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Abstract

As Large Language Models (LLMs) become increasingly embedded in critical do-
mains such as healthcare, education, and public services, ensuring their alignment
with human values and intentions is of paramount importance. Misalignment in
these contexts can lead to significant harm, underscoring the urgent need for rigor-
ous, interpretable, and actionable evaluation methods. This position paper provides
a critical examination of the current landscape of human—LLM alignment evalua-
tion, with a particular focus on statistical guarantees in human annotation-based
and LLM-based approaches. We identify key limitations in existing methodologies
and advocate for the development of more transparent, interpretable, and
adaptable frameworks for alignment guarantees. At the heart of our inquiry
are two foundational questions: What constitutes a transparent foundation for
alignment guarantees? And how can such guarantees be made operational and
responsive to real-world conditions? We conclude by outlining future directions
for designing alignment guarantee frameworks that are not only technically sound
and transparent, but also socially attuned and practically adaptable.

1 Introduction

Large language models are increasingly integrated into real-world applications, from chat assistants
to decision-support systems (OpenAl, 2024; Lin and Chen, 2023). However, ensuring that these
models align with human values, preferences, and expectations has emerged as a central challenge
(Dubois et al., 2023). This alignment—the degree to which LLM outputs match human expectations
and values—represents both a technical and societal frontier in Al research.

Traditionally, the evaluation of LLM alignment has relied heavily on human judgments (Taori et al.,
2023). While human-based annotation protocols offer direct insights into model-human agreement,
they suffer from well-documented limitations, including subjectivity, limited diversity of annotators,
poor inter-rater reliability, and high cost (Wu et al., 2023). Recent work has introduced more structured
human evaluation protocols—such as pairwise comparisons and Elo-style rating systems—which
offer greater statistical stability (Zheng et al., 2023; Dettmers et al., 2023), but do not resolve issues
of scalability or systemic bias.

In parallel, the emergence of LLM-based evaluation has opened up promising new directions (Chiang
and Lee, 2023). These approaches leverage LLMs themselves as evaluators, enabling scalable and
cost-effective assessments across a range of tasks. However, they also come with significant limita-
tions. Evaluator models are prone to positional and stylistic biases, self-enhancement effects, and
susceptibility to subtle prompt manipulations (Wang et al., 2023a; Thakur et al., 2024). Moreover, as
LLM-based evaluation inherits the limitations of its underlying models, it raises deep epistemological
concerns about circularity, bias amplification, and the validity of using imperfect judges to evaluate
other imperfect systems (Xiong et al., 2023).
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To overcome these limitations, researchers have
recently begun introducing statistical guaran-
tees into alignment evaluation—borrowing tools
from conformal prediction (Angelopoulos et al.,
2022), PAC-style analysis (Jung et al., 2024),
and risk calibration. These methods aim to for-
malize notions of alignment risk, abstention con-
fidence, and human agreement, allowing for in-
terpretable, probabilistic control over evaluation
quality. However, despite these promising ad-
vances, current statistical approaches still face
limitations in terms of generalization, robustness
under distribution shift (Mohri and Hashimoto,
2024), interpretability for practitioners, and flex-
ibility for different domains.
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Figure 1: This figure illustrates a conceptual

framework for generating statistical alignment
guarantees that are both transparent and adaptable.
The framework accounts for two primary sources
of uncertainty: model uncertainty and human pref-
erence uncertainty. These uncertainties are mod-

eled with both transparent components—such as
calibration sets and empirical risk estimation—and
adaptable elements, including task-specific uncer-
tainty measures and tunable hyper-parameters. By
integrating statistical tools with user-defined risk
parameters, the framework yields formal guaran-
tees on human—model agreement.

