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Abstract

As Large Language Models (LLMs) become increasingly embedded in critical do-1

mains such as healthcare, education, and public services, ensuring their alignment2

with human values and intentions is of paramount importance. Misalignment in3

these contexts can lead to significant harm, underscoring the urgent need for rigor-4

ous, interpretable, and actionable evaluation methods. This position paper provides5

a critical examination of the current landscape of human–LLM alignment evalua-6

tion, with a particular focus on statistical guarantees in human annotation-based7

and LLM-based approaches. We identify key limitations in existing methodologies8

and advocate for the development of more transparent, interpretable, and9

adaptable frameworks for alignment guarantees. At the heart of our inquiry10

are two foundational questions: What constitutes a transparent foundation for11

alignment guarantees? And how can such guarantees be made operational and12

responsive to real-world conditions? We conclude by outlining future directions13

for designing alignment guarantee frameworks that are not only technically sound14

and transparent, but also socially attuned and practically adaptable.15

1 Introduction16

Large language models are increasingly integrated into real-world applications, from chat assistants17

to decision-support systems (OpenAI, 2024; Lin and Chen, 2023). However, ensuring that these18

models align with human values, preferences, and expectations has emerged as a central challenge19

(Dubois et al., 2023). This alignment—the degree to which LLM outputs match human expectations20

and values—represents both a technical and societal frontier in AI research.21

Traditionally, the evaluation of LLM alignment has relied heavily on human judgments (Taori et al.,22

2023). While human-based annotation protocols offer direct insights into model-human agreement,23

they suffer from well-documented limitations, including subjectivity, limited diversity of annotators,24

poor inter-rater reliability, and high cost (Wu et al., 2023). Recent work has introduced more structured25

human evaluation protocols—such as pairwise comparisons and Elo-style rating systems—which26

offer greater statistical stability (Zheng et al., 2023; Dettmers et al., 2023), but do not resolve issues27

of scalability or systemic bias.28

In parallel, the emergence of LLM-based evaluation has opened up promising new directions (Chiang29

and Lee, 2023). These approaches leverage LLMs themselves as evaluators, enabling scalable and30

cost-effective assessments across a range of tasks. However, they also come with significant limita-31

tions. Evaluator models are prone to positional and stylistic biases, self-enhancement effects, and32

susceptibility to subtle prompt manipulations (Wang et al., 2023a; Thakur et al., 2024). Moreover, as33

LLM-based evaluation inherits the limitations of its underlying models, it raises deep epistemological34

concerns about circularity, bias amplification, and the validity of using imperfect judges to evaluate35

other imperfect systems (Xiong et al., 2023).36
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Figure 1: This figure illustrates a conceptual
framework for generating statistical alignment
guarantees that are both transparent and adaptable.
The framework accounts for two primary sources
of uncertainty: model uncertainty and human pref-
erence uncertainty. These uncertainties are mod-
eled with both transparent components—such as
calibration sets and empirical risk estimation—and
adaptable elements, including task-specific uncer-
tainty measures and tunable hyper-parameters. By
integrating statistical tools with user-defined risk
parameters, the framework yields formal guaran-
tees on human–model agreement.

To overcome these limitations, researchers have37

recently begun introducing statistical guaran-38

tees into alignment evaluation—borrowing tools39

from conformal prediction (Angelopoulos et al.,40

2022), PAC-style analysis (Jung et al., 2024),41

and risk calibration. These methods aim to for-42

malize notions of alignment risk, abstention con-43

fidence, and human agreement, allowing for in-44

terpretable, probabilistic control over evaluation45

quality. However, despite these promising ad-46

vances, current statistical approaches still face47

limitations in terms of generalization, robustness48

under distribution shift (Mohri and Hashimoto,49

2024), interpretability for practitioners, and flex-50

ibility for different domains.51

This position paper advocates for a more52

transparent, interpretable, and adaptive sta-53

tistical foundation for human–LLM align-54

ment evaluation. By transparent, we refer not55

only to the availability of formal guarantees, but56

also to the clarity with which their underlying57

components, assumptions, and limitations are58

communicated to users. A transparent frame-59

work should enable practitioners—and, where relevant, the public—to understand exactly what is60

being guaranteed (e.g., risk bounds, abstention criteria), under what conditions those guarantees61

hold (e.g., calibration set representativeness, model stability), and where the limits of validity lie62

