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Abstract

The rapid growth of Large Language Mod-
els (LLMs) and Vison-and-Language Models
(VLMs) has highlighted the importance of in-
terpreting their inner workings. Arguably, the
biggest question in interpretability is why an
LLM can solve a number of tasks or whether
they obtain the semantics other than the statis-
tical co-occurrence (Semantics-Statistics dis-
entanglement, or S2 disentanglement). Al-
though previous works disentangled the sev-
eral semantic aspects, uniform interpretation
poses two challenges; First, previous works are
only weakly tied to how an LLM works; In-
Context Learning (ICL). Second, most prob-
lems are In-Distribution (ID), where the se-
mantics and statistics (e.g., a prompt format)
are inseparable. Here we propose the Rep-
resentational Shift Theory (RST), stating that
an ICL example causes the cascading shift in
the representation for the S? disentanglement.
To benchmark RST, we formalize the Out-of-
Distribution (OoD) generalization under RST
and propose two hypotheses for the ICL perfor-
mance of VLMs not trained with multi-image
or multi-turn resources (OoD ICL). Our first
hypothesis is that OoD ICL can contribute to
the performance when the ID performance is
poor. Our second hypothesis is that the counter-
factual textual ICL example works better than
the first approach when the textual modality is
predominant. We obtained the supporting evi-
dence in six visual question-answering datasets
for the first hypothesis and in a hateful memes
challenge dataset for the second hypothesis. In
conclusion, our work marks a crucial step to-
wards understanding the role of ICL over the
S? disentanglement, a central question of inter-
pretability.

1 Introduction

Upon the explosive usage of the Large Language
Model (LLM) in Natural Language Processing
(NLP; Zhao et al. (2023b)), interpreting its inner

workings is critical for reliable, evidence-based
decision-making. Arguably, the most fundamental
interpretability question is why an LLM works; i.e.,
whether an LLM acquires the semantics (Abdou
et al., 2021; Gurnee and Tegmark, 2024; Godey,
2024; Vafa et al., 2024) or is a parrot repeating sta-
tistically plausible responses (Zecevic et al., 2023;
Bender et al., 2021). Previous works tackle this
Semantics-Statistics disentanglement (S? disentan-
glement) for various aspects (e.g., color or geolo-
cation) from an LLM’s latent space. Building a
unified framework for S? disentanglement in gen-
eral, however, is still outrageous.

To build a unified interpretability framework for
LLMs, In-Context Learning (ICL; Brown et al.
(2020)), a gradient-free reasoning capability emerg-
ing in LLMs, is critical. A major finding in inter-
pretability for ICL is the concept of meta-gradient
(von Oswald et al., 2023; Dai et al., 2023a); LLMs
can learn to optimize its own latent space in the ab-
sence of the gradient information. Despite the rich
literature on theoretical and empirical justification,
the relevance of the meta-gradient to S? disentan-
glement is elusive; i.e., why that interpretation is
valid is still unclear. Here we propose Representa-
tional Shift Theory (RST) for interpreting how an
ICL example affects the latent space, leading to S
disentanglement.

To study S? disentanglement, the Out-of-
Distribution (OoD) generalization (Farquhar and
Gal, 2022) provides valuable insights. OoD is a dis-
tinction of the data distribution between the static
training set and the diverse test set. An LLM re-
quired to generalize to OoD input performs the
explicit S? disentanglement; infer the same seman-
tics facing the different distribution (i.e., statistics).
Therefore, we tackle the OoD generalization with
RST to show its effectiveness on S? disentangle-
ment.

More specifically, we focus on OoD generaliza-
tion in the vision-and-language (VL) problems due



to the growing needs in real-world applications.
Due to the resource shortage with the multi-image
multi-turn conversations, many VL models such as
LLaVA (Liu et al., 2023b) are solely trained with
single-image single-turn resources. This means
that ICL is an OoD generalization (OoD ICL) to
these models, making it ineffective. Improving
OoD ICL reduces the need for labor-intensive data
collection and resource-consuming training. Using
RST as a guiding principle, we address this chal-
lenging problem.

Our contribution could be summarized as follows:

1. As an extension of the meta-gradient, we pro-
pose RST to describe how an ICL example af-
fects the LLM output. RST states that an ICL
example first shifts the representation of the
zero-shot input, and this shift triggers another
shift of the output. We introduce a semantic
term and a statistic term in RST as the first
formalism of S? disentanglement in general.
We further show how OoD ICL can be framed
into the S2 disentanglement. In short, we for-
malize OoD ICL as the amplification of the
semantic term under the fixed statistic term'.

2. We hypothesize that adding an OoD ICL
image-text pair (Multi-image Multi-turn OoD,
or MM OoD) could improve the performance
when the zero-shot input does not provide
strong semantics. We confirm this hypoth-
esis in six diverse Visual Question Answering
(VQA) datasets.