This position paper advocates for a more
transparent, interpretable, and adaptive sta-
tistical foundation for human-LLM align-
ment evaluation. By transparent, we refer not
only to the availability of formal guarantees, but
also to the clarity with which their underlying
components, assumptions, and limitations are
communicated to users. A transparent frame-
work should enable practitioners—and, where relevant, the public—to understand exactly what is
being guaranteed (e.g., risk bounds, abstention criteria), under what conditions those guarantees
hold (e.g., calibration set representativeness, model stability), and where the limits of validity lie
(e.g., distribution shift, model uncertainty). By adaptive, we refer to the framework’s capacity to
accommodate task-specific requirements, user-defined risk tolerances, and domain variability. An
adaptive statistical foundation should allow for dynamic calibration and parameterization (e.g., adjust-
ing confidence thresholds or risk levels) to align with the practical demands and constraints of diverse
deployment scenarios. Our central claim is that without transparent and adaptive statistical guarantees,
alignment evaluations will remain fragmented, difficult to validate, and potentially misleading in
real-world use. To structure our discussion, we pose two foundational questions:

* Transparency: what constitutes a transparent and principled foundation for alignment
guarantees?

* Adaptability: how can such guarantees be made operational—measurable, interpretable,
and responsive to real-world deployment conditions?

We analyze existing evaluation methodologies (Sec. 2), review recent developments in statistical
alignment guarantees (Sec. 3), and identify conceptual and practical gaps that persist. Finally, in
Sec. 4, we argue that designing alignment guarantee frameworks with transparent and adaptable
components is essential—not only for ensuring technical soundness, but also for fostering social trust,
regulatory compliance, and safe deployment of generative models in high-stakes settings.

2 Existing evaluation methodologies

2.1 Human-based evaluation

Human-AI alignment evaluation has long been a central topic of study, early human evaluation
frameworks adopted ordinal classification schemes, where annotators assigned responses to predefined
quality levels. For example, Wang et al. (2022); Wu et al. (2023) used a four-point scale: acceptable,
minor errors, major errors, and unacceptable. However, these categorical approaches suffer from
substantial subjectivity, as evidenced by poor inter-annotator agreement in prior studies (Kalpathy-
Cramer et al., 2016), highlighting the difficulty of applying rigid evaluation criteria to nuanced and
context-dependent language outputs.
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To mitigate these limitations, Taori et al. (2023) proposed a pairwise comparison protocol, where
annotators judge which of two model responses is superior. This relative evaluation format reduces
cognitive load and improves annotation consistency. Building on this, recent work such as Zheng
et al. (2023); Dettmers et al. (2023) incorporates Elo rating systems, originally developed for ranking
chess players, to dynamically assess model performance. In these systems, model scores are updated
iteratively based on pairwise “wins” and “losses,” enabling statistically robust comparisons across
multiple LLMs.

More recently, human-based evaluation has advanced beyond static taxonomies and simple compar-
isons through the use of fine-grained rubrics and context-aware annotations. For instance, Fan et al.
(2025) introduced SedarEval, a rubric-driven framework where task-specific rubrics are automatically
constructed from prompts and refined through human judgment. In the safety domain, Xie et al.
(2025) developed SORRY-bench, a large-scale corpus of over 7,000 human-annotated refusal cases,
emphasizing diversity and inter-annotator agreement to assess LLM safety behavior. Arabzadeh
and Clarke (2025) benchmarked LL.M-generated judgments against expert relevance assessments in
TREC RAG tasks, demonstrating the advantage of hybrid human—machine adjudication over fully
automated metrics. Additionally, Yu et al. (2025a) proposed RPGBENCH, where humans interact
with LLMs in role-playing scenarios to evaluate their behavioral consistency and narrative plausibility.
Collectively, these works reflect a clear shift toward context-rich, trait-grounded human evaluation
paradigms that more accurately capture the complexity of aligning LLMs with human expectations.

Through these progressive refinements in human evaluation protocols, the field has evolved toward
more reliable and systematic assessment methodologies. However, several key challenges remain.

