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Abstract

We study the problem of planning under model uncertainty in an online meta-1

reinforcement learning (RL) setting where an agent is presented with a sequence of2

related tasks with limited interactions per task. The agent can use its experience in3

each task and across tasks to estimate both the transition model and the distribution4

over tasks. We propose an algorithm to meta-learn the underlying relatedness across5

tasks, utilize it to plan in each task, and upper-bound the regret of the planning6

loss. Our bound suggests that the average regret over tasks decreases as the number7

of tasks increases and as the tasks are more similar. In the classical single-task8

setting, it is known that the planning horizon should depend on the estimated9

model’s accuracy, that is, on the number of samples within task. We generalize this10

finding to meta-RL and study this dependence of planning horizon on the number11

of tasks. Based on our theoretical findings, we derive heuristics for selecting slowly12

increasing discount factors, and validate its significance empirically.13

1 Introduction14

Meta-learning (Caruana, 1997; Baxter, 2000; Thrun and Pratt, 1998; Finn et al., 2017; Denevi et al.,15

2018) offers a powerful paradigm to leverage past experience to reduce the sample complexity of16

learning future related tasks. Online meta-learning considers a sequential setting, where the agent17

progressively accumulates knowledge and uses past experience to learn good priors and to quickly18

adapt within each task Finn et al. (2019); Denevi et al. (2019). Robots acting in real world for instance19

need to be responsive to and robust against perturbation inherent in the environment dynamics and20

their decision making. When the tasks share a structure i.e. have similar transition dynamics and21

are related, such approaches enable progressively faster convergence, or equivalently better model22

accuracy with better sample complexity (Schmidhuber and Huber, 1991; Thrun and Pratt, 1998;23

Baxter, 2000; Finn et al., 2017; Balcan et al., 2019).24

In model-based reinforcement learning (RL), the agent uses an estimated model of the environment25

to plan actions ahead towards the goal of maximizing rewards. A key component in the agent’s26

decision making is the horizon used during planning. In general, an evaluation horizon is imposed by27

the task itself, but the learner may want to use a different and potentially shorter guidance horizon.28

In the discounted setting, the size of the evaluation horizon is of order (1 − γeval)−1, for some29

discount factor γeval ∈ (0, 1), and the agent may use γ 6= γeval for planning. For instance, a classic30

result known as Blackwell Optimality (Blackwell, 1962) states there exists a discount factor γ?31

and a corresponding optimal policy such that the policy is also optimal for any greater discount32

factor γ ≥ γ?. Thus, an agent that plans with γ = γ? will be optimal for any γeval > γ?. In the33

Arcade Learning Environment (Bellemare et al., 2013) a discount factor of γeval = 1 is used for34

evaluation, but typically a smaller γ is used for training (Mnih et al., 2015). Using a smaller discount35

factor acts as a regularizer (Amit et al., 2020; Petrik and Scherrer, 2008; Van Seijen et al., 2009;36
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Figure 1: Effective Planning Horizons in Meta-Reinforcement Learning. The agent faces a
sequence of tasks with transition vector (P t)t∈[T ] (probability vectors represented by blue dots) all
close to each other (σ < Σ = 1). The agent builds a transition model for each task and plans with
these inaccurate models. By using data from previous tasks, the agent meta-learns an initialization
of the model (P̂ o,t), which leads to better planning in new related but unseen tasks. We show an
improved average regret upper bound that scales with task-similarity parameter σ and inversely with
the number of tasks T : as knowledge accumulates, uncertainty diminishes, and the agent can plan
with longer horizons. All tasks P t ∼ P are centered at some fixed but unknown P o, depicted here by
the shaded red dot and pointed by the arrow.
François-Lavet et al., 2019; Arumugam et al., 2018) and reduces planner over-fitting in random37

MDPs (Arumugam et al., 2018). Indeed, the choice of planning horizon plays a significant role in38

computation (Kearns et al., 2002), optimality (Kocsis and Szepesvári, 2006), and on the complexity of39

the policy class (Jiang et al., 2015). In addition, meta-learning discount factors has led to significant40

improvements in performance (Xu et al., 2018; Zahavy et al., 2020; Flennerhag et al., 2021, 2022;41

Luketina et al., 2022).42

When doing model-based RL with a learned model, the optimal guidance planning horizon, called43

effective horizon by Jiang et al. (2015), depends on the accuracy of the model, and so on the amount44

of data used to estimate it. Jiang et al. (2015) show that when data is scarce, a guidance discount45

factor γ < γeval should be preferred for planning. The reason for this is straightforward; if the model46

used for planning is inaccurate, then errors will tend to accumulate along the planned trajectory. A47

shorter effective planning horizon will accumulate less error and may lead to better performance,48

even when judged using the true γeval. While that work treated only the batch, single-task setting,49

the question of effective planning horizon remains open in the online meta-learning setting where the50

agent accumulates knowledge from many tasks, with limited interactions within each task.51

In this work, we consider a meta-reinforcement-learning problem made of a sequence of related52

tasks. We leverage this structural task similarity to obtain model estimators with faster convergence53

as more tasks are seen. The central question of our work is: Can we meta-learn the model across54

tasks and adapt the effective planning horizon accordingly?55

We take inspiration from the Average Regret-Upper-Bound Analysis [ARUBA] framework (Khodak56

et al., 2019) to generalize planning loss bounds to the meta-RL setting. A high-level, intuitive outline57

of our approach is presented in Fig. 1. Our main contributions are as follows: 1) We formalize58

planning in a model-based meta-RL setting as an average planning loss minimization problem, and59

we propose an algorithm to solve it, 2) Under a structural task-similarity assumption, we prove a novel60

high-probability task-averaged regret upper-bound on the planning loss of our algorithm, inspired by61

ARUBA. We also demonstrate a way to learn the task-similarity parameter σ on-the-fly. To the best62

of our knowledge, this is a first formal (ARUBA-style) analysis to show that meta-RL can be more63

efficient than RL, and 3) Our theoretical result highlights a new dependence of the planning horizon64

on the size of the within-task data m and on the number of tasks T . This observation allows us to65

propose two heuristics to adapt the planning horizon given the overall sample-size.66

2 Background & Illustration67

In practice, the true model of the world is unknown and must be estimated from data1. One approach68

to approximately solve the optimization problem above is to construct a model, 〈R̂, P̂ 〉 from data, then69

1We defer the reader to Appendix Sec. B for detailed background.
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find π?
M̂,γ

for the corresponding MDP M̂ = 〈S,A, R̂, P̂ , γ〉. This approach is called model-based70

RL or certainty-equivalence (CE) control. In this setting, Jiang et al. (2015) define the planning71

loss as the gap in expected return in MDP M when using γ ≤ γeval and the optimal policy for an72

approximate model M̂ :73

L(M̂, γ |M,γeval) = ‖V π
?
M,γeval

M,γeval
− V

π?
M̂,γ

M,γeval
‖∞.

Thus, the optimal effective planning horizon (1− γ?)−1 is defined using the discount factor that74

minimizes the planning loss, i.e., γ? := min0≤γ≤γeval L(M̂, γ |M,γeval).75

Theorem 1. (Jiang et al. (2015)) Let M be an MDP with non-negative bounded rewards and76

evaluation discount factor γeval. Let M̂ be the approximate MDP comprising the true reward77

function of M and the approximate transition model P̂ , estimated from m > 0 samples for each78

state-action pair. Then, with probability at least 1− δ,79 ∣∣∣∣∣∣V π?M,γevalM,γeval
− V

π?
M̂,γ

M,γeval

∣∣∣∣∣∣
∞
≤ γeval − γ

(1− γeval)(1− γ)
+

2γRmax

(1− γ)2

(√
Σ

2m
log

2SA|Πγ |
δ

)
(1)

where Σ is upper-bounded by 1 as P, P̂ ∈ ∆S .80

 m = 5  m = 10  m = 20  m = 50

Figure 2: On the role of incorporating a ground truth prior of transition model on planning
horizon. The planning loss is a function of the discount factor γ and is impacted by incorporating
prior knowledge. The learner has m samples per task to estimate the model, corresponding to the
curves in each sub figure. Inspecting any sub figure, we observe that larger values of m lead to lower
planning loss and a larger effective discount factor. Besides, inspecting one value of m across tasks
(e.g., m = 5 ), the same effect (lower planning loss and larger effective discount) occurs when the
learner puts more weight on the ground truth prior through α.
These effects are illustrated in Fig. B2 on a 10-state, 2-action random MDP. The leftmost plot uses81

the simple count-based model estimator and reproduces the results from Jiang et al. (2015). We then82

incorporate the true prior (mean model P o as in Fig 1 and defined above Eq. 3 in Assumption 1) in83

the estimator with a growing mixing factor α ∈ (0, 1): P̂ (m) = αP o + (1− α)
∑iXi

m . We observe84

that increasing the weight α ∈ (0, 1) on good prior knowledge enables longer planning horizons and85

lower planning loss.86

We consider an online meta-RL problem where an agent is presented with a sequence of tasks87

M1, ..,MT , where for each t ∈ [T ],Mt = 〈S,A, P t, R, γeval〉, that is, the MDPs only differ from88

each other by the transition matrix (dynamics model) P t. The learner must sequentially estimate the89

model P̂ t for each task t from a batch of m transitions simulated for each state-action pair. Its goal is90

to minimize the average planning loss also expressed in the form of task averaged regret suffered in91

planning and defined as92

L̄(M̂1:T , γ|M1:T , γeval) =
1

T

T∑
t=1

L(M̂t, γ|Mt, γeval) =
1

T

T∑
t=1

‖V π
?
Mt,γeval

Mt,γeval
− V

π?
M̂t,γ

Mt,γeval
‖∞ (2)