3. We also hypothesize that counterfactual
prompting for curating the text-only OoD
ICL example (Single-image Multi-turn OoD,
or SM OoD) contributes to the performance
when the original input is biased toward a spe-
cific label and the text is dominant over the im-
age. To validate this, we apply counterfactual
prompting and instruct the model to curate a
negative example before the decision-making.
We observe its effectiveness in a hateful meme
challenge dataset.

2 Related Work

First, we review previous work on Semantics-
Statistics Disentanglement (S Disentanglement),

'such as the effect of two-dimensional image tensor in
OoD, whereas the model is solely trained with the tensor with
single dimension

a central question in this study. Second, we sum-
marize the impact of In-Context Learning (ICL)
and the interpretability studies focusing on ICL
to understand its significant role on S? Disentan-
glement. Finally, we introduce the previous Out-
of-Distribution (OoD) benchmarks and efforts to
position ourselves in OoD studies.

2.1 Towards S? Disentanglement

In parallel to the wide application of LLMs to
NLP (Zhao et al., 2023b) and the relevant mul-
timodal fields (Zhang et al., 2024), centric to the
interpretability is S? Disentanglement. Typically,
a single work focuses on one or a few aspects of
semantics. For example, Abdou et al. (2021) ex-
tracted the subjective aspects of color disentangled
from the light spectrum in LLMs’ representations.
Gurnee and Tegmark (2024) showed the robust-
ness of the representation of the geolocation and
time, and Godey (2024) analyzed this geography
under the scaling law (Kaplan et al., 2020). Vafa
et al. (2024) analyzed the world model in LLM for
spatial information. We aim at a theory spanning
multiple aspects of semantics.

2.2 ICL

After the initial introduction by Brown et al. (2020),
massive efforts have been spent on improving the
LLMs’ ICL capabilities, which we categorize into
three groups. The first group focuses on task
instruction, such as Chain-of-Thought reasoning
(Madaan et al., 2023). The second group optimizes
the ICL example(s) choice, typically from the train-
ing data. Since this process is cost-consuming
given the large volume of data, most studies adopt
a simple algorithm such as BM25 (Robertson et al.,
1996). Another type of selection method utilizes
models with strength in semantics-oriented tasks
(e.g., image aesthetics?), such as CLIP (Radford
et al., 2021). The last group curates the ICL ex-
amples, mostly by LLMs. A subgroup of example
curation with a strong theoretical backbone is coun-
terfactual prompting (Wang et al., 2024). Based
on the given task’s data generation process, this ap-
proach generates examples with desired properties,
such as the least modification of the original exam-
ple for label flipping. To validate our theory, we
use a standard set of methods for the experiments.
Specifically, we use CLIP-based image-text pair
selection for Experiment I. For Experiment II, we
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use counterfactual prompting as the main method-
ology and BM25-based text-guided ICL example
selection as a text-oriented baseline.

Interpreting how ICL works is another hot topic.
Various interpretations have been proposed to ob-
tain theoretical and empirical grounding behind
ICL. Typically, the interpretation studies hire a spe-
cific algorithm to interpret the dynamics of LLM’s
representations: for example, Bayesian inference
(Xie et al., 2022), contrastive learning (Ren and
Liu, 2023), multi-state RNN (Oren et al., 2024),
and gradient descent (von Oswald et al., 2023; Dai
et al., 2023a), among many others (Han et al., 2023;
Wang et al., 2023; Li et al., 2023). These studies
covered extensive theoretical aspects, including the
common finding of meta-gradient; LLMs could
learn how to optimize its own representation. How-
ever, how each theory contributes to S? disentan-
glement is unclear. We tackle this problem with an
extension of the meta-gradient.

2.3 OoD Generalization

An Out-of-Distribution (OoD) problem is defined
as a distinction of the distributional shift from the
static training dataset to more diverse test inputs
(Farquhar and Gal, 2022). OoD generalization is
the task where the models need to address the OoD
problems (Hendrycks and Gimpel, 2017). Since
this topic is diverse, hereafter we limit our scope to
NLP and VL domains unless stated otherwise.
Most efforts on these domains have been spent on
domain adaptation (Ramponi and Plank, 2020) and
label shift (Zhang et al., 2021; Wu et al., 2021).
Both approaches hold out some categories Xyes;
of the resource(s), and test the performance of
the model trained solely with the other categories
Xirain; The former uses multiple datasets of simi-
lar topics, and the latter splits the multi-class clas-
sification labels. Although these studies provide
valuable insights, the distinction between seman-
tics and statistics is elusive; i.e., how to define the
distributional difference among multiple datasets
or multiple labels is opaque.

