Published as a conference paper at ICLR 2026

UNIQL: UNIFIED QUANTIZATION AND LOW-RANK
COMPRESSION FOR ADAPTIVE EDGE LLMS

Hung-Yueh Chiang ! = , Chi-Chih Chang ?, Yu-Chen Lu?, Chien-Yu Lin*,
Kai-Chiang Wu 3, Mohamed S. Abdelfattah 2, Diana Marculescu !~

! Chandra Family Department of Electrical and Computer Engineering,
The University of Texas at Austin
2 Department of Electrical and Computer Engineering, Cornell University
3 Department of Computer Science, National Yang Ming Chiao Tung University
* The Paul G. Allen School of Computer Science and Engineering, University of Washington

ABSTRACT

Deploying large language models (LLMs) on mobile platforms faces significant
challenges due to the limited memory and shared computational resources of the
device. Resource availability may be an issue as it is directly impacted by on
the current device workload, adding to the uncertainty of model deployment.
We introduce UniQL, a unified post-training quantization and low-rank com-
pression framework, with on-device configurable pruning rates for edge LLMs.
UniQL is a general framework that integrates quantization and low-rank com-
pression for Transformers, State Space Models (SSMs), and hybrid models
to cater to diverse edge applications. In our proposed joint framework, we in-
troduce an efficient structured weight-sorting that speeds up the computation by
20x, quantization-aware singular value decomposition (SVD) decompositions
to minimize the quantization errors, state-aware weight sorting for SSMs, and
a fused rotary embedding (RoPE) kernel for the pruned models. Our frame-
work performs weight-sorting, fine-tuning, and quantization in the cloud in a
one-pass fashion, while enabling on-device configurable pruning rates up to
35%. Our experiments show that quantized and pruned models offer a mem-
ory reduction of 4x—5.7x and a token throughput improvement of 2.7x-3.4x,
maintaining accuracy within 5% of the original models at 15% pruning rates
across Transformers (Llama3 and Qwen2.5), SSMs (Mamba2), and hybrid models
(Nemotron-H and Bamba-v2). The code and quantized models will be released at:
https://github.com/enyac—group/UniQLl

1 INTRODUCTION

Numerous emerging applications, such as question answering on VR/AR glasses, are powered by
large language models (LLMs). Yet, models with parameters on the order of billions (e.g., 10B)
restrict the platforms and applications that can utilize them. Extensive research investigates quanti-
zation (X1ao et al.,2023;|Lin et al., 2024 ajb) and compression (Qinsi et al.,|[2025;|Wang et al.,[2025b;
Lin et al.l [2025) for LLMs to lower memory and computing needs for deployment. However, the
limited and shared resources (e.g., the unified memory architecture) on edge devices still pose huge
challenges for model deployment. Since resources (e.g., memory) are dynamically managed by the
operating system, the availability of the resources highly depends on the system workload. As a
result, the pre-compressed or pre-quantized language models with fixed model sizes may not run on
a device under high workload scenarios.

Re-compressing or re-quantizing the model to fit it into available memory is not practical due to
the high computational costs, i.e., several hours on cloud GPUs (Lin et al., 2025} [Frantar et al.,

¥ Corresponding authors: {hungyueh.chiang, dianam}@utexas.edu

https://github.com/enyac-group/UniQL

Published as a conference paper at ICLR 2026

80

—%— UniQL (W4A16) Nemotron-H-8B
One-pass compression On-device pruning o TAO-HQQ (W4A16) DQuantizeand deploy [
75 _—— P
Prune / Llama-3.1-8B i
R e, g [E e
/' u MB 70 Va i
J Mamba-2-8B
g // Adapt|ve amba
a ’ Memory 65 size
I utilization z
i . High
B2 g% ¢ Prune ‘ 16GB
Vel 60
- more d o ® 468 | O FP16(Est)
o0 @ 268 |: oom
55
32 64 TTLT (sec) 128
(a) The UniQL framework (b) Accuray vs. Latency

Figure 1: (Proposed framework overview.) UniQL supports Transformers, SSMs, and hybrid
models, enabling one-shot compression using a single server-class GPU. The on-device pruning of
the quantized model is feasible and configurable based on the current device workload. We present
actual latency on Nano 8G in relation to accuracy for different pruning rates across three distinct
models on the right. Circle sizes correspond to model sizes.

2023). A solution to address this issue is storing several model replicas at different compression
rates. Nonetheless, producing pre-compressed replicas of different sizes is both time- and storage-
consuming. Alternatively, employing elastic training (Cai et al., |2024;|2025) to a pre-trained model
enables the derivation of various sizes from the model. Yet, this approach requires availability of
GPU resources and training on curated datasets to support flexible deployment for one specific type
of model, e.g., Llama-3.1-8B, limiting the applicability.

Our proposed work addresses this issue under the post-training setting when access to server-class
GPUs and curated datasets is limited. As illustrated in Figure[I] our framework supports quantiza-
tion and structured pruning, performing efficiently on one server GPU. Our objective is to support
and design compression algorithms for various model architectures, including Transformers, State
Space Models (SSMs), and hybrid models. Our pipeline is shown in Figure[2] We group the weights
within the block, gather channel corrections from a calibration dataset, and apply weight-sorting
algorithms. Our multi-layer perceptron (MLP) weights are decomposed without any gradient infor-
mation or expensive full matrix pseudo-inverse, yielding a speedup of 20x compared to prior art
(Lin et al.| |2025). For W,, and W, in self-attention layers, we develop a quantization-aware singu-
lar value decomposition (SVD) of weights to minimize quantization errors. For SSMs and hybrids
models, we find that SSM blocks are particularly sensitive to state matrices, and propose a state-
aware weight-sorting strategy to mitigate this. We then apply a masked fine-tuning to the sorted
model. In each fine-tuning step, a global pruning rate P; is chosen randomly, masking the least
ranked channels in the layers. The refined model is then quantized in low bit-width and deployed on
the edge platform. The entire process is performed once in the cloud. For the deployed model, we
prune the models according to a specified global pruning rate, e.g., P35 = 35%, on the edge device.
Our contributions are summarized as follows:

* Our study explores a broad spectrum of models, such as Transformers, SSMs, and hybrid, and
introduces efficient pruning and quantization-friendly algorithms for these blocks.

* To the best of our knowledge, UniQL is the first post-training framework that systematically
combines quantization and structured pruning for LLMs in a one-shot fashion.

* We develop an integrated kernel to support the pruned RoPE, conducting comprehensive profil-
ing to demonstrate 2.7x-3.4 x latency speedups for adaptive pruning on edge devices.

2 RELATED WORK

Transformer compression. Prior work has aimed to reduce the size of Transformer-based LLMs
for efficient deployment by utilizing low bit-width data types (Xiao et al.; 2023} [Lin et al., |2024bjaj;
Zhao et al.| 2024; Liu et al., 2025} |Ashkboos et al.,[2024b)), minimizing storage needs and optimizing
hardware for low-bit computations. Unstructured (Frantar & Alistarh, 2023} |Sun et al., [2024) and

Published as a conference paper at ICLR 2026

Pruning rates P =

The [! layer
p Y o < P,~P Pis =[5, 1)
MLP Wy Pinv-free W“S”
—_—
Wy gom - { } M Prune Prune
Wa Sm Wa femory more o
Quantization-aware utilization Pss Pys

EAMm S

High I Low ||/EECTE
T

R 174 o e s e 111111

State-aware .:r;
Mamba I‘;IV/Z {WB} nd :jly/;;: {WBSEC} - {m}{[[[l} \/‘/‘5 D J D)
w,) We sTw,) WeSee DAmasked L
- J
(a) Decompose and sort the channels (b) Masked fine-tune (c) Fuse and quantize (d) Deploy and adaptive prune

Figure 2: (The UniQL pipeline.) We devise pseudo-inverse-free, quantization-aware, and state-
aware matrix decomposition methods for the grouped weights to obtain sorted weights (a). During
fine-tuning, we sample global pruning rates, and masked out the weight channels (b). The refined
patches are fused into the weights, followed by model quantization for deployment (c). Based on
the system utilization, we perform on-device adaptive pruning of the quantized model (d).

semi-structured pruning (e.g., N:M sparsity) (Li et al.l [2023) for reducing model size by removing
specific parameters while minimizing accuracy loss. Nonetheless, deploying such methods requires
specialized hardware (Taka et al., 2025; |Xia et al., |2023)). Structured pruning (Wang et al., [2025a}
Lin et al.,2025;|Ma et al., 2023 |Ashkboos et al.,2024a) removes whole elements (e.g., channels and
heads), enabling faster inference on standard hardware but sacrificing performance. Some studies
focus on one-shot compression (Genzel et al.l 2025; [Wang et al., 2025c¢), flexible bit-width quan-
tization (Park et al., [2024), and quantization with semi-structured sparsity (Mozaffari et al., [2025)).
Our framework is systematically designed for quantization and on-device structured pruning.

SSM compression. State Space Models are memory-efficient alternatives to Transformers. Recent
studies (Xu et al., 2025} /Chiang et al., 2025bja)) introduce low-bit quantization techniques for SSMs.
Structured (Taghibakhshi et al.| [2025; Mufioz et al.,[2025) and unstructured pruning (Tuo & Wang,
2025} |Shihab et al., 2025)) strategies have been developed for SSMs. For example, Taghibakhshi et al.
(2025) eliminate the SSM heads and restore performance through knowledge distillation training.
Muioz et al.| (2025)) explore block-wise (e.g., Mamba and Transformer blocks) and module-wise
(e.g., SSM and self-attention modules) structured pruning methods. Some work explores the token
pruning (Zhan et al., |2024) or dimension reduction (Chi et al., [2024) for vision SSMs. Our focus
is on analyzing a broader structured pruning and quantization framework for Transformers, SSMs,
and hybrids, distinguishing it from previously mentioned approaches.

Elastic training for LLMs. FElastic training aims to enable a pre-trained LLM to dynamically
adapt to varying deployment constraints such as memory, compute, and latency budgets. Flex-
tron (Cai et al.;|2024) and LLaMaFlex (Cai et al., | 2025)) introduce many-in-one architectures through
pruning and weight sharing, allowing adaptive inference under dynamic resource constraints. Jet-
Nemotron (Gu et al.| [2025) further leverages post-training neural architecture search to generate
compact LLM variants. These methods require GPU resources and training on curated datasets for
flexible deployment tailored to a particular model type and size, e.g., Llama-3.1-8B, thereby restrict-
ing their general applicability. In contrast, our work focuses on post-training on a single server GPU
for the most common model architectures and supports on-device adaptation.

3 PROPOSED FRAMEWORK: UNIQL

3.1 NOTATIONS

Let T represent the sequence length. Dy, Dyq, Ds, and D, denote the hidden, head, state, and
intermediate dimensions used in Transformer and Mamba blocks. D’ is the post-pruning dimension.
H,, Hy,, and H,, are the number of attention heads, key-value heads, and SSM heads, respectively.
G, is the number of SSM groups. X € RT*Pin and W € RPuxDou are the activations and
weights. C = X'X € RPuxDPin g the correlation matrix of X. The matrix S € RP*P is
associated with a group of weights for sorting their columns and rows. We denote the element-wise
multiplication, broadcasted outer product, and activation function as ®, ® and o (+), respectively. U,
3., and V denote the SVD decomposition, with eigenvalues o; on X’s diagonal.