3 Planning with Online Meta-Reinforcement Learning93

We here formalize planning in a model-based meta-RL setting. We start by specifying all our94

assumptions in Sec 3.1 including our main assumption about task relatedness in Sec. 1, present our95

approach and explain the proposed algorithms POMRL and ada-POMRL in Sec. 3.2. Our main result96

is a high-probability upper bound on the average planning loss under the assumed task relatedness,97

presented as Theorem 2.98
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3.1 Assumptions99

In many real world scenarios such as robotics, it is required to be responsive to changes in the100

environment and, at the same time, to be robust against perturbation inherent in the environment and101

their decision making. In such practical scenarios, the key reason to employ meta-learning is for the102

learner to leverage task-similarity (or task variance) across tasks.103

Assumption 1 (Structural Assumption Across Tasks: Task Relatedness). In this work, we exploit the104

structural assumption that for all t ∈ [T ], P t ∼ P centered at some fixed but unknown P o ∈ ∆S×A
S105

and such that for any (s, a),106

‖P ts,a − P os,a‖∞ ≤ σ = max
(s,a)

σ(s, a) a.s. (3)

This also implies that maxt,t′ ‖P ts,a − P t
′

s,a‖∞ ≤ 2σ, and that the meta-distribution P is bounded107

within a small subset of the simplex. It is immediate to extend our results under a high-probability108

assumption instead of the almost sure statement above. In our experiments, we will use Gaussian109

or Dirichlet priors over the simplex, whose moments are bounded with high-probability, not almost110

surely. Importantly, we will say that a multi-task environment is strongly structured when σ < Σ,111

i.e. when the effective diameter of the models is smaller than that of the entire feasible space.112

Assumption 2 (Access to a Simulator). We assume that for each task t ∈ [T ] we have access to113

a simulator of transitions (Kearns et al., 2002) providing m i.i.d. samples (Xt,i
s,a)i=1..m ∈ Sm ∼114

P t(·|s, a) (categorical distribution).115

Assumption 3 (Known Rewards). Given a distribution of tasks, the rewards are known.116

3.2 Our Approach117

With access to a simulator (Assumption 2); for each (s, a), we can compute an empirical estimator118

for each s′ ∈ [S]: P̄ ts,a(s′) =
∑m
i=1 1{Xt,i

s,a = s′}/m, with naturally
∑
s′ P̄

t
s,a(s′) = 1. We perform119

meta-RL via alternating minimizing a batch within-task regularized least-squares loss, and an outer-120

loop step where we optimize the regularization to optimally balance bias and variance of the next121

estimator.122

Estimating dynamics model via regularized least squares. We adapt the standard technique of123

meta-learned regularizer (see e.g. Baxter (2000); Cella et al. (2020) for supervised learning and124

bandit respectively) to this model estimation problem. At each round t, the current model P̂ t(s,a) is125

estimated by minimizing a regularized least square loss: for a given regularizer ht (to be specified126

below)and parameter λt > 0 for each (s, a) ∈ S ×A we solve127

P̂ t(s,a) = arg min
P(s,a)∈∆S

∥∥∥ 1

m

m∑
i=1

1{Xt,i
s,a}︸ ︷︷ ︸

empirical transition prob.

−P(s,a)

∥∥∥2

2
+ λt‖P(s,a) − ht‖22, (4)

where we use 1{Xt,i
s,a} to denote the one-hot encoding of the state into a vector in RS . Importantly, ht128

and λt are meta-learned in the outer-loop (see below) and affect the bias and variance of the resulting129

estimator. The solution of equation 4 can be computed in closed form as a convex combination of130

the empirical average (count-based) and the prior: P̂ t = αtht + (1− αt)P̄ t where αt = λt
1+λt

is the131

current mixing parameter.132

Outer-loop: Meta-learning the regularization. At the beginning of task 1 < t ≤ T , the learner133

has already observed t− 1 related but different tasks. We define ht as an average of Means (AoM):134

ht(s,a) ← P̂ o,t(s,a) =
1

t− 1

t−1∑
j=1

∑m
i=1 1{X

j,i
(s,a)}

m
:=

1

t− 1

t−1∑
j=1

P̄ j(s,a). (5)

Deriving the mixing rate. To set αt, we compute the Mean Squared Error (MSE) of P̂ t(s,a), and135

minimize an upper bound (see details in Appendix D): MSE(P̂ t(s,a)) ≤ α
2
tσ

2(1 + 1
t ) + (1− αt)2 1

m ,136

which leads to αt = 1
σ2(1+1/t)m+1 .137
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Alg 1 depicts the complete pseudo code. We note here that POMRL (σ) assumes, for now, that the under-138

lying task-similarity parameter σ is known, and we discuss a fully empirical extension further below139

(See Sec. 4). The learner does not know the number of tasks a priori and tasks are faced sequentially140

online. The learner performs meta-RL alternating between within-task estimation of the dynamics141

model P̂ t via a batch of m samples for that task, and an outer loop step to meta-update the regularizer142

P̂ o,t+1 alongside the mixing rate αt+1. For each task, we use a γ-Selection-Procedure to choose143

planning horizon γ∗ ≤ γeval. We defer the details of this step to Sec. 6 as it is non-trivial and only a144

partial consequence of our theoretical analysis. Next, the learner performs planning with an imperfect145

model P̂ t. For planning, we use dynamic programming, in particular policy iteration (a combination146

of policy evaluation, and improvement), and value iteration to obtain the optimal policy π?
P̂ t,γ∗

for147

the corresponding MDP M̂t.148

Algorithm 1: POMRL (σ) – Planning with Online Meta-Reinforcement Learning

Input: Given task-similarity (σ(s, a)) a matrix of size S ×A. Initialize P̂ o,1 to uniform, α1 = 0.
for task t ∈ [T ] do

for tth batch of m samples do
P̂ t(m) = (1− αt) 1

m

∑m
i=1Xi + αtP̂

o,t // regularized least squares
minimizer.
γ? ←− γ-Selection-Procedure(m,αt, σ, T, S,A)

π?
P̂ t,γ∗

← Planning(P̂ t(m)) //
Output: π?

P̂ t,γ∗

Update P̂ o,t+1, αt+1 = 1
σ2(1+1/t)m+1 // meta-update AoM (Eq. 5) & mixing rate

149

3.3 Average Regret Bound for Planning with Online-meta-learning150

Our main theoretical result below controls the average regret of POMRL (σ), a version of Alg. 1 with151

additional knowledge of the underlying task relatedness, i.e., the true σ > 0.152

Theorem 2. Using the notation of Theorem 1, we bound the average planning loss equation 10 for153

POMRL (σ):154

L̄ ≤ γeval − γ
(1− γeval)(1− γ)

+
2γS

(1− γ)2
Õ

σ +
√

1
T

(
σ +

√
σ2 + Σ

m

)
σ2m+ 1

+
σ2m

√
Σ
m

σ2m+ 1

 (6)

with probability at least 1 − δ, where σ2 < 1 is the measure of the task-similarity and σ =155

max(s,a) σ(s, a).156

The proof is provided in Appendix F and relies on a new concentration bound for the meta-learned157

model estimator. The last term on the r.h.s. corresponds to the uncertainty on the dynamics. First we158

verify that if T = 1 and m grows large, the second term dominates and is equivalent to Õ(
√

Σ
m ) (as159

σ2/(σ2m+ 1)→ 0), which is similar to that of Jiang et al. (2015) as there is no meta-learning, with160

an additional O( 1
m ) but second order term due to the introduced bias. Then, if m is fixed and small,161

for small enough values of σ2 (typically σ < 1/
√
m), the first term dominates and the r.h.s. boils162

down to Õ
(

(σ + 1√
m

)/
√
T
)

. This highlights the interplay of our structural assumption parameter σ163

and the amount of data m available at each round. The regimes of the bound for various similarity164

levels are explored empirically in Sec. 5 (Q3). We also show the dependence of the regret upper165

bound on m and T for a fixed σ, in Appendix Fig. H5.166

4 Practical Considerations: Adaption On-The-Fly167

In this section we propose a variant of POMRL that meta learns the task similarity parameter, which168

we call ada-POMRL . We compare the two algorithms empirically in a 10 state, 2 action MDP with169

closely related tasks with a total of T = 15 tasks (details of the setup are deferred to Sec. 5).170
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Performance of POMRL . Recall that POMRL is primarily learning the regularizer and assumes the171

knowledge of the underlying task similarity (i.e. σ). We observe in Fig. 3 that with each round172

t ∈ T POMRL is able to plan better as it learns and adapts the regularizer to the incoming tasks. The173

convergence rate and final performance corroborates with our theory.174

Can we also meta-learn the task-similarity parameter? In practice, the parameter σ may175

not be known and must be estimated online and plugged in (see Appendix E for details).176
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Figure 3: ada-POMRL en-
ables meta-learning the task-
similarity on-the-fly with a
performance gap for the
initial tasks compared to
POMRL , but improves with
more tasks

177

Alg. 2 ada-POMRL uses Welford’s algorithm to compute an online178

estimate of the variance after every task using the model estimators,179

and simply plugs-in this estimate wherever POMRL was using the true180

value. From the perspective of ada-POMRL , POMRL is an "oracle", i.e.181

the underlying task-similarity is known. However, in most practical182

scenarios, the learner does not have this information a priori.183

We compare empirically POMRL and ada-POMRL on a strongly struc-184

tured problem (σ ≈ 0.01) in Fig. 3 and observe that meta-learning the185

underlying task relatedness allows ada-POMRL to adapt to the incoming186

tasks accordingly. Adaptation on-the-fly with ada-POMRL comes at a187

cost i.e., the performance gap in comparison to POMRL but eventually188

converges albeit with a slower rate.189

This online estimation of σ means that ada-POMRL now requires an initial value for σ̂1, which is190

a choice left to the practitioner, but will only affect the results of a finite number of tasks at the191

beginning. Using σ̂1 too small will give a slightly increased weight to the prior in initial tasks, which192

is not desirable as the latter is not yet learned and will result in an increased bias. On the other hand,193

setting σ̂1 too large (i.e close to 1/2) will decrease the weight of the prior and increase the variance194

of the returned solution; in particular, in cases where the true σ is small, a large initialization will195

slow down convergence and we observe empirical larger gaps between POMRL and ada-POMRL . In196

the extreme case where σ ≈ 0, a large initialization will drastically slow down ada-POMRL as it will197

take many tasks before it discovers that the optimal behavior is essentially to aggregate the batches.198

Algorithm 2: ada-POMRL – Planning with Online Meta-Reinforcement Learning

Input: Initialize P̂ o,1 to uniform, (σ̂)1 as a matrix of size S ×A,α1 = 0.
for task t ∈ [T ] do

for tth batch of m samples do
P̂ t(m) = (1− αt) 1

m

∑m
i=1Xi + αtP̂

o,t // regularized least squares
minimizer.
γ? ←− γ-Selection-Procedure(m,αt, σt, T, S,A)

π?
P̂ t,γ?