In parallel to the efforts on extending the con-
text length (Huang et al., 2024) and the explosive
growth of multimodal LLMs centered on VL ca-
pabilities (Zhang et al., 2024), several works ad-
dressed OoD problems in a single-image conversa-
tion and a multi-turn conversation separately. For
example, Dai et al. (2023b); Gao et al. (2024) pro-
posed solutions for detecting OoD in a multimodal
conversation. Lang et al. (2024) introduced the

information-theoretic approach for multi-turn con-
versation intention detection. Ye et al. (2022) pro-
posed two novel OoD categories, the multi-label
OoD and the label shift under the specific context.
Here, we extend the application to a multi-image,
multi-turn conversation, marking a crucial step to-
ward generalization to the real world.

3 Preliminaries

First, we introduce meta-gradient, the fundamen-
tal concept of this study. Second, we formalize
unembedding as a connection between LLM’s in-
termediate representation and the textual response.
Finally, we summarize a mixed effect model, a
useful tool in this study.

3.1 Meta-Gradient

Centric to the optimization of the traditional ma-
chine learning is the gradient descent, where the
learning objective is explicitly given to the model,
forming the gradient A H over the representation
H of an input in hidden space. A line of works (von
Oswald et al., 2023; Dai et al., 2023a) suggests that
the LLMs perform another form of gradient descent
in ICL. To summarize, they use their own attention
weights W to form a meta-gradient AW, multi-
plied by H to form the updated representation H'.
In a typical zero-shot setting, the only information
composing the meta-gradient is task instruction, so
the representation of the instruction H;,s is up-
dated by this meta-gradient AWj,, /. to form the
representation of a zero-shot input H,. In ICL,
the example is inserted between the instruction and
the zero-shot input, so the gradient consists of 1)
the gradient between the instruction and ICL exam-
ple AWt /ic and 2) the gradient between an ICL
example and a zero-shot input AW,/ o, together
forming the ICL example’s representation H;;. In
summary, the meta-gradient in zero-shot and ICL
settings are summarized as:

H.q = (W - A‘/Vinst/zsl)I{inst

Hiq = {W - (AWinst/icl + AWiCl/zsl)Hinst(}i)
Note that most meta-gradient studies use linear
variants (e.g., Zhuoran et al. (2021)) of Transformer
(Vaswani et al., 2017). In contrast, we assume
that the concept is solid for the original model for
brevity. We empirically validate this assumption.



3.2 Unembedding

Another important concept in interpretability stud-
ies (e.g., nostalgebraist (2020); Belrose et al.
(2023)) is that the representation could be linearly
projected, or unembedded, with a weight W,,,; to
the LLM’s output Y.

Y = WembH (2)

Combined with the meta-gradient, we propose a
novel theory explaining how ICL works.

3.3 Mixed Effect Model

In section 4.2, we assume that the effect of statis-
tics is static over the various inputs, while that of
the semantics is diverse. The mixed effect model
(Singmann and Kellen, 2019) provides the analyti-
cal framework for this dual effect. Specifically, in
observation 7, the effect of a variable X over the
target variable y; is expected to be identical across
all the observations (fixed effect), and another vari-
able Z affects individual observation differently
(random effect). In multiplicative case (Eq. 1), a
mixed effect model could be formalized as:

yi=Wx + Wz, Z;) X 3)

For example, when analyzing the effect of a new
teaching method on student performance across
different schools, the teaching method may have
a fixed effect since such a method generally aims
for equal educational opportunities. In contrast,
a variable representing each school should have
a random effect when each school has a different
educational policy. Note that various nonlinear
expressions of the mixed effect are proposed (e.g.,
Hajjem et al. (2014); Sigrist (2023)), but we limit
the scope to the linear model for brevity.

4 Representational Shift Theory (RST)

First, we formalize RST, stating that an ICL ex-
ample affects the representation of the zero-shot
input (input shift) and then that of the output (out-
put shift). Second, we show how it relates to 52
disentanglement. Third, we frame OoD generaliza-
tion into S? disentanglement. Lastly, we suggest
two hypotheses for improving the generalization:

1. When the zero-shot (In-Distribution, ID) in-
put is semantically poor for an LLM, a Multi-
image Multi-turn OoD (MM OoD) ICL exam-
ple is helpful.

2. When the textual semantics are superior to the
image semantics, a Single-image Multi-turn
OoD (SM OoD) ICL example is helpful.

4.1 Representational Shift

Here we show the representational shift between
the zero-shot input-output pair {H,4,Y,s} and
that of ICL {H;.;, Y;¢ }. First, assuming in Eq. 1
that AW;,6 /261 = AWipet/ic1> OF the identical ef-
fect of instruction over an ICL example and over a
zero-shot input, we obtain the input shift as follows.

Hicl - stl =~ _AWicl/zslHinst (4)

Applying to Eq. 2, we see that this shift triggers an
output shift.

Y;cl - stl = _WembAWicl/zslHinst (5)

Eq. 4 and Eq. 5 represent the basic concept of
RST. Note that LLM’s final output is a sequence
of words, but we use the representation of the last
decoder layer as the output. To analyze the multi-
dimensional representation in an intuitive way, we
assume that the difference of the two matrices is
represented by a distance metric Dy /y o X — Y.