Published as a conference paper at ICLR 2026

MHSA VT Mamba
MLP {Wq} —_— {quq"} -‘I‘. W) State-aware(WzSs
Wy Pinv-free WaSim Wi WieSqx I Al Wx} — WS
Wy t————> W5,y yy Quamizaton-aware h i W, sTw,
-1/2 nl
Wa SmWa {WV} — {C €jvljz} —— -V% WB} {WBSBE}
’ v D'na T We WeSpe
SSM
1 f
Conv ¢(-))
D'S D s

- T e ey
WuSm WoSm w,s, *° W,SS-LY‘C“ WpgSgc V‘)c,s WcSpe
(a) MLP (b) MHSA (c) Mamba

Figure 3: (Joint weight decomposition.) We visualize the group of sorted weights in MLP (a),
MHSA (b), and Mamba (c) blocks. The group of weights for joint decomposition is shown in
the same background color, e.g., W, and W, in the pink background, and other groups are dis-
tinguished by different colors. We devise different types of joint compression algorithms that are
efficient and quantization-aware to support on-device pruning.

3.2 STRUCTURED WEIGHT SORTING

Our objective is to enable adaptive on-device pruning by sorting the weights according to their im-
portance scores, allowing the device to prune the least significant columns. Inspired by recent studies
(Lin et al., |2025; |Koike-Akino et al., [2025), we group the weights and conduct joint decomposition,
as shown in Figure[3| We co-design the pruning algorithm alongside quantization and fused kernels
for Transformers, SSMs, and hybrids.

Multi-layer perceptron (MLP). The MLP includes up W, & RP»*Pint and down
projections Wy € RPmexPu with an optional gate projection W, € RPnxDint,
The formulation is defined as furp(X) = (0(XW,) ©

XW.,)W . To derive S,, to sort the weight matrices inthe MLP Table 1: (Pseudo-inverse.)
layer, we collect the intermediate activation Xin; = 0 (XW4)® Pgeudo-inverse latency for FP64
XW, from the calibration set, and calculate the channel corre- matrices on A6000 (in minutes).
lation C = X! X;.. € RPmexDint We average the correlation

int
matrix over the calibration set, and compute the ridge leverage

Matrix Size Lat. (min.)

scores (McCurdy, 2018) defined by diag (C(C + A)~'). We set [1024, 1024] 0.02
ridge lambda A = 1 in our experiments. We use the scores and [4096, 4096] 0.57
create a column sorting matrix S,,, € RPintxPine that reorders [8192, 8192] 4.24

the output columns for W,, and W, as W,,S,,, and W,S,,,, and (14336, 14336] 20.58
the input rows of the W, as S, W, as shown in Figure (a).

Our approach does not rely on time-consuming pseudo-inverse to sort the MLP weight matrices.
Although the pseudo-inverse (i.e., Moore-Penrose inverse (Penrose, [1955))) provides a theoretical
bound in pruning errors (Lin et al.l |2025), it exhibits three major drawbacks: (1) Pseudo-inverse
has a complexity of O(n?) for a n-size squared matrix. This is particularly time-consuming when
computing the pseudo-inverse of correlation matrices in MLP layers because Dj,t is a large number
in most LLM designs, e.g.,, Llama-3-8B D;,; = 14336. (2) Pseudo-inverse computation requires
a high-precision FP64 to maintain numerical stability (Lin et al.l [2025),which demands substan-
tial memory usage for full-precision weights. (3) Matrix inverse breaks the equivalence of pruned
weights, resulting in (W’)T £ (W), requiring recomputation for different pruning rates. Here,
W € RP*P W' is a submatrix of W, where W/ € RP*D’ with D > D’. W represents the
inverse matrix. We show the latency of pseudo-inverse computation for FP64 matrices on A6000 in
Table[T

Multi-head self-attention (MHSA). For simplicity, we set the attention heads H and the key-
value heads Hy,, as equivalent. The formulation of i*™ head within the MHSA is provided as fol-

Published as a conference paper at ICLR 2026

ot . SVD-LLM: W = (UVE)(VZV)
(us, — iy — i p
Sin/Cos Fused kernel 1 a [} k asoq [T < Vooueo | Woruoeri H/02uoz > (VO0Voo| 1V00Vo1i iVI0Vo2)

VOouro| WOt} 10Uz VO1vio| Wo1v11i iVO1v12

A\ i catherems. Bottng | Worttey Wopw Gova0| Wrvar v
Indices ROPEL(X;{; 9!) 200 vZoH20 1421 vV P2422: [V Y2v20 V2v21; V2v22:
s l | |7X Quantization friendly & Quantization unfriendly ©
sym
100

- Si
D'na/2

DeGPT: W = U(SV) ~ Values

e N o #1rag
O0Voo | :90Vo1i § 2
21401
o
41402
102
o

01V10| i101V11
Quantization unfriendly & "o m @ & & by

(uzDyv

0
Fused PyTorch

II RoPE;(Xg; 6")
mmq_gather [k_gather

i th head [ithnead ==qrot ek rot
Dngl2 __ D’ng/2
I
. .
.

(a) Fused RoPE kernel (b) SVD decomposition

e

07V20|:02V21%

Quantization-aware (Ours): W = |

.
]
1 B2 OolUgg| {01 2
" ,‘// ToUzo i E
X'k

W

quantization

q group

Figure 4: (The fused kernel and SVD decomposition.) In the left illustration, gathering and slicing
rotary positional embeddings by the index vector for @) and K are fused in one kernel to reduce
memory access. The embeddings for the pruned head dimension Dj ; are gathered from the index
array S,y in the fused kernel. On the right, we combine the diagonal matrix X with U as the group
shares a quantization scaling factor to reduce the quantization errors.

lows: fumusa(X,i) = Softmax (p (XW;) p (XW}C)T) (XW@W;), where p(-) denotes RoPE
(Su et al, 2021). The weights in MHSA are divided into two groups: {W W} } and {W/ , Wi}

For the Wfl and W% we obtain activations Xfl =p (XWé) and Xt = (XW}C) and compute
the channel correlation C;, = Xf]TXfI and C, = XQTX};, where C; and C}, € RPnaxDna The

sorting scores s € RPud are calculated as s = ||C;1/ 2 |® ||C,il/ ?|l. and averaged over the calibration
sample. Since the embedding positions are broken by our structured sorting, we have to gather
the corresponding indices for the rotary positional embeddings, i.e., sin and cos. Since RoPE is
expressed as RoPE(X;0) = cos(f) ® X + sin(¢) © R(X), where R(X) rotates by splitting X
into two components along the last axis: X = [x1,X2] such that R(X) = [—x2,x1], we apply a
symmetric sorting ssym = s1 + S2, where {sgym, s1, S2} € RDPna/2 gnd s = [s1,82]. As such, we
construct the final sorting matrix Sy € RPnaxDna with [ssym, ssym] that sorts the output columns
as W S, and WS ;. Symmetric sorting is hardware-efficient since we only need to store and
load half of the index vector into our fused RoPE kernel, as illustrated in Figure 4{(a).

For the Wf, and Wﬁ, we perform an activation-scaled SVD decomposition (Wang et al., |2025aj
Yuan et al., 2023). With the input correlation matrix C = X TX, we follow [Lin et al.[(2025) to per-
form joint decomposition by two consecutive SVD operations: C2 Wi W' = SVD(Cz Wi)W =
U,x, VWi =U,SVD(Z,V',W!) = U,UZV ". The SVD decomposition ranks the eigen-
vectors by eigenvalues. To reduce quantization errors, we fuse the diagonal matrix into W, unlike
prior art (Wang et al.,2025b; |Lin et al., 2025). We present the final sorted weights with quantization-
aware SVD decomposition as W! = C < U, U and W! = VT, asshown in Figure (b). Low-bit
quantization (i.e., 3- or 4-bit) is sensitive to the distribution within the quantization group. We de-
construct the weight matrix W = UXV by merging the long-tailed eigenvalues X with U, such
that W = (UX)V, where each column of U is scaled by its eigenvalue o;. Thus, o; acts as the
scaling factor for the group without distorting the distributions, as depicted in Figure f] (b).

We show the details of the proposed algorithms in Algorithm 2]and[3] This joint weight decomposi-
tion also supports Grouped-Query Attention (GQA) (Ainslie et al.| 2023), as shown in FigureE] (b)
and Algorithm] and [5]in Appendix [A]

Mamba. The Mamba block encompasses five primary weight matrices. For simplicity, we decom-
pose the entire computation and express the SSM’s i*" head and ¢'" group as fytampa(X,4,9) =

Norm<a(xwg) © SSM(AA, $(XWL), Ag(XWY,), qs(xwg)))wg,where (Wi, Wi} e

x z

RDPuxDua and {W%, W2} € RPv*Ps and the output weight Wi € RP1a*Pu Norm(-) and ¢(-)
denote normalization and 1D causal convolution layer fused with an activation, respectively. The

Published as a conference paper at ICLR 2026

SSM(-) function performs the linear recurrence computations hy = Ay Ashi—1 + Ay Bz, yp =
C,h, for the i*" head and ¢*" group at each time step ¢ with a parameterized step size A (Dao & Gu,
2024). AA and ABY = A¢(XWY) are the matrix forms of A; A, and A, B;. H is the matrix form
of the SSM state h;. To perform the joint weight decomposition, we first break the computation of
a Mamba block into two sub-formulations: (1) SSM input mask M: fa(X,g) = CI(ABY)T =
P(XWE) (Ap(XWE)) T and (2) SSM state H: f (X, g,4, ho) = AAH(ho) + ABIX), with an

initial state ho. We denote be = ¢(X'WZ) as the output of the causal convolution activation.

We first focus on sorting the weights {W%, W%} that compute the SSM input mask M. For the
SSM group g with HJ, = % SSM heads in the group, we obtain the activations BY = ¢ (XW¥,)
and CY = ¢ (XWY,), where BY and C9 € RT*Ps_ Unlike self-attention, BY is discretized using
the input-dependent variable A9 € RT*H by a broadcasted outer product (AB)Y = A9 ® BY ¢
R XT*Ds - As a result, we compute the channel correlation AC% = (AB)¢ " (AB)Y and L =
Cchg, where AC% € RH7xDsxDs gpnq Cg € RPs*Ds_ The sorting scores s € RPs are calculated

Hg

m

as s = y . (AC%)imH ©® ||Cg1/2|\, and averaged over the calibration samples. We use s to

construct the sorting matrix Spc € RP=*Ps that sorts the output columns of W% and WY, as
W% Spc and WESpe, as shown in Figure (c).