← Planning(P̂ t(m))

Output: π?
P̂ t,γ?

Update P̂ o,t+1, σ̂t+1 ←− Welford’s online algorithm
(

(σ̂o)t, P̂
o,t+1, P̂ o,t

)
//

meta-update AoM (Eq. 5) and task-similarity parameter.
Update αt+1 = 1

σ̂t+1
2(1+1/t)m+1 // meta-update mixing rate, plug max(σS×A)

199

Tasks vary only in certain states and actions. Thus far, we considered a uniform notion of task200

similarity as Eq. 3 holds for any (s, a). However, in many practical settings the transition distribution201

might remains the same for most part of the state space but only vary on some states across different202

tasks. These scenarios are hard to analyse in general because local changes in the model parameters203

do not always imply changes in the optimal value function nor necessarily modify the optimal policy.204

Our Theorem 2 still remains valid, but it may not be tight when the meta-distribution has non-uniform205

noise levels. More precisely Theorem 2 in Appendix F remains locally valid for each (s, a) pair and206

one could easily replace the uniform σ with local σ(s,a), but this cannot directly imply a stronger207

bound on the average planning loss. Indeed, in our experiments, in both POMRL and ada-POMRL , the208

parameter σ and σ̂ respectively, are S ×A matrices of state-action dependent variances resulting in209

state-action dependent mixing rate αt.210

6



5 Experiments211

We study the empirical behavior of planning with online meta-learning and affirmatively answer the212

following questions: Q1.Does meta-learning a good initialization of the dynamics model facilitate213

improved planning accuracy for the choice of γ = γeval? (Sec. 5.1) Q2.Does meta-learning a good214

initialization of the dynamics model enables longer planning horizons? (Sec. 5.2) Q3.How does215

performance depend on the amount of shared structure across tasks i.e., σ? (Sec. 5.3)216

Setting: For each experiment, we fix a mean model P o ∈ ∆S×A
S (see below how), and for each new217

task t ∈ [T ], we sample P t from a Dirichlet distribution2 centered at P o. As prescribed by theory218

(see Sec.3.2), we set3 σ ≈ 0.01 . 1/S
√
m unless otherwise specified (see Q3). Note that σ and219

σ̂ respectively, are S ×A matrices of state-action dependent variances that capture the directional220

variance as we used Dirichlet distributions as priors and these have non-uniform variance levels in221

the simplex, depending on how close to the simplex boundary the mean is located. Aligned with our222

theory, we use the max of the σ matrices resulting in the aforementioned single scalar value. As in223

Jiang et al. (2015), P o (and each P t) characterizes a random chain MDP with S = 10 states4 and224

A = 2 actions, which is drawn such that, for each state–action pair, the transition function P (s, a, s′)225

is constructed by choosing randomly k = 5 states whose probability is set to 0. Then we draw the226

value of the S − k remaining states uniformly in [0, 1] and normalize the resulting vector.227

5.1 Meta-reinforcement learning leads to improved planning accuracy for [γeval]. [Q1.]228

We consider the aforementioned problem setting with a total of T = 15 closely related tasks and229

focus on the planning loss gains due to improved model accuracy. We fix γ = γeval, a rather230

naive γ-Selection-Procedure and show the planning loss of POMRL (Alg. 1) with the following231

baselines: 1) Oracle Prior Knowledge knows a priori the underlying task structure (P o, σ) and232

uses an estimator (Eq. 4) with exact regularizer P o and optimal mixing rate αt = 1
σ2(1+1/t)m+1 ,233

2) Without Meta-Learning simply uses P̂ t = P̄ t, the count-based estimated model using the m234

samples seen in each task, 3) POMRL (Alg. 1) meta-learns the regularizer but knows apriori the235

underlying task structure, and 4) ada-POMRL (Alg. 2) meta-learns not only the regularizer, but also236

the underlying task-similarity online. The oracle is a strong baseline that provides a minimally237

inaccurate model and should play the role of an "empirical lower bound". For all baselines, the238

number of samples per task m = 5. Results are averaged over 100 independent runs. Besides, we239

also propose and empirically validate competitive heuristics for γ-Selection-Procedure in Sec. 6.240

Besides, we also run another baseline called Aggregating(α = 1), that simply ignores the meta-RL241

structure and just plans assuming there is a single task (See Appendix H.2).242

Inspecting Fig. 4(a), we can see that our approach ada-POMRL (green) results in decreasing per-task243

planning loss as more tasks are seen, and decreasing variance as the estimated model gets more stable244

and approaches the optimal value returned by the oracle prior knowledge baseline (blue). On the245

contrary, without meta-learning (red), the agent struggles to cope as it faces new tasks every round,246

and its performance does not improve. ada-POMRL gradually improves as more tasks are seen whilst247

adaptation to learned task-similarity on-the-fly which is the primary cause of the performance gap248

in ada-POMRL and POMRL . Importantly, no prior knowledge about the underlying task relatedness249

enables a more practical algorithm with the same theoretical guarantees (See Sec. 4). Recall that250

oracle prior knowledge is a strong baseline as it corresponds to both known task relatedness and251

regularizer.252

5.2 Meta-learning the underlying task relatedness enables longer planning horizons. [Q2.]253

We run ada-POMRL for T = 15 (with σ ≈ 0.01) as above and report planning losses for a range254

of values of guidance γ factors. Results are averaged over 100 independent runs and displayed on255

Fig. 4(b). We observe in Fig. 4(b) when the agent has seen fewer tasks T , an intermediate value256

2The variance of this distribution is controlled by its coefficient parameters α1:S : the larger they are, the
smaller is the variance. More details on our choices are given in Appendix H.1. Dirichlet distributions with
small variance satisfy the high-probability version of our structural assumption 3 for σ = maxi σi

3Our priors are multivariate Dirichlet distribution in dimension S so we divide the theoretical rate by S to
ensure the max bounded by 1/

√
m. See App. H for implementation details.

4We provide additional experiments with varying size of the state space in Appendix Fig. H7.
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Figure 4: Planning with Online Meta-Learning. (a) Per-task planning loss of our algorithms
POMRL and ada-POMRL compared to an Oracle, and Without Meta-learning baselines. All methods
use a fixed γ = γeval = 0.99. (b) ada-POMRL ’s planning loss decreases as more tasks are seen.
Markers denote the γ that minimizes the planning loss in respective tasks. Error bars show standard
error. (c) ada-POMRL ’s empirically optimal guidance discount factor (right y axis) depicts the
effective planning horizon, i.e., one that minimizes the planning loss. Optimal γ aka the effective
planning horizon is larger with online meta-learning. Planning loss (left y axis) shows the minimum
planning loss achieved by the agent in that round T . Results are averaged over 100 independent runs
and error bars represent 1-standard deviation.

of the discount is optimal, i.e., one that minimizes the task-averaged planning loss (γ? < 0.5). In257

the presence of strong underlying structure across tasks, as the agent sees more tasks, the effective258

planning horizon (γ? > 0.7) shifts to a larger value - one that is closer to the gamma used for259

evaluation (γeval = 0.99).260

As we incorporate the knowledge of the underlying task distribution, i.e., meta-learned initialization261

of the dynamics model, we note that the adaptive mixing rate αt puts increasing amounts of weight262

on the shared task-knowledge. Note that this conforms to the effect of increasing weight on the263

model initialization that we observed in Fig. B2. As predicted by theory, the per-task planning loss264

decreases as T grows and is minimized for progressively larger values of γ, meaning for longer265

planning horizons (See Fig. 4(c)). In addition, Appendix Fig. H6 depicts the effective planning266

horizon individually for ada-POMRL , Oracle and without meta learning baselines.267

5.3 POMRL and ada-POMRL perform consistently well for varying task-similarity. [Q3.]268

We have thus far studied scenarios where the learner can exploit strong task relatedness, i.e., σ ≈269

0.01 < 1/(S
√
m) (for low data per task i.e., m = 5) is small and we now illustrate the other regimes270

discussed in Section 3.2. We find that our algorithms remain consistently good for all amounts of271

task-similarity in Appendix Fig. A1.272

6 Adaptation of planning horizon γ273

We now propose and empirically validate two heuristics to design an adaptive schedule for γ based274

on existing work and on our average regret upper bound.275

Schedule adapted from Dong et al. (2021) [γ = f(m,αt, σt, T )] Dong et al. (2021) study a276

continuous, never-ending RL setting. They divide the time into growing phases (Tt)t≥0, and tune a277

discount factor γt = 1− 1/T
1/5
t . We adapt their schedule to our problem, where the time is already278

naturally divided into tasks: for each t ≥ 0, we define the phase size Tt and the corresponding γt as279