(e.g., distribution shift, model uncertainty). By adaptive, we refer to the framework’s capacity to63

accommodate task-specific requirements, user-defined risk tolerances, and domain variability. An64

adaptive statistical foundation should allow for dynamic calibration and parameterization (e.g., adjust-65

ing confidence thresholds or risk levels) to align with the practical demands and constraints of diverse66

deployment scenarios. Our central claim is that without transparent and adaptive statistical guarantees,67

alignment evaluations will remain fragmented, difficult to validate, and potentially misleading in68

real-world use. To structure our discussion, we pose two foundational questions:69

• Transparency: what constitutes a transparent and principled foundation for alignment70

guarantees?71

• Adaptability: how can such guarantees be made operational—measurable, interpretable,72

and responsive to real-world deployment conditions?73

We analyze existing evaluation methodologies (Sec. 2), review recent developments in statistical74

alignment guarantees (Sec. 3), and identify conceptual and practical gaps that persist. Finally, in75

Sec. 4, we argue that designing alignment guarantee frameworks with transparent and adaptable76

components is essential—not only for ensuring technical soundness, but also for fostering social trust,77

regulatory compliance, and safe deployment of generative models in high-stakes settings.78

2 Existing evaluation methodologies79

2.1 Human-based evaluation80

Human–AI alignment evaluation has long been a central topic of study, early human evaluation81

frameworks adopted ordinal classification schemes, where annotators assigned responses to predefined82

quality levels. For example, Wang et al. (2022); Wu et al. (2023) used a four-point scale: acceptable,83

minor errors, major errors, and unacceptable. However, these categorical approaches suffer from84

substantial subjectivity, as evidenced by poor inter-annotator agreement in prior studies (Kalpathy-85

Cramer et al., 2016), highlighting the difficulty of applying rigid evaluation criteria to nuanced and86

context-dependent language outputs.87
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To mitigate these limitations, Taori et al. (2023) proposed a pairwise comparison protocol, where88

annotators judge which of two model responses is superior. This relative evaluation format reduces89

cognitive load and improves annotation consistency. Building on this, recent work such as Zheng90

et al. (2023); Dettmers et al. (2023) incorporates Elo rating systems, originally developed for ranking91

chess players, to dynamically assess model performance. In these systems, model scores are updated92

iteratively based on pairwise “wins” and “losses,” enabling statistically robust comparisons across93

multiple LLMs.94

More recently, human-based evaluation has advanced beyond static taxonomies and simple compar-95

isons through the use of fine-grained rubrics and context-aware annotations. For instance, Fan et al.96

(2025) introduced SedarEval, a rubric-driven framework where task-specific rubrics are automatically97

constructed from prompts and refined through human judgment. In the safety domain, Xie et al.98

(2025) developed SORRY-bench, a large-scale corpus of over 7,000 human-annotated refusal cases,99

emphasizing diversity and inter-annotator agreement to assess LLM safety behavior. Arabzadeh100

and Clarke (2025) benchmarked LLM-generated judgments against expert relevance assessments in101

TREC RAG tasks, demonstrating the advantage of hybrid human–machine adjudication over fully102

automated metrics. Additionally, Yu et al. (2025a) proposed RPGBENCH, where humans interact103

with LLMs in role-playing scenarios to evaluate their behavioral consistency and narrative plausibility.104

Collectively, these works reflect a clear shift toward context-rich, trait-grounded human evaluation105

paradigms that more accurately capture the complexity of aligning LLMs with human expectations.106

Through these progressive refinements in human evaluation protocols, the field has evolved toward107

more reliable and systematic assessment methodologies. However, several key challenges remain.108

Challenge (Subjectivity): Human-based alignment evaluation is inherently subjective (Binns et al.,109

2018; Chang et al., 2024), often reflecting narrow cultural or demographic biases due to limited anno-110

tator diversity. This can skew alignment objectives and marginalize underrepresented perspectives.111

Moreover, a preference articulation gap—the mismatch between evaluators’ intentions and how they112

score—introduces noise, as annotators may struggle to express preferences clearly or rationalize them113

inconsistently. Evolving social norms further complicate evaluation, making human preferences a114

moving target. Finally, conflicts between expert and general-user priorities—such as accuracy versus115

empathy—raise unresolved questions about whose preferences should define alignment.116

Challenge (Scalability): Human evaluations face serious scalability constraints (Li et al., 2023).117