DYicl/stl = WRSTDHz‘cz/stz
T
—H Wemb

inst

(6)

where Wrst =

In summary, if RST is valid, we can analyze the
effect of ICL by comparing the distance of the
two representations and that of the two outputs. In
practice, we use widely used cosine similarity as
the distance metric.

4.2 S? Disentanglement

To disentangle semantics from statistics, we are
obliged to assume that the two concepts are in-
dependent. In RST, this implies that the weight
update by semantics AW®™ and the update by
statistics AW % are discernable. We also suggest
that the semantic distance D*“" and the statistic
distance D*'* is also separable since we suggested
the relevance of the representational shift and the
distance metric (Eq. 6). In summary, we formalize
the disentanglement as follows.

AWiayzs = AW g + AW
Dstat (7)
Hicl/stl

_ pysem
DHicl/stl - DHicl/stl +



4.3 0oD Generalization as S2
Disentanglement

An OoD input forces an LLM to generalize to the
same semantics under the drastic distributional dif-
ference in statistics. This statistical difference (e.g.,
a format difference) is static over all the test in-
puts. Therefore, its effect on the representational
shift is also supposedly constant (fixed effect). In
contrast, the semantic term’s effect is intuitively
diverse across the samples (random effect). Under
this assumption, we formalize OoD generalization
as a mixed effect; maximizing the random effect
of the semantic term under the fixed effect of the
OoD statistics TV 54,

DY'icl/stl = WRST(D%Z/WZ% + WStat) (8)

4.3.1 Hypothesis I: MM OoD

Our first hypothesis is that MM OoD is valid when
the zero-shot input does not provide enough seman-
tics to the model (i.e., poor zero-shot performance).

sem _ sem __ sem
Wicl/Wzsl - icl zsl
_ sem stat
Dy, ,/v.q = Wrst(Wii™ + W) (9)
where W™ < Wi5™

One such scenario is the lack of regularization in
the attention matrix. Specifically, Ye et al. (2024)
suggested that a significant proportion of attention
values are wasted on the semantically irrelevant
context. If the major components of the seman-
tically similar ICL example amplifiy the relevant
context, we suggest our approach is effective for
the irrelevant context alleviation.

4.3.2 Hypothesis II: SM OoD

Since encoders of most LLMs are first trained
solely by the text and then jointly trained by the
VL datasets, we assume that the textual seman-
tics W5¢™(T') is greater than the image semantics
W#e™(T) in some cases. In this case, we hypoth-
esize that enhancing the textual term (SM OoD)
would provide a solution where MM OoD does not
work.
il = Wi ™ (T) + Wig™ (I)
Dy, /Y. = Wrsr(Wig™ (T) + W) (10)
where Wig™(T') > Wig™ (I)

Here we suppose the independence of the semantics
over the two modalities for brevity. The interaction
complicates the problem in reality (e.g., Miyanishi

and Nguyen (2024)), but we leave this interaction
to future work.

One scenario in which our approach is effective is
the label bias (Reif and Schwartz, 2024); When the
test input or ICL example is salient, the prediction
may be biased towards the novel label. For exam-
ple, when a general-purpose LLM is required to
detect hate speech from aggressive language, the
prediction may be biased towards the high hateful-
ness as such inputs are likely to be filtered out in
the training to prevent the model from learning it.

5 Experiments

We conducted two experiments: Experiment I for
MM OoD and Experiment II for SM OoD. We hired
two LLaVA (Liu et al., 2023b) variants (LLaVA-
Llama2 (Touvron et al., 2023) and LLaVA-1.5 (Liu
et al., 2023a)) in both experiments for two rea-
sons; 1) their reported state-of-the-art performance
on linguistic tasks indicates high capacity for the
semantic term 2) they are NOT trained with the
multi-image resources or ICL settings, allowing
OoD analysis. We used 13 billion parameter mod-
els to balance linguistic capability and memory
constraint. We also did a preliminary experiment
with InternVL (Chen et al., 2024) for the analysis
in an ID setting (Appendix B.3). We focused on
ICL with a single example since we did not see any
positive clue for further concatenation in the initial
exploration.

In Experiment I, we used six VQA datasets to
test Hypothesis 1. First, we evaluated LLaVA’s
zero-shot (In-Distribution; ID) and one-shot (Multi-
image Multi-turn OoD, MM OoD) performance.
The one-shot example was extracted from the train-
ing dataset based on similarity to the test input in
CLIP embedding. The result suggests that MM
OoD improves the performance for the datasets in
which the ID performance is poor (5 ~ 20% of the
accuracy for four datasets), supporting Hypothesis
I. Next, we analyzed the mixed effect in the MM
OoD; the random effect of the input shift over the
output shift, and the fixed effect of datasets and
models. The moderate explanatory power of our
model (R? = 0.59 + 0.02, ~ 70% in coefficient
analysis) validates RST.