Challenge (Subjectivity): Human-based alignment evaluation is inherently subjective (Binns et al.,
2018; Chang et al., 2024), often reflecting narrow cultural or demographic biases due to limited anno-
tator diversity. This can skew alignment objectives and marginalize underrepresented perspectives.
Moreover, a preference articulation gap—the mismatch between evaluators’ intentions and how they
score—introduces noise, as annotators may struggle to express preferences clearly or rationalize them
inconsistently. Evolving social norms further complicate evaluation, making human preferences a
moving target. Finally, conflicts between expert and general-user priorities—such as accuracy versus
empathy—raise unresolved questions about whose preferences should define alignment.

Challenge (Scalability): Human evaluations face serious scalability constraints (Li et al., 2023).
Recruiting and compensating annotators is costly, limiting coverage across use cases and depth in
rare scenarios. As LLMs evolve rapidly, manual evaluations struggle to keep pace, often becoming
outdated before deployment. The vast space of possible inputs makes exhaustive testing infeasible,
especially for rare but critical failures. Additionally, annotator fatigue and limited domain expertise
reduce evaluation quality over time, highlighting the need for more scalable, systematic alternatives.

2.2 LLM-based evaluation

While human evaluation provides high-quality insights, it faces well-known challenges in terms of
scalability, efficiency, and cost. At the same time, the increasing fluency of LLMs has made it difficult
for annotators to reliably distinguish between human- and model-generated text in open-ended tasks
(Clark et al., 2021), prompting growing interest in using LLMs themselves as evaluators.

LLM-based evaluation approaches vary in design. Some extend traditional reference-based metrics by
prompting LLMs to generate multiple paraphrased references, thereby expanding evaluation coverage
(Tang et al., 2023). However, such methods still rely on at least one human-written reference. More
recent reference-free approaches have emerged, where LLMs are prompted to directly assess response
quality using task descriptions and evaluation rubrics (Liu et al., 2023; Fu et al., 2023; Chen et al.,
2023; Chiang and Lee, 2023). These methods have been adapted to tasks such as summarization
(Gao et al., 2023), code generation (Zhuo, 2023), open-ended QA (Bai et al., 2023), and dialogue
evaluation (Lin and Chen, 2023), with prompt engineering enabling multi-dimensional assessments
over quality, coherence, and factuality (Fu et al., 2023; Lin and Chen, 2023). Factuality remains a core
focus of LLM-based evaluation. Studies have assessed factual correctness using both closed-source
and open-source models (Min et al., 2023; Zha et al., 2023). Building on the success of human-based
pairwise evaluation, models like GPT-4 have been used to conduct direct comparisons between
candidate outputs (Dubois et al., 2023; Zheng et al., 2023).
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Despite promising results, LLM-based evaluators exhibit notable biases. Wang et al. (2023a) observed
positional bias, where models favor the first option regardless of content quality; mitigation strategies
include candidate shuffling and chain-of-thought prompting. Wu and Aji (2023) reported that LLM
judges often over-penalize grammatical issues and brevity while overlooking factual inaccuracies.
To address this, a multi-dimensional Elo system has been proposed to separately score accuracy,
helpfulness, and fluency. Zheng et al. (2023) also identified self-enhancement bias, where models
tend to favor their own outputs. Remedies include randomized candidate positioning, exemplar
conditioning, and reasoning-enhanced prompting.

Although LLMs like GPT-4 can match human raters in accuracy (Dubois et al., 2024; Li et al., 2024b),
their use raises concerns about cost and bias. To improve efficiency and interpretability, researchers
have explored judge model distillation (Kim et al., 2024; Zhu et al., 2023), peer review ensembles
(Verga et al., 2024), and multi-agent debate systems (Chan et al., 2023). Still, most of these methods
lack formal guarantees of reliability. Emerging studies further reveal that LLM judges are susceptible
to cognitive and stylistic biases (Zeng et al., 2023; Koo et al., 2023; Panickssery et al., 2024), calling
into question their robustness and generalizability. To address privacy and accessibility concerns
associated with closed-source evaluators, Wang et al. (2023b) developed PandalLM, a fine-tuned
LLaMA-7B model which achieves evaluation quality comparable to GPT-3.5 and GPT-4.