We propose a state-aware method to compress the other group of weights {Wi Wi Wi}

z

by collecting the correlations from the SSM states, H' € R(T*P:)xDna quch that ci =

i CZ € RPnaxPna and averaging over the calibration samples. The ridge leverage score
diag (CH (Cy + AT)_1) is computed as the MLP layer, where we set ridge lambda A = 1. We use
the scores and design a column sorting matrix S, € RP=a>*Dnd that organizes the output columns
for Wi and W’ as WS, and W'S,. The input rows for W? are sorted accordingly by ST W,
Figure (c) illustrates these sorted weights.

3.3 MASKED LORA FINE-TUNING

We conduct a LoRA-based (Hu et al.| 2022)) recovery fine-tuning (FT) on the sorted model. Unlike
previous work (Wang et al.l [2025bga) that fine-tunes the pruned model, we fine-tune the un-pruned
sorted model in one shot, as shown in Figure [2| We derive the layer-wise pruning rates r; using
Block Influence (BI) scores (Lin et al., 2025 Men et al.,|2024)) for all pre-determined global pruning

rates P = [Py5, Py, ...], such as Py = [rf“’,rf“, ...,rfls]. The BI score is defined as s = 1 —

"
E%, where the z; and y; represent the input and output of the I*" layer, respectively. During

fine-tuning, we randomly draw a pruning rate P; ~ P at time step ¢ to mask out the pruned channels.
We follow the prior work (Wang et al., [2025b)) to perform instruction tuning on the Alpaca dataset
(Taori et al., 2023) for five epochs. The entire fine-tuning process is conducted on a single cloud
GPU. Our sorted model provides configurable pruning rates on the device after one-shot masked
fine-tuning. We note that our fine-tuning inherently supports downstream tasks for any application,
such as summarization and question-answering datasets.

3.4 QUANTIZATION AND ON-DEVICE ADAPTIVE PRUNING

We quantize the fine-tuned full model to minimize the on-device storage needs. We employ group-
wise uniform symmetric quantization, the most commonly supported method by hardware, to
convert floating-point values into N-bit discrete form. The quantization function for a group of
weight W(; ;) in column i is defined as W ; ;) = Clamp({%—‘ ,—2N-1 oN=1 _ 1), where
s = Max(|W(i7g) |) /(2N=1 — 1) is the scaling factor (i.e., quantization step). For the quantization-
aware SVD decomposition, we fuse the eigenvalues of the i*"' column to the group of weight factor
such that oiW(m). We set N = 4 and group size 128 and adapt GPTQ (Frantar et al., 2023) to
quantize our models. We fuse Hadamard matrices into the weights and apply 4-bit quantization to
the embedding and output layers. The parameters of normalization layers are fused to the weights
before applying quantization. After deploying the quantized model, we prune the channels on the
device by reducing the intermediate dimension Djy¢ in the MLP layer, head dimension Dy 4 in the
MHSA layer, and both the state dimension Dg and head dimension Dy 4 in the Mamba layer. We

Published as a conference paper at ICLR 2026

Table 2: (Compared with structured pruning.) We compare all models in FP16. UniQL en-
ables all compression rates in single pass. The symbols ¢, t, and { denote Transformers, Mamba-
Transformer hybrids, and Mamba models, respectively.

Prun.%| Prun. Method |+FT Llama-2 Llama-3.1 Qwen-2.5 Bamba-v2 Nemotron-H Mamba2

7B° 8B° 7B° 4 8BT 8B*

0%| - | - | 688% 74.0% 724% = 74.6% 76.0% 70.6%
MoDeGPT | - | 662% 1724% 52.1% - - -
SVD-LLM | - | 563% 56.7% 62.6% - - -

15%|UniQL (Ours)| - | 66.7% 705% 691% 70.9% 689% 65.6%
SVD-LLM | v | 64.7% 645% 69.5% - - -

UniQL (Ours)| v | 672% 71.9% 700% 72.9% 73.0% 66.4%
MoDeGPT | - | 63.4% 649% 40.8% - - -
SVD-LLM | - | 50.8% 458% 53.2% - - -

25%|UniQL (Ours)| - | 63.7% 67.0% 621% 66.4% 60.6% 59.8%
SVD-LLM | v | 624% 595% 66.8% - - -

UniQL (Ours)| v | 649% 69.6% 658% 69.7% 67.3% 62.7%

Table 3: (Compared with PTQ.) We benchmark all weight-only PTQ methods without fine-tuning
and pruning. * represents the FP16 embeddings and output layers as per the official implementation.
1 denotes the GPTQ (Frantar et al., 2023) implemented on all models as an additional baseline.

Llama-2 Llama-3.1 Qwen-2.5 Bamba-v2 Nemotron-H Mamba2
7B° 8B° 7B° 9Bf 8BT 8B?

FP16\ 16 \ 68.8% 74.0% 72.4% 74.6% 76.0% 70.6%
TRT-AWQ| 4* | 68.1% 71.9% 70.3% - - -

TAO-HQQ| 4* | 684% 72.4% 721% - - -
UniQL (Ours)| 4* | 682% 72.9% 72.0% 74.8% 74.9 % 69.3%

GPTQL| 4 |679% 71.3% 70.0% 73.6% 74.9 % 68.1%
UniQL (Ours)| 4 | 67.8% 723% 71.0% 73.8% 74.8% 69.3%

PTQ Method | W-bit

keep the hidden state dimension Dy, the same across all pruned models. For INT4 weights, we
unpack them online, prune channels, and repackage them into INT32 for the 4-bit kernel.

4 EXPERIMENTAL RESULTS

4.1 SETUPS

Models and setups. We experiment with Transformers Llama-2-7B (Touvron et al.,[2023)), Llama-
3.1-8B (Meta, 2024), Qwen-2.5-7B (Hui et al., [2024), hybrid models Nemotron-H-8B (Blakeman
et al.,2025)), Bamba-9B-v2 (IBM}[2025), and the SSM model Mamba-2-8B (Dao & Gu,2024). ¢, t,
and I denote Transformers, hybrid and SSMs, respectively. FT, PTQ, and W-bit stand for fine-tune,
post-training quantization, and the bit-width of weights. Prun. and R.size represent the pruning rate
in percentage (%) and the reduction of model size (x), respectively.

Structured pruning baselines. We compare UniQL to cutting-edge model compression methods,
MoDeGPT (Lin et al., 2025) and SVD-LLM (Wang et al., 2025b). As MoDeGPT is not publicly
available, we duplicate their method based on the paper and achieve similar accuracy to what was
reported. We adapt SVD-LLM official implementation to experiment with Llama-2-7B, Llama-3.1-
8B, and Qwen-2.5-7B for compression and quantize models. For MoDeGPT and SVD-LLM, we
adhere to the hyper-parameters outlined in the papers.

Post-training quantization baselines. We adopt AWQ (Lin et al.| 2024a) in TensorRT-MO*
(TRT-AWQ) (NVIDIA| 2024; 2023)) and HQQ (Badri & Shaji, [2023)) in TorchAO™ (torchaol [2024)
(TAO-HQQ) as our quantization baselines, both W4A16 libraries ready for PTQ. We evaluate
UniQL in terms of model size, average accuracy on downstream tasks, and latency on A6000 and
Nano 8G against TRT-AWQ and TAO-HQQ. In our experiments, we quantize the embedding and
output (i.e., lm_head) layers to 4 bits, cutting memory usage in contrast to TRT-AWQ* and TAO-

Published as a conference paper at ICLR 2026

Table 4: (One-pass adaptive pruning.) We evaluate UniQL in one run across pruning rates. R.size
stands for reduction of model size (x). UniQL enables all pruning rates in single pass. The symbols
o, T, and I denote Transformers, Mamba-Transformer hybrids, and Mamba models, respectively.
* represents the FP16 embeddings and output layers as per the official implementation. We apply
GPTQ (Frantar et al., 2023) on MoDeGPT (Lin et al., 2025 denoted as b,

Method One +FT W |Prun. |R.size | Llama-2 Llama-3.1 Qwen-2.5 Bamba-v2 Nemotron-H Mamba2
cthod | hass bit| % | (x) | 7B° 8B° 7B® oBf 8Bt 8B!
FPI6| - | - |16] 0% | Ox | 68.8% 740% 724% 746% 760% 70.6%

I % | v | 4|15%| 47% | 63.7% 642% 522% - - -
MoDeGPT” | | /| 4 |25% | 47x | 603% 593% 48.4% ; ; ;
X | v |4 [15% | 47x | 632% 60.6% 66.8% - - -

SVD-LLM| 1 V4| 059 | 47x | 59.1% 542% 64.6% ; ; ;

0% | 4x | 67.6% 73.6% 72.4% 75.1% 73.3% 69.3%
UniQL 15% | 477x | 65.6% 71.4% 68.1% 70.3% 70.5% 65.8%
(Ours) 25% | 53x | 63.5% 671.7% 64.0% 67.4% 64.7% 61.8%
35% | 6.1x | 61.0% 62.7% 58.1% 62.7% 59.0% 57.7%

HQQ* which use FP16. We also adapt GPTQ (Frantar et al., 2023) for all models and also use 4-bit
quantization on the embedding and output layers as an additional baseline.

Datasets and evaluations. We evaluate UniQL on five zero-shot tasks with a batch size of 16,
including HellaSwag (Zellers et al.| 2019), PIQA (Bisk et al., [2020), ARC (Clark et al.l[2018)), and
WinoGrande (Sakaguchi et al., 2020) using LM-EVAL (Gao et al., 2023). The average of Wino-
Grande, PIQA, and ARC-easy (accuracy), and HellaSwag and ARC-challenge (length-normalized
accuracy) is reported for experiments. More evaluations are placed in Appendix [B]

Implementations and environments. Our kernels are adapted from the 4-bit kernels (Frantar
et al.| [2024) and RoPE kernels (Hsu et al, 2025). All computations are in BF16, except for cor-
relation matrices for structured sorting and Cholesky decomposition for GPTQ are calculated in
FP32. Detailed parameters are placed at Appendix [F] The weight-sorting, masked fine-tuning, and
quantization are computed on an A6000 GPU with 48GB memory in one-shot for enabling adaptive
pruning on the device. We profile the latency on A6000 and Orin Nano 8GB, as our experimental
cloud and edge platforms. We report the average latency of twenty profiles after five warmup runs.

4.2 ZERO-SHOT DOWNSTREAM TASKS

Comparison with structured pruning. Table [2] compares structured pruning baselines against
UniQL. Without fine-tuning, UniQL outperforms both MoDeGPT and SVD-LLM in most cases,
achieving strong results such as 66.7% on Llama-2-7B and 69.1% on Qwen-2.5-7B. With
fine-tuning, UniQL further boosts performance, reaching 67.2% on Llama-2-7B and 70.0% on
Nemotron-H-8B, surpassing SVD-LLM consistently. MoDeGPT suffers from the ill-conditioned
correlation matrices C € RPintXPint and numerical instability when Dj,; >> D), with limited cal-
ibration samples, resulting in large accuracy drops in Qwen-2.5-7B {Di,, Dy} = {18944, 3584}.
SVD-LLM truncates numbers of the eigenvalues in the decomposed weight matrices according to the
desired compression rates, requiring fine-tuning to recover the performance. These results highlight
UniQL’s effectiveness in preserving task performance while enabling efficient model compression.