To validate Hypothesis II, we focus on the data
where the textual modality is dominant. To this end,
we used the hateful memes challenge (Kiela et al.,
2020) dataset in Experiment II, which is known for
this textual dominance (Aggarwal et al., 2024). In



contrast with MM OoD which degraded the per-
formance over ID (~ 2.9 points of the F1 score),
we found that using SM OoD examples curated by
CounterFactual Prompting (CFP) improved the per-
formance (~ 0.8 points), supporting Hypothesis II.
Next, to visualize the representational shift over ID
/ MM OoD / SM OoD, we analyze the similarity
of the weight Wrsr (Eq. 10). The result shows
that, unlike ID or MM OoD, SM OoD shifts the
representation of the hateful inputs away from that
of benign inputs.

5.1 Experiment I: MM QoD
5.1.1 Mixed Effect Model

RST suggests that the random effect of an OoD ICL
example drives ICL. Since interpretability favors
simplicity (Park et al., 2023), we implement a lin-
ear mixed effect model which predicts the shifted
representation H icl-
Hiq = (W'I‘ + WfI)stl + Wo (11)
The linear weights W,., W, and W represent the
random effect, the fixed effect, and a bias term,
respectively. For the mixed effect with identical di-
mensionality, we use the embedding I representing
the fixed components (dataset and model). We use
a model only with the random effect as a baseline.
Hiet = Weandom Hs1 + Wo (12)
To see the effect of the input shift over the output
shift, we then calculate the distance Dy, /5, be-
tween the zero-shot representation H,y and the
shifted one H,.;. We finally applied a linear regres-
sion between this input distance Dy, /g , and
output distance Dy; , v, ,, together with the dum-
mied variables representing models and datasets
for residual analysis.

5.1.2 Other Settings

We use CLIP (Radford et al. (2021), specifically
HuggingFace clip-vit-large-patchi4), for ICL ex-
ample selection because of its relatively small com-
putational cost and high capability on similarity-
related tasks.

To cover various aspects of VL capabilities, we
used six VQA datasets, namely VQA v 2.0 (Goyal
etal. (2017)), GQA (Hudson and Manning (2019)),
VizWiz (Gurari et al. (2018)), TextVQA (Singh
et al. (2019)), MMBench (Liu et al. (2023c)), and
MM-Vet (Yu et al. (2023)). We use accuracy as

a performance metric following the official eval-
uation codes. More details are in the Appendix
A.

5.1.3 Results

First, we show LLaVA-Llama2’s performance (Fig.
1). MM OoD dropped performance for MMBench
and MM-Vet where the ID performance is relatively
high. In contrast, MM OoD improved LLaVA-
Llama2’s performance for the rest of the datasets
in which ID performance is lower. These results
suggest MM OoD’s positive impact where the test
input is semantically poor for the model, supporting
Hypothesis I. Next, we analyzed the mixed effect of

gqa
40

llama2-zsl|
30 — llama2-icl

vgav2 : mmbench

20.

vizwiz * " mmvet

textvqa

Figure 1: Performance summary of LLaVA-Llama2.
zsl and icl represent zero-shot learning and in-context
learning (ICL). ICL results in better performance for
four datasets where the zero-shot performance is poor.

the input shift and the confounding variables over
the output shift. The mixed effect model (Eq. 11)
showed a higher performance (R? = 0.59 + 0.02)
than the random-effect-only baseline (Eq. 12;
R? = 0.43 & 0.01), supporting the explanation
by mixed effect. Finally, we analyzed the regres-
sion coefficient to see the impact of the random
effect and the fixed effect (Table 1). The input shift
shows moderate explanatory power, validating the
relevance of the input shift and the output shift
presupposed in RST.

5.2 Experiment II: SM OoD

5.2.1 CFP

Most LLMs have safety limitations based on in-
struction tuning (Bianchi et al. (2023)) which does
not allow them to generate hateful examples. Since
bypassing such limitations is neither desirable nor
sustainable, we let the model generate negative
examples. In short, the model first generates text
that fits with a given image to compose a benign



variable coef*100
(Intercept) 9.24+2.1
mm-vet —0.75 £ 0.7
mmbench 2.81+0.7
textvqa 21406
vizwiz 0.16 £ 0.7
vqav2 —-0.12£0.6
model —0.39+0.4
Model Prediction 70.33 £5.9

Table 1: Regression Coefficient of the mixed effect
model’s prediction with the dummy variables represent-
ing the datasets and the models. The prediction shows
a much higher coefficient than the dummy variables,
validating our models.

meme. Next, using that meme as an ICL exam-
ple, the model classifies the test input as hateful
or benign. Fig. 3 shows a representative prompt.
Qu et al. (2023) introduced another workaround of
using more general labels, which will be a part of
our future work.

