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Abstract

The rapid growth of Large Language Mod-001
els (LLMs) and Vison-and-Language Models002
(VLMs) has highlighted the importance of in-003
terpreting their inner workings. Arguably, the004
biggest question in interpretability is why an005
LLM can solve a number of tasks or whether006
they obtain the semantics other than the statis-007
tical co-occurrence (Semantics-Statistics dis-008
entanglement, or S2 disentanglement). Al-009
though previous works disentangled the sev-010
eral semantic aspects, uniform interpretation011
poses two challenges; First, previous works are012
only weakly tied to how an LLM works; In-013
Context Learning (ICL). Second, most prob-014
lems are In-Distribution (ID), where the se-015
mantics and statistics (e.g., a prompt format)016
are inseparable. Here we propose the Rep-017
resentational Shift Theory (RST), stating that018
an ICL example causes the cascading shift in019
the representation for the S2 disentanglement.020
To benchmark RST, we formalize the Out-of-021
Distribution (OoD) generalization under RST022
and propose two hypotheses for the ICL perfor-023
mance of VLMs not trained with multi-image024
or multi-turn resources (OoD ICL). Our first025
hypothesis is that OoD ICL can contribute to026
the performance when the ID performance is027
poor. Our second hypothesis is that the counter-028
factual textual ICL example works better than029
the first approach when the textual modality is030
predominant. We obtained the supporting evi-031
dence in six visual question-answering datasets032
for the first hypothesis and in a hateful memes033
challenge dataset for the second hypothesis. In034
conclusion, our work marks a crucial step to-035
wards understanding the role of ICL over the036
S2 disentanglement, a central question of inter-037
pretability.038

1 Introduction039

Upon the explosive usage of the Large Language040

Model (LLM) in Natural Language Processing041

(NLP; Zhao et al. (2023b)), interpreting its inner042

workings is critical for reliable, evidence-based 043

decision-making. Arguably, the most fundamental 044

interpretability question is why an LLM works; i.e., 045

whether an LLM acquires the semantics (Abdou 046

et al., 2021; Gurnee and Tegmark, 2024; Godey, 047

2024; Vafa et al., 2024) or is a parrot repeating sta- 048

tistically plausible responses (Zečević et al., 2023; 049

Bender et al., 2021). Previous works tackle this 050

Semantics-Statistics disentanglement (S2 disentan- 051

glement) for various aspects (e.g., color or geolo- 052

cation) from an LLM’s latent space. Building a 053

unified framework for S2 disentanglement in gen- 054

eral, however, is still outrageous. 055

To build a unified interpretability framework for 056

LLMs, In-Context Learning (ICL; Brown et al. 057

(2020)), a gradient-free reasoning capability emerg- 058

ing in LLMs, is critical. A major finding in inter- 059

pretability for ICL is the concept of meta-gradient 060

(von Oswald et al., 2023; Dai et al., 2023a); LLMs 061

can learn to optimize its own latent space in the ab- 062

sence of the gradient information. Despite the rich 063

literature on theoretical and empirical justification, 064

the relevance of the meta-gradient to S2 disentan- 065

glement is elusive; i.e., why that interpretation is 066

valid is still unclear. Here we propose Representa- 067

tional Shift Theory (RST) for interpreting how an 068

ICL example affects the latent space, leading to S2 069

disentanglement. 070

To study S2 disentanglement, the Out-of- 071

Distribution (OoD) generalization (Farquhar and 072

Gal, 2022) provides valuable insights. OoD is a dis- 073

tinction of the data distribution between the static 074

training set and the diverse test set. An LLM re- 075

quired to generalize to OoD input performs the 076

explicit S2 disentanglement; infer the same seman- 077

tics facing the different distribution (i.e., statistics). 078

Therefore, we tackle the OoD generalization with 079

RST to show its effectiveness on S2 disentangle- 080

ment. 081

More specifically, we focus on OoD generaliza- 082

tion in the vision-and-language (VL) problems due 083
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to the growing needs in real-world applications.084

Due to the resource shortage with the multi-image085

multi-turn conversations, many VL models such as086

LLaVA (Liu et al., 2023b) are solely trained with087

single-image single-turn resources. This means088

that ICL is an OoD generalization (OoD ICL) to089

these models, making it ineffective. Improving090

OoD ICL reduces the need for labor-intensive data091

collection and resource-consuming training. Using092

RST as a guiding principle, we address this chal-093

lenging problem.094

Our contribution could be summarized as follows:095

1. As an extension of the meta-gradient, we pro-096

pose RST to describe how an ICL example af-097

fects the LLM output. RST states that an ICL098

example first shifts the representation of the099

zero-shot input, and this shift triggers another100

shift of the output. We introduce a semantic101

term and a statistic term in RST as the first102

formalism of S2 disentanglement in general.103

We further show how OoD ICL can be framed104

into the S2 disentanglement. In short, we for-105

malize OoD ICL as the amplification of the106

semantic term under the fixed statistic term1.107

2. We hypothesize that adding an OoD ICL108

image-text pair (Multi-image Multi-turn OoD,109

or MM OoD) could improve the performance110

when the zero-shot input does not provide111

strong semantics. We confirm this hypoth-112

esis in six diverse Visual Question Answering113

(VQA) datasets.114

3. We also hypothesize that counterfactual115

prompting for curating the text-only OoD116

ICL example (Single-image Multi-turn OoD,117

or SM OoD) contributes to the performance118

when the original input is biased toward a spe-119

cific label and the text is dominant over the im-120

age. To validate this, we apply counterfactual121

prompting and instruct the model to curate a122

negative example before the decision-making.123

We observe its effectiveness in a hateful meme124

challenge dataset.125

2 Related Work126

First, we review previous work on Semantics-127

Statistics Disentanglement (S2 Disentanglement),128

1such as the effect of two-dimensional image tensor in
OoD, whereas the model is solely trained with the tensor with
single dimension