Comparison with post-training quantization. Table 6 presents the comparison of weight-only
post-training quantization (PTQ) methods. Across all models, UniQL demonstrates highly compet-
itive performance, matching or surpassing existing PTQ methods in several settings. For example,
UniQL achieves 72.9% on Llama-3.1-8B with 4-bit layers and FP16 embedding/output layers. No-
tably, while TAO-HQQ slightly edges out UniQL on Llama-2-7B and Qwen-2.5-7B, UniQL is more
general to different architectures, providing adaptive pruning features on-device. UniQL surpasses
or equals GPTQ, the baseline we modify for all models.

One-pass adaptive pruning. Table[d] evaluates the one-pass adaptive pruning under 4-bit quanti-
zation with fine-tuning of UniQL. We compare UniQL against SVD-LLM baselines, which follow

*The embedding and output layers use FP16 according to the official implementation.

Published as a conference paper at ICLR 2026

a similar compression process but support only a single compression rate per run. Without any
pruning, UniQL achieves competitive results, for example, 67.6% on Llama-2-7B and 73.6% on
Llama-3.1-8B, while reducing the model size by 4 x. As pruning ratios increase, UniQL main-
tains graceful degradation in accuracy; at 15% pruning, it still achieves 71.4% on Llama-3.1-8B
and 70.5% on Nemotron-H-8B, outperforming SVD-LLM across all comparable settings. At higher
compression (e.g., 35% pruning), UniQL still delivers reasonable performance, such as 62.7% on
Llama-3.1-8B and 57.7% on Mamba2-8B. These results demonstrate UniQL’s strong adaptability,
generalizing to a wide range of architectures.

4.3 COMPRESSION TIME

In Table E], we compare the compression time of UniQL against MoDeGPT (Lin et al., 2025),
noted for being training-free, and SVD-LLM (Wang et all [2025b), which involves fine-tuning,
both state-of-the-art algorithms for Transformer compression. Our matrix decomposition is 22X
(Oh19m vs. 7h03m) faster than MoDeGPT and 1.8 x (Oh19m vs. Oh35m) faster than SVD-LLM, as
UniQL avoids pseudo-inverse and SVD decomposition for large MLP weight matrices. With masked
fine-tuning (FT), UniQL remains quicker (6h59m) than both MoDeGPT (7h03m) and SVD-LLM
(15h57m). MoDeGPT suffers from the high computation cost of performing pseudo-inverse on
large weight matrices. SVD-LLM splits weights into two successive layers, U and V, and carries
out independent fine-tuning for each, leading to a longer fine-tuning duration. Lastly, post-training
quantization (PTQ) takes an extra forty minutes. Our compression algorithm is one-time O(1) with
respect to the number of compression rates, compared to O(n) for MoDeGPT and SVD-LLM.

Table 5: (Compression time.) The time Table 6: (Model size.) The model size is reported
is reported on an A6000 GPU. UniQL in GB. Our 4-bit embedding/output layers yield

supports all compression rates in one shot. smaller size than TRT-AWQ and TAO-HQQ.
- . Llama-3.1 Qwen-2.5 Nemotron
Method |+FT +PTQ Lla;“];f'] Mgg’az Method| W-bit|Prun. p%| ~“grc™ o™ O,
MoDeGPT| - - | 7h03m - FP16| 16 | 0% |160GB 152GB 16.2GB
.| om3sm - MoDeGPT| 16 | 15% |139GB 132GB -
svouMm! v - | 1etsm - SVD-LLM| 16 | 15% |141GB 133GB -
v’ v | 16h46m - TRT-AWQ| 4° | 0% | 58GB 5.6GB -
- - 0h19m Ohl6m TAO-HQQ| 4 0% | 57GB 6.0GB -
UniQL
©urs)| ¥, | 6h39m 7hl8m UniQL[, | 0% |41GB 39GB 41GB
v v | 7h43m 7hS0m (Ours) 35% | 28GB 27GB 2.9GB

4.4 MODEL SIZE AND LATENCY PROFILING

We evaluate the model size and latency of UniQL and compare them with AWQ (Lin et al., 2024a)
from TensorRT-MO* (NVIDIA| [2024; 2023) (TRT-AWQ) and HQQ (Badri & Shaji, [2023)) in Tor-
chAO* (torchaol 2024) (TAO-HQQ). Both libraries are weight-only (i.e., W4A16) quantization
frameworks in production. We show the model size in Table[6] UniQL quantizes models in head-
to-toe fashion, i.e., from embeddings, backbone layers, and output heads all at 4-bit, resulting in
smaller model size (4.1GB vs. 5.7GB) compared to TRT-AWQ and TAO-HQQ with minimal accu-
racy drops. Our model enables all compression rates and on-device structured pruning, providing an
elastic 3.9x— 5.7x memory reductions. We profile the time-per-output-token (TPOT, i.e., genera-
tion) and time-to-last-token (TTLT, i.e., prefilling and generation) on A6000 and Nano 8G, and show
2.7x— 3.4x throughput improvements in generation, outperforming TRT-AWQ and TAO-HQQ, as
shown in Table[7]and Table[§] On the Nano 8G, our model is 1.7 x faster than TAO-HQQ in TPOT.
By pruning 35% of weights in our 4-bit model, our models generate 2.1 x faster than TAO-HQQ.

5 ABLATION STUDY

We conduct an ablation study to demonstrate the effectiveness of each component of our framework.
Additional ablation studies can be found at Appendix [C|

*The embedding and output layers use FP16 according to the official implementation.

Published as a conference paper at ICLR 2026

Table 7: (Latency profiling on an A6000.) Re- Table 8: (Latency profiling on a Nano 8G.)
ported TPOT and TTLT (1k+1k) are in ms. TPOT and TTLT (256+256) are shown in ms.
(OOM: out-of-memory)

Prun.|Llama-3.1-8B° |Nemotron-H-8B
p% |TPOT TTLT |TPOT TTLT

FP16| 16 | 0% | 25.0 26653.8| 24.4 25889.4
TRT-AWQ| 4° | 0% | 11.4 10130.4| - -

Method | W-bit
Qwen-2.5-7B° | Mamba2-8B*

TPOT TTLT |TPOT TTLT
FP16| 16 | 0% |[OOM OOM |OOM OOM

Prun.

Method %

W-bit

TAO-HQQ| 4* | 0% | 102 11639.5| - - TAO-HQQ| 4" | 0% |129.8 38567.9|
UniQL| , [0% | 90 99446 82 90957 UniQL 0% | 758 19447.0| 81.6 21139.1
(Ours) 35%| 7.3 81054 | 6.8 6955.6 (Ours) 35% | 55.5 13792.0| 58.2 14892.5

Table 9: (The fused RoPE kernel.) We Table 10: (Accuracy by Components.) We report the
profile TPOT on A6000 and report in ms. average accuracy for the models with different settings.

.. | Prun. | Fused | Llama-3.1| Qwen-2.5 . | Prun. Llama-3.1|Qwen-2.5
W-bit p% |RoPE B° 7B° W-bit % +FT +PTQ +QSVD‘ 3R° 7B°
16 | 0% | - | 250 | 232 16 | 0% | - - - | 74.0% | 72.4%
- 20.2 18.7 - - - 67.0% 62.1%
259 | ;| 193 | 184 16 |25%| ;- | 808% | %
‘ 0% - ‘ 9.9 ‘ 9.1 ‘ - v - ‘ 55.2% ‘ 56.1%
4 ° v 9.0 8.3 4 125%| - v ve 65.0% 60.7%
‘ 25% - ‘ 8.6 ‘ 79 ‘ ‘ v v - ‘ 60.2% ‘ 61.0%
ol Vv 7.7 7.1 v v Ve 67.7% 64.0%

Fused rotary positional embedding. We compare latency with and without our fused RoPE.
Since the positions are broken by our structured sorting, we have to collect the corresponding indices
from the rotary positional embeddings, where we fuse in a kernel to minimize memory access. The
fused RoPE kernel with index gathering yields a 10% latency reduction (1.1x speedup) for Llama-
3.1-8B in 4-bit models at 0% and 25% compression, as depicted in Table 9]

Masked LoRA fine-tuning. We show that masked LoRA fine-tuning (FT) significantly benefits
pruned models. As seen in Table[10] our method enhances accuracy by 2.6% (from 67.0% to 69.6%)
and 3.7% (from 62.1% to 65.8%) for FP16 Llama-3.1-8B and Qwen-2.5-7B at 25% compression.
For 4-bit models, it improves accuracy by 2.7% (from 65.0% to 67.7%) and 3.3% (from 60.7% to
64.0%) for Llama-3.1-8B and Qwen-2.5-7B at 25% compression.

Quantization-aware decomposition. We show the quantization-aware SVD decomposition
(QSVD) is a key design to fill the performance gaps in Table [I0] Low-bit quantization (i.e., INT4)
is sensitive to the numerical distribution in the quantization group. We decompose the weight ma-
trix W = UXV and combine the long-tailed eigenvalues 3 with U, resulting in W = (UX)V,
where a column of U is multiplied by the corresponding eigenvalue ;. Thus, o; acts as the group’s
quantization scaling factor, as shown in Figure d] We show this simple observation leads to sig-
nificant performance gains 7.5% (from 60.2% to 67.7%) and 3% (from 61.0% to 64.0%) for 4-bit
Llama-3.1-8B and Qwen-2.5-7B at the 25% pruning rate, respectively.

6 CONCLUSION

We present UniQL, a unified post-training compression framework that combines quantization and
low-rank pruning to enable adaptive deployment of LLMs on edge. By supporting on-device con-
figurable pruning and a one-shot cloud compression pipeline, UniQL addresses the key challenges
posed by dynamic workloads. Through structured weight-sorting, quantization-aware decomposi-
tions, and fused rotary kernels, UniQL achieves substantial gains in memory and throughput across
Transformers, SSMs, and hybrid models. Our results demonstrate that the compressed models can
elastically adapt to runtime constraints.

10

Published as a conference paper at ICLR 2026

IMPACT STATEMENT

The UniQL framework has the potential to make large language models more accessible by en-
abling their deployment on edge devices with limited resources. This could broaden the scope of
applications beyond high-end servers, potentially benefiting settings such as education, accessibility
tools, or low-resource regions. At the same time, the increased availability of compact models raises
concerns about potential misuse, including privacy risks and the generation of harmful or mislead-
ing content on widely distributed devices. Reducing the computational and memory footprint may
also lessen the environmental costs of running large models, though the overall impact depends on
the scale of adoption and usage patterns. We emphasize that UniQL itself does not mitigate so-
cietal risks associated with language model outputs, and responsible deployment practices remain
necessary. By releasing our code and models, we aim to facilitate further research on efficient adap-
tation while encouraging the community to carefully consider both the benefits and risks of enabling
lightweight edge deployment.