5.2.2 MM OoD vs. SM OoD

To see how the effect of input shift differs be-
tween MM OoD and SM OoD, a straightforward
approach is to analyze the difference in the rela-
tionship between the two shifts. To this end, we
first estimate the input shift weight Wrgsr (Eq. 10)
for ID, MM OoD, and SM OoD (shown in Eq.
13 as W=sl, Wicl and Welp, respectively). In
ID case, we use the shifts caused by the instruc-
tion { Dy, /w,,ors DY,y / Vs, fOT reference. We
build a single estimator for consistent representa-
tion. Then we calculate the similarity between each
weight. To visualize label bias, this process is split
by the ground-truth label, denoted as Wy and W}
where 0 and 1 stand for benign and hateful, re-
spectively. Altogether we obtain similarity matrix
as:

sim(Wgsh, WPy ]

sim (Wi, Wi7P)
sz’m(WéCl, Wffp)

[ sim(Wg™, W)
sim(Wes W)
sim(WE, WEst)

sim(Wffp, chfp)_

13)
We use cosine similarity as a similarity function
sim(+). The weights are estimated per layer dimen-
sion to perform memory-efficient analysis.

| sim(W{7P, Wit

5.2.3 Hateful Memes Challenge

Intuitively, the impact of counterfactual prompt-
ing may vary across datasets. The most influential
scenario is 1) the dataset size is small for which
ICL example selection is challenging 2) the textual
modality is superior to the image modality 3) the
bias factors are embedded on the dataset.

Kiela et al. (2020) curated the Hateful Memes Chal-
lenge dataset, which perfectly fits this experiment’s
criteria. First, Laurencon et al. (2023); Zhao et al.
(2023a) showed that ICL is not particularly effec-
tive unless the model is heavily tuned to the task.
Second, Aggarwal et al. (2024) showed the supe-
riority of the textual modality. Third, Hee et al.
(2022); Zhang et al. (2023) indicated the presence
of various sources of the bias. Since the data size
is small, we use f1 score to see the precision-recall
balance. We leave more experiments on hateful
meme detection (e.g., Gomez et al. (2020)) and
other tasks to future work.

5.2.4 Other Settings

Since we assume the superiority of the textual
modality, we use LLaVA-Llama?2 in this experi-
ment for its strong linguistic performance. Toward
MM OoD baseline fully utilizing textual modality,
we extract the ICL example solely based on textual
modality with BM25 algorithm (Robertson et al.,
1996).

5.2.5 Results

First, we see the performance of ID, MM OoD, and
SM OoD on the hateful memes challenge dataset.
Contrally to the performance drop in MM OoD, SM
OoD slightly improved the performance, support-
ing Hypothesis II (Table 2). Further exploration
of ICL methodologies will be part of our future
work. Next, we built a mixed effect model (Eq. 10)

setting f1*100

ZSL 61.44+0.5
MM OoD 58.5+0.9
CFP 62.2+0.3

Table 2: Hateful memes detection performance. ZSL,
MM OoD, and CFP represent Zero-Shot Learning,
MM OoD, and CounterFactual Prompting, respectively.
CFP’s performance is better than ID while MM OoD
dropped the performance, supporting Hypothesis I.

for label bias visualization, showing a moderate
AUC of 75.6 £ 0.90. Finally, we calculated the



similarity matrix of the weight Wrsr (Fig. 2). For
ID and MM OoD, the hateful inputs are relatively
similar to the benign inputs of the same condition
(cosine similarity ~ 0.3). This cross-label simi-
larity dropped significantly (< 0.2) for SM OoD.
These results suggest that SM OoD pulls away the
inputs of different labels which ID or ICL cannot
distinguish well.

CFP,Hateful 0.173 0.127  0.152 05

CFP,Benign| 0801 © 0.148  0.157
0.4
ICL,Hateful o0.181  0.190

0.136  0.152

ICL,Benign 0193 0157 0127 0.3
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Figure 2: Representational shift across the learning type.
Each entry is the similarity of the input between two
conditions. For example, the left-top value 0.173 is the
similarity of the input between hateful samples of a CFP
setting and benign samples of a ZSL setting. While the
hateful samples and the benign samples are similar for
ZSL and ICL settings, CFP hateful samples and benign
samples are less similar.

6 Discussion

In this paper, we proposed RST, a novel inter-
pretability theory for ICL. RST states that the con-
ditioning by an ICL example triggers two represen-
tational shifts, input shift and output shift. In light
of RST, we formalized S? disentanglement as the
optimization by two meta-gradient terms, and OoD
generalization as an amplification of the dynamic
semantic term over the constant statistics term. We
further proposed two hypotheses for OoD general-
ization; First, even if the model is not trained with
multi-image multi-turn datasets, an ICL image-text
example can improve the performance when the
test input’s semantics is poor to the model (MM
OoD; Hypothesis I). Second, curating a text-only
ICL example can be a better solution when the tex-
tual modality is superior to the image modality (SM

OoD; Hypothesis II). We validated Hypothesis I by
performance improvement in four VQA datasets
out of six, in which ID performance is poor. For
Hypothesis II, We showed the supporting evidence
in hateful meme detection; performance gain by
counterfactual prompting while MM OoD does not
work. We also showed the supporting evidence of
the cascading representational shifts for each prob-
lem.