T0 = m, Tt =
SA

L

(
(1− αt)m+ αtm(t− 1)︸ ︷︷ ︸

efficient sample size

)
, γt = 1− 1

T
1/5
t

,

where L is the maximum trajectory length. The size of each Tt, t ≥ 1, is controlled by an "efficient280

sample size" which includes a combination of the current task’s samples and of the samples observed281

so far, as used to construct our estimator in POMRL .282

Using the upper bound to guide the schedule [γ = min{1, γ0 + γ̃}] Having a second look at283

Theorem 2, we see that the r.h.s. is a function of γ of the form284

U : γ 7→ 1

1− γeval
+

1

γ − 1
+ Cm,T,S,A,σ,δ

γ

(1− γ)2
,
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where the first term is positive and monotonically decreasing on (0, γeval) and the second term is285

positive and monotonically increasing on (0, 1). We simplify and scale this constant, keeping only286

problem-related terms: Ct = ( 1√
t
(σ + 1√

m
)/(σ2m + 1) + σ2m 1√

m
/(σ2m + 1), which is of the287

order of the constant in equation 6. Optimizing γ by using the function U with constant C does not288

lead to a principled analytical value strictly speaking because U is derived from an upper bound that289

may be loose and may not reflect the true shape of the loss w.r.t. γ, but we may use the resulting290

growth schedule to guide our choices online. In general, the existence of a strict minimum for U in291

(0, 1) is not always guaranteed: depending on the values of C ≈ Cm,T,S,A,σ, the function may be292

monotonic and the minimum may be on the edges. We give explicit ranges in the proposition below,293

proved in Appendix G.294

Proposition 1. The existence of a strict minimum in (0, 1) is determined by C = Cm,T,S,A,σ,δ (which295

can be computed) as follows:296

γ̃ =


0 if C ≥ 1

1 if C < 1/2
1−C
1+C otherwise, i.e if 1/2 < C < 1

297
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Figure 5: Adapting the planning horizon during online meta-learning reduces planning loss.
(a) Planning with online-meta learning shows that all baselines outperform using a constant discount
factor. (b) Zoomed in plot of average planning loss over the progression of tasks T shows competitive
performance with the proposed schedule of γ = f(m,αt, σt, T ) beating best-fixed as more tasks
are seen. The γ schedule γ = min{1, γ0 + γ̃} beats the best-fixed and is very competitive to the
dynamic-best baseline. (c) Using the upper bound to guide the schedule significantly outperforms
γeval and is shown for γ0 ∈ (0.25, 0.50). We plot 1-standard error for 600 independent runs.

Empirical Validation We consider the setup described in Sec. 5 with 15 tasks in a 10-state, 2-action298

random MDP distribution of tasks with σ ≈ 0.01. In Fig. 5, we plot the planning loss obtained by299

POMRL with our schedules, a fixed γeval and two strong baselines: best fixed which considers the300

best fixed value of discount over all tasks estimated in hindsight and dynamic best which considers301

the best choice if we had used the optimal γ? in each round as in Fig. 4(c). It is important to note302

that dynamic best is a lower bound that we cannot outperform. We observe in Fig. 5(a) that γeval303

results in a very high loss, potentially corresponding to trying to plan too far ahead despite model304

uncertainty. Upon inspecting Fig. 5(b), we observe that the proposed γ = f(m,αt, σt, T ) obtains305

similar performance to best fixed and is within the significance range of the lower bound. Our second306

heuristic, γ = min{1, γ0 + γ̃} obtains similarly good performance, as seen in Fig. 5(b). Fig. 5(c)307

shows the effect of different values of γ0 in the prescribed range. These results provide evidence that308

it is possible to adapt the planning horizon as a function of the problem’s structure (meta-learned309

task-similarity) and sample sizes. Adapting the planning horizon online is an open problem and310

beyond the scope of our work.311

7 Conclusion312

We presented connections between planning with inaccurate models and online meta-learning via a313

high-probability task-averaged regret upper-bound on the planning loss that primarily depends on314

task-similarity σ as opposed to the entire search space Σ. Algorithmically, we demonstrate that the315

agent can use its experience in each task and across tasks to estimate both the transition model and316

the distribution over tasks. Meta-learning the underlying task similarity and a good initialization of317

transition model across tasks enables longer planning horizons. See Appendix Sec. H.6 for extended318

discussion.319

9



References320

Amit, R., Meir, R., and Ciosek, K. (2020). Discount factor as a regularizer in reinforcement learning.321

In International conference on machine learning, pages 269–278. PMLR.322

Arumugam, D., Abel, D., Asadi, K., Gopalan, N., Grimm, C., Lee, J. K., Lehnert, L., and Littman,323

M. L. (2018). Mitigating planner overfitting in model-based reinforcement learning. arXiv preprint324

arXiv:1812.01129.325

Balcan, M.-F., Khodak, M., and Talwalkar, A. (2019). Provable guarantees for gradient-based326

meta-learning. In International Conference on Machine Learning, pages 424–433. PMLR.327

Baxter, J. (2000). A model of inductive bias learning. Journal of artificial intelligence research,328

12:149–198.329

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning environment:330

An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279.331

Blackwell, D. (1962). Discrete dynamic programming. The Annals of Mathematical Statistics, pages332

719–726.333

Caruana, R. (1997). Multitask learning. Machine learning, 28(1):41–75.334

Cella, L., Lazaric, A., and Pontil, M. (2020). Meta-learning with stochastic linear bandits. In335

International Conference on Machine Learning, pages 1360–1370. PMLR.336

Denevi, G., Ciliberto, C., Stamos, D., and Pontil, M. (2018). Learning to learn around a common337

mean. Advances in Neural Information Processing Systems, 31.338

Denevi, G., Stamos, D., Ciliberto, C., and Pontil, M. (2019). Online-within-online meta-learning.339

Advances in Neural Information Processing Systems, 32.340

Dong, S., Van Roy, B., and Zhou, Z. (2021). Simple agent, complex environment: Efficient341

reinforcement learning with agent state. arXiv preprint arXiv:2102.05261.342

Fedus, W., Gelada, C., Bengio, Y., Bellemare, M. G., and Larochelle, H. (2019). Hyperbolic343

discounting and learning over multiple horizons. arXiv preprint arXiv:1902.06865.344

Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-learning for fast adaptation of deep345

networks. In International Conference on Machine Learning, pages 1126–1135. PMLR.346

Finn, C., Rajeswaran, A., Kakade, S., and Levine, S. (2019). Online meta-learning. In International347

Conference on Machine Learning, pages 1920–1930. PMLR.348

Flennerhag, S., Schroecker, Y., Zahavy, T., van Hasselt, H., Silver, D., and Singh, S. (2021). Boot-349

strapped meta-learning. arXiv preprint arXiv:2109.04504.350

Flennerhag, S., Zahavy, T., O’Donoghue, B., van Hasselt, H., György, A., and Singh, S. (2022).351

Optimistic meta-gradients. In Sixth Workshop on Meta-Learning at the Conference on Neural352

Information Processing Systems.353

François-Lavet, V., Rabusseau, G., Pineau, J., Ernst, D., and Fonteneau, R. (2019). On overfitting and354

asymptotic bias in batch reinforcement learning with partial observability. Journal of Artificial355

Intelligence Research, 65:1–30.356

Jiang, N., Kulesza, A., Singh, S., and Lewis, R. (2015). The dependence of effective planning horizon357

on model accuracy. In Proceedings of the 2015 International Conference on Autonomous Agents358

and Multiagent Systems, pages 1181–1189. International Foundation for Autonomous Agents and359

Multiagent Systems.360

Kearns, M., Mansour, Y., and Ng, A. Y. (2002). A sparse sampling algorithm for near-optimal361

planning in large markov decision processes. Machine learning, 49(2):193–208.362

Khodak, M., Balcan, M.-F., and Talwalkar, A. (2019). Adaptive gradient-based meta-learning363

methods. arXiv preprint arXiv:1906.02717.364

10



Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-carlo planning. In European conference365

on machine learning, pages 282–293. Springer.366

Luketina, J., Flennerhag, S., Schroecker, Y., Abel, D., Zahavy, T., and Singh, S. (2022). Meta-367

gradients in non-stationary environments. In ICLR Workshop on Agent Learning in Open-368

Endedness.369

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,370

Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep371

reinforcement learning. Nature, 518(7540):529.372

Müller, R. and Pacchiano, A. (2022). Meta learning mdps with linear transition models. In Interna-373

tional Conference on Artificial Intelligence and Statistics, pages 5928–5948. PMLR.374

Oh, J., Hessel, M., Czarnecki, W. M., Xu, Z., van Hasselt, H., Singh, S., and Silver, D. (2020).375

Discovering reinforcement learning algorithms. arXiv preprint arXiv:2007.08794.376

Petrik, M. and Scherrer, B. (2008). Biasing approximate dynamic programming with a lower discount377

factor. Advances in neural information processing systems, 21.378

Pineau, J. (2019). The machine learning reproducibility checklist. arxiv.379

Schmidhuber, J. and Huber, R. (1991). Learning to generate artificial fovea trajectories for target380

detection. International Journal of Neural Systems, 2(01n02):125–134.381

Tao, T. and Vu, V. (2015). Random matrices: universality of local spectral statistics of non-hermitian382

matrices. The Annals of Probability, 43(2):782–874.383

Thrun, S. and Pratt, L. (1998). Learning to learn: Introduction and overview. In Learning to learn,384

pages 3–17. Springer.385

Van Seijen, H., Van Hasselt, H., Whiteson, S., and Wiering, M. (2009). A theoretical and empirical386

analysis of expected sarsa. In 2009 ieee symposium on adaptive dynamic programming and387

reinforcement learning, pages 177–184. IEEE.388

Xu, Z., van Hasselt, H., and Silver, D. (2018). Meta-gradient reinforcement learning. arXiv preprint389

arXiv:1805.09801.390

Zahavy, T., Xu, Z., Veeriah, V., Hessel, M., Oh, J., van Hasselt, H. P., Silver, D., and Singh, S. (2020).391

A self-tuning actor-critic algorithm. Advances in neural information processing systems, 33.392

11



A How does performance depend on the amount of shared structure across393

tasks i.e., σ?394
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Figure A1: POMRL and ada-POMRL are robust to varying task-similarity σ for a small fixed amount
of data m = 5 available at each round t ∈ T . A small value of σ reflects the fact that tasks are closely
related to each other and share a good amount of structure whereas a much larger value indicates
loosely related tasks (simplex plots illustrate the meta-distribution in dimension 2). In the former
case, meta-learning the shared structure alongside a good model initialization leads to most gains. In
the latter, the learner struggles to cope with new unseen tasks which differ significantly. Error bars
represent 1-standard deviation of uncertainty across 100 independent runs.