Recruiting and compensating annotators is costly, limiting coverage across use cases and depth in118

rare scenarios. As LLMs evolve rapidly, manual evaluations struggle to keep pace, often becoming119

outdated before deployment. The vast space of possible inputs makes exhaustive testing infeasible,120

especially for rare but critical failures. Additionally, annotator fatigue and limited domain expertise121

reduce evaluation quality over time, highlighting the need for more scalable, systematic alternatives.122

2.2 LLM-based evaluation123

While human evaluation provides high-quality insights, it faces well-known challenges in terms of124

scalability, efficiency, and cost. At the same time, the increasing fluency of LLMs has made it difficult125

for annotators to reliably distinguish between human- and model-generated text in open-ended tasks126

(Clark et al., 2021), prompting growing interest in using LLMs themselves as evaluators.127

LLM-based evaluation approaches vary in design. Some extend traditional reference-based metrics by128

prompting LLMs to generate multiple paraphrased references, thereby expanding evaluation coverage129

(Tang et al., 2023). However, such methods still rely on at least one human-written reference. More130

recent reference-free approaches have emerged, where LLMs are prompted to directly assess response131

quality using task descriptions and evaluation rubrics (Liu et al., 2023; Fu et al., 2023; Chen et al.,132

2023; Chiang and Lee, 2023). These methods have been adapted to tasks such as summarization133

(Gao et al., 2023), code generation (Zhuo, 2023), open-ended QA (Bai et al., 2023), and dialogue134

evaluation (Lin and Chen, 2023), with prompt engineering enabling multi-dimensional assessments135

over quality, coherence, and factuality (Fu et al., 2023; Lin and Chen, 2023). Factuality remains a core136

focus of LLM-based evaluation. Studies have assessed factual correctness using both closed-source137

and open-source models (Min et al., 2023; Zha et al., 2023). Building on the success of human-based138

pairwise evaluation, models like GPT-4 have been used to conduct direct comparisons between139

candidate outputs (Dubois et al., 2023; Zheng et al., 2023).140
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Despite promising results, LLM-based evaluators exhibit notable biases. Wang et al. (2023a) observed141

positional bias, where models favor the first option regardless of content quality; mitigation strategies142

include candidate shuffling and chain-of-thought prompting. Wu and Aji (2023) reported that LLM143

judges often over-penalize grammatical issues and brevity while overlooking factual inaccuracies.144

To address this, a multi-dimensional Elo system has been proposed to separately score accuracy,145

helpfulness, and fluency. Zheng et al. (2023) also identified self-enhancement bias, where models146

tend to favor their own outputs. Remedies include randomized candidate positioning, exemplar147

conditioning, and reasoning-enhanced prompting.148

Although LLMs like GPT-4 can match human raters in accuracy (Dubois et al., 2024; Li et al., 2024b),149

their use raises concerns about cost and bias. To improve efficiency and interpretability, researchers150

have explored judge model distillation (Kim et al., 2024; Zhu et al., 2023), peer review ensembles151

(Verga et al., 2024), and multi-agent debate systems (Chan et al., 2023). Still, most of these methods152

lack formal guarantees of reliability. Emerging studies further reveal that LLM judges are susceptible153

to cognitive and stylistic biases (Zeng et al., 2023; Koo et al., 2023; Panickssery et al., 2024), calling154

into question their robustness and generalizability. To address privacy and accessibility concerns155

associated with closed-source evaluators, Wang et al. (2023b) developed PandaLM, a fine-tuned156

LLaMA-7B model which achieves evaluation quality comparable to GPT-3.5 and GPT-4.157

Recently, Wang et al. (2025b) proposed OpenForecast, where LLMs perform both forecasting and158

evaluation using retrieval-augmented prompts—eliminating the need for human-written references.159

Yu et al. (2025b) introduced xFinder, a unified interface for summarization and translation evaluation160

using instruction-tuned LLMs to assess fluency, adequacy, and factuality with improved human161

agreement. Badshah and Sajjad (2025) developed DAFE, a confidence-aware ensemble of multiple162

LLM judges. Cao et al. (2025) proposed the Multi-Agent LLM Judge, which assigns distinct personas163

to LLMs to support personalized, context-sensitive evaluations across traits such as coherence,164

specificity, and style. While such LLM-based evaluation methods represent substantial progress,165

several critical challenges remain for future investigation.166

Challenge (Echo Chamber Effects): Using LLMs to evaluate other LLMs introduces circular167

reference problems that complicate alignment evaluation (Wataoka et al., 2024). When models168

evaluate outputs similar to what they might generate themselves, they often exhibit biases toward169

familiar patterns and approaches (Bommasani et al., 2023). The evaluating model itself may have170

alignment issues, creating a recursive problem of determining who evaluates the evaluators. Small171

changes in evaluation prompts can dramatically shift model judgments, raising questions about the172

stability of LLM-based evaluation methods. Judge models may show inconsistent calibration across173

different contexts, being overconfident in some domains and under-confident in others. Perhaps most174

concerning is the potential for bias amplification—when judge models with subtle biases are used to175

evaluate and train new models, these biases may be reinforced through successive iterations, creating176

problematic feedback loops in alignment systems that rely on model-based evaluation.177