a central question in this study. Second, we sum- 129

marize the impact of In-Context Learning (ICL) 130

and the interpretability studies focusing on ICL 131

to understand its significant role on S2 Disentan- 132

glement. Finally, we introduce the previous Out- 133

of-Distribution (OoD) benchmarks and efforts to 134

position ourselves in OoD studies. 135

2.1 Towards S2 Disentanglement 136

In parallel to the wide application of LLMs to 137

NLP (Zhao et al., 2023b) and the relevant mul- 138

timodal fields (Zhang et al., 2024), centric to the 139

interpretability is S2 Disentanglement. Typically, 140

a single work focuses on one or a few aspects of 141

semantics. For example, Abdou et al. (2021) ex- 142

tracted the subjective aspects of color disentangled 143

from the light spectrum in LLMs’ representations. 144

Gurnee and Tegmark (2024) showed the robust- 145

ness of the representation of the geolocation and 146

time, and Godey (2024) analyzed this geography 147

under the scaling law (Kaplan et al., 2020). Vafa 148

et al. (2024) analyzed the world model in LLM for 149

spatial information. We aim at a theory spanning 150

multiple aspects of semantics. 151

2.2 ICL 152

After the initial introduction by Brown et al. (2020), 153

massive efforts have been spent on improving the 154

LLMs’ ICL capabilities, which we categorize into 155

three groups. The first group focuses on task 156

instruction, such as Chain-of-Thought reasoning 157

(Madaan et al., 2023). The second group optimizes 158

the ICL example(s) choice, typically from the train- 159

ing data. Since this process is cost-consuming 160

given the large volume of data, most studies adopt 161

a simple algorithm such as BM25 (Robertson et al., 162

1996). Another type of selection method utilizes 163

models with strength in semantics-oriented tasks 164

(e.g., image aesthetics2), such as CLIP (Radford 165

et al., 2021). The last group curates the ICL ex- 166

amples, mostly by LLMs. A subgroup of example 167

curation with a strong theoretical backbone is coun- 168

terfactual prompting (Wang et al., 2024). Based 169

on the given task’s data generation process, this ap- 170

proach generates examples with desired properties, 171

such as the least modification of the original exam- 172

ple for label flipping. To validate our theory, we 173

use a standard set of methods for the experiments. 174

Specifically, we use CLIP-based image-text pair 175

selection for Experiment I. For Experiment II, we 176

2https://laion.ai/blog/laion-aesthetics/
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use counterfactual prompting as the main method-177