We let σ vary to cover the three regimes: σ ≈ 0.01 corresponding to fast convergence, σ = 0.025395

is in the intermediate regime (needs longer T ), and σ = 0.047 is the loosely structured case where396

we don’t expect much meta-learning to help improve model accuracy. The small inset figures in397

Fig. A1 represent the task distribution in the simplex. In all cases, ada-POMRL estimates σ online398

and we report the planning losses for a range of γ’s. Inspecting Fig. A1, we observe that while in the399

presence of closely related tasks (Fig. 1(a)) all methods perform well (except without meta-learning).400

As the underlying task relatedness decreases (for intermediate regime in Fig. 1(b)), both POMRL and401

ada-POMRL remain consistent in their performance as compared to the Oracle Prior Knowledge402

baseline. When the underlying tasks are loosely related (as in Fig. 1(c)), ada-POMRL and POMRL can403

still perform well in comparison to other baselines.404

Next, we report and discuss the planning loss plot for ada-POMRL for the three cases are shown in405

Figures 1(d), 1(e), and 1(f) respectively. An intermediate value of task-similarity (Fig. 1(e)) still leads406

to gains, albeit at a lower speed of convergence. In contrast, a large value of σ = 0.047 indicates407

little relatedness across tasks resulting in minimal gains from meta-learning here as seen in Fig. 1(f).408

The learner struggles to learn a good initialization of the model dynamics as there is no natural one.409

All planning loss curves remain U-shaped and overall higher with an intermediate optimal guidance410

γ value ( 0.5). However, ada-POMRL does not do worse overall than the initial run T = 1, meaning411

that while there is not a significant improvement, our method does not hurt performance in loosely412

related tasks5. Recall that ada-POMRL has no apriori knowledge of the number of tasks (T ), or the413

underlying task relatedness (σ) i.e., adaptation is on-the-fly.414

Implications for degree of task-similarity i.e., σ values: Our bound suggests that the degree of415

improvement you can get from meta learning scales with the task similarity σ instead of the set size416

Σ. Thus, for σ ≤ Σ, performing meta learning with Alg1 guarantees better learning measured via our417

improved regret bound when there is underlying structure in the problem space which we formalize418

5The theoretical bound may lead to think that the average planning loss is higher due to the introduced bias,
but in practice we do not observe that, which means our bound is pessimistic on the second order terms.
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through Eq. 3. Should σ be large, the techniques will still hold and our bounds will simply scale419

accordingly.420

When σ = 0, all tasks are exactly the same. Indeed, the mixing rate αt ≈ 1 for all t, so our421

algorithm boils down to returning the average of means P̂ o,t for each task, which simply corresponds422

to solving the tasks as a continuous, uninterrupted stream of batches from the nearly same model423

that P̂ o,t aggregates. Unsurprisingly, our bound recovers that of (Jiang et al., 2015, Theorem 1):424

the bound below reflects that we have to estimate only one model in a space of “size” Σ with mT425

samples.426

L̄ ≤ γeval − γ
(1− γeval)(1− γ)

+
2γS

(1− γ)2
Õ

(√
Σ

mT

)
(7)

When σ = 1, then σ = Σ = 1, then the meta-learning assumption is not relevant but our427

bound remains valid and gracefully degrades to reflect it. We need to estimate T models each428

with m samples. Then the second term 1√
m

reflects the usual estimation error for each task while the429

first term is an added bias (second order in 1
m ) due to our regularization to our mean prior P o that is430

not relevant here.431

L̄ ≤ γeval − γ
(1− γeval)(1− γ)

+
2γS

(1− γ)2
Õ
( 1

m

(
1 +

1√
T

(1 +

√
1 +

1

m
)
)

+
1√
m

)
(8)

Connections to ARUBA. As explained earlier, our metric is not directly comparable to that of432

ARUBA (Khodak et al., 2019) but it is interesting to make a parallel with the high-probability average433

regret bounds proved in their Theorem 5.1. They also obtain an upper bound in Õ(1/
√
m+ 1/

√
mT )434

if one upper bounds their average within-task regret Ū ≤ B
√
m.435

Remark 1 (Role of the task similarity σ in Eq. 2). When σ > 0, POMRL naturally integrates each436

new data batch into the model estimation. The knowledge of σ is necessary to obtain this exact and437

intuitive update rule, and our theory only covers POMRL equipped with this prior knowledge, but we438

discuss how to learn and plug-in σ̂t in practice. Note that it would be possible to extend our result439

to allow for using the empirical variance estimator with tools like the Bernstein inequality, but we440

believe this it out of the scope of this work as it would essentially give a similar bound as obtained in441

Theorem 2 with an additional lower order term in O(1/T ), and it would not provide much further442

intuition on the meta-planning problem we study.443

B Additional Detailed Background444

Reinforcement Learning. We consider tabular Markov Decision Processes (MDPs) M =445

〈S,A, R, P, γeval〉, where S is a finite set of states, A is a finite set of actions and we denote446

the set cardinalities as S = |S| and A = |A|. For each state s ∈ S, and for each available action447

a ∈ A, the probability vector P (· | s, a) defines a transition model over the state space and is a448

probability distribution in a set of feasible models DP ⊂ ∆S , where ∆S the probability simplex of449

dimension S − 1. We denote Σ ≤ 1 the diameter of DP . A policy is a function π : S → A and it450

characterizes the agent’s behavior.451

We consider the bounded reward setting, i.e., R ∈ [0, Rmax] and without loss of generality we set452

Rmax = 1 (unless stated otherwise). Given an MDP, or task, M , for any policy π, let V πM,γ ∈ RS be453

the value function when evaluated in MDP M with discount factor γ ∈ (0, 1) (potentially different454

from γeval); defined as V πM,γ(s) = E
∑∞
t=0 (γtRst | s0 = s). The goal of the agent is to find an455

optimal policy, π?M,γ = arg maxπ Es∼ρV
π
M,γ(s) where ρ > 0 is any positive measure, denoted π?456

when there is no ambiguity. For given state and action spaces and reward function (S,A, R), we457

denote Πγ the set of potentially optimal policies for discount factor γ: Πγ = {π | ∃P s.t. π =458

π?M,γ where M = 〈S,A, R, P, γ〉}. We use Big-O notation, O(·) and Õ(·), to hide respectively459

universal constants and poly-logarithmic terms in T, S,A and δ > 0 (the confidence level).460

Model-based Reinforcement Learning. In practice, the true model of the world is unknown and461

must be estimated from data. One approach to approximately solve the optimization problem462

above is to construct a model, 〈R̂, P̂ 〉 from data, then find π?
M̂,γ

for the corresponding MDP M̂ =463

〈S,A, R̂, P̂ , γ〉. This approach is called model-based RL or certainty-equivalence (CE) control.464
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Planning with inaccurate models. In this setting, Jiang et al. (2015) define the planning loss as the465

gap in expected return in MDP M when using γ ≤ γeval and the optimal policy for an approximate466

model M̂ :467

L(M̂, γ |M,γeval) = ‖V π
?
M,γeval

M,γeval
− V

π?
M̂,γ

M,γeval
‖∞.

Thus, the optimal effective planning horizon (1− γ?)−1 is defined using the discount factor that468

minimizes the planning loss, i.e., γ? := min0≤γ≤γeval L(M̂, γ |M,γeval).469

Theorem 1. (Jiang et al. (2015)) Let M be an MDP with non-negative bounded rewards and470

evaluation discount factor γeval. Let M̂ be the approximate MDP comprising the true reward471

function of M and the approximate transition model P̂ , estimated from m > 0 samples for each472

state-action pair. Then, with probability at least 1− δ,473 ∣∣∣∣∣∣V π?M,γevalM,γeval
− V

π?
M̂,γ

M,γeval

∣∣∣∣∣∣
∞
≤ γeval − γ

(1− γeval)(1− γ)
+

2γRmax

(1− γ)2

(√
Σ

2m
log

2SA|Πγ |
δ

)
(9)

where Σ is upper-bounded by 1 as P, P̂ ∈ ∆S .474

 m = 5  m = 10  m = 20  m = 50

Figure B2: On the role of incorporating a ground truth prior of transition model on planning
horizon. The planning loss is a function of the discount factor γ and is impacted by incorporating prior
knowledge. The learner has m = 5, 10, 20, 50 samples per task to estimate the model, corresponding
to the curves in each sub figure. Inspecting any of the sub figures, we observe that larger values of m
lead to lower planning loss and a larger effective discount factor. Besides, inspecting one value of
m across tasks (e.g., m = 5 ), we see that the same effect (lower planning loss and larger effective
discount) occurs when the learner puts more weight on the ground truth prior through α.
This result holds for a count-based model estimator (i.e, empirical average of observed transitions)475

given by a generator model for each pair (s, a). It gives an upper-bound on the planning loss as476

a function of the guidance discount factor γ < 1. The result decomposes the loss into two terms:477

the constant bias which decreases as γ tends to γeval, and the variance (or uncertainty) term which478

increases with γ but decreases as 1/
√
m. As m → ∞ that second factor vanishes, but in the479

low-sample regime the optimal effective planning horizon should trade-off both terms.480