ACKNOWLEDGMENTS

This work was supported in part by the ONR Minerva program, NSF CCF Grant No. 2107085,
iMAGINE - the Intelligent Machine Engineering Consortium at UT Austin, UT Cockrell School of
Engineering Doctoral Fellowships, NSF CAREER Grant No. 2339084, Nvidia research gift, and
Taiwan’s NSTC Grant No. 111-2221-E-A49-148-MY3.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrén, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In The
Twelfth International Conference on Learning Representations, 2024a.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213-100240, 2024b.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,
November 2023. URL https://mobiusml.github.io/hgg_blog/.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI), 2020.

Aaron Blakeman, Aarti Basant, Abhinav Khattar, Adithya Renduchintala, Akhiad Bercovich, Alek-
sander Ficek, Alexis Bjorlin, Ali Taghibakhshi, Amala Sanjay Deshmukh, Ameya Sunil Maha-
baleshwarkar, et al. Nemotron-h: A family of accurate and efficient hybrid mamba-transformer
models. arXiv preprint arXiv:2504.03624, 2025.

Ruisi Cai, Saurav Muralidharan, Greg Heinrich, Hongxu Yin, Zhangyang Wang, Jan Kautz, and
Pavlo Molchanov. Flextron: Many-in-one flexible large language model. In International Con-
ference on Machine Learning, pp. 5298-5311. PMLR, 2024.

Ruisi Cai, Saurav Muralidharan, Hongxu Yin, Zhangyang Wang, Jan Kautz, and Pavlo Molchanov.

Llamaflex: Many-in-one 1lms via generalized pruning and weight sharing. In The Thirteenth
International Conference on Learning Representations, 2025.

11

https://mobiusml.github.io/hqq_blog/

Published as a conference paper at ICLR 2026

TienYu Chi, Hung-Yueh Chiang, Chi-Chih Chang, Ning-Chi Huang, and Kai-Chiang Wu. V “mean”
ba: Visual state space models only need 1 hidden dimension. In Workshop on Machine Learning
for Systems at Advances in Neural Information Processing Systems (Neur[PSW), 2024.

Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, Mohamed S. Abdelfattah,
and Diana Marculescu. Quamba2: A robust and scalable post-training quantization framework for
selective state space models. In International Conference on Machine Learning (ICML), 2025a.

Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, and Diana Marculescu.
Quamba: A post-training quantization recipe for selective state space models. In International
Conference on Learning Representations (ICLR), 2025b.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, 2018.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. In Forty-first International Conference on Machine Learning, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International conference on machine learning, pp. 10323—-10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
compression for generative pretrained transformers. In International Conference on Learning
Representations (ICLR), 2023.

Elias Frantar, Roberto L Castro, Jiale Chen, Torsten Hoefler, and Dan Alistarh. Marlin:
Mixed-precision auto-regressive parallel inference on large language models. arXiv preprint
arXiv:2408.11743, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 2023. URL https://zenodo.org/records/
10256836.

Martin Genzel, Patrick Putzky, Pengfei Zhao, Sebastian Schulze, Mattes Mollenhauer, Robert Sei-
del, Stefan Dietzel, and Thomas Wollmann. Compressing large language models to any size with-
out re-computation. In ES-FoMo III: 3rd Workshop on Efficient Systems for Foundation Models,
2025.

Yuxian Gu, Qinghao Hu, Shang Yang, Haocheng Xi, Junyu Chen, Song Han, and Han Cai.
Jet-nemotron: Efficient language model with post neural architecture search. arXiv preprint
arXiv:2508.15884, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu, Steven Shimizu,
Shivam Sahni, Haowen Ning, Yanning Chen, and Zhipeng Wang. Liger-kernel: Efficient tri-
ton kernels for LLM training. In Championing Open-source DEvelopment in ML Workshop @
ICML25,2025. URL https://openreview.net/forum?id=36SJAIT42G.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. International Confer-
ence on Learning Representations (ICLR), 1(2):3, 2022.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,

Bowen Yu, Keming Lu, et al. Qwen?2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

12

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://openreview.net/forum?id=36SjAIT42G

Published as a conference paper at ICLR 2026

Bamba IBM. Bamba-9b-v2 - fast and powerful! https://huggingface.co/blog/
ibm-ai-platform/bamba-9b-v2, 2025.

Toshiaki Koike-Akino, Xiangyu Chen, Jing Liu, Ye Wang, Matthew Brand, et al. Latentllm:
Attention-aware joint tensor compression. arXiv preprint arXiv:2505.18413, 2025.

Yun Li, Lin Niu, Xipeng Zhang, Kai Liu, Jianchen Zhu, and Zhanhui Kang. E-sparse: Boost-
ing the large language model inference through entropy-based n: M sparsity. arXiv preprint
arXiv:2310.15929, 2023.

Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen,
Hongxia Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model
compression. In International Conference on Learning Representations (ICLR), 2025.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,
6:87-100, 2024a.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv
preprint arXiv:2405.04532, 2024b.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantiza-
tion with learned rotations. In The Thirteenth International Conference on Learning Representa-
tions, 2025.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702-21720, 2023.

Shannon McCurdy. Ridge regression and provable deterministic ridge leverage score sampling.
Advances in Neural Information Processing Systems, 31, 2018.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017.

Al Meta. Llama 3: Open foundation and instruction-tuned language models, 2024.

Mohammad Mozaffari, Amir Yazdanbakhsh, and Maryam Mehri Dehnavi. Slim: One-shot quan-
tization and sparsity with low-rank approximation for llm weight compression. In Forty-second
International Conference on Machine Learning, 2025.

J Pablo Muiioz, Jinjie Yuan, and Nilesh Jain. Mamba-shedder: Post-transformer compression for
efficient selective structured state space models. arXiv preprint arXiv:2501.17088, 2025.

NVIDIA. TensorRT-LLM: High-performance inference for Large Language Models. https:
//github.com/NVIDIA/TensorRT-LLM, 2023. Accessed: 2025-09-13.

NVIDIA. TensorRT-Model-Optimizer: Quantization and Optimization Toolkit for LLMs. https:
//github.com/NVIDIA/TensorRT-Model—-Optimizer, 2024. Accessed: 2025-09-13.

Yeonhong Park, Jake Hyun, Sanglyul Cho, Bonggeun Sim, and Jae W Lee. Any-precision Illm:
Low-cost deployment of multiple, different-sized 1lms. In International Conference on Machine
Learning, pp. 39682-39701. PMLR, 2024.

Roger Penrose. A generalized inverse for matrices. In Mathematical proceedings of the Cambridge
philosophical society, volume 51, pp. 406—413. Cambridge University Press, 1955.

13

https://huggingface.co/blog/ibm-ai-platform/bamba-9b-v2
https://huggingface.co/blog/ibm-ai-platform/bamba-9b-v2
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-Model-Optimizer
https://github.com/NVIDIA/TensorRT-Model-Optimizer

Published as a conference paper at ICLR 2026

Wang Qinsi, Jinghan Ke, Masayoshi Tomizuka, Kurt Keutzer, and Chenfeng Xu. Dobi-SVD: Differ-
entiable SVD for LLM compression and some new perspectives. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
1d=kws7615XB8.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI), 2020.

Ibne Farabi Shihab, Sanjeda Akter, and Anuj Sharma. Efficient unstructured pruning of mamba
state-space models for resource-constrained environments. arXiv preprint arXiv:2505.08299,
2025.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: en-
hanced transformer with rotary position embedding. arxiv. arXiv preprint arXiv:2104.09864,
2021.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024.

Ali Taghibakhshi, Sharath Turuvekere Sreenivas, Saurav Muralidharan, Marcin Chochowski,
Yashaswi Karnati, Raviraj Joshi, Ameya Sunil Mahabaleshwarkar, Zijia Chen, Yoshi Suhara,
Oluwatobi Olabiyi, et al. Efficient hybrid language model compression through group-aware ssm
pruning. arXiv preprint arXiv:2504.11409, 2025.

Endri Taka, Ning-Chi Huang, Chi-Chih Chang, Kai-Chiang Wu, Aman Arora, and Diana Mar-
culescu. Systolic sparse tensor slices: Fpga building blocks for sparse and dense ai acceleration.
In Proceedings of the 2025 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pp. 159-171, 2025.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: an instruction-following llama model (2023),
2023.

torchao. Torchao: Pytorch-native training-to-serving model optimization, oct 2024. URL https:
//github.com/pytorch/ao.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Kaiwen Tuo and Huan Wang. Sparsessm: Efficient selective structured state space models can be
pruned in one-shot. arXiv preprint arXiv:2506.09613, 2025.

Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. Svd-llm v2: Optimizing singu-
lar value truncation for large language model compression. In Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 4287-4296, 2025a.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: Truncation-aware singular
value decomposition for large language model compression. In International Conference on
Learning Representations (ICLR), 2025b. URL https://openreview.net/forum?id=
LNYIUouhdt.

Xinghao Wang, Pengyu Wang, Bo Wang, Dong Zhang, Yunhua Zhou, and Xipeng Qiu. Bitstack:
Any-size compression of large language models in variable memory environments. In The Thir-
teenth International Conference on Learning Representations, 2025c.

Haojun Xia, Zhen Zheng, Yuchao Li, Donglin Zhuang, Zhongzhu Zhou, Xiafei Qiu, Yong Li, Wei
Lin, and Shuaiwen Leon Song. Flash-llm: Enabling cost-effective and highly-efficient large gen-
erative model inference with unstructured sparsity. Proceedings of the VLDB Endowment, 17(2):
211-224, 2023.

14

https://openreview.net/forum?id=kws76i5XB8
https://openreview.net/forum?id=kws76i5XB8
https://github.com/pytorch/ao
https://github.com/pytorch/ao
https://openreview.net/forum?id=LNYIUouhdt
https://openreview.net/forum?id=LNYIUouhdt

Published as a conference paper at ICLR 2026

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087-38099. PMLR, 2023.

Zukang Xu, Yuxuan Yue, Xing Hu, Dawei Yang, Zhihang Yuan, Zixu Jiang, Zhixuan Chen, Sifan
Zhou, et al. Mambaquant: Quantizing the mamba family with variance aligned rotation methods.
In The Thirteenth International Conference on Learning Representations, 2025.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models. arXiv
preprint arXiv:2312.05821, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluis Marquez (eds.),

Proceedings of the 57th Conference of the Association for Computational Linguistics (ACL),
2019.