Challenge (Inherent Uncertainty): LLM-based alignment evaluation is fundamentally limited178

by the model’s own epistemic and aleatoric uncertainties (Farquhar et al., 2024). As evaluators,179

LLMs generate preference judgments based on patterns learned from data, but lack true grounding180

or access to objective truth. This introduces epistemic uncertainty, especially in out-of-distribution181

or ambiguous cases where the model’s internal representations are unreliable. In addition, aleatoric182

uncertainty arises when the evaluation instruction itself admits multiple reasonable interpretations,183

causing variability in outputs across different runs or prompts. Without principled mechanisms to184

quantify and communicate these uncertainties, model-generated evaluations may project a false sense185

of confidence, undermining their trustworthiness. This challenge is further exacerbated when such186

evaluations are used in downstream systems to guide training decisions, as unrecognized uncertainty187

can propagate misaligned updates and erode human trust in alignment processes.188

3 Existing statistical guarantee for alignment189

To address the limitations of prior human- and LLM-based methods, recent research has increasingly190

turned to enhancing LLMs with rigorous statistical guarantees aimed at controlling risk in high-stakes191

applications. Notable efforts include reducing hallucination rates in factual generation tasks (Yadkori192

et al., 2024; Mohri and Hashimoto, 2024) and controlling false discovery rates in medical decision-193

making (Gui et al., 2024). These approaches frequently leverage conformal methods (Angelopoulos194
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Figure 2: Reliability plot for confidence estimation methods (left: predictive probability measure;
right: simulated annotators measure), using GPT-4 as judge on the data from Jung et al. (2024)
(purple) and additional 500 records from AlpacaEval (orange) (Li et al., 2023). Horizontal axis
represents the estimated LLM confidence, vertical axis represents the rate of human-LLM agreement,
and dashed lines denote perfect calibration. More experimental details are given in Appendix A.

et al., 2022), which provide marginal control over prescribed risks. Complementary work has195

investigated fine-tuning objectives for LLMs to improve truthfulness (Kang et al., 2024; Tian et al.,196

2023) or to enable appropriate abstention when knowledge is insufficient (Zhang et al., 2024).197

Notably, Yadkori et al. (2024) introduces a principled method to reduce hallucinations (enhance198

alignment) in LLMs by employing a conformal prediction-based abstention mechanism. The authors199

propose leveraging the LLM itself to evaluate the consistency among multiple responses generated200

for a given query, thereby measuring model uncertainty. Based on this uncertainty, their approach201

decides whether the model should respond or abstain, providing rigorous theoretical guarantees on202

limiting the rate of hallucinations. Mohri and Hashimoto (2024) also integrates conformal prediction203

into LLMs to ensure high-probability correctness guarantees for generated outputs. The authors204

conceptualize the correctness of an LLM’s output as an uncertainty quantification problem, where205

each output corresponds to an entailment-based uncertainty set. By progressively "backing off" or206

making outputs less specific based on uncertainty estimates, the proposed method ensures that model207

outputs meet user-specified correctness levels with rigorous statistical guarantees.208

Building on these foundations, Jung et al. (2024) extends them by developing an unsupervised209

confidence measure and establishing an exact upper bound on disagreement risk conditional on210

calibration set. Rather than issuing a decision unconditionally, the framework introduces a selective211

evaluation mechanism: the LLM makes a judgment only when it is sufficiently confident in its212

preference. This confidence is quantified by the confidence measure CLM (x) for each input x, and a213

prediction is accepted if and only if the confidence exceeds a predefined threshold λ; otherwise, the214

model abstains.215

Jung et al. (2024) frames the selection of λ as a multiple hypothesis testing problem. Given access216

to a small calibration set of human preferences, they measure the empirical risk of disagreeing217

with humans when using threshold λ. Since the empirical risk follows a binomial distribution, they218

compute the exact (1 − δ) upper confidence bound of the risk. The risk tends to increase as λ219

decreases, allowing to use fixed sequence testing (Bauer, 1991) to choose the threshold.220