Previous efforts on building interpretability theo-
ries for ICL have validated the concept of meta-
gradient, attention weight used as a form of gra-
dient (von Oswald et al., 2023; Dai et al., 2023a).
Meta-gradient backbones RST, which provides an
analytical framework for S? disentanglement. To-
wards S? disentanglement, interpretability studies
disentangled a few aspects of the semantics, such
as color (Abdou et al., 2021), geography (Godey,
2024) and world model (Vafa et al., 2024). Inspired
by these works, RST provides the unifying frame-
work for 52 disentanglement. On the other hand,
various OoD problems have been explored, such
as multi-turn OoD (Ye et al., 2022). We extend the
scope to the multi-image multi-turn setting.
Although RST provides valuable insights into the
role of ICL over S2 disentanglement, our future
work should include the analysis of other OoD
problems (e.g., multi-turn OoD in general) and ID
problems where semantics and statistics are poten-
tially more entangled (e.g., MMMU (Yue et al.,
2024)). In that case, we can also extend the subject
to the large variety of LLMs, including the ones
trained with multi-image datasets such as LLaVA-
Next (Liu et al., 2024).

7 Conclusion

RST provides an analytical framework for studying
the role of ICL over S? disentanglement, a central
problem of interpretability. Based on RST, we for-
malized S? disentanglement in QoD generalization
and showed that our hypothesis-driven approach
can contribute to the performance gain in various
problems. We believe our work will be the corner-
stone for the study of why ICL works on real-world
problems—our answer at this moment is "Because
the semantic information triggers the stream of rep-
resentational shift.".



8 Limitations

While our study provides valuable insights into
S? disentanglement, there are several limitations
and future research directions that warrant further
investigation. Although RST can be used to ana-
lyze arbitrary problems, the largest limitation for
the time being is its generalizability; to foresee
the performance improvement in another problem,
we need another hypothesis tailored to that prob-
lem. Towards the automatic formulation of the
novel hypothesis, we believe the flexibility of se-
mantic and statistic terms (Eq. 7) is the key. This
study is also limited linguistically; we only used
English datasets. From a theoretical point of view,
we have an intuitive leap from the existing works
on meta-gradient; a nonlinearity. Despite previous
works on secretly linear nature of a nonlinear Trans-
former (Razzhigaev et al., 2024) and our empirical
findings supporting RST, applying the concept de-
veloped on a linear variant to the nonlinear one
might hinder the precise evaluation. Recently, Ren
and Liu (2023) proposed a theory for the nonlinear
Transformer variants with the help of contrastive
learning (Le-Khac et al., 2020). Unifying RST
with their approach might provide a robust theo-
retical grounding. In addition, whether the input
shift causes the output shift is still elusive. An
approach is to hire a mechanistic interpretability
method, such as path patching (Hanna et al., 2023;
Goldowsky-Dill et al., 2023). Training phase mech-
anisms such as grokking or double descent (Davies
et al., 2022) should also provide an explanation for
the why question.
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System:

You are a helpful language and vision assistant.
User:

<image in dataset>

Give me one caption that fits with this image.
Assistant:

{ generated caption }

User:

In comparison with that caption, is the following
caption hateful or benign? Answer with a single
word.

{caption in dataset}

Assistant:

{answer}

Figure 3: The representative counterfactual prompt.
The system prompt is truncated for illustrative purpose.
Please see our code for the full version.

A Implementation Details

Experiments are conducted on a single NVIDIA
A100 80GB GPU with Linux OS. Unless stated
otherwise, all codes are written in Python 3.9. Sta-
tistical arguments are based on a t-test and boot-
strapping with 1,000 resamples. We run the models
once with a random seed of 1987. Eq. 11 and Eq.
12 are implemented on a PyTorch backend® and
trained to maximize the cosine similarity of the out-
put shift with Pytorch Metric Learning package*’s
SelfSupervisedLoss under the AdamW optimizer
(Loshchilov and Hutter, 2019). We extract 1,000
samples from each dataset and hold out 20% as
a test set. The performance of this mixed effect
model is evaluated using the marginal/conditional
R? (Nakagawa and Schielzeth, 2013). To maintain
the experiment’s integrity while utilizing a wide
range of statistical tools, the R language’s Imer
package is called from the Python environment via
rpy2> module.

Fig. 3 illustrates a representative CFP prompt for
Experiment II.

B Additional Results

B.1 LLaVA-1.5

We show LLaVA-1.5’s performance (Fig. 4).
LLaVA-1.5 outperforms LLaVA-Llama2 in all
cases, reflecting the authors’ additional training
efforts (Liu et al., 2023a).