Zheng Zhan, Zhenglun Kong, Yifan Gong, Yushu Wu, Zichong Meng, Hangyu Zheng, Xuan Shen,
Stratis Ioannidis, Wei Niu, Pu Zhao, et al. Exploring token pruning in vision state space models.
Advances in Neural Information Processing Systems, 37:50952-50971, 2024.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind Krish-
namurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and accurate
Ilm serving. In Proceedings of Machine Learning and Systems (MLSys), volume 6, pp. 196—
209, 2024. URL https://proceedings.mlsys.orqg/paper_files/paper/2024/
file/5edb57c05c81d04beb716efld542fe9e—-Paper—Conference.pdfl

15

https://proceedings.mlsys.org/paper_files/paper/2024/file/5edb57c05c81d04beb716ef1d542fe9e-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/5edb57c05c81d04beb716ef1d542fe9e-Paper-Conference.pdf

Published as a conference paper at ICLR 2026

A DETAILED STRUCTURED SORTING ALGORITHMS

A.1 MULTI-LAYER PERCEPTRON

Algorithm [T]outlines the structured sorting algorithm for an MLP. The MLP comprises up and down
projections, with an optional gate projection. To obtain S,,, for sorting weight matrices in an MLP
layer, we gather the intermediate activation Xj,,; from the calibration set and compute the channel
correlation. We then average this correlation matrix over the set and compute the ridge leverage
score. Using these scores, a sorting matrix S,, that sorts the output columns of W, and W as
W.,S,, and W,S,,,. The rows of W are arranged as SILWd accordingly. We set ridge lambda
A = 1 in our experiments.

Algorithm 1 Structured sorting for MLP.

1: Input: Up projection W,, € RPn*Pint | gate projection W, € RPn*Pint down matrix Wp, €
RPintxDn and hidden states Xfl € RT*Du from N calibration samples ¢ = 1, ..., N, and ridge
intensity A.

Xi =0 (XiW,) 0OXiW,, i=1,.,N

C=+ Zf\il XiiTntant, C € RPwexDine 1 Average the correlation matrix over the samples
s + diag (C(C+ AI)71), s € RPme > Compute ridge leverage scores
Sm + Ip,, [:,argsort(s)], S,, € RPme*Pint 1 Get the sorting matrix based on the vector s
> Pseudo-inverse-free (Ours)

return (W,,, W,, W) « (W,S,,,, W,S,,, S| W) > Output the structured sorted weights

AR A S ol

A.2 MULTI-HEAD SELF-ATTENTION: QUERY-KEY

Algorithm 2] describes the structured sorting for the query-key for MHSA. We obtain the activations
for the Wg and W7, and compute the channel correlation Cg and C/. The sorting scores s are

. 1/2
calculated as s = ||Cg[1/ 2H © ||Ci1/ I, and averaged over the calibration samples. To support the

fused RoPE, we split the dimension of s by half such that [s1, so] = s, and apply sorting to 51+ sa.
As such, we construct the final sorting matrix S, that sorts the output columns as WZS{Ik and

Wi,

Algorithm 2 Structured sorting key-query for MHSA with H heads.

1: Input: MHSA query matrices W, € RP»x(HxDna) key matrices W, € RP»x(HxDna),
hidden states X! € RT*DPn from N calibration samples i = 1, ..., N, and the function of rotary
positional embedding p(+).
> Apply sorting to each head independently

2:. forj=1,...,Hdo

3: CZ: =42 P(Xﬁwé)TP(XﬁWZ) , CZ_ € RPnaxDna > Query correlations

4 Cl=% Zfil p(XiWI)Tp(XiW1), Ci € RPnaxPna > Key correlations
. 1/2

5: R ||Cgl/2|| o|c / |, s € RPna > Calculate the norm score

6: > Symmetric sorting for fused RoPE kernel (Ours)

7: [s1,82] < 5, {51,582} € RPna/2 > Split the norm score vector by half

8: > Get the symmetric sorted indices

9: idXsym < [argsort(si + s2), Dan/2 + argsort(s; + s2)], idXsym € RPna

10: Sgk ¢ Ipg, [t idXsym], Sqr € RPanxDPan 1 Get the sorting matrix based on the vector s

1 (Wi, Wi) « (Wis! Wis!)
12: end for
13: return (W,, Wy) < ((W},... W] W} ... W[> Concatenate the sorted heads

16

Published as a conference paper at ICLR 2026

A.3 MULTI-HEAD SELF-ATTENTION: VALUE-OUTPUT

Algorithmpresents the quantization-aware SVD decomposition for W? and W in MHSA. With
the input correlation matrix C, we perform joint decomposition by two consecutive SVD operations:
C%W;W; = U,UXV'. The SVD decomposition ranks the eigenvectors by eigenvalues. We

decompose the weight matrix W = UXV in a quantization-friendly fashion by merging the long-
tailed eigenvalues X with U, such that W = (UX)V.

Algorithm 3 Structured sorting value-output for MHSA with H heads.

1: Input: MHSA value matrices W,, € RP»x(HxDna) | output matrices W, € R *Pna)xDn
hidden states X € RT*Dn from N calibration samples i = 1, ..., N.
2 C =X X}, CeRPuxDua
> Apply sorting to each head independently
forj=1,...,Hdo ,
(U,,2,, V) < SVD(CY/?W7)
(U,5,VT) £ SVD(S, VIWY)
(W), W)« (c~Y/?U,Ux, V) > Quantization-aware SVD (Ours)
end for
return (W, W,) « ((W.,..., W{] Wl ... WZ]) > Concatenate the sorted heads

o

A

A.4 GROUP-QUERY ATTENTION: QUERY-KEY

Algorithm [] describes the structured query-key sorting for GQA, featuring H, self-attention heads
and Hy, key-value heads, where Hy > Hy,. Firstly, we determine activations for ng and then
compute the channel correlation C,i for a key-value head j. The correlation Ci is shared among a
group of self-attention heads. We then compute the channel correlation C} for the group of self-

attention heads, and sum the norm scores of the group. The sorting matrix Sy, is obtained simi-
larly to MHSA to enable RoPE. In GQA, S, sorts the output columns of self-attention heads as

(W) Sgk, o W e Sgk], and the key-value head as W7 Sgk.

Algorithm 4 Structured sorting key-query for GQA with H; heads and Hy,, key-value heads.

1: Input: MHSA query matrices W, € RPnX(HsxDna) "key matrices Wy, € RPn>*(HroxDna),
hidden states X! € RT*Pn from N calibration samples i = 1, ..., N, and the function of rotary
positional embedding p(-).

2: forj=1,...,Hy, do . . ‘

30 Cl=L 5N pXiWHTp(XEWY), ¢ € RPn > Key correlations

4: s+ [0,...,0], s € RPna > Initialize s with zeros

5: fornzl,...,gj do

6: Cr =+ PO p(X{WH) Tp(XEWE) , Co e RPra > Group query correlations

1/2

7: s=s+ HC;l/QH o / I, > Calculate the norm score

8: end for

9: [51,502] <5, {51,582} € RPna/2 &> Split the norm score vector by half

10: > Get the symmetric sorted indices

11: idXeym < [argsort(s; + s2), Dan/2 + argsort(s; + s2)], idXeym € RDha

122 S}, < Ip,,[5idXeym], S}, € RP#*Pan 1 get the sorting matrix based on the vector s
Hs/Hgo j j Hs/Hyo qj

130 (W W e Wi o ((Wis? L oW TesT] WS

14: end for

15: return (W, W},) <[W¢117 W WL ,Wf"‘”]) > Concatenate the sorted heads

17

Published as a conference paper at ICLR 2026

A.5 GROUP-QUERY ATTENTION: VALUE-OUTPUT

Algorithm [5 outlines structured value-output sorting for GQA. Since GQA has H, self-attention
heads and Hy, key-value heads, where H, > Hy},, a single SVD decomposition is performed using
the input correlation matrix CW% =U,X,V',. Wealso incorporate quantization-aware SVD for
W¢ by integrating 3, with U,, for W7. The V| is shared across attention heads such that V] W*
forrx € [1,..., Hyl.

Algorithm 5 Structured sorting value-output for GQA with H heads and Hy, key-value heads.

1: Input: MHSA value matrices W, € RPnx(HexDna) output matrices W, € R(Hro>xPna)x D,
hidden states X} € RT*Pn from N calibration samples i = 1, ..., N.

2: €= X' X}, CeRPuxDua
3. forj=1,...,Hy, do
4: (U,,%,,V,]) + SVD(CW)
5: Wi« C7'U, %, > Quantization-aware SVD
6: formzl,...,gs do
kv
7: Wr « VIwe
8: end for
9: end for
0:

—

return (W,, W) « ([Wi, c WL WL ,WfS]) > Concatenate the sorted heads

A.6 MAMBA: B-C STATE MATRICES

We show the algorithm that sorts the weights {W¥%, W%} at Algorithm @ For the SSM group g
with HI = % SSM heads in the group, we obtain the activations BY and CY9. BY is discretized
using the input-dependent variable A9 by a broadcasted outer product (AB)? = A9 ® BY. As a
result, we compute the channel correlation ACY, and CZ,. The sorting scores s € RPs are calculated

g
as s = Zf;”OHTC%l/ ’l® HCgl/ ?||, and averaged over the calibration samples. We construct the
sorting matrix S g with s that sorts the output columns of WY, and WY, as WSz and WL Sc.

Algorithm 6 Structured sorting B-C for Mamba with H,,, heads and G5 SSM groups.

1: Input: B matrix Wy € RPnx(GexDs) and C matrix Wo € RPnx(GaxD:)hidden states
X! € RT*Pn and input-dependent step size A’ € RT*(Hn/Gs) from N calibration samples
i =1,..., N, and the function of 1D causal convolution ¢(-).

2: forj=1,...,G, do _
3: B" =¢ (X%W%) , B ¢ RT>Ds
4: C = ¢ (XjWE), C9 ¢ RT*D-
5: (AB)"9 = A% @ B9, (AB)"»9 € RHm>xTxDs > Broadcasted outer product
6: > Average over the calibration samples
7. ACY, = L3N (AB) T (AB)", ACY € R(Hn/G)xD:xD;
g ¢4 =LyN cielcie, ¢l e RP-XD:
9: > Compute group correlations
10: s+ [0,...,0], s € RPus > Initialize s with zeros
11: fork=1,..., 2= do
12: Ck = (ACLH)FT(ACH)*
i1/2
13: s=s+ HC%UQH ol[& / Il > Calculate the norm score
14: end for ,
15: S%o < Ip,[:,argsort(s)], S € RP=*P= 1 get the sorting matrix based on the vector s
16: (Wp, We) + (W5Sh0, WeShe)
17: end for

18: return (Wp, We) ([W}B, L WSS WL, L ,Wg}) > Concatenate the sorted states

18

Published as a conference paper at ICLR 2026

A.7 MAMBA: Z-X AND OUTPUT MATRICES

We describe the structured sorting for weights {W?%, W% W'} in Algorithm [7| We collect the
correlations C3, from the SSM states 7" and average over the calibration samples. The ridge leverage
score diag (CH (Cy + AT)_1) is computed as the MLP layer. We create a column sorting matrix
S, € RPnaxDua yging ridge leverage scores, then arrange the output columns via WS, and WS,.
The input rows for W are sorted accordingly by S/ W?. We set ridge lambda A\ = 1 in our
experiments.

Algorithm 7 Structured sorting z-x-o for Mamba with H,, heads and G SSM groups.