Recently, Wang et al. (2025b) proposed OpenForecast, where LLMs perform both forecasting and
evaluation using retrieval-augmented prompts—eliminating the need for human-written references.
Yu et al. (2025b) introduced xFinder, a unified interface for summarization and translation evaluation
using instruction-tuned LLMs to assess fluency, adequacy, and factuality with improved human
agreement. Badshah and Sajjad (2025) developed DAFE, a confidence-aware ensemble of multiple
LLM judges. Cao et al. (2025) proposed the Multi-Agent LLM Judge, which assigns distinct personas
to LLMs to support personalized, context-sensitive evaluations across traits such as coherence,
specificity, and style. While such LLLM-based evaluation methods represent substantial progress,
several critical challenges remain for future investigation.

Challenge (Echo Chamber Effects): Using LLMs to evaluate other LLMs introduces circular
reference problems that complicate alignment evaluation (Wataoka et al., 2024). When models
evaluate outputs similar to what they might generate themselves, they often exhibit biases toward
familiar patterns and approaches (Bommasani et al., 2023). The evaluating model itself may have
alignment issues, creating a recursive problem of determining who evaluates the evaluators. Small
changes in evaluation prompts can dramatically shift model judgments, raising questions about the
stability of LLM-based evaluation methods. Judge models may show inconsistent calibration across
different contexts, being overconfident in some domains and under-confident in others. Perhaps most
concerning is the potential for bias amplification—when judge models with subtle biases are used to
evaluate and train new models, these biases may be reinforced through successive iterations, creating
problematic feedback loops in alignment systems that rely on model-based evaluation.

Challenge (Inherent Uncertainty): LLM-based alignment evaluation is fundamentally limited
by the model’s own epistemic and aleatoric uncertainties (Farquhar et al., 2024). As evaluators,
LLMs generate preference judgments based on patterns learned from data, but lack true grounding
or access to objective truth. This introduces epistemic uncertainty, especially in out-of-distribution
or ambiguous cases where the model’s internal representations are unreliable. In addition, aleatoric
uncertainty arises when the evaluation instruction itself admits multiple reasonable interpretations,
causing variability in outputs across different runs or prompts. Without principled mechanisms to
quantify and communicate these uncertainties, model-generated evaluations may project a false sense
of confidence, undermining their trustworthiness. This challenge is further exacerbated when such
evaluations are used in downstream systems to guide training decisions, as unrecognized uncertainty
can propagate misaligned updates and erode human trust in alignment processes.

3 Existing statistical guarantee for alignment

To address the limitations of prior human- and LLM-based methods, recent research has increasingly
turned to enhancing LLMs with rigorous statistical guarantees aimed at controlling risk in high-stakes
applications. Notable efforts include reducing hallucination rates in factual generation tasks (Yadkori
et al., 2024; Mohri and Hashimoto, 2024) and controlling false discovery rates in medical decision-
making (Gui et al., 2024). These approaches frequently leverage conformal methods (Angelopoulos
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Figure 2: Reliability plot for confidence estimation methods (left: predictive probability measure;
right: simulated annotators measure), using GPT-4 as judge on the data from Jung et al. (2024)
( ) and additional 500 records from AlpacaEval (Li et al., 2023). Horizontal axis
represents the estimated LLM confidence, vertical axis represents the rate of human-LLM agreement,
and dashed lines denote perfect calibration. More experimental details are given in Appendix A.

et al., 2022), which provide marginal control over prescribed risks. Complementary work has
investigated fine-tuning objectives for LLMs to improve truthfulness (Kang et al., 2024; Tian et al.,
2023) or to enable appropriate abstention when knowledge is insufficient (Zhang et al., 2024).

Notably, Yadkori et al. (2024) introduces a principled method to reduce hallucinations (enhance
alignment) in LLMs by employing a conformal prediction-based abstention mechanism. The authors
propose leveraging the LLM itself to evaluate the consistency among multiple responses generated
for a given query, thereby measuring model uncertainty. Based on this uncertainty, their approach
decides whether the model should respond or abstain, providing rigorous theoretical guarantees on
limiting the rate of hallucinations. Mohri and Hashimoto (2024) also integrates conformal prediction
into LLMs to ensure high-probability correctness guarantees for generated outputs. The authors
conceptualize the correctness of an LLM’s output as an uncertainty quantification problem, where
each output corresponds to an entailment-based uncertainty set. By progressively "backing off" or
making outputs less specific based on uncertainty estimates, the proposed method ensures that model
outputs meet user-specified correctness levels with rigorous statistical guarantees.

Building on these foundations, Jung et al. (2024) extends them by developing an unsupervised
confidence measure and establishing an exact upper bound on disagreement risk conditional on
calibration set. Rather than issuing a decision unconditionally, the framework introduces a selective
evaluation mechanism: the LLM makes a judgment only when it is sufficiently confident in its
preference. This confidence is quantified by the confidence measure Cr,ps () for each input z, and a
prediction is accepted if and only if the confidence exceeds a predefined threshold \; otherwise, the
model abstains.

Jung et al. (2024) frames the selection of A as a multiple hypothesis testing problem. Given access
to a small calibration set of human preferences, they measure the empirical risk of disagreeing
with humans when using threshold A. Since the empirical risk follows a binomial distribution, they
compute the exact (1 — §) upper confidence bound of the risk. The risk tends to increase as A
decreases, allowing to use fixed sequence testing (Bauer, 1991) to choose the threshold.

For a threshold chosen as above, and a selective evaluator operating based on the threshold, given a
user-defined risk tolerance « and an error level J, they obtain the guarantee that:

P(human-model agreement|C s (z) > \) > 1 -« (1)

holds with probability at least 1 — §. While this statistical guarantee represents a significant advance-
ment, several challenges remain to be addressed in future work.

Challenge (Confidence Measure): While the simulated annotators confidence measure introduced
by Jung et al. (2024) provides a promising approach to calibrating model judgments, its generalization
capabilities across diverse tasks and domains remain uncertain. As LLMs are deployed in open-world
environments, confidence scores derived from context-limited simulations may fail to capture the
full variability of real-world queries. As shown in Fig. 2, the performance of the same confidence
measure can vary substantially depending on the calibration set used. Moreover, the effectiveness of
this measure in scenarios with highly technical or specialized content—where even human annotators
might disagree significantly—requires further investigation. Future work should explore adaptive
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confidence measures that dynamically adjust to task complexity and domain-specific characteristics,
potentially incorporating domain knowledge and uncertainty quantification techniques.

Challenge (Calibration Set): The statistical guarantees provided by the framework rely critically
on the assumption that the calibration set is representative of the distribution encountered during
deployment (Malinin et al., 2021; Gui et al., 2024). In real-world scenarios, however, user queries
may differ significantly from those in the calibration set—both in linguistic style and semantic content.
This distributional shift jeopardizes the reliability of the estimated risk and its upper bound, leading
to a potential mismatch between theoretical guarantees and practical performance. Future research
should explore robust calibration methods that remain valid under distribution shifts, potentially
incorporating concepts from domain adaptation, transfer learning, and human performance modeling
to continuously update calibration parameters in response to evolving environments.

Challenges in Transparency and Adaptability: While the the previous works introduce promising
statistical tools for alignment guarantees, the foundational underpinnings of these methods remain
insufficiently examined. The effectiveness of current frameworks hinges on several assumptions
that are often unverifiable or oversimplified in practice—such as the generalizability of confidence
measures across domains, the monotonic behavior of empirical risk bounds, and the representativeness
of calibration sets relative to deployment conditions (Angelopoulos and Bates, 2021). When these
assumptions are violated—as is often the case in real-world settings—the guarantees provided become
difficult to interpret, unreliable to uphold, and potentially misleading. This lack of clarity in the
statistical foundation obscures the true meaning of alignment risk estimates and complicates their
communication to developers, users, and regulators. Furthermore, in practice, different applications
of LLMs impose distinct requirements on risk tolerance, abstention behavior, and evaluation criteria.
Therefore, a key challenge lies in designing adaptive statistical guarantee frameworks that can
be tuned to different tasks—whether through configurable risk parameters, dynamic confidence
thresholds, or domain-specific calibration strategies. Without this adaptability, even well-calibrated
guarantees risk being either too permissive in high-stakes settings or overly restrictive in low-stakes
applications, ultimately limiting their real-world usability.

4 Future: A transparent and adaptable guarantee framework

To advance the interpretability and real-world applicability of human—-LLM alignment guarantees, we
advocate for the development of transparent and adaptable statistical frameworks. These directions
aim not only to enhance the technical rigor of evaluation methods but also to ensure that alignment
guarantees are trustworthy, interpretable, and practically deployable across diverse tasks and domains.

4.1 Transparency

Transparency is a prerequisite for trust—particularly in high-stakes applications where the con-
sequences of model misalignment may be severe (Afroogh et al., 2024). While recent methods
provide formal alignment guarantees, the internal mechanics, assumptions, and limitations of these
frameworks are often opaque to both practitioners and end-users. We argue that statistical guarantees
for alignment must not only be valid, but also interpretable and auditable. To achieve this, future
frameworks should offer four essential pillars.

First, explicit decomposition of guarantee components is critical for demystifying the statistical
machinery behind alignment evaluation. Each guarantee should be broken down into interpretable
elements that explain its construction and function (Wei et al., 2024). This includes detailing how
confidence scores are computed, how decision thresholds are selected to balance precision and
coverage and how risk metrics—such as empirical disagreement rates or abstention-adjusted error
bounds—are calculated. Furthermore, the abstention mechanism itself should be clearly explained,
outlining when and why the model chooses to abstain, and what that implies for the overall evaluation
coverage. Making these elements modular and transparent not only enhances trust but also facilitates
debugging, tuning, and context-specific adaptation by downstream users (Wang et al., 2025a).

Second, any meaningful statistical guarantee must be accompanied by a clear articulation of its
assumptions and scope of validity. Guarantees are only as strong as the premises on which they
rest (Li et al., 2024a). Therefore, the framework must explicitly state the assumptions made about the
data—such as the independence and identically distributed nature of calibration and test samples, the
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representativeness of human preference annotations, or the reliability of confidence measures across
input types. Additionally, assumptions about the model—such as the monotonicity of risk-confidence
relationships or the correctness of label predictions—should be clearly noted. Where appropriate,
the framework should specify for which domains, input styles, or task settings the guarantees are
valid, and include warnings or diagnostics when these conditions are likely violated (e.g., due to
distribution shift (Chopra et al., 2024), adversarial inputs (Chaudhary et al., 2025), or semantic
ambiguity (Chaudhary et al., 2024)). This clarity is essential to avoid a false sense of security in
settings where the guarantees may no longer be valid.

Third, human-interpretable reporting is indispensable for bridging the gap between technical
precision and user-facing clarity. Statistical guarantees should be communicated in formats that
facilitate understanding, decision-making, and trust (Wei et al., 2024). This involves translating
formal quantities—such as confidence levels, coverage percentages, and upper bounds on alignment
error—into natural language summaries that explain what these numbers mean in practice (Dubois
et al., 2023; Lin and Chen, 2023). For example, rather than stating that "the upper bound on empirical
disagreement is 0.05", the system could report that "the model is expected to agree with human
preferences at least 95% of the time when confident". Visualization tools such as risk-vs-coverage
curves (Ao et al., 2023), abstention frequency histograms (Tayebati et al., 2025), or error calibration
plots can further enhance comprehension. Additionally, contextual explanations that clarify why the
model abstained or flagged uncertainty in a particular instance can empower users to make informed
judgments, especially in domains such as medicine or law where interpretability is non-negotiable.

Finally, to support transparency at the ecosystem level, auditable and reproducible evaluation pro-
cesses must be a cornerstone of any guarantee framework. This requires that the entire pipeline—from
data collection and calibration to risk computation and threshold selection—be open to inspection,
verification, and reuse. Practically, this means releasing detailed descriptions (or ideally open-source
code) of how calibration datasets were sampled and processed (Yao et al., 2024), how risk statistics
were computed (Tayebati et al., 2025), and how decision thresholds were derived (Sarmah et al.,
2024). Evaluation tools should be modular and version-controlled, enabling consistent application
across models and tasks while allowing traceability over time. Furthermore, when statistical claims
are made—such as "the model meets a 95% alignment threshold"—external auditors should be able
to reproduce the result from public artifacts. This level of transparency is essential not only for
academic reproducibility, but also for regulatory oversight and responsible deployment in sensitive
environments (Machado, 2025).

4.2 Adaptability

An adaptable statistical guarantee framework must be capable of responding to the diverse and
evolving demands of real-world deployment contexts (Badawi et al., 2025). Unlike fixed, one-
size-fits-all approaches, adaptability requires a framework that can be tuned to domain-specific
constraints, task complexity, and operational realities. We identify the following characteristics of
such a framework.

First, a statistically grounded guarantee framework should be task-specific and configurable. Align-
ment requirements and acceptable error rates vary substantially across use cases—what constitutes a
tolerable mistake in a casual chatbot may be completely unacceptable in a clinical decision-support
system (Kumar et al., 2025). Consequently, evaluation pipelines must offer control over key pa-
rameters such as abstention thresholds, acceptable risk bounds, and confidence thresholds. These
parameters should not be hard-coded, but rather dynamically configurable based on the risk sensitivity
of the task, its user base, or the deployment environment (Gallego, 2024). For example, an application
in legal reasoning may demand a very low risk of misalignment with authoritative interpretations,
justifying a high abstention rate; meanwhile, a creative writing assistant might prioritize broader
coverage and fluency over strict alignment with normative content. An adaptable framework should
allow such trade-offs to be explicitly set and monitored.

Beyond static configuration, alignment guarantee should also be context-aware—that is, sensitive
to the semantic, social, and operational context in which the LLM is operating. Context-awareness
includes the ability to incorporate auxiliary metadata, user roles (Sundaram et al., 2024), domain-
specific knowledge (Zhao et al., 2024), or even prompt uncertainty (Martinson et al., 2025) into the
evaluation logic. For instance, a system responding to novice users in educational settings might
weight helpfulness and clarity more heavily than technical correctness, while the reverse may apply
in scientific or engineering contexts. Guarantee criteria might also vary depending on input types
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Figure 3: An example of the guarantee framework (Jung et al., 2024) with more transparent and
adaptable components.

(e.g., structured queries vs. free-form dialogue) or user intent (e.g., exploratory vs. authoritative
use). By embedding contextual signals into both risk estimation and abstention logic, the guarantee
framework can become more aligned with the practical demands of different usage settings.

A major threat to the stability of statistical guarantees is distribution shift on calibration set. Therefore,
adaptability also requires that the framework be robust to domain shift. Most existing methods
assume that the calibration set used to construct statistical guarantees is representative of the de-
ployment distribution—a condition that is rarely sustained in practice (Liu et al., 2024). A truly
adaptable framework should include mechanisms to detect and respond to such shifts. This might
involve monitoring model confidence drift, estimating divergence between calibration and live input
distributions, or leveraging techniques from transfer learning and domain adaptation to re-calibrate
guarantees in situ. Incorporating human-in-the-loop feedback, either through active learning (Goel
et al., 2025) or post-deployment auditing (Cherian and Candes, 2024), can also help maintain the
validity of guarantees over time. Without this robustness, statistical guarantees risk becoming brittle
and misleading as models are deployed in new or evolving environments.

Finally, to support scalability and long-term usability, the guarantee framework should be composable
and extensible. This means it should be modular in design, allowing components such as confidence
estimation, calibration logic, and risk computation to be reused, replaced, or improved independently.
Such modularity facilitates integration with different LLM architectures, evaluation settings, and
interface modalities. It also enables researchers and practitioners to extend the framework—e.g.,
by incorporating new types of uncertainty quantification, social value priors, or hybrid human-Al
judgment protocols—without requiring a complete system overhaul. A composable framework
encourages experimentation and evolution, making it more likely to remain relevant as alignment
research and model capabilities progress.

4.3 An example

Fig. 3 illustrates an enhanced version of the statistical guarantee framework introduced by Jung
et al. (2024), enriched with explicit transparency and adaptability across its core components. The
framework operates by assessing whether a judge model is confident enough—based on a confidence
measure C(z)—to make a reliable preference judgment between different generations. A prediction
is only accepted if the confidence exceeds a threshold A, thereby invoking a formal guarantee: with
high probability 1 — §, the probability of agreement with human preferences is at least 1 — a. This
process ensures that the selected threshold satisfies the desired risk tolerance o under controlled
sampling variability §, thus grounding the guarantee in observable empirical data.

This refined schematic highlights how each component of the evaluation pipeline—ranging from
confidence estimation to risk quantification—can be made both transparent and adaptable. Trans-
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parency is ensured through the explicit decomposition of evaluation elements, including the source
and calibration of confidence scores, the construction of risk bounds, and the role of the empirical
calibration set. Assumptions are made visible, such as the expected generalization behavior and the
statistical relationship between confidence and error.

At the same time, adaptability is introduced through user-configurable parameters that tailor the
framework to specific deployment scenarios. The confidence measure can be domain- and input-
dependent, dynamically refined, and robust to distribution shifts. The confidence threshold A is
adjustable based on desired abstention or coverage, while the risk tolerance « can be adjusted in
accordance with task sensitivity. These dimensions collectively allow the framework to be customized
for diverse applications—from high-stakes decision-making to exploratory human—Al interaction.

Together, these enhancements make the alignment guarantee framework not only more interpretable
and auditable for developers and evaluators, but also significantly more practical for real-world,
context-sensitive deployment.

5 Discussion

To address the challenges of subjectivity, inconsistency, and low inter-rater reliability in human
evaluation (Binns et al., 2018; Chang et al., 2024), the proposed framework centers on the explicit
decomposition of statistical guarantee components and human-interpretable reporting. This involves
systematically modeling and exposing the uncertainties associated with both LLM predictions and
human preference annotations—such as variability in annotator agreement or instability in model
outputs. By breaking down the guarantee into its constituent parts (e.g., confidence scores, abstention
thresholds, empirical risk bounds), the framework makes transparent what is being guaranteed, under
which assumptions (e.g., representativeness of the calibration set), and where the limitations lie
(e.g., under distribution shift or in edge cases). This transparency enhances interpretability not
only for developers and model evaluators, but also for downstream stakeholders—particularly in
sensitive domains where trust and accountability are essential. At the same time, the framework
improves scalability (Li et al., 2023) by embedding statistical guarantees within LLM-based evaluation
pipelines. Rather than relying on extensive human annotation for every deployment setting, it
leverages a compact human-labeled calibration set to compute risk bounds, enabling consistent reuse
of calibration, evaluation, and abstention logic across multiple tasks. This significantly reduces the
dependence on costly, large-scale manual annotation.

In response to the limitations of LLM-based evaluation and the fragility of current statistical guarantee
frameworks, the design incorporates transparent and adaptable components, selective evaluation,
and robustness to calibration set shift (Malinin et al., 2021) as foundational principles. Given that
LLM-based evaluators inevitably inherit biases—such as positional or stylistic preferences—from the
underlying models they are built upon (Farquhar et al., 2024), the framework allows for user-defined
risk tolerances and abstention criteria to adapt the evaluation process to specific task requirements, risk
levels, and fairness considerations. Additionally, it introduces mechanisms for dynamic adjustment
of guarantees based on the quality and characteristics of the calibration data, as well as detection
of distributional drift between calibration and deployment inputs (Angelopoulos and Bates, 2021).
This adaptive architecture ensures that alignment guarantees remain both valid and meaningful
when applied to diverse real-world conditions, from high-stakes professional domains to more
flexible consumer applications. Taken together, these elