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1 Introduction

Current AI systems are usually built to solve a single, well-specified task or need
a carefully controlled environment. Even though impressive results have been
achieved for such tasks lately, the necessary knowledge is usually learned from
scratch, bound to a specific task & environment, and requires a lot of resources
for training. For an intelligent agent in a complex environment facing a variety of
tasks, such approaches entail a number of severe limitations, including generality,
reusability, and interpretability.

In an effort to address some of these limitations, we want to move towards
a separation of general knowledge and task specific knowledge. General knowl-
edge is grounded in the agent’s experience and represented in a distributed,
sub-symbolic way. Similar to how humans are able to quickly adapt to new
problems [1], task specific knowledge is then learned “on top” by leveraging
these pre-existing general concepts. The intuition is that this transfer learning
approach will allow for simpler, better understandable task representations and
consequently increase the speed and robustness of their learning process[2].

In this setting, we regard concepts to be one possible type of such general
knowledge. While the problem of acquiring grounded concepts is traditionally
seen in a top-down manner [3], we follow recent advances that instead suggest a
shift towards bottom-up approaches [4]. With this in mind, reinforcement learn-
ing becomes a natural choice as a training method. There, an agent is interacting
with its environment in an effort to optimize a policy. However, instead of train-
ing labels (e.g. the correct concepts or actions for a specific situation), the agent
only receives a reinforcement signal (reward or punishment) after each step.
Because of that, very little prior knowledge (e.g. human concepts) is imposed
top-down and the agent has to learn its own concepts for understanding the en-
vironment. Furthermore, the reinforcement signal could even be exchanged for
intrinsic motivation [5] later on.

As a sub-type of such general concepts, we focus on relational concepts that
exist between two or more objects. Such relations could be “unlock” (key →lock),
“container” (books →box), or “tool” (screwdriver →screw). While specific re-
lations between instances are usually task dependent (e.g. repair laptop: screw-
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driver →screw; clean desk: screwdriver →drawer), we aim for general relational
concepts that are not bound to specific instances or tasks (e.g. “inside”, “bigger”,
“same type”)

Importantly, since the agent itself can also be seen as an object with both
extrinsic and intrinsic properties, relations between the agent and objects can
encode affordances [6] (e.g. “open”, “move”, “pick up”) and other higher level
concepts. Therefore, we see relational concepts between objects as a first step
towards a mechanism for more general relational concepts between perceptions,
objects, situations, memories, goals, skills, actions, etc.

2 State of the Art

Approaches leveraging relational architectures have recently shown to solve tasks
of impressing complexity [7][8]. While this success suggests that such approaches
must have learned a number of complex concepts “on their own”, they are lim-
ited to a single task and environment. Due to their design, potentially learned
concepts are entangled with perception, action policies, and also with each other.
This makes it very difficult to reuse certain parts across tasks or to see what
kinds of concepts they have learned and how they are represented. Our goal
is to assess how well such architectures are suited for transfer learning while
specifically focusing on transparency and interpretability.

3 Experiments

In order to create some understanding for the inner workings, capabilities, and
differences of relational architectures, we employ a minimalistic environment
that allows us to zero in on specific aspects of such architectures. With this,
we investigate the representations that are formed as well as the conditions that
lead to them. Finally, we use this knowledge to explore potential inductive biases
(e.g. purposeful architecture modifications) that can help architectures to form
high-level relational concepts instead of instance relations. For example, we are
considering different ways of forming the neuronal connections for transform-
ing observations into states. Our experiments will follow the guidelines of the
following research hypotheses:

1. Current reinforcement learning architectures tend to focus more on task
specific instance relations rather than relational concepts

2. It is possible to train an architecture with reinforcement learning in an ex-
haustive way that enforces bottom up general relational concepts

3. It is possible to introduce an inductive bias to such an architecture that
allows for relational concepts to emerge without the need of 2. and provides
higher interpretability

Our minimalistic environment is derived from BoxWorld [8] and contains a
number of colored keys and locks. By default, a key can open a lock if both
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have the same color (e.g. red key →red lock). Since an environment can contain
multiple keys and locks, the agent must navigate it and open each lock in order
to solve the task. To investigate whether an architecture learns instance relations
(e.g. “red key” →“red lock”) or the underlying relational concept (keys and locks
match if they have the same color), we introduce a second case. Here, locks and
keys do not match by color but are randomly assigned at the beginning of the
training. In this case, all pairs of keys and locks have to be memorized since
there is no higher concept to learn. While both cases are virtually identical for
architectures focusing on instance relations, architectures that are able to learn
higher concepts are expected to perform significantly better in the first case
(matching colors). Based on this setup we derive a number of experiments to
examine current architectures and explore possible inductive biases. Across all
experiments and architectures, we compare the performance on unseen key-lock-
pairs as well as the representations that are formed by these architectures.

Our intermediate results indicate that our first hypothesis is correct and
architectures like the Transformer [8] or Relation Network [7] do indeed focus
on instance relations and have difficulties learning higher level concepts. We
are following up on these indications with further experiments also regarding
research hypotheses two and three.

4 Conclusion

At the workshop, we will present the ongoing empirical results of our experi-
ments as well as our gained insights. More specifically, we want to highlight the
capabilities and limitations of current ML architectures for learning and repre-
senting general relational concepts in a bottom up fashion. For this, we analyze
the types and qualities of representations that different architectures foster in
regards to the concepts they can or do encode. Additionally, we gather empiric
data on the training process that is able to allow or prevent the emergence of
these concepts. We are looking forward to contributing our expertise as well as
to the feedback and interesting discussions that arise from the workshop.
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