Illustration. These effects are illustrated in Fig. B2 on a simple 10-state, 2-action random MDP.481

The leftmost plot uses the simple count-based model estimator and reproduces the results from482

Jiang et al. (2015). We then incorporate the true prior (mean model P o as in Fig 1 and defined483

above Eq. 3 in Assumption 1) in the estimator with a growing mixing factor α ∈ (0, 1): P̂ (m) =484

αP o + (1− α)
∑iXi

m . We observe that increasing the weight α ∈ (0, 1) on good prior knowledge485

enables longer planning horizons and lower planning loss.486

Online Meta-Learning and Regret. We consider an online meta-RL problem where an agent is pre-487

sented with a sequence of tasks M1,M2, ...,MT , where for each t ∈ [T ],Mt = 〈S,A, P t, R, γeval〉,488

that is, the MDPs only differ from each other by the transition matrix (dynamics model) P t. The489

learner must sequentially estimate the model P̂ t for each task t from a batch ofm transitions simulated490

for each state-action pair6.491

Its goal is to minimize the average planning loss also expressed in the form of task averaged regret492

suffered in planning and defined as493

L̄(M̂1:T , γ|M1:T , γeval) =
1

T

T∑
t=1

L(M̂t, γ|Mt, γeval) =
1

T

T∑
t=1

‖V π
?
Mt,γeval

Mt,γeval
− V

π?
M̂t,γ

Mt,γeval
‖∞ (10)

6So a total of mSA samples.
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Note that the reference MDP for each term is the true Mt, and the discount factor γ is the same in494

all tasks. One can see this objective as a stochastic dynamic regret: at each task t ∈ [T ], the learner495

competes against the optimal policy for the current true model, as opposed to competing against the496

best fixed policy in hindsight used in classical definitions of regret.497

Note that our dynamic regret is different from the one considered in ARUBA (Khodak et al.,498

2019). They consider the fully online setting where the data is observed as an arbitrary stream within499

each task, and each comparator is simply the minimum of the within-task loss in hindsight. In our500

model, however, given access to a simulator (See Sec. 2) allows us to get i.i.d transition samples as a501

batch at the beginning of each task, and consequently we define our regret with respect to the true502

generating parameter. One key consequence of this difference is that their regret bounds cannot be503

directly applied to our setting, and we prove new results further below.504

C Additional Related Work505

Discount Factor Adaptation. For almost all real-world applications, RL agents operate in a much506

larger environment than the agent capacity in the context of both the computational and memory507

complexity (e.g. the internet). Inevitably, it becomes crucial to adapt the planning horizon over time508

as opposed to using a relatively longer planning horizon from the start (which can be both expensive509

and sub-optimal). This has been extensively studied in the context of planning with inaccurate models510

in reinforcement learning (Jiang et al., 2015; Arumugam et al., 2018).511

Dong et al. (2021) introduced a schedule for γ that we take inspiration from in Section 6. They512

consider a ’never-ending RL’ problem in the infinite-horizon, average-regret setting in which the513

true horizon is 1, but show that adopting a different smaller discount value proportional to the time514

in the agent’s life results in significant gains. Their focus and contributions are different from ours515

as they are interested in asymptotic rates, but we believe the connection between our findings is an516

interesting avenue for future research.517

Meta-Learning and Meta-RL, or learning-to-learn has shown tremendous success in online dis-518

covery of different aspects of an RL algorithm, ranging from hyper-parameters (Xu et al., 2018) to519

complete objective functions (Oh et al., 2020). In recent years, many deep RL agents (Fedus et al.,520

2019; Zahavy et al., 2020) have gradually used higher discounts moving away from the traditional521

approach of using a fixed discount factor. However, to the best of our knowledge, existing works do522

not provide a formal understanding of why this is helping the agents in better performance, especially523

across varied tasks. Our analysis is motivated by the aforementioned empirical success of adapting the524

discount factor. While there has been significant progress in meta-learning-inspired meta-gradients525

techniques in RL (Xu et al., 2018; Zahavy et al., 2020; Flennerhag et al., 2021), they are largely526

focused on empirical analysis with lot or room for in-depth insights about the source of underlying527

gains.528

D Closed-form solution of the regularized least squares529

We note that each P̂ should be understood as P̂(s,a)(s
′).530

∇`(P |h) = − 2

m

m∑
i=1

(Xi − P ) + 2λ(P − h)

∇`(P |h) = 0 ⇐⇒ P (1 + λ) =

∑
iX

i

m
+ λh

P̂(s,a)(s
′|h) =

1

1 + λ

∑
iX

i

m
+

λ

1 + λ
h (11)

= αh+ (1− α)

∑i
Xi

m
where α =

λ

1 + λ
(12)
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Derivation of Mixing Rate αt: To choose αt, we want to minimize the MSE of the final estimator.531

EX∼P t
(
P̂ t − P t

)2

= EX∼P t
(
αtht + (1− αt)P̄ t − P t

)2
= EX∼P t

(
αt(ht − P t) + (1− αt)(P̄ t − P t)

)2
= α2

t (ht − P t)2 + (1− αt)2EX∼P t
(
(P̄ t − P t)

)2
where the cross term 2α)t(ht − P t)(1− αt)EX∼P tE

[
P̄ t − P t

]
= 0 since E[P̄ t] = P t. This is the532

classic bias-variance decomposition of an estimator and we see that the choice of ht plays a role as533

well as the variance of P̄ t, which is upper bounded by 1/m (because each Xi,t is bounded in (0, 1)).534

For instance, for the choice ht = P o, by our structural assumption 3 we get:535

EX∼P t
(
P̂ t − P t

)2

≤ α2σ2 + (1− α)2 1

m
,

and we minimize this upper bound in α to obtain the mixing coefficient with smallest MSE: α∗ =536
1

σ2m+1 , or equivalently λ∗ = 1
σ2m . Recall this is the within-task estimator’s variance where we537

consider the true P o.538

In practice, however, we meta-learn the prior, so for t > 1, ht = P̂ o,t = 1
t−1

∑t−1
j=1 P̄

j . Intuitively,539

as m and t grow large, P̂ o,t → P o and we retrieve the result above (we show this formally to prove540

Eq. 22 in the proof of our main theorem). To obtain a simple expression for αt, we minimize the541

"meta-MSE" of our estimator:542

EP t∼P o
(
P̂ t − P t

)2

= α2
tEP t∼P oEX∼P t

(
ht − P t

)2
+ (1− αt)2EP t∼P oEX∼P t

(
(P̄ t − P t)

)2
≤ α2

tEP t∼P o

 1

t− 1

t−1∑
j=1

P j − P o + P o − P t
2

+ (1− αt)2 1

m

≤ α2
tσ

2(1 + 1/t) + (1− αt)2 1

m
,

where in the last inequality, we upper bounded the variance of 1
t−1

∑t−1
j=1 P

j (the "denoised" P̂ 0,t)543

by σ2/t since each P t is bounded in [P o − σ, P o + σ] by our structural assumption. Minimizing544

that last upper bound in αt leads to αt = 1
(σ2)(1+1/t)m+1 ≤→t

α∗, when t→∞. This means that the545

uncertainty on the prior implies that its weight in the estimator is smaller, but eventually converges at546

a fast rate to the optimal value (when the exact optimal prior is known). This inequality holds with547

probability 1− δ because we use the concentration of P̂ o,t (see proof of Theorem 19 below)548

E Online Estimation549

Online Estimation of Prior. At each task, the learner gets m interactions per state-action pair. At550

task t = 1, learner can compute the prior based on the samples seen so far, i.e.:551

P̂ t=1
o (s′|s, a) =

{
∑m
i=1Xi}t=1

m

At subsequent tasks,552

P̂ t=2
o (s′|s, a) =

{
∑2m
i=1Xi}t=1:2

2m
=

1

2

({∑m
i=1Xi}
m

+
{
∑2m
i=m+1Xi}
m

)
=

1

2

(
P̂ t=1
o (s′|s, a) +

{
∑2m
i=m+1Xi}
m

)
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Similarly,553

P̂ t=3
o (s′|s, a) =

{
∑3m
i=1Xi}t=1:3

3m
=
{
∑2m
i=1Xi}t=1:2 + {

∑3m
i=2m+1Xi}t=3

3m

=
1

3

(2{
∑2m
i=1Xi}t=1:2

2m
+
{
∑3m
i=2m+1Xi}t=3

m

)
=⇒ P̂ to(s′|s, a) =

1

t

(
(t− 1)P̂ t−1

o (s′|s, a) +

∑tm
i=(t−1)m+1Xi

m

)
Therefore,554

P̂ to(s′|s, a) =
(

1− 1

t

)
P̂ t−1
o (s′|s, a) +

(1

t

)∑tm
i=(t−1)m+1Xi

m
(13)

Online Estimation of Variance. Similarly, we can derive the online estimate of the variance:555

(σ̂2
o)t = (σ̂2

o)t−1 +
(Xmt − P̂ t−1

o )(Xmt − P̂ to)− (σ̂2
o)t−1

t
(14)

Since the above method is numerically unstable, we will employ Welford’s online algorithm for556

variance estimate.557

F Concentration bounds and Proof of Theorem 2558

F.1 Proof of Theorem 2559

We begin the proof by decomposing each term of the loss:560

Lemma 1. For a task t denoted by M , and its estimate denoted by M̂, ∀s ∈ S,561

V
π∗
Pt,γeval

P t,γeval
(s)− V

π∗
P̂ t,γ

P t,γeval
(s) =

(
V
π∗
Pt,γeval

P t,γeval
(s)− V

π∗
Pt,γeval

P t,γ (s)
)

︸ ︷︷ ︸
At

+
(
V
π∗
Pt,γeval

P t,γ (s)− V
π∗
P̂ t,γ

P t,γeval
(s)
)

︸ ︷︷ ︸
Bt

We are going to bound each term separately. The term (At) corresponds to the bias constant due to562

using γ instead of γeval and was already bounded by Jiang et al. (2015):563

Lemma 2. Jiang et al. (2015) For any MDP M̂ with rewards in [0, Rmax], ∀π : S → A and564

γ ≤ γeval,565

V πP t,γ ≤ V πP t,γeval ≤ V
π
P t,γ +

γeval − γ
(1− γeval)(1− γ)

Rmax (15)

We denote C(γ) = γeval−γ
(1−γeval)(1−γ)Rmax and notice that

∑
tAt/T = C(γ) so that bounds the first566

part of the average loss.567

To bound the second term Bt, we first use Lemma 3 (Equation 18) in Jiang et al. (2015) to upper568

bound569

V
π∗
Pt,γeval

P t,γ (s)− V
π∗
P̂ t,γ

P t,γeval
(s) ≤ 2 max

s∈S,π∈ΠR,γ
|V

πPt,γeval
P t,γ (s)− V πP̂ t,γ

P̂ t,γeval
(s)| (16)

≤ 2 max
s∈S,a∈A,
π∈ΠR,γ

|Q
πPt,γeval
P t,γ (s, a)−QπP̂ t,γ

P̂ t,γeval
(s, a)| (17)

Using Lemma 4 from Jiang et al. (2015) and noticing that in our setting we do not estimate R so R̂ =570

R,QπP t,γ(s, a) = R(s, a)+γ〈P t(s, a, ; ), V πP t,γ〉 andQπ
P̂ t,γ

(s, a) = R(s, a)+γ〈P̂ t(s, a, ; ), V π
P̂ t,γ
〉,571

we have572

max
s∈S,a∈A,
π∈ΠR,γ

|Q
πPt,γeval
P t,γ (s, a)−QπP̂ t,γ

P̂ t,γeval
(s, a)| ≤ 1

(1− γ)
max

s∈S,a∈A,
π∈ΠR,γ

∣∣∣γ〈P̂ t(s, a, ; ), V πP t,γ〉 − γ〈P t(s, a, ; ), V πP t,γ〉
∣∣∣

(18)

17



Notice that we are comparing the value functions of two different MDPs which is non-trivial and we573

leverage the result of Jiang et al. (2015). We refer the reader to the proof of Lemma 4 therein for574

intermediate steps.575

Now summing over tasks, we have576 ∑
t(B)t
T

≤ 1

T

T∑
t=1

2

(1− γ)
max

s∈S,a∈A,
π∈ΠR,γ

∣∣∣γ〈P̂ t(s, a, ; ), V πP t,γ〉 − γ〈P t(s, a, ; ), V πP t,γ〉
∣∣∣

≤ 2γ

(1− γ)

1

T

T∑
t=1

max
s∈S,a∈A,
π∈ΠR,γ

∣∣∣〈P̂ t(s, a, ; )− P t(s, a, ; ), V πP t,γ〉
∣∣∣

≤ 2Rmax

(1− γ)

1

T

T∑
t=1

∑
s′∈[S]

max
s∈S,a∈A,
π∈ΠR,γ

∣∣∣P̂ t(s, a, s′)− P t(s, a, s′)∣∣∣|V πP t,γ |
≤ 2Rmaxγ

(1− γ)2

S

T

T∑
t=1

max
s,s′∈S,a∈A

∣∣∣P̂ t(s, a, s′)− P t(s, a, s′)∣∣∣
where we upper-bounded the value function byRmax/(1−γ) and one sum over S by S×maxs′∈S . . ..577

Note that this step differs from Jiang et al. (2015) and allows us to boil down to an average (worst-578

case) estimation error of the transition model. We finally upper bound the r.h.s using Theorem 2579

stated and proved below.580

Remark 2. In Jiang et al. (2015), the argument is slightly more direct and involves directly controlling581

the deviations of the scalar random variables R(s, a) + γ〈P̂ t(s, a, ; ), V π
P̂ t,γ
〉, arguing that it is582

bounded and centered at QπP t,γ(s, a). This approach is followed by taking a union bound over the583

policy space ΠRγ and results in a factor log(ΠR,γ) under the square root. We could have followed584

this approach and obtained a similar result but we made the alternative choice above as we believe it585

is informative. In our case, this factor is replaced (and upper bounded) by the extra S term. As a result,586

we lose the direct dependence on the size of the policy class, which is a function of γ and should play a587

role in the bound. In turn, and at the price of this extra looseness, we get a slightly more "exploitable"588

bound (see our heuristic for a gamma schedule in Section 6). It is easy and straightforward to adapt589

our concentration bound below to directly bound R(s, a) + γ〈P̂ t(s, a, ; ), V π
P̂ t,γ
〉 −QπP t,γ(s, a) as590

in Jiang et al. (2015), and one would obtain a similar bound as Eq. equation 6 without the factor S,591

but with an extra log(ΠR,γ).592

F.2 Concentration of the model estimator593

To avoid clutter in the notation of this section , we drop the (s, a, s′) everywhere, as we did in594

Appendix D above. All definitions of P̂ and P̂0 are as stated in the latter section.595

Theorem 2. with probability 1− δ:596

max
s,a,s′

|P̂ t−P t| ≤ 1

σ2m+ 1


√

log( 6T
δ ) log(TS

2A
δ )(σ2 +

Σ log2( 6T2

δ )

m )

T
+ σ

√
log( 3TS2A

δ )

T
+ 2σ


+

σ2m

2σ2m+ 1

√
Σ log(3TS2A

δ )

2m
(19)

For any t ∈ [T ], s, a, s′ and π ∈ ΠR,γ , define P̂ t,∗ = αtP
o + (1− αt)P̄ tm the optimally regularized597

estimator (using the true unknown P o for each t). We have598 ∣∣∣P̂ t − P t∣∣∣ ≤ |P̂ t − P̂ t,∗|+ |P̂ t,∗ − Pt|
≤ αt|P̂ o,t − P o|︸ ︷︷ ︸

(A)

+ (1− αt)|P̄ tm − P t|︸ ︷︷ ︸
(B)

+αt|P o − P t|︸ ︷︷ ︸
≤2·σby assum.

(20)
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Bounding Term A599

Substituting the estimator P̂t = αt
1
m

∑m
i Xi + (1− αt)P̂ to ,600

A ≤ αt

|P̂ to − 1

t− 1

t−1∑
j=1

P j |+ | 1

t− 1

t−1∑
j=1

Pj − Po|



≤ 1

σ2m+ 1

|P̂ to −
1

t− 1

t−1∑
j=1

P j |︸ ︷︷ ︸
(A1)

+ | 1

t− 1

t−1∑
j=1

Pj − Po|︸ ︷︷ ︸
A2


where αt is simply upper bounded by its initial value 1

σ2m+1 and we introduced the denoised601

(expected) average 1
t−1

∑t−1
j=1 P

j = EP 1,...P t−1 P̂ o,t. Indeed, by assumption, EP∼P 1
t−1

∑t−1
j=1 P

j =602

P o and the variance of this estimator is bounded by σ2/(t− 1) by our structure assumption. This603

allows to naturally bound A2 using Hoeffding’s inequality for bounded random variables: with604

probability at least 1− δ/3,605

max
s,a,s′

A2 ≤ σ
√

log(6S2AT/δ)

T
(21)

We now bound A1606

A1 =

∣∣∣∣∣∣ 1

t− 1

∑
j

(P̄ jm − P j)

∣∣∣∣∣∣
We note here that the first term in A1 is indeed a martingale Mt =

∑t−1
j=1 Zj , where Zj = P̄ jm − P j ,607

such that each increment is bounded with high probability: for each j, |Zj | ≤ cj w.p 1− δ
6 , where608

cj =
√

Σ
m log( 6T 2

δ ). Moreover, the differences |Zj − Zj+1| are also bounded with high probability:609

|Zj − Zj+1| ≤ |P j − P j+1|+ |P̄ j − P̄ j+1| < 2σ + 2cj = Dj = 2

(
σ +

√
Σ log(6T 2

δ )
√
m

)

Then by (Tao and Vu, 2015, Prop. 34), for any ε > 0,610

P
(∣∣∣ Mt

t− 1

∣∣∣ ≥ ε

t− 1

√√√√t−1∑
j=1

D2
j

)
≤ 2 exp(−2ε2) +

t−1∑
j=1

δ

6T 2

Choosing ε =
√

1
2 log( 12T

δ ), we get611

P

∣∣∣ 1

t− 1

t−1∑
j=1

P̄ jm − Pj
∣∣∣ ≥

√√√√ (σ +
√

Σ log( 6T2

δ )√
m

)2 log( 6T
δ )

T

 ≤ δ

6T
+

δ

6T
=

δ

3T

With a union bound as before, we get that with probability at least 1− δ/3,612

A1 ≤

√
log( 6T

δ ) log(TS
2A
δ )(σ2 +

Σ log2( 6T2

δ )

m )

T
(22)

because (σ +
√

Σ
m )2 ≥ σ2 + Σ

m .613
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By combining equation 22 and equation 21, we get:614

max
s,a,s′

αt|P o,t−P o| ≤
1

σ2m+ 1


√

log( 6T
δ ) log(TS

2A
δ )(σ2 +

log2( 6T2

δ )

m )

T
+ σ

√
log(3S2AT/δ)

T


(23)