For a threshold chosen as above, and a selective evaluator operating based on the threshold, given a221

user-defined risk tolerance α and an error level δ, they obtain the guarantee that:222

P(human-model agreement|CLM (x) ≥ λ) ≥ 1− α (1)

holds with probability at least 1− δ. While this statistical guarantee represents a significant advance-223

ment, several challenges remain to be addressed in future work.224

Challenge (Confidence Measure): While the simulated annotators confidence measure introduced225

by Jung et al. (2024) provides a promising approach to calibrating model judgments, its generalization226

capabilities across diverse tasks and domains remain uncertain. As LLMs are deployed in open-world227

environments, confidence scores derived from context-limited simulations may fail to capture the228

full variability of real-world queries. As shown in Fig. 2, the performance of the same confidence229

measure can vary substantially depending on the calibration set used. Moreover, the effectiveness of230

this measure in scenarios with highly technical or specialized content—where even human annotators231

might disagree significantly—requires further investigation. Future work should explore adaptive232
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confidence measures that dynamically adjust to task complexity and domain-specific characteristics,233

potentially incorporating domain knowledge and uncertainty quantification techniques.234

Challenge (Calibration Set): The statistical guarantees provided by the framework rely critically235

on the assumption that the calibration set is representative of the distribution encountered during236

deployment (Malinin et al., 2021; Gui et al., 2024). In real-world scenarios, however, user queries237

may differ significantly from those in the calibration set—both in linguistic style and semantic content.238

This distributional shift jeopardizes the reliability of the estimated risk and its upper bound, leading239

to a potential mismatch between theoretical guarantees and practical performance. Future research240

should explore robust calibration methods that remain valid under distribution shifts, potentially241

incorporating concepts from domain adaptation, transfer learning, and human performance modeling242

to continuously update calibration parameters in response to evolving environments.243

Challenges in Transparency and Adaptability: While the the previous works introduce promising244

statistical tools for alignment guarantees, the foundational underpinnings of these methods remain245

insufficiently examined. The effectiveness of current frameworks hinges on several assumptions246

that are often unverifiable or oversimplified in practice—such as the generalizability of confidence247

measures across domains, the monotonic behavior of empirical risk bounds, and the representativeness248

of calibration sets relative to deployment conditions (Angelopoulos and Bates, 2021). When these249

assumptions are violated—as is often the case in real-world settings—the guarantees provided become250

difficult to interpret, unreliable to uphold, and potentially misleading. This lack of clarity in the251

statistical foundation obscures the true meaning of alignment risk estimates and complicates their252

communication to developers, users, and regulators. Furthermore, in practice, different applications253

of LLMs impose distinct requirements on risk tolerance, abstention behavior, and evaluation criteria.254

Therefore, a key challenge lies in designing adaptive statistical guarantee frameworks that can255

be tuned to different tasks—whether through configurable risk parameters, dynamic confidence256

thresholds, or domain-specific calibration strategies. Without this adaptability, even well-calibrated257

guarantees risk being either too permissive in high-stakes settings or overly restrictive in low-stakes258

applications, ultimately limiting their real-world usability.259

4 Future: A transparent and adaptable guarantee framework260

To advance the interpretability and real-world applicability of human–LLM alignment guarantees, we261

advocate for the development of transparent and adaptable statistical frameworks. These directions262

aim not only to enhance the technical rigor of evaluation methods but also to ensure that alignment263

guarantees are trustworthy, interpretable, and practically deployable across diverse tasks and domains.264

4.1 Transparency265

Transparency is a prerequisite for trust—particularly in high-stakes applications where the con-266

sequences of model misalignment may be severe (Afroogh et al., 2024). While recent methods267

provide formal alignment guarantees, the internal mechanics, assumptions, and limitations of these268

frameworks are often opaque to both practitioners and end-users. We argue that statistical guarantees269

for alignment must not only be valid, but also interpretable and auditable. To achieve this, future270

frameworks should offer four essential pillars.271

First, explicit decomposition of guarantee components is critical for demystifying the statistical272

machinery behind alignment evaluation. Each guarantee should be broken down into interpretable273

elements that explain its construction and function (Wei et al., 2024). This includes detailing how274

confidence scores are computed, how decision thresholds are selected to balance precision and275

coverage and how risk metrics—such as empirical disagreement rates or abstention-adjusted error276

bounds—are calculated. Furthermore, the abstention mechanism itself should be clearly explained,277

outlining when and why the model chooses to abstain, and what that implies for the overall evaluation278

coverage. Making these elements modular and transparent not only enhances trust but also facilitates279

debugging, tuning, and context-specific adaptation by downstream users (Wang et al., 2025a).280