1: Input: x projection W, € RP»*(HmxDna) 7 projection W, € RP»*(HmxDna) - out matrix
W, € REmXDua)xDn gnd Hi € REm>(TxDs)xDnd from N calibration samplesi =1,..., N,
and ridge intensity \.

2: forj=1,...,H, do

3: > State-aware (Ours)

4 C=% SN HOITHBI ¢ e RPraxPra =1 N > Average over the samples
5. s« diag (C(C+AI)7'), s € RPua > compute ridge leverage scores
6: SJ « Ip,,[;, argsort(s)], S € RPnaxDua > get the sorting matrix based on the vector s
(WL WL W) (WIS], WiS] S W)

8: end for

9: return (W., W, , W) « (W], ..., WH=] Wl .. Wi [W! .. Win]) >

Concatenate the sorted heads

B BROADER EVALUATION RESULTS

B.1 COMPARISON WITH ADDITIONAL BASELINES

we include more common baselines in Table [T1] with all methods evaluated in FP16 to ensure
a fair and controlled setting. We follow the experimental setup used in MoDeGPT (Lin et al.}
20235)) and append our Llama-3.1-8B results at the 25% pruning rate to those reported in their work.
The numbers, except for UniQL, are transcribed from MoDeGPT. The results show that UniQL
consistently outperforms prior pruning-based methods at the 25% compression level, and UniQL-ft
further boosts accuracy, achieving the strongest performance across all evaluated tasks.

Table 11: (Comparison with Additional Baselines.) All models are evaluated in FP16 for a fair
and consistent comparison following the experimental setup used in MoDeGPT.

Compress. % Method ARC-e ARC-c PIQA WinoG. HellaS. Average
0% Dense 77.69% 53.58% 80.63% 72.69% 79.16% 72.75%
25% ShortGPT-Alpaca 38.13% 31.40% 60.94% 54.22% 31.52% 43.24%

SliceGPT-Alpaca 44.44% 29.27% 57.56% 58.48% 41.08% 46.17%
MoDeGPT-Alpaca 67.05% 41.13% 75.52% 69.61% 66.49% 63.96%
UniQL 70.37% 46.33% 74.16% 71.82% 70.12% 66.56%
UniQL-ft 76.05% 50.00% 76.55% 72.93% 73.37% 69.78%

B.2 EVALUATION ON THE MMLU DATASET

We test Llama-3.1-8B, Qwen-2.5-7B, and Nemotron-H-8B, and report five-shot accuracy on the
MMLU dataset (Hendrycks et al.| [2020) with a batch size of eight. The MMLU dataset is a large
multitasking dataset, covering 57 subjects of varying difficulty. Our pruned models maintain com-
petitive accuracy on the challenging dataset and outperform MoDeGPT (Lin et al.|[2025) and SVD-
LLM (Wang et al} 2025b). Nemotron-H, the Mamba-Transformer hybrid model, shows a large
accuracy drop, but recovered with our low-cost masked fine-tuning. We compare our method with
AWQ (Lin et al.| [2024a) implemented in the TensorRT framework (NVIDIA| [2023; 2024) (TRT-
AWQ) and HQQ (Badri & Shaji, [2023)) in TorchAO (torchao, [2024)) (TAO-HQQ). Our 4-bit models
perform comparably to these state-of-the-art PTQ frameworks while offering broader model support.

19

Published as a conference paper at ICLR 2026

Table 12: (Five-shot MMLU.) We compare UniQL against baselines under different settings. *
represent the FP16 embeddings and output layers as per the official implementation. * denotes the
GPTQ (Frantar et al., [2023)) implemented on all models as an additional baseline.

Method‘+FT +PTQ‘W—bit Prun. p%‘Llama—S.l—SB<> Qwen-2.5-7B° Nemotron-H-8BT

FPI6| - - | 16 0% | 656% 74.2% 67.6%
MoDeGPT| - - | 16 15% 59.5% 23.1% -
SVD-LLM| - - | 16 15% 28.4% 49.9% -

UniQL Ours)| - - | 16 15% 60.2% 55.9% 37.5%
SVD-LLM| v - | 16 15% 41.5% 61.1% -
UniQL Ours)| v - | 16 15% 59.2% 59.9% 56.1%
TRT-AWQ| - v | 4 0% 63.0% 72.5% -
TAO-HQQ| - v | 4 0% 62.9% 72.5% -

GPTQ:| - v | 4 0% 61.5% 70.5% 64.0%
UniQL Ours)| - v | 4 0% 63.2% 70.3% 67.5%
SVD-LLM| v v | 4 15% 34.8% 56.3% -
UniQL Ours)| v v | 4 15% 56.9% 52.7% 52.6%

B.3 EVALUATION ON CODING TASKS

We present the evaluation results on the MBPP+ (Austin et al.,[2021};/Gao et al., 2023) coding bench-
mark in Table[T3] We apply UniQL to Llama-3.1-8B-Instruct and compare its performance against
SVD-LLM (Wang et al., |2025b) and MoDeGPT (Lin et al.| [2025) under various pruning ratios
and bit-width configurations. The MBPP+ results obtained under batch size 1 and 0O-shot settings
following common practice. These results demonstrate UniQL’s ability to maintain competitive
performance compared to SVD-LLM and MoDeGPT while reducing model size.

Table 13: (Evaluation results on the MBPP+ coding tasks.) We compare UniQL with existing
compression baselines under different pruning ratios and bit-width settings. Results are reported on
the MBPP+ (instruct) benchmark using batch size 1 and 0-shot evaluation.

Method One-pass +FT W-bit Prun. % R.size (x) Llama-3.1-8B

FP16 N 16 0% 0x 75.4%
MoDeGPT X x 16 15% 0.15x 12.3%
SVD-LLM X v 4 15% 47% 24.0%
. v VAR 0% Ax 64.8%
I(Jg‘% v /4 15% 47x 54.2%
b v v 4 25% 5.3x% 33.8%

C ADDITIONAL ABLATION STUDIES

C.1 ABLATION STUDY ON CALIBRATION SETS

Table[I4] presents the performance of Llama-3.1-8B under different combinations of calibration sets
at a fixed 25% pruning rate. Following our setting, we report the average accuracy of five zero-shot
downstream tasks. For each configuration, all hyperparameters and the number of calibration sam-
ples strictly follow the settings in Table 11 of our manuscript, ensuring a controlled and consistent
comparison. Using the Alpaca dataset (Taor1 et al., 2023) for all stages results in the best average
accuracy. We follow MoDeGPT and use WikiText2 as the calibration set for pruning-ratio allocation
to ensure a fair comparison with prior work in all experiments.

20

Published as a conference paper at ICLR 2026

Table 14: (Ablation study on calibration sets.) We report results for Llama-3.1-8B at a 25%
pruning rate under different combinations of calibration sets used for weight-sorting, masked fine-
tuning, and post-training quantization (PTQ).

Prun. Ratio Alloc. Weight-Sort. Masked FT PTQ W-bit Prun. Rate Avg. Acc
- - 16 0% 74.0%

wikitext2 wikitext2 wikitext2 wikitext2 4 25% 60.8%
wikitext2 wikitext2 alpaca wikitext2 4 25% 65.5%
wikitext2 alpaca alpaca wikitext2 4 25% 67.7%

alpaca alpaca alpaca wikitext2 4 25% 68.6%

C.2 ABLATION STUDY ON 3-BIT UNIQL

Our framework supports post-training quantization with various bit-widths, including 8, 6, 4, and
even 3 bits. To support this claim, we include additional experiments exploring 3-bit UniQL in Table
[I5] The 3-bit precision is simulated by FP16 only for proof of concept purposes. These results
demonstrate stable performance trends as the precision decreases, highlighting UniQL applicable
to various bit-widths. Notably, even the 3-bit variant retains competitive accuracy across multiple
models, underscoring the effectiveness of our weight-sorting and recovery fine-tuning procedure.
Overall, these results highlight the flexibility of UniQL and confirm that it remains reliable even in
resource-constrained, on-device deployment scenarios.

Table 15: (Experimental results of 3-bit UniQL.)
One

Method +FT W Prun. R.size Llama-2 Llama-3.1 Qwen-2.5 Bamba-v2 Nemotron-H Mamba2
pass bit % (x) 7B 8B 7B 9B 8B 8B

FP16 - - 16 0% Ox 688% 74.0% 72.4% 74.6% 76.0% 70.6%

MoDeGPT x x 16 15% 0.15x 662% 72.4% 52.1% - - -

SVD-LLM x Vv 4 15% 47x 632% 60.6% 66.8% - - -
UniQL vV o v 4 0% 4x 67.6% T73.6% 72.4% 75.1% 73.3% 69.3%
((;llllrs) Vo v o4 15% 47x 65.6% 71.4% 68.1% 70.3% 70.5% 65.8%
) vV v o4 25% 53x 635% 67.7% 64.0% 67.4% 64.7% 61.8%
UniQL Vo v 3 0% 53x 628% 64.5% 67.4% 67.8% 71.3% 67.8%
(Ours) v v 3 15% 62x 602% 63.5% 63.0% 64.4% 67.8% 64.0%
v o v 3 25% 7.1x 589% @ 59.4% 58.7% 61.6% 62.1% 60.3%

D PARETO-FRONT ANALYSIS

Figure[5|and|fillustrate the Pareto-frontier trade-offs between accuracy and latency across a diverse
set of Transformer, hybrid, and state-space models on A6000 and Nano 8G, respectively. Each sub-
plot groups models by: (a) pure Transformers, (b) hybrid and SSM-based models, and (c) the union
of both. We compare UniQL (W4A16, starred markers), GPTQ (Frantar et al., 2023) (W4A16, cir-
cular markers), and FP16 baselines (squares), with circle sizes indicating memory consumption on
A6000. For the Nano 8G, we use HQQ (Badri & Shaji, [2023) that is supported in the TorchAO
framework (torchao, [2024) (TAO-HQQ) as our baseline. Across all architectures, UniQL consis-
tently yields better latency—accuracy trade-offs under the same memory budget, especially in the
2-4GB regime critical for edge deployment. For example, UniQL significantly improves latency for
Qwen-2.5-7B and Mamba-2-8B while maintaining accuracy close to the FP16 baseline. Notably,
UniQL achieves Pareto-dominant points for models like Llama-3.1-8B, outperforming GPTQ and
TAO-HQQ in both latency and accuracy. Our analysis underscores UniQL’s advantage for high-
performance LLM inference under tight latency and memory constraints.

E LAYER-WISE PRUNING RATES

We adopt the approach from (Lin et al., 2025, [Men et al., 2024) to determine layer-wise pruning
rates 7; using Block Influence (BI) scores for specified global pruning rates. The BI score is given by

21

Published as a conference paper at ICLR 2026

Llama-2-7B

=== | lama-3.1-8B

=== Qwen-2.5-7B

=== Bamba-9B-v2

=== Nemotron-H-8B

=== Mamba-2-8B

Avg. Acc. (%)
o I ~ Nl @
2 & 3 vl g

«
a

80

—%— UniQL (W4A16)

o GPTQ (W4A16)

O FP16

‘ 16GB
® <8

® 2B

o ~ <
& S G

Avg. Acc. (%)

@
S

«
@

7

o /°o °
e
i/

/0/ ¢ @
©® <8

® 2B

Avg. Acc. (%)
NI <
3 G

o
&

@
3

. 10 20
Time-to-last-token (sec.)

