.62 (± 0.19) 3.76 (± 0.04) 3.72 (± 0.11) 3.59 (± 0.14)
SynFlowNeta 2.64 (± 0.07) 2.48 (± 0.07) 2.60 (± 0.25) 2.45 (± 0.09) 2.56 (± 0.29)

SynFlowNetb 2.42 (± 0.10) 2.48 (± 0.10) 2.38 (± 0.10) 2.34 (± 0.30) 2.41 (± 0.14)
RGFN 2.88 (± 0.21) 2.65 (± 0.09) 2.78 (± 0.19) 2.91 (± 0.23) 2.76 (± 0.17)
RxnFlow 2.42 (± 0.23) 2.19 (± 0.12) 1.95 (± 0.20) 2.15 (± 0.18) 2.23 (± 0.18)

3D Reaction 3DSynthFlow 2.95 (± 0.42) 3.17 (± 0.21) 3.09 (± 0.23) 2.72 (± 0.24) 3.11 (± 0.24)

GBA IDH1 KAT2A MAPK1 MTORC1

Fragment FragGFN 3.94 (± 0.11) 3.74 (± 0.10) 3.78 (± 0.09) 3.72 (± 0.18) 3.84 (± 0.18)
FragGFN+SA 3.94 (± 0.15) 3.84 (± 0.23) 3.66 (± 0.18) 3.69 (± 0.21) 3.94 (± 0.08)

Reaction

SynNet 3.38 (± 0.22) 3.38 (± 0.22) 3.46 (± 0.95) 3.50 (± 0.00) 3.29 (± 0.36)
BBAR 3.71 (± 0.12) 3.68 (± 0.02) 3.63 (± 0.05) 3.73 (± 0.05) 3.77 (± 0.09)
SynFlowNeta 2.48 (± 0.18) 2.61 (± 0.13) 2.45 (± 0.37) 2.81 (± 0.24) 2.44 (± 0.27)

SynFlowNetb 2.45 (± 0.08) 2.46 (± 0.12) 2.45 (± 0.12) 2.83 (± 0.27) 2.39 (± 0.17)
RGFN 2.77 (± 0.20) 2.97 (± 0.15) 2.78 (± 0.10) 2.86 (± 0.19) 2.92 (± 0.06)
RxnFlow 2.10 (± 0.08) 2.16 (± 0.11) 2.29 (± 0.05) 2.29 (± 0.11) 2.05 (± 0.09)

3D Reaction 3DSynthFlow 3.05 (± 0.38) 3.05 (± 0.31) 3.43 (± 0.23) 3.20 (± 0.39) 3.45 (± 0.22)

OPRK1 PKM2 PPARG TP53 VDR

Fragment FragGFN 3.82 (± 0.13) 3.71 (± 0.12) 3.73 (± 0.24) 3.73 (± 0.23) 3.75 (± 0.06)
FragGFN+SA 3.62 (± 0.12) 3.84 (± 0.21) 3.71 (± 0.04) 3.66 (± 0.05) 3.67 (± 0.25)

Reaction

SynNet 3.29 (± 0.36) 3.50 (± 0.00) 3.29 (± 0.36) 3.67 (± 0.91) 3.63 (± 0.22)
BBAR 3.70 (± 0.17) 3.61 (± 0.05) 3.72 (± 0.13) 3.65 (± 0.05) 3.77 (± 0.16)
SynFlowNeta 2.49 (± 0.33) 2.62 (± 0.10) 2.56 (± 0.12) 2.51 (± 0.27) 2.55 (± 0.09)

SynFlowNetb 2.50 (± 0.11) 2.52 (± 0.20) 2.53 (± 0.06) 2.34 (± 0.10) 2.51 (± 0.17)
RGFN 2.81 (± 0.12) 2.82 (± 0.10) 2.82 (± 0.18) 2.64 (± 0.10) 2.84 (± 0.18)
RxnFlow 2.00 (± 0.09) 2.34 (± 0.19) 2.21 (± 0.06) 2.12 (± 0.12) 2.12 (± 0.12)

3D Reaction 3DSynthFlow 3.34 (± 0.07) 3.10 (± 0.49) 3.45 (± 0.12) 3.08 (± 0.39) 3.06 (± 0.62)
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G.9 EXAMPLE GENERATION TRAJECTORIES

Figure 5: The example generation trajectory against ALDH1 target. The top row shows the 3D
molecule xt (green). The mid row shows the predicted final pose at each time step (cyan). The
bottom row shows the synthesis pathway.
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