Shttps://pytorch.org/

“https://kevinmusgrave.github.io/pytorch-metric-
learning/

Shttps://rpy2.github.io/doc.html
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Figure 4: The performance summary of LLaVA-1.5.
OoD ICL dropped the performance, suggesting the rich
semantics in the test input.

B.2 High-Level Analysis on Mixed Effect

In addition to fine-grained analysis in Table 1, we
analyzed the dataset-level mixed effect. In this
analysis, the effects are represented as a coefficient
of the corresponding one-hot encodings. Specif-
ically, we modeled the accuracy of each dataset
as a sum of the effect of a variable representing
the presence/absence of an OoD ICL example and
that of the variable representing the models and
datasets. The result suggests that the model vari-
able drives the explanatory power at this level, con-
sistent with the performance summary (Fig. 1),
which shows the drastic improvement of LLaVA-
1.5 over LLaVA-Llama?2.

Variable R**100
Fixed Random Fixed Random
model  model 22.6 +3.0 52.0%x8.8
dataset ICL 0.3£+0.1 0.5+0.2
model ICL 33.5+24 33.6+25
dataset model 0.2+0.1 49.5 £ 2.7
all all 23.7+4.4 53.7+8.8

Table 3: Regression coefficients of the variables repre-
senting model (LLaVA 1.5 or LLaVA-Llama2), dataset,
and presence/absence of ICL examples. all represents
the result of an all-variable model. R? values are multi-
plied by 100 for brevity. The result only with the model
variable is similar to the all-variable model, consistent
with the performance summary (Fig. 1).

B.3 Preliminary ID Analysis: InternVL

To test if the findings about LLaVA is transferred
to an ID setting, we also use InternVL (1-2 billion)



for its limited © yet tested multi-image capabilities
by multi-image datasets like MMMU (Yue et al.,
2024).

In the case of InternVL, MM OoD generally
dropped the performance, potentially because of its
high performance and multi-image resource short-
age (Fig. 5). To see whether the task difficulty (i.e.,

gga
00 — 1b-icl

1b-zsl

75

vizwiz mmbench

textvqa mmvet

gqa
Q0 — 2b-icl
| 2b-zsl

75

vizwiz = mmbench

mmvet

textvqa

Figure 5: Performance summary of InternVL. MM OoD
dropped the performance for all the datasets, potentially
reflecting that the baseline performance is moderate to
high for all the datasets.

semantic poorness to the model) affects this trend,
we see the performance by the number of reason-
ing steps provided by the GQA dataset evaluation,
typically seen as the difficulty metric. Divided by
this subcategory, ICL performs slightly better when
the number of steps is larger (Table 4). Together
with LLaVA results, these results suggest that the
performance boost may serve as a task difficulty
indicator.

Shttps://github.com/OpenGVLab/InternVL/issues/419
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N Steps N Samples ZSL ICL
1-5 12,153 59.7+0.15 52.5+0.31
6-9 65 83.5+0.24 84.6+0.27

Table 4: Impact of multi-image ICL in GQA for In-
ternVL 1b. N steps indicate the number of inference
steps. The numbers with an error represent accuracy(%)
in the corresponding setting. ICL boosted the perfor-
mance when the number of steps was above six, imply-
ing that the ICL positively affects the performance when
the task is challenging.

C Other Considerations

C.1 Potential Risks

A hateful meme is a highly sensitive research topic.
Therefore, all the hateful meme research involves
risks and uncertainty to some extent. For example,
the attackers may read a publication about a hateful
meme detector to create a new meme that the de-
tector may not be able to detect. More broadly, all
LLM-related papers can be maliciously used when
they are in the wrong hands (e.g., to improve an
LLM trained on the dark web). To overcome these
issues, an iterative update of the methodology with
safety measures is a must.

C.2 Ethical Considerations

The hateful memes challenge dataset (Kiela et al.,
2020, 2021) contains sensitive content. Therefore,
we refrained from showing actual hateful memes
so that this paper does not negatively impact any
targeted group. We refer the users to the original
publication for the considerations taken in dataset
curation.

C.3 Al Assistant Usage

We used GitHub Copilot for efficient coding and
ChatGPT for linguistic improvements.

C.4 License and Usage of Scientific Artifacts

We declare that all scientific artifacts used in this
study do not prohibit the use of artifacts for aca-
demic research.

C.5 Documentation Of Artifacts

Experiment I uses the test split of six VQA datasets.
GQA contains 10% of 22,669, 678 questions over
113,018 images. TextVQA contains 5, 734 text-
image pairs. VizWiz contains 8, 000 visual ques-
tions. VQAvV2 contains 447,793 questions for



81,434 images. MMBench contains 1, 784 ques-
tions. MM-Vet contains 218 questions.
Experiment II is performed on test-seen split of a
hateful meme challenge dataset with 1,000 text-
image pairs (510 benign samples and 490 hateful
samples).
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