Second, any meaningful statistical guarantee must be accompanied by a clear articulation of its281

assumptions and scope of validity. Guarantees are only as strong as the premises on which they282

rest (Li et al., 2024a). Therefore, the framework must explicitly state the assumptions made about the283

data—such as the independence and identically distributed nature of calibration and test samples, the284
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representativeness of human preference annotations, or the reliability of confidence measures across285

input types. Additionally, assumptions about the model—such as the monotonicity of risk-confidence286

relationships or the correctness of label predictions—should be clearly noted. Where appropriate,287

the framework should specify for which domains, input styles, or task settings the guarantees are288

valid, and include warnings or diagnostics when these conditions are likely violated (e.g., due to289

distribution shift (Chopra et al., 2024), adversarial inputs (Chaudhary et al., 2025), or semantic290

ambiguity (Chaudhary et al., 2024)). This clarity is essential to avoid a false sense of security in291

settings where the guarantees may no longer be valid.292

Third, human-interpretable reporting is indispensable for bridging the gap between technical293

precision and user-facing clarity. Statistical guarantees should be communicated in formats that294

facilitate understanding, decision-making, and trust (Wei et al., 2024). This involves translating295

formal quantities—such as confidence levels, coverage percentages, and upper bounds on alignment296

error—into natural language summaries that explain what these numbers mean in practice (Dubois297

et al., 2023; Lin and Chen, 2023). For example, rather than stating that "the upper bound on empirical298

disagreement is 0.05", the system could report that "the model is expected to agree with human299

preferences at least 95% of the time when confident". Visualization tools such as risk-vs-coverage300

curves (Ao et al., 2023), abstention frequency histograms (Tayebati et al., 2025), or error calibration301

plots can further enhance comprehension. Additionally, contextual explanations that clarify why the302

model abstained or flagged uncertainty in a particular instance can empower users to make informed303

judgments, especially in domains such as medicine or law where interpretability is non-negotiable.304

Finally, to support transparency at the ecosystem level, auditable and reproducible evaluation pro-305

cesses must be a cornerstone of any guarantee framework. This requires that the entire pipeline—from306

data collection and calibration to risk computation and threshold selection—be open to inspection,307

verification, and reuse. Practically, this means releasing detailed descriptions (or ideally open-source308

code) of how calibration datasets were sampled and processed (Yao et al., 2024), how risk statistics309

were computed (Tayebati et al., 2025), and how decision thresholds were derived (Sarmah et al.,310

2024). Evaluation tools should be modular and version-controlled, enabling consistent application311

across models and tasks while allowing traceability over time. Furthermore, when statistical claims312

are made—such as "the model meets a 95% alignment threshold"—external auditors should be able313

to reproduce the result from public artifacts. This level of transparency is essential not only for314

academic reproducibility, but also for regulatory oversight and responsible deployment in sensitive315

environments (Machado, 2025).316

4.2 Adaptability317

An adaptable statistical guarantee framework must be capable of responding to the diverse and318

evolving demands of real-world deployment contexts (Badawi et al., 2025). Unlike fixed, one-319

size-fits-all approaches, adaptability requires a framework that can be tuned to domain-specific320

constraints, task complexity, and operational realities. We identify the following characteristics of321

such a framework.322

First, a statistically grounded guarantee framework should be task-specific and configurable. Align-323

ment requirements and acceptable error rates vary substantially across use cases—what constitutes a324

tolerable mistake in a casual chatbot may be completely unacceptable in a clinical decision-support325

system (Kumar et al., 2025). Consequently, evaluation pipelines must offer control over key pa-326

rameters such as abstention thresholds, acceptable risk bounds, and confidence thresholds. These327

parameters should not be hard-coded, but rather dynamically configurable based on the risk sensitivity328

of the task, its user base, or the deployment environment (Gallego, 2024). For example, an application329

in legal reasoning may demand a very low risk of misalignment with authoritative interpretations,330

justifying a high abstention rate; meanwhile, a creative writing assistant might prioritize broader331

coverage and fluency over strict alignment with normative content. An adaptable framework should332

allow such trade-offs to be explicitly set and monitored.333

Beyond static configuration, alignment guarantee should also be context-aware—that is, sensitive334

to the semantic, social, and operational context in which the LLM is operating. Context-awareness335

includes the ability to incorporate auxiliary metadata, user roles (Sundaram et al., 2024), domain-336

specific knowledge (Zhao et al., 2024), or even prompt uncertainty (Martinson et al., 2025) into the337

evaluation logic. For instance, a system responding to novice users in educational settings might338

weight helpfulness and clarity more heavily than technical correctness, while the reverse may apply339

in scientific or engineering contexts. Guarantee criteria might also vary depending on input types340
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Figure 3: An example of the guarantee framework (Jung et al., 2024) with more transparent and
adaptable components.