ology and BM25-based text-guided ICL example178

selection as a text-oriented baseline.179

Interpreting how ICL works is another hot topic.180

Various interpretations have been proposed to ob-181

tain theoretical and empirical grounding behind182

ICL. Typically, the interpretation studies hire a spe-183

cific algorithm to interpret the dynamics of LLM’s184

representations: for example, Bayesian inference185

(Xie et al., 2022), contrastive learning (Ren and186

Liu, 2023), multi-state RNN (Oren et al., 2024),187

and gradient descent (von Oswald et al., 2023; Dai188

et al., 2023a), among many others (Han et al., 2023;189

Wang et al., 2023; Li et al., 2023). These studies190

covered extensive theoretical aspects, including the191

common finding of meta-gradient; LLMs could192

learn how to optimize its own representation. How-193

ever, how each theory contributes to S2 disentan-194

glement is unclear. We tackle this problem with an195

extension of the meta-gradient.196

2.3 OoD Generalization197

An Out-of-Distribution (OoD) problem is defined198

as a distinction of the distributional shift from the199

static training dataset to more diverse test inputs200

(Farquhar and Gal, 2022). OoD generalization is201

the task where the models need to address the OoD202

problems (Hendrycks and Gimpel, 2017). Since203

this topic is diverse, hereafter we limit our scope to204

NLP and VL domains unless stated otherwise.205

Most efforts on these domains have been spent on206

domain adaptation (Ramponi and Plank, 2020) and207

label shift (Zhang et al., 2021; Wu et al., 2021).208

Both approaches hold out some categories Xtest209

of the resource(s), and test the performance of210

the model trained solely with the other categories211

Xtrain; The former uses multiple datasets of simi-212

lar topics, and the latter splits the multi-class clas-213

sification labels. Although these studies provide214

valuable insights, the distinction between seman-215

tics and statistics is elusive; i.e., how to define the216

distributional difference among multiple datasets217

or multiple labels is opaque.218

In parallel to the efforts on extending the con-219

text length (Huang et al., 2024) and the explosive220

growth of multimodal LLMs centered on VL ca-221

pabilities (Zhang et al., 2024), several works ad-222

dressed OoD problems in a single-image conversa-223

tion and a multi-turn conversation separately. For224

example, Dai et al. (2023b); Gao et al. (2024) pro-225

posed solutions for detecting OoD in a multimodal226

conversation. Lang et al. (2024) introduced the227

information-theoretic approach for multi-turn con- 228

versation intention detection. Ye et al. (2022) pro- 229

posed two novel OoD categories, the multi-label 230

OoD and the label shift under the specific context. 231

Here, we extend the application to a multi-image, 232

multi-turn conversation, marking a crucial step to- 233

ward generalization to the real world. 234

3 Preliminaries 235

First, we introduce meta-gradient, the fundamen- 236

tal concept of this study. Second, we formalize 237

unembedding as a connection between LLM’s in- 238

termediate representation and the textual response. 239

Finally, we summarize a mixed effect model, a 240

useful tool in this study. 241

3.1 Meta-Gradient 242

Centric to the optimization of the traditional ma- 243

chine learning is the gradient descent, where the 244

learning objective is explicitly given to the model, 245

forming the gradient ∆H over the representation 246

H of an input in hidden space. A line of works (von 247

Oswald et al., 2023; Dai et al., 2023a) suggests that 248

the LLMs perform another form of gradient descent 249

in ICL. To summarize, they use their own attention 250

weights W to form a meta-gradient ∆W , multi- 251

plied by H to form the updated representation H ′. 252

In a typical zero-shot setting, the only information 253

composing the meta-gradient is task instruction, so 254

the representation of the instruction Hinst is up- 255

dated by this meta-gradient ∆Winst/zsl to form the 256

representation of a zero-shot input Hzsl. In ICL, 257

the example is inserted between the instruction and 258

the zero-shot input, so the gradient consists of 1) 259

the gradient between the instruction and ICL exam- 260

ple ∆Winst/icl and 2) the gradient between an ICL 261

example and a zero-shot input ∆Wicl/zsl, together 262

forming the ICL example’s representation Hicl. In 263

summary, the meta-gradient in zero-shot and ICL 264

settings are summarized as: 265

Hzsl = (W −∆Winst/zsl)Hinst

Hicl = {W − (∆Winst/icl +∆Wicl/zsl)Hinst}
(1) 266

Note that most meta-gradient studies use linear 267

variants (e.g., Zhuoran et al. (2021)) of Transformer 268

(Vaswani et al., 2017). In contrast, we assume 269

that the concept is solid for the original model for 270

brevity. We empirically validate this assumption. 271
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3.2 Unembedding272