Bounding Term B615

Term B is simply the concentration of the average of bounded variables P̄ tm = 1
m

∑
iXi, whose616

variance is bounded by 1. So by Hoeffding’s inequality, and a union bound, with probability at least617

1− δ/4618

max
s,a,s′

|P̄ tm − P t| ≤
√

Σ log(4TS2A/δ)

2m

To bound term B, it remains to upper bound 1− αt for all t ∈ [T ]:619

1− αt =
σ2(1 + 1

t )m

σ2(1 + 1
t )m+ 1

≤ σ2m

2σ2m+ 1

We get that with probability 1− δ/3620

max
s,a,s′

(B) ≤ σ2m

2σ2m+ 1

√
Σ log(3TS2A/δ)

2m
(24)

Combining all bounds621

To conclude, we combine the bounds on the terms in equation 20, replacing with equation 23,equa-622

tion 24, and with a union bound, we get that with probability 1− δ,623

max
s,a,s′

|P̂ t−P t| ≤ 1

σ2m+ 1


√

log( 6T
δ ) log(TS

2A
δ )(σ2 +

Σ log2( 6T2

δ )

m )

T
+ σ

√
log(3S2AT/δ)

T
+ 2σ


+

σ2m

2σ2m+ 1

√
Σ log(3TS2A/δ)

2m
(25)

Discussion624

The bound has 4 main terms respectively in Õ(
√

1
mT ), Õ(

√
1
T ), Õ( 1

m ) and Õ(
√

1
m ), all scaled by625

some factor depending on σ2 and m. A first remark is that when m is large and T = 1, the last part626

in Õ(
√

1
m ) dominates due to the factor σ2m

σ2m+1 → 1, while the coefficient of the first two terms goes627

to 0 fast (in 1/(σ2m)).628

G Proof of Proposition 1629

We study the function U defined by630

U : γ 7→ 1

1− γeval
+

1

γ − 1
+ Cm,T,S,A,σ,δ

γ

(1− γ)2
,

where γeval is a fixed constant and C := Cm,T,S,A,σ,δ is seen as a parameter whose value controls631

the general "shape" of the function. We differentiate with respect to γ:632

dU

dγ
= −−C(γ + 1) + (1− γ)

(1− γ)3
.

We see that the sign of the derivative is affected by the value of the parameter C:633
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• If ∀γ ∈ (0, 1),−C(γ + 1) + (1− γ) > 0 then U is monotonically decreasing on (0, 1) and634

the minimum is reached for γ = 1,635

∀γ ∈ (0, 1), −C(γ + 1) + (1− γ) > 0 ⇐⇒ −2C + 1 > 0 ⇐⇒ C < 1/2.

• Similarly, if C is really large, U may be monotonically increasing on (0, 1):636

∀γ ∈ (0, 1), −C(γ + 1) + (1− γ) < 0 ⇐⇒ C ≥ 1;

• Finally, if C ∈ (1/2, 2), the minimum exists inside (0, 1) and is reached for637

−Cγ − C + 1− γ = 0 ⇐⇒ γ = γ∗ =
1− C
1 + C

We note that we use these values as a guide. Typically, when T = 1 and m is small, the multiplicative638

term C is large and the bound is not really informative (concentration has not happened yet), and γ639

should be small, potentially close to but not equal to zero. As a heuristic, we propose to simply offset640

γ̃ by an additional γ0 such that the guidance discount factor is γ = min{1, γ0 + γ̃}, where γ0 should641

be reasonably chosen by the practitioner to allow for some short-horizon planning at the beginning of642

the interaction. Empirically, γ0 =∈ (0.25, 0.50) seems reasonable for our random MDP setting as it643

corresponds to the empirical minima on Fig 4(b).644

H Experiments: Implementation Details, Ablations & Additional Results645

H.1 Implementation details646

We consider a Dirichlet distribution of tasks such that all tasks t ∈ [T ], P t ∼ P are centered647

at some fixed mean P o ∈ ∆S×A
S as shown in Figure H3. The mean of the task distribution P o648

is chosen as a sampled random MDP and variance of this distribution is determined such that649

‖P ts,a − P os,a‖∞ ≤ σ < 1. Next, we compute the variance of this distribution σi = α̃i(1−α̃i)
α0+1 , where650

α̃i = αi
α0

and α0 =
∑S
i αi.

α = (15.000, 15.000, 15.000)

Figure H3: Dirichlet Task Distribution for S = 3 states, with Dir(α) where α = [15, 15, 15],
resulting in our task-similarity measure approximately to be σ = 0.0129.

651

H.2 Ablations652

We also run ablations with Aggregating(α = 1), a naive baseline that simply ignores the meta-RL653

structure and just plans assuming there is a single task. We observe in Fig. H4 the aggregating baseline654

works at-par with our method POMRL which is intuitive when the tasks are strongly related to each other655

in this case. However, as the underlying task structure decreases, we note that Aggregating(α = 1)656

as though it is one single task is problematic and suffers from a non-vanishing bias due to which657

for each new task there is on average an error which does not go to zero. More importantly, the658

Aggregating(α = 1) baseline cannot have the same guarantees as POMRL and ada-POMRL .659

H.3 Additional Experiments660

We examine more properties of ada-POMRL , namely Effect of m, and T on Planning Loss in Fig.661

H5, Individual Baseline’s Performance in Fig. H6, and Varying State Space |S|, m, and T in Fig.662

H7.663
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(c)

Figure H4: Ablations for Efficacy of POMRL and ada-POMRL for varying task-similarity. depicts
the effect of the task-similarity parameter σ for a small fixed amount of data m = 5 available at
each round. We run another baseline called Aggregating (orange) that simply ignores the meta-RL
structure and acts as if it is all one single task. In the presence of strong structure, meta-learning
the shared structure alongside a good model initialization leads to most gains and even naively
aggregating the tasks transitions might seem to work well. However, such a naive method is not
reliable as the underlying task similarity decreases - the learner struggles to cope with new unseen
tasks which differ significantly and the planning loss doesn’t improve. Error bars represent 1-standard
deviation of uncertainty across 100 independent runs.
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(b) m = 20, T = 5
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Figure H5: Effect of m and T on Average Regret Upper Bound on Planning: for a fixed value
of task similarity σ, depends on the number of samples per task m and the number of tasks T . (a)
For m = T, smaller loss is obtained with very small discount factor. This implies that with a lot
of uncertainty it is not interesting to plan far too ahead, (b) For m >> T, each task has enough
samples to inform itself resulting in slightly larger effective discount factors. Not a lot is gained
in this scenario from meta-learning, (c) m� T is the most interesting case as samples seen in
each individual task are very limited due to small m. However, the number of tasks are much more
resulting in huge gains from leveraging shared structure across tasks.

H.4 Reproducibility664

We follow the reproducibility checklist by Pineau (2019) to ensure this research is reproducible. For665

all algorithms presented, we include a clear description of the algorithm and source code is included666

with these supplementary materials. For any theoretical claims, we include: a statement of the result,667

a clear explanation of any assumptions, and complete proofs of any claims. For all figures that668

present empirical results, we include: the empirical details of how the experiments were run, a clear669

definition of the specific measure or statistics used to report results, and a description of results with670

the standard error in all cases.671

H.5 Computing and Open source libraries.672

All experiments were conducted using Google Colab instances7.673

7https://colab.research.google.com/
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(b) Oracle Prior Knowl-
edge
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(c) Without Meta-
Learning

Figure H6: Planning with Online Meta Learning - Baselines. (a) ada-POMRL . Meta updates
include learning Po, σ, α as a function of tasks. (b) Oracle Prior Knowledge considers the optimal
α, true mean of the task distribution Po and actual underlying task similarity σ as known apriori,
(c)Without Meta-Learning estimates the transition kernel in each round T without any meta-
learning. All baselines are obtained with T = 15 tasks and m = 5 samples per task.
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(a) m = T = 5
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(b) m = 20, T = 5
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(c) m = 5, T = 30
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(d) m = T = 5
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(e) m = 20, T = 5
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Figure H7: Varying the size of state-space S, number of samples per task m, and number of
tasks T , on Task-averaged Regret Upper Bound on Planning: for a fixed value of task similarity
σ, We note that despite larger state-space we observe the same effect i.e. (a,d,g) For m = T, smaller
loss is obtained with very small discount factor i.e. a lot of uncertainty and inability to plan far too
ahead, (b,e,h) For m >> T, each task has enough samples to inform itself resulting in slightly larger
effective discount factors. Not a lot is gained in this scenario from meta-learning. (c,f,i) m� T is
the most interesting case as samples seen in each individual task are very limited due to small m.
Meta-learning has most significant gains in this case by leveraging the structure across tasks. Results
are averaged over 20 independent runs and error bars represent 1-standard deviation.

H.6 Extended Discussion674

Beyond the tabular case: Function approximation is at the heart of practical RL so a natural question675

is how to extend our work to parametrized models. For linear MDPs, Müller and Pacchiano (2022)676

recently derived regret bounds in the fixed-horizon setting for an algorithm using meta-regularizers677

similar to ours. One question is whether this idea could be extended to infinite horizons and further678

to non-linear, richer representations. Another, and perhaps deeper question, is around designing679

and evaluating better planning strategies. Should we revisit such line of work under the light of680

the planning loss rather than the regret? On- or Off- Policy Meta-Learning without a simulator:681

Realistic problem settings in RL involve using sequentially learnt policies to collect data instead682

of the simulator. One direction could be to extend our approach to model-based RL algorithms683

via meta-gradient updates as in ARUBA or MAML, and seek regret guarantees induced by our684

concentration results. Non-stationary meta-distribution: Many real-world scenarios have (slow or685

sudden) drifts in the underlying distribution itself, e.g. weather. A promising future direction is to686

consider non-stationary environments where the optimal initialization varies over time.687
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