(e.g., structured queries vs. free-form dialogue) or user intent (e.g., exploratory vs. authoritative341

use). By embedding contextual signals into both risk estimation and abstention logic, the guarantee342

framework can become more aligned with the practical demands of different usage settings.343

A major threat to the stability of statistical guarantees is distribution shift on calibration set. Therefore,344

adaptability also requires that the framework be robust to domain shift. Most existing methods345

assume that the calibration set used to construct statistical guarantees is representative of the de-346

ployment distribution—a condition that is rarely sustained in practice (Liu et al., 2024). A truly347

adaptable framework should include mechanisms to detect and respond to such shifts. This might348

involve monitoring model confidence drift, estimating divergence between calibration and live input349

distributions, or leveraging techniques from transfer learning and domain adaptation to re-calibrate350

guarantees in situ. Incorporating human-in-the-loop feedback, either through active learning (Goel351

et al., 2025) or post-deployment auditing (Cherian and Candès, 2024), can also help maintain the352

validity of guarantees over time. Without this robustness, statistical guarantees risk becoming brittle353

and misleading as models are deployed in new or evolving environments.354

Finally, to support scalability and long-term usability, the guarantee framework should be composable355

and extensible. This means it should be modular in design, allowing components such as confidence356

estimation, calibration logic, and risk computation to be reused, replaced, or improved independently.357

Such modularity facilitates integration with different LLM architectures, evaluation settings, and358

interface modalities. It also enables researchers and practitioners to extend the framework—e.g.,359

by incorporating new types of uncertainty quantification, social value priors, or hybrid human-AI360

judgment protocols—without requiring a complete system overhaul. A composable framework361

encourages experimentation and evolution, making it more likely to remain relevant as alignment362

research and model capabilities progress.363

4.3 An example364

Fig. 3 illustrates an enhanced version of the statistical guarantee framework introduced by Jung365

et al. (2024), enriched with explicit transparency and adaptability across its core components. The366

framework operates by assessing whether a judge model is confident enough—based on a confidence367

measure C(x)—to make a reliable preference judgment between different generations. A prediction368

is only accepted if the confidence exceeds a threshold λ, thereby invoking a formal guarantee: with369

high probability 1− δ, the probability of agreement with human preferences is at least 1− α. This370

process ensures that the selected threshold satisfies the desired risk tolerance α under controlled371

sampling variability δ, thus grounding the guarantee in observable empirical data.372

This refined schematic highlights how each component of the evaluation pipeline—ranging from373

confidence estimation to risk quantification—can be made both transparent and adaptable. Trans-374
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parency is ensured through the explicit decomposition of evaluation elements, including the source375

and calibration of confidence scores, the construction of risk bounds, and the role of the empirical376

calibration set. Assumptions are made visible, such as the expected generalization behavior and the377

statistical relationship between confidence and error.378

At the same time, adaptability is introduced through user-configurable parameters that tailor the379

framework to specific deployment scenarios. The confidence measure can be domain- and input-380

dependent, dynamically refined, and robust to distribution shifts. The confidence threshold λ is381

adjustable based on desired abstention or coverage, while the risk tolerance α can be adjusted in382

accordance with task sensitivity. These dimensions collectively allow the framework to be customized383

for diverse applications—from high-stakes decision-making to exploratory human–AI interaction.384

Together, these enhancements make the alignment guarantee framework not only more interpretable385

and auditable for developers and evaluators, but also significantly more practical for real-world,386

context-sensitive deployment.387

5 Discussion388

To address the challenges of subjectivity, inconsistency, and low inter-rater reliability in human389

evaluation (Binns et al., 2018; Chang et al., 2024), the proposed framework centers on the explicit390

decomposition of statistical guarantee components and human-interpretable reporting. This involves391

systematically modeling and exposing the uncertainties associated with both LLM predictions and392

human preference annotations—such as variability in annotator agreement or instability in model393

outputs. By breaking down the guarantee into its constituent parts (e.g., confidence scores, abstention394

thresholds, empirical risk bounds), the framework makes transparent what is being guaranteed, under395

which assumptions (e.g., representativeness of the calibration set), and where the limitations lie396