Another important concept in interpretability stud-273

ies (e.g., nostalgebraist (2020); Belrose et al.274

(2023)) is that the representation could be linearly275

projected, or unembedded, with a weight Wemb to276

the LLM’s output Y .277

Y = WembH (2)278

Combined with the meta-gradient, we propose a279

novel theory explaining how ICL works.280

3.3 Mixed Effect Model281

In section 4.2, we assume that the effect of statis-282

tics is static over the various inputs, while that of283

the semantics is diverse. The mixed effect model284

(Singmann and Kellen, 2019) provides the analyti-285

cal framework for this dual effect. Specifically, in286

observation i, the effect of a variable X over the287

target variable yi is expected to be identical across288

all the observations (fixed effect), and another vari-289

able Z affects individual observation differently290

(random effect). In multiplicative case (Eq. 1), a291

mixed effect model could be formalized as:292

yi = (WX +WZiZi)X (3)293

For example, when analyzing the effect of a new294

teaching method on student performance across295

different schools, the teaching method may have296

a fixed effect since such a method generally aims297

for equal educational opportunities. In contrast,298

a variable representing each school should have299

a random effect when each school has a different300

educational policy. Note that various nonlinear301

expressions of the mixed effect are proposed (e.g.,302

Hajjem et al. (2014); Sigrist (2023)), but we limit303

the scope to the linear model for brevity.304

4 Representational Shift Theory (RST)305

First, we formalize RST, stating that an ICL ex-306

ample affects the representation of the zero-shot307

input (input shift) and then that of the output (out-308

put shift). Second, we show how it relates to S2309

disentanglement. Third, we frame OoD generaliza-310

tion into S2 disentanglement. Lastly, we suggest311

two hypotheses for improving the generalization:312

1. When the zero-shot (In-Distribution, ID) in-313

put is semantically poor for an LLM, a Multi-314

image Multi-turn OoD (MM OoD) ICL exam-315

ple is helpful.316

2. When the textual semantics are superior to the 317

image semantics, a Single-image Multi-turn 318

OoD (SM OoD) ICL example is helpful. 319

4.1 Representational Shift 320

Here we show the representational shift between 321

the zero-shot input-output pair {Hzsl, Yzsl} and 322

that of ICL {Hicl, Yicl}. First, assuming in Eq. 1 323

that ∆Winst/zsl ≃ ∆Winst/icl, or the identical ef- 324

fect of instruction over an ICL example and over a 325

zero-shot input, we obtain the input shift as follows. 326

Hicl −Hzsl ≃ −∆Wicl/zslHinst (4) 327

Applying to Eq. 2, we see that this shift triggers an 328

output shift. 329

Yicl − Yzsl = −Wemb∆Wicl/zslHinst (5) 330

Eq. 4 and Eq. 5 represent the basic concept of 331

RST. Note that LLM’s final output is a sequence 332

of words, but we use the representation of the last 333

decoder layer as the output. To analyze the multi- 334

dimensional representation in an intuitive way, we 335

assume that the difference of the two matrices is 336

represented by a distance metric DX/Y ∝ X − Y . 337

DYicl/Yzsl
= WRSTDHicl/Hzsl

where WRST = −HT
instWemb

(6) 338

In summary, if RST is valid, we can analyze the 339

effect of ICL by comparing the distance of the 340

two representations and that of the two outputs. In 341

practice, we use widely used cosine similarity as 342

the distance metric. 343

4.2 S2 Disentanglement 344

To disentangle semantics from statistics, we are 345

obliged to assume that the two concepts are in- 346

dependent. In RST, this implies that the weight 347

update by semantics ∆W sem and the update by 348

statistics ∆W stat are discernable. We also suggest 349

that the semantic distance Dsem and the statistic 350

distance Dstat is also separable since we suggested 351

the relevance of the representational shift and the 352

distance metric (Eq. 6). In summary, we formalize 353

the disentanglement as follows. 354

∆Wicl/zsl = ∆W sem
icl/zsl +∆W stat

icl/zsl

DHicl/Hzsl
= Dsem

Hicl/Hzsl
+Dstat

Hicl/Hzsl

(7) 355
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4.3 OoD Generalization as S2356

Disentanglement357

An OoD input forces an LLM to generalize to the358

same semantics under the drastic distributional dif-359

ference in statistics. This statistical difference (e.g.,360

a format difference) is static over all the test in-361

puts. Therefore, its effect on the representational362

shift is also supposedly constant (fixed effect). In363

contrast, the semantic term’s effect is intuitively364

diverse across the samples (random effect). Under365

this assumption, we formalize OoD generalization366

as a mixed effect; maximizing the random effect367

of the semantic term under the fixed effect of the368

OoD statistics W stat.369

DYicl/Yzsl
= WRST (D

sem
Wicl/Wzsl

+W stat) (8)370

4.3.1 Hypothesis I: MM OoD371

Our first hypothesis is that MM OoD is valid when372

the zero-shot input does not provide enough seman-373

tics to the model (i.e., poor zero-shot performance).374

Dsem
Wicl/Wzsl

= W sem
icl −W sem

zsl

DYicl/Yzsl
= WRST (W

sem
icl +W stat)

where W sem
zsl ≪ W sem

icl

(9)375

One such scenario is the lack of regularization in376

the attention matrix. Specifically, Ye et al. (2024)377

suggested that a significant proportion of attention378

values are wasted on the semantically irrelevant379

context. If the major components of the seman-380

tically similar ICL example amplifiy the relevant381

context, we suggest our approach is effective for382

the irrelevant context alleviation.383

4.3.2 Hypothesis II: SM OoD384

Since encoders of most LLMs are first trained385

solely by the text and then jointly trained by the386

VL datasets, we assume that the textual seman-387

tics W sem(T ) is greater than the image semantics388

W sem(I) in some cases. In this case, we hypoth-389

esize that enhancing the textual term (SM OoD)390

would provide a solution where MM OoD does not391

work.392

W sem
icl = W sem

icl (T ) +W sem
icl (I)

DYicl/Yzsl
= WRST (W

sem
icl (T ) +W stat)

where W sem
icl (T ) ≫ W sem

icl (I)

(10)393

Here we suppose the independence of the semantics394

over the two modalities for brevity. The interaction395

complicates the problem in reality (e.g., Miyanishi396

and Nguyen (2024)), but we leave this interaction 397

to future work. 398

One scenario in which our approach is effective is 399

the label bias (Reif and Schwartz, 2024); When the 400

test input or ICL example is salient, the prediction 401

may be biased towards the novel label. For exam- 402

ple, when a general-purpose LLM is required to 403

detect hate speech from aggressive language, the 404

prediction may be biased towards the high hateful- 405

ness as such inputs are likely to be filtered out in 406

the training to prevent the model from learning it. 407

5 Experiments 408

We conducted two experiments: Experiment I for 409

MM OoD and Experiment II for SM OoD. We hired 410

two LLaVA (Liu et al., 2023b) variants (LLaVA- 411

Llama2 (Touvron et al., 2023) and LLaVA-1.5 (Liu 412

et al., 2023a)) in both experiments for two rea- 413

sons; 1) their reported state-of-the-art performance 414

on linguistic tasks indicates high capacity for the 415

semantic term 2) they are NOT trained with the 416

multi-image resources or ICL settings, allowing 417

OoD analysis. We used 13 billion parameter mod- 418

els to balance linguistic capability and memory 419

constraint. We also did a preliminary experiment 420

with InternVL (Chen et al., 2024) for the analysis 421

in an ID setting (Appendix B.3). We focused on 422

ICL with a single example since we did not see any 423

positive clue for further concatenation in the initial 424

exploration. 425

In Experiment I, we used six VQA datasets to 426

test Hypothesis I. First, we evaluated LLaVA’s 427

zero-shot (In-Distribution; ID) and one-shot (Multi- 428

image Multi-turn OoD, MM OoD) performance. 429

The one-shot example was extracted from the train- 430

ing dataset based on similarity to the test input in 431

CLIP embedding. The result suggests that MM 432

OoD improves the performance for the datasets in 433

which the ID performance is poor (5 ∼ 20% of the 434

accuracy for four datasets), supporting Hypothesis 435

I. Next, we analyzed the mixed effect in the MM 436

OoD; the random effect of the input shift over the 437

output shift, and the fixed effect of datasets and 438

models. The moderate explanatory power of our 439

model (R2 = 0.59 ± 0.02, ∼ 70% in coefficient 440

analysis) validates RST. 441

To validate Hypothesis II, we focus on the data 442

where the textual modality is dominant. To this end, 443

we used the hateful memes challenge (Kiela et al., 444

2020) dataset in Experiment II, which is known for 445

this textual dominance (Aggarwal et al., 2024). In 446
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contrast with MM OoD which degraded the per-447

formance over ID (∼ 2.9 points of the F1 score),448

we found that using SM OoD examples curated by449

CounterFactual Prompting (CFP) improved the per-450

formance (∼ 0.8 points), supporting Hypothesis II.451

Next, to visualize the representational shift over ID452

/ MM OoD / SM OoD, we analyze the similarity453

of the weight WRST (Eq. 10). The result shows454

that, unlike ID or MM OoD, SM OoD shifts the455

representation of the hateful inputs away from that456

of benign inputs.457

5.1 Experiment I: MM OoD458

5.1.1 Mixed Effect Model459

RST suggests that the random effect of an OoD ICL460

example drives ICL. Since interpretability favors461

simplicity (Park et al., 2023), we implement a lin-462

ear mixed effect model which predicts the shifted463

representation Ĥicl.464

Ĥicl = (Wr +WfI)Hzsl +W0 (11)465

The linear weights Wr, Wf , and W0 represent the466

random effect, the fixed effect, and a bias term,467

respectively. For the mixed effect with identical di-468

mensionality, we use the embedding I representing469

the fixed components (dataset and model). We use470

a model only with the random effect as a baseline.471

Ĥicl = WrandomHzsl +W0 (12)472

To see the effect of the input shift over the output473

shift, we then calculate the distance DHicl/Hzsl
be-474

tween the zero-shot representation Hzsl and the475

shifted one Ĥicl. We finally applied a linear regres-476

sion between this input distance DHicl/Hzsl
and477

output distance DYicl/Yzsl
, together with the dum-478

mied variables representing models and datasets479

for residual analysis.480

5.1.2 Other Settings481

We use CLIP (Radford et al. (2021), specifically482

HuggingFace clip-vit-large-patch14), for ICL ex-483

ample selection because of its relatively small com-484

putational cost and high capability on similarity-485

related tasks.486

To cover various aspects of VL capabilities, we487

used six VQA datasets, namely VQA v 2.0 (Goyal488

et al. (2017)), GQA (Hudson and Manning (2019)),489

VizWiz (Gurari et al. (2018)), TextVQA (Singh490

et al. (2019)), MMBench (Liu et al. (2023c)), and491

MM-Vet (Yu et al. (2023)). We use accuracy as492

a performance metric following the official eval- 493

uation codes. More details are in the Appendix 494

A. 495

5.1.3 Results 496

First, we show LLaVA-Llama2’s performance (Fig. 497

1). MM OoD dropped performance for MMBench 498

and MM-Vet where the ID performance is relatively 499

high. In contrast, MM OoD improved LLaVA- 500

Llama2’s performance for the rest of the datasets 501

in which ID performance is lower. These results 502

suggest MM OoD’s positive impact where the test 503

input is semantically poor for the model, supporting 504

Hypothesis I. Next, we analyzed the mixed effect of

Figure 1: Performance summary of LLaVA-Llama2.
zsl and icl represent zero-shot learning and in-context
learning (ICL). ICL results in better performance for
four datasets where the zero-shot performance is poor.

505
the input shift and the confounding variables over 506

the output shift. The mixed effect model (Eq. 11) 507

showed a higher performance (R2 = 0.59± 0.02) 508

than the random-effect-only baseline (Eq. 12; 509

R2 = 0.43 ± 0.01), supporting the explanation 510

by mixed effect. Finally, we analyzed the regres- 511

sion coefficient to see the impact of the random 512

effect and the fixed effect (Table 1). The input shift 513

shows moderate explanatory power, validating the 514

relevance of the input shift and the output shift 515

presupposed in RST. 516

5.2 Experiment II: SM OoD 517

5.2.1 CFP 518

Most LLMs have safety limitations based on in- 519

struction tuning (Bianchi et al. (2023)) which does 520

not allow them to generate hateful examples. Since 521

bypassing such limitations is neither desirable nor 522

sustainable, we let the model generate negative 523

examples. In short, the model first generates text 524

that fits with a given image to compose a benign 525
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variable coef*100

(Intercept) 9.2± 2.1

mm-vet −0.75± 0.7
mmbench 2.81± 0.7
textvqa 2.1± 0.6
vizwiz 0.16± 0.7
vqav2 −0.12± 0.6

model −0.39± 0.4

Model Prediction 70.33± 5.9

Table 1: Regression Coefficient of the mixed effect
model’s prediction with the dummy variables represent-
ing the datasets and the models. The prediction shows
a much higher coefficient than the dummy variables,
validating our models.

meme. Next, using that meme as an ICL exam-526

ple, the model classifies the test input as hateful527

or benign. Fig. 3 shows a representative prompt.528

Qu et al. (2023) introduced another workaround of529

using more general labels, which will be a part of530

our future work.531

5.2.2 MM OoD vs. SM OoD532

To see how the effect of input shift differs be-533

tween MM OoD and SM OoD, a straightforward534

approach is to analyze the difference in the rela-535

tionship between the two shifts. To this end, we536

first estimate the input shift weight WRST (Eq. 10)537

for ID, MM OoD, and SM OoD (shown in Eq.538

13 as W zsl, W icl, and W cfp, respectively). In539

ID case, we use the shifts caused by the instruc-540

tion {DWzsl/Winst
, DYzsl/Yinst

} for reference. We541

build a single estimator for consistent representa-542

tion. Then we calculate the similarity between each543

weight. To visualize label bias, this process is split544

by the ground-truth label, denoted as W0 and W1545

where 0 and 1 stand for benign and hateful, re-546

spectively. Altogether we obtain similarity matrix547

as:548 
sim(W zsl

0 ,W zsl
0 ) · · · sim(W zsl

0 ,W cfp
1 )

sim(W zsl
1 ,W zsl

0 ) · · · sim(W zsl
1 ,W cfp

1 )

sim(W icl
0 ,W zsl

0 ) · · · sim(W icl
0 ,W cfp

1 )
...

. . .
...

sim(W cfp
1 ,W zsl

0 ) · · · sim(W cfp
1 ,W cfp

1 )


(13)549

We use cosine similarity as a similarity function550

sim(·). The weights are estimated per layer dimen-551

sion to perform memory-efficient analysis.552

5.2.3 Hateful Memes Challenge 553

Intuitively, the impact of counterfactual prompt- 554

ing may vary across datasets. The most influential 555

scenario is 1) the dataset size is small for which 556

ICL example selection is challenging 2) the textual 557

modality is superior to the image modality 3) the 558

bias factors are embedded on the dataset. 559

Kiela et al. (2020) curated the Hateful Memes Chal- 560

lenge dataset, which perfectly fits this experiment’s 561

criteria. First, Laurençon et al. (2023); Zhao et al. 562

(2023a) showed that ICL is not particularly effec- 563

tive unless the model is heavily tuned to the task. 564

Second, Aggarwal et al. (2024) showed the supe- 565

riority of the textual modality. Third, Hee et al. 566

(2022); Zhang et al. (2023) indicated the presence 567

of various sources of the bias. Since the data size 568

is small, we use f1 score to see the precision-recall 569

balance. We leave more experiments on hateful 570

meme detection (e.g., Gomez et al. (2020)) and 571

other tasks to future work. 572

5.2.4 Other Settings 573

Since we assume the superiority of the textual 574

modality, we use LLaVA-Llama2 in this experi- 575

ment for its strong linguistic performance. Toward 576

MM OoD baseline fully utilizing textual modality, 577

we extract the ICL example solely based on textual 578

modality with BM25 algorithm (Robertson et al., 579

1996). 580

5.2.5 Results 581

First, we see the performance of ID, MM OoD, and 582

SM OoD on the hateful memes challenge dataset. 583

Contrally to the performance drop in MM OoD, SM 584

OoD slightly improved the performance, support- 585

ing Hypothesis II (Table 2). Further exploration 586

of ICL methodologies will be part of our future 587

work. Next, we built a mixed effect model (Eq. 10)

setting f1*100

ZSL 61.4± 0.5
MM OoD 58.5± 0.9
CFP 62.2± 0.3

Table 2: Hateful memes detection performance. ZSL,
MM OoD, and CFP represent Zero-Shot Learning,
MM OoD, and CounterFactual Prompting, respectively.
CFP’s performance is better than ID while MM OoD
dropped the performance, supporting Hypothesis I.

588
for label bias visualization, showing a moderate 589

AUC of 75.6 ± 0.90. Finally, we calculated the 590
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similarity matrix of the weight WRST (Fig. 2). For591

ID and MM OoD, the hateful inputs are relatively592

similar to the benign inputs of the same condition593

(cosine similarity ≃ 0.3). This cross-label simi-594

larity dropped significantly (< 0.2) for SM OoD.595

These results suggest that SM OoD pulls away the596

inputs of different labels which ID or ICL cannot597

distinguish well.

ZSL,Benign

ZSL,Hateful

ICL,Benign

ICL,Hateful

CFP,Benign

CFP,Hateful

ZSL,Benign

ZSL,Hateful

ICL,Benign

ICL,Hateful

CFP,Benign

CFP,Hateful

0.2

0.3

0.4

0.5

1.000 0.275 0.193 0.181 0.301 0.173

0.275 1.000 0.197 0.190 0.148 0.336

0.193 0.197 1.000 0.321 0.157 0.127

0.181 0.190 0.321 1.000 0.136 0.152

0.301 0.148 0.157 0.136 1.000 0.154

0.173 0.336 0.127 0.152 0.154 1.000

Figure 2: Representational shift across the learning type.
Each entry is the similarity of the input between two
conditions. For example, the left-top value 0.173 is the
similarity of the input between hateful samples of a CFP
setting and benign samples of a ZSL setting. While the
hateful samples and the benign samples are similar for
ZSL and ICL settings, CFP hateful samples and benign
samples are less similar.

598

6 Discussion599

In this paper, we proposed RST, a novel inter-600

pretability theory for ICL. RST states that the con-601

ditioning by an ICL example triggers two represen-602

tational shifts, input shift and output shift. In light603

of RST, we formalized S2 disentanglement as the604

optimization by two meta-gradient terms, and OoD605

generalization as an amplification of the dynamic606

semantic term over the constant statistics term. We607

further proposed two hypotheses for OoD general-608

ization; First, even if the model is not trained with609

multi-image multi-turn datasets, an ICL image-text610

example can improve the performance when the611

test input’s semantics is poor to the model (MM612

OoD; Hypothesis I). Second, curating a text-only613

ICL example can be a better solution when the tex-614

tual modality is superior to the image modality (SM615

OoD; Hypothesis II). We validated Hypothesis I by 616

performance improvement in four VQA datasets 617

out of six, in which ID performance is poor. For 618

Hypothesis II, We showed the supporting evidence 619

in hateful meme detection; performance gain by 620

counterfactual prompting while MM OoD does not 621

work. We also showed the supporting evidence of 622

the cascading representational shifts for each prob- 623

lem. 624

Previous efforts on building interpretability theo- 625

ries for ICL have validated the concept of meta- 626

gradient, attention weight used as a form of gra- 627

dient (von Oswald et al., 2023; Dai et al., 2023a). 628

Meta-gradient backbones RST, which provides an 629

analytical framework for S2 disentanglement. To- 630

wards S2 disentanglement, interpretability studies 631

disentangled a few aspects of the semantics, such 632

as color (Abdou et al., 2021), geography (Godey, 633

2024) and world model (Vafa et al., 2024). Inspired 634

by these works, RST provides the unifying frame- 635

work for S2 disentanglement. On the other hand, 636

various OoD problems have been explored, such 637

as multi-turn OoD (Ye et al., 2022). We extend the 638

scope to the multi-image multi-turn setting. 639

Although RST provides valuable insights into the 640

role of ICL over S2 disentanglement, our future 641

work should include the analysis of other OoD 642

problems (e.g., multi-turn OoD in general) and ID 643

problems where semantics and statistics are poten- 644

tially more entangled (e.g., MMMU (Yue et al., 645

2024)). In that case, we can also extend the subject 646

to the large variety of LLMs, including the ones 647

trained with multi-image datasets such as LLaVA- 648

Next (Liu et al., 2024). 649

7 Conclusion 650

RST provides an analytical framework for studying 651

the role of ICL over S2 disentanglement, a central 652

problem of interpretability. Based on RST, we for- 653

malized S2 disentanglement in OoD generalization 654

and showed that our hypothesis-driven approach 655

can contribute to the performance gain in various 656

problems. We believe our work will be the corner- 657

stone for the study of why ICL works on real-world 658

problems–our answer at this moment is "Because 659

the semantic information triggers the stream of rep- 660

resentational shift.". 661
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8 Limitations662

While our study provides valuable insights into663

S2 disentanglement, there are several limitations664

and future research directions that warrant further665

investigation. Although RST can be used to ana-666

lyze arbitrary problems, the largest limitation for667

the time being is its generalizability; to foresee668

the performance improvement in another problem,669

we need another hypothesis tailored to that prob-670

lem. Towards the automatic formulation of the671

novel hypothesis, we believe the flexibility of se-672

mantic and statistic terms (Eq. 7) is the key. This673

study is also limited linguistically; we only used674

English datasets. From a theoretical point of view,675

we have an intuitive leap from the existing works676

on meta-gradient; a nonlinearity. Despite previous677

works on secretly linear nature of a nonlinear Trans-678

former (Razzhigaev et al., 2024) and our empirical679

findings supporting RST, applying the concept de-680

veloped on a linear variant to the nonlinear one681

might hinder the precise evaluation. Recently, Ren682

and Liu (2023) proposed a theory for the nonlinear683

Transformer variants with the help of contrastive684

learning (Le-Khac et al., 2020). Unifying RST685

with their approach might provide a robust theo-686

retical grounding. In addition, whether the input687

shift causes the output shift is still elusive. An688

approach is to hire a mechanistic interpretability689

method, such as path patching (Hanna et al., 2023;690

Goldowsky-Dill et al., 2023). Training phase mech-691

anisms such as grokking or double descent (Davies692

et al., 2022) should also provide an explanation for693

the why question.694
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System:
You are a helpful language and vision assistant.
User:
<image in dataset>
Give me one caption that fits with this image.
Assistant:
{generated caption}
User:
In comparison with that caption, is the following
caption hateful or benign? Answer with a single
word.
{caption in dataset}
Assistant:
{answer}

Figure 3: The representative counterfactual prompt.
The system prompt is truncated for illustrative purpose.
Please see our code for the full version.

A Implementation Details1101

Experiments are conducted on a single NVIDIA1102

A100 80GB GPU with Linux OS. Unless stated1103

otherwise, all codes are written in Python 3.9. Sta-1104

tistical arguments are based on a t-test and boot-1105

strapping with 1,000 resamples. We run the models1106

once with a random seed of 1987. Eq. 11 and Eq.1107

12 are implemented on a PyTorch backend3 and1108

trained to maximize the cosine similarity of the out-1109

put shift with Pytorch Metric Learning package4’s1110

SelfSupervisedLoss under the AdamW optimizer1111

(Loshchilov and Hutter, 2019). We extract 1,0001112

samples from each dataset and hold out 20% as1113

a test set. The performance of this mixed effect1114

model is evaluated using the marginal/conditional1115

R2 (Nakagawa and Schielzeth, 2013). To maintain1116

the experiment’s integrity while utilizing a wide1117

range of statistical tools, the R language’s lmer1118

package is called from the Python environment via1119

rpy25 module.1120

Fig. 3 illustrates a representative CFP prompt for1121

Experiment II.1122

B Additional Results1123

B.1 LLaVA-1.51124

We show LLaVA-1.5’s performance (Fig. 4).1125

LLaVA-1.5 outperforms LLaVA-Llama2 in all1126

cases, reflecting the authors’ additional training1127

efforts (Liu et al., 2023a).1128

3https://pytorch.org/
4https://kevinmusgrave.github.io/pytorch-metric-

learning/
5https://rpy2.github.io/doc.html

Figure 4: The performance summary of LLaVA-1.5.
OoD ICL dropped the performance, suggesting the rich
semantics in the test input.

B.2 High-Level Analysis on Mixed Effect 1129

In addition to fine-grained analysis in Table 1, we 1130

analyzed the dataset-level mixed effect. In this 1131

analysis, the effects are represented as a coefficient 1132

of the corresponding one-hot encodings. Specif- 1133

ically, we modeled the accuracy of each dataset 1134

as a sum of the effect of a variable representing 1135

the presence/absence of an OoD ICL example and 1136

that of the variable representing the models and 1137

datasets. The result suggests that the model vari- 1138

able drives the explanatory power at this level, con- 1139

sistent with the performance summary (Fig. 1), 1140

which shows the drastic improvement of LLaVA- 1141

1.5 over LLaVA-Llama2.

Variable R2*100

Fixed Random Fixed Random

model model 22.6± 3.0 52.0± 8.8
dataset ICL 0.3± 0.1 0.5± 0.2
model ICL 33.5± 2.4 33.6± 2.5
dataset model 0.2± 0.1 49.5± 2.7
all all 23.7± 4.4 53.7± 8.8

Table 3: Regression coefficients of the variables repre-
senting model (LLaVA 1.5 or LLaVA-Llama2), dataset,
and presence/absence of ICL examples. all represents
the result of an all-variable model. R2 values are multi-
plied by 100 for brevity. The result only with the model
variable is similar to the all-variable model, consistent
with the performance summary (Fig. 1).

1142

B.3 Preliminary ID Analysis: InternVL 1143

To test if the findings about LLaVA is transferred 1144

to an ID setting, we also use InternVL (1-2 billion) 1145
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for its limited 6 yet tested multi-image capabilities1146

by multi-image datasets like MMMU (Yue et al.,1147

2024).1148

In the case of InternVL, MM OoD generally1149

dropped the performance, potentially because of its1150

high performance and multi-image resource short-1151

age (Fig. 5). To see whether the task difficulty (i.e.,
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Figure 5: Performance summary of InternVL. MM OoD
dropped the performance for all the datasets, potentially
reflecting that the baseline performance is moderate to
high for all the datasets.

1152
semantic poorness to the model) affects this trend,1153

we see the performance by the number of reason-1154

ing steps provided by the GQA dataset evaluation,1155

typically seen as the difficulty metric. Divided by1156

this subcategory, ICL performs slightly better when1157

the number of steps is larger (Table 4). Together1158

with LLaVA results, these results suggest that the1159

performance boost may serve as a task difficulty1160

indicator.1161

6https://github.com/OpenGVLab/InternVL/issues/419

N Steps N Samples ZSL ICL

1-5 12,153 59.7± 0.15 52.5± 0.31
6-9 65 83.5± 0.24 84.6± 0.27

Table 4: Impact of multi-image ICL in GQA for In-
ternVL 1b. N steps indicate the number of inference
steps. The numbers with an error represent accuracy(%)
in the corresponding setting. ICL boosted the perfor-
mance when the number of steps was above six, imply-
ing that the ICL positively affects the performance when
the task is challenging.

C Other Considerations 1162

C.1 Potential Risks 1163

A hateful meme is a highly sensitive research topic. 1164

Therefore, all the hateful meme research involves 1165

risks and uncertainty to some extent. For example, 1166

the attackers may read a publication about a hateful 1167

meme detector to create a new meme that the de- 1168

tector may not be able to detect. More broadly, all 1169

LLM-related papers can be maliciously used when 1170

they are in the wrong hands (e.g., to improve an 1171

LLM trained on the dark web). To overcome these 1172

issues, an iterative update of the methodology with 1173

safety measures is a must. 1174

C.2 Ethical Considerations 1175

The hateful memes challenge dataset (Kiela et al., 1176

2020, 2021) contains sensitive content. Therefore, 1177

we refrained from showing actual hateful memes 1178

so that this paper does not negatively impact any 1179

targeted group. We refer the users to the original 1180

publication for the considerations taken in dataset 1181

curation. 1182

C.3 AI Assistant Usage 1183

We used GitHub Copilot for efficient coding and 1184

ChatGPT for linguistic improvements. 1185

C.4 License and Usage of Scientific Artifacts 1186

We declare that all scientific artifacts used in this 1187

study do not prohibit the use of artifacts for aca- 1188

demic research. 1189

C.5 Documentation Of Artifacts 1190

Experiment I uses the test split of six VQA datasets. 1191

GQA contains 10% of 22, 669, 678 questions over 1192

113, 018 images. TextVQA contains 5, 734 text- 1193

image pairs. VizWiz contains 8, 000 visual ques- 1194

tions. VQAv2 contains 447, 793 questions for 1195
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81, 434 images. MMBench contains 1, 784 ques-1196

tions. MM-Vet contains 218 questions.1197

Experiment II is performed on test-seen split of a1198

hateful meme challenge dataset with 1, 000 text-1199

image pairs (510 benign samples and 490 hateful1200

samples).1201
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