(a) Transformers

10 2
Time-to-last-token (sec.)

(b) Hybrids and SSMs

«
«

10 20 30
Time-to-last-token (sec.)

(c) Hybrids and Transformers

Figure 5: (Pareto-front analysis on A6000.) We evaluate the trade-off between average accuracy
(%) and time-to-last-token (sec.) for various LLMs under different quantization and pruning config-
urations. Circle, square, and star markers denote GPTQ (W4A16), FP16, and our proposed UniQL
(W4A16), respectively. Marker size indicates memory footprint.

Llama-2-7B === Qwen-2.5-7B === Nemotron-H-8B —— UniQL (W4A16) O FP16 (Est.)
=== | lama-3.1-8B === Bamba-9B-v2 === Mamba-2-8B o TAO-HQQ (W4A16) { : OOM
80 80 80
75 7 © 7 °
&
_ Vot o _ 2/ _ 2/ e
g 4] o g o 9 S H 9 ©
~ 70 -~ 70 ~ 70
" o = /o o/ = < o/
g /o , £ . £ % /
o965 J 565 965 o /
2 ®, 2 f o/ 2 . o’/
% . 16GB /0 . 16GB 9 . 16GB
60 ©® s 60 A ©® 4B 60 © ® <8
© ® 268 @ ® 208 4 ® 28
55 55 55

32 64

Time-to-last-token (sec.)

64
Time-to-last-token (sec.)

128

64
Time-to-last-token (sec.)

Figure 6: (Pareto-front analysis on Nano 8G.) We evaluate the trade-off between average accuracy
(%) and time-to-last-token (sec.) for diverse LLMs with different quantization and pruning settings.
Circle, square, and star markers represent TAO-HQQ (W4A16), FP16, and our UniQL (W4A16),
respectively. Marker size reflects memory usage.

-
s=1 —Em, with z; and y; as the input and output of the block (e.g., Transformer or Mamba

block) at layer [. Using the closed-form solution from |Lin et al.| (2025), we smooth the layer-wise
pruning rate allocations to obtain P = [r{, ¥, ... rT], such that P = LP,,, x Softmax(—s/e)
where s; represents the importance score of layer 4, and F,,, denotes the target global sparsity.
In our experiments, ¢ is set to 0.1, and we present the pruning rates for all models in Figure [7}
Self-attention layers in hybrid models have low pruning rates, indicated by high BI scores in the
Figure. In Bamba-9B-v2, layers 9, 18, and 27 are self-attention layers with lower pruning rates than
nearby layers. Similarly, Nemotron-H-8B shows this pattern in layers 7, 18, 29, and 40. Pruning
self-attention layers in hybrid models leads to significant accuracy drops.

F IMPLEMENTATION DETAILS

F.1 CALIBRATION SETS

Table [I6] lists the calibration set, number of samples, and the sequence length we use in our ex-
periments. We collect BI scores and assign layer-specific pruning rates using 128 samples with a
sequence length of 2048 from wikitext-2 (Merity et al.,|2017). Various global pruning rates, such as
Py5, Pss, and Pss, are computed using the same setting. With 128 samples and a sequence length
of 2048, we compute channel correlations from the Alpaca dataset (Taori et al.,[2023), as detailed in
(Lin et al.,|2025)). Our masked LoRA fine-tuning is conducted on the Alpaca dataset with a sequence

22

Published as a conference paper at ICLR 2026

Llama-2-7B Llama-3.1-8B

Qwen-2.5-7B

10%

Pruning Rates
o
»

Pruning Rates
o
S~
Pruning Rates
o
»~

10%
15%
20%
25%

15 20

w
o
=)
v

10 15 20 25 30

o

5 10 15 20

Layer Index Layer Index Layer Index
08 Bamba-9B-v2 08 Nemotron-H-8B 08 Mamba2-8B
10% @ SelfAttn 10% @ SelfAttn

15%
20%

15%
20%
25%

Pruning Rates
o
»
Pruning Rates
o
S~
Pruning Rates
o
S~

10 15 20

Layer Index

10 20 30

Layer Index

40 50 0

Figure 7: (Layer-wise pruning rates.)

20 30
Layer Index

length of 256 to reduce training memory usage. Lastly, we calibrate post-training quantization on

the wikitext-2 dataset using 256 samples with a sequence length of 2048.

Table 16: (Calibration sets.)

dataset #data seq. len.
Layer-wise prun. ratio alloc. wikitext2 128 2048
Structured weight-sorting alpaca 128 2048
Masked LoRA fine-tuning alpaca 51800 256
Post-training quantization wikitext2 256 2048

F.2 MASKED LORA FINE-TUNING

Table 17: (Hyperparameters for fine-tuning.)

We list the hyper-parameters for our masked Hyperparameter Value
LoRA fine-tuning in Table We follow the Learning rate 1% 10-*
prior work to perform instruction tuning on the Batch size 32
Alpaca dataset for five epochs. Micro batch size 4
Specifically, we adopt a relatively small sequence Optimizer AdamW
length of 256 to reduce training cost, and set the LoRA rank (r) 8
LoRA rank r = 8 with scaling factor = 16. A LoRA scaling () 16
warmup of 100 steps is applied with the AdamW LoRA dropout 0.05
optimizer, and micro-batching is used to accom- Warmup steps 100
modate GPU memory limits. All models we ex- Max sequence length 256
Training epochs 5

periment with are using the same hyperparame-

ters, and we do not tune the parameters for the
model and experiments.

F.3 HADAMARD TRANSFORM FUSION

To enable the flexibility of the model size, our framework does not apply Hadamard rotations to the
pruned channels. Importantly, the hidden dimension, i.e.,, the dimension propagated across layers,

23

Published as a conference paper at ICLR 2026

remains unchanged. This design choice enables efficient on-device pruning for adaptive deployment,
and avoid the mismatch shapes of the pre-fused Hadamard matrices after pruning the channels. We
provide the detailed Hadamard fusion configurations for a Transformer block in Table [I8] and a
Mamba block in Table[I9] where pruned channels are indicated with a “*”. All other models follow
the same Hadamard fusion pattern as these two examples. For Qwen-2.5-7B, we empirically find
that applying Hadamard matrices degrades accuracy, so we remove all Hadamard matrices in our
configuration.

Table 18: (Hadamard matrix fusion for Table 19: (Hadamard matrix fusion for
Transformer blocks.) Mamba blocks)
Operator Input Had. Output Had. Operator Input Had. Output Had.
q-proj v Yes X No* . "
k_proj v Yes X No* Z-proj v/ Yes X No
V_proj v Yes X No* X_proj v Yes X No*
0_proj X No* v Yes B_proj v Yes X No*
up_proj v Yes X No* . "
gate_proj v Yes X No* C-proj v Yes X No
down_proj X No* v Yes out_proj X No* v Yes

G ENERGY PROFILING

To assess the practical efficiency of our quantization and pruning strategies, we conduct energy
profiling on an A6000 GPU and an Orin Nano 8G, both of which are representative of cloud and
edge platforms. On Orin Nano, each request is prefilled with 512 tokens and generates 512 new
tokens, where we record the total energy consumption in Joules-per-request (J/req.). As shown in
Table 20} full-precision (FP16) models exceed the device’s 8 GB memory limit, resulting in out-
of-memory (OOM) errors during inference. In contrast, quantized methods substantially reduce
energy consumption while maintaining deployability. Without pruning, UniQL (W4A16) reduces
the energy per request to 208.23 J and 224.56 J on Qwen-2.5-7B® and Mamba2-8B*, respectively.
When combined with structured pruning (p=35%), the energy further decreases to 143.12 J and
153.64 J.

Table 20: (Energy profiling on Nano.) Joules-per-request (J/req.) is reported. Each request is
prefilled with 512 tokens and 512 generated tokens. Lower is better (}). * represent the FP16
embeddings and output layers as per the official implementation.

Method | W-bit P;g/f. QW?Z'effBO Maﬁig?'fm
FP16| 16 | 0% | OOM | OOM
TAO-HQQ| 4" | 0% | 381.13 | -
UniQL ‘ 0% ‘ 208.23 ‘ 224.56
(Ours) 35% 143.12 153.64

On cloud GPUs, we evaluate energy efficiency in terms of fokens-per-Gigawatt to align with the
industrial computing power metric. In Figure 8] we visualize the energy efficiency of a Transformer
model (i.e., Llama-3.1-8B) and a Hybrid model (i.e., Nemotron-H-8B) on an A6000 GPU with
48GB memory. Each request is prefilled with 1024 tokens and generates 1024 new tokens. Under
different batch sizes, we report the total number of tokens for a Gigawatt per second. Nemotron-H
adopts SSM blocks to reduce the memory needs for KV cache. Also, UniQL consistently achieves
higher throughput-per-energy across both Transformer-based and SSM-based architectures. This
establishes UniQL as an effective deployment framework for both resource-constrained and energy-
aware scenarios.

*The embedding and output layers use FP16 according to the official implementation.

24

Published as a conference paper at ICLR 2026

UniQL (Ours, W4A16 P35%)

zza

W FP16 w4 UniQL (Ours, W4A16)

A N\ }

oSNNS §5
o NN + F

W00 | ¢

*
—

0 0 0
2 2 2
m ~

4
1emebIo/suoL

Figure 8: (Energy efficiency analysis on A6000.) Nemotron-H incorporates SSM blocks to de-

crease KV cache memory requirements. UniQL continually offers superior energy efficiency for

both Transformer and SSM architectures.

25

	Introduction
	Related work
	Proposed Framework: UniQL
	Notations
	Structured Weight Sorting
	Masked LoRA Fine-tuning
	Quantization and On-device Adaptive Pruning

	Experimental Results
	Setups
	Zero-shot Downstream Tasks
	Compression Time
	Model Size and Latency Profiling

	Ablation Study
	Conclusion
	Detailed Structured Sorting Algorithms
	Multi-layer Perceptron
	Multi-head Self-attention: Query-Key
	Multi-head Self-attention: Value-Output
	Group-query Attention: Query-Key
	Group-query Attention: Value-Output
	Mamba: B-C State Matrices
	Mamba: Z-X and Output Matrices

	Broader Evaluation Results
	Comparison with Additional Baselines
	Evaluation on the MMLU Dataset
	Evaluation on Coding Tasks

	Additional Ablation Studies
	Ablation study on calibration sets
	Ablation study on 3-bit UniQL

	Pareto-front Analysis
	Layer-wise Pruning Rates
	Implementation Details
	Calibration sets
	Masked LoRA fine-tuning
	Hadamard Transform Fusion

	Energy Profiling