(e.g., under distribution shift or in edge cases). This transparency enhances interpretability not397

only for developers and model evaluators, but also for downstream stakeholders—particularly in398

sensitive domains where trust and accountability are essential. At the same time, the framework399

improves scalability (Li et al., 2023) by embedding statistical guarantees within LLM-based evaluation400

pipelines. Rather than relying on extensive human annotation for every deployment setting, it401

leverages a compact human-labeled calibration set to compute risk bounds, enabling consistent reuse402

of calibration, evaluation, and abstention logic across multiple tasks. This significantly reduces the403

dependence on costly, large-scale manual annotation.404

In response to the limitations of LLM-based evaluation and the fragility of current statistical guarantee405

frameworks, the design incorporates transparent and adaptable components, selective evaluation,406

and robustness to calibration set shift (Malinin et al., 2021) as foundational principles. Given that407

LLM-based evaluators inevitably inherit biases—such as positional or stylistic preferences—from the408

underlying models they are built upon (Farquhar et al., 2024), the framework allows for user-defined409

risk tolerances and abstention criteria to adapt the evaluation process to specific task requirements, risk410

levels, and fairness considerations. Additionally, it introduces mechanisms for dynamic adjustment411

of guarantees based on the quality and characteristics of the calibration data, as well as detection412

of distributional drift between calibration and deployment inputs (Angelopoulos and Bates, 2021).413

This adaptive architecture ensures that alignment guarantees remain both valid and meaningful414

when applied to diverse real-world conditions, from high-stakes professional domains to more415

flexible consumer applications. Taken together, these elements form a robust, interpretable, and416

scalable foundation for alignment guarantee—capable of supporting both principled assessment and417

responsible deployment of LLMs.418

6 Conclusion419

In this position paper, we argued that ensuring reliable and trustworthy human–LLM alignment420

requires more than formal guarantees—it demands frameworks that are transparent in construction421

and adaptable to diverse deployment scenarios. We examined the limitations of current human- and422

LLM-based evaluation methodologies, as well as recent statistical guarantee approaches. To address423

these challenges, we argued for a principled framework that decomposes guarantees into modular424

components, clarifies assumptions, enables human-interpretable reporting, and supports task-specific425

configuration. By embedding transparency and adaptability as core design goals, we aim to bridge426

the gap between statistical rigor and real-world usability, advancing alignment evaluation methods427

that are not only technically sound but also socially accountable and practically implementable.428
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A Confidence measures619

To calibrate when to trust each model’s judgment, Jung et al. (2024) introduces simulated annotators620

confidence measure. This method simulates multiple human-like preferences to improve the cali-621

bration of the model’s confidence estimation, ensuring that its evaluations are reliable and aligned622

with human preferences. For a given test instance x, and its associated preference labels y ∈ Y (e.g.,623

a1 or a2 being preferred), the model calculates the probability PLM (y|x) of each possible outcome624

(i.e., the preference label y). The model is given a few (K) examples of preferences provided by625

simulated annotators. These are used as context for the model’s decision-making. The model is then626

prompted to predict a preference label based on this context, for a total of N different simulations627

(i.e., simulating N different annotators). Each simulated annotator produces a prediction for the628

preference label. Then, the simulated annotators confidence measure is defined as629

CLM (x) = max
y

1

N

N∑
j=1

PLM (y|x; (x1,j , y1,j), · · · , (xK,j , yK,j)), (2)

where (x1,j , y1,j), · · · , (xK,j , yK,j) are K examples of preferences provided by j-th simulated630

annotator. Specifically, the confidence measure is the average probability over all simulated annotators’631

predictions for the preference label. If the simulated annotators agree, the confidence measure is high;632

if they disagree, the confidence is lower.633

The predictive probability confidence measure was proposed by Geifman and El-Yaniv (2017) in634

selective classification, it represents the probability assigned by LLM to its predicted label.635

The code and original data for AlpacaEva were obtained from: https://github.com/636

jaehunjung1/cascaded-selective-evaluation.637

In addition, we collected 500 supplementary records from AlpacaEval (Li et al., 2023), which have638

also been made available in the uploaded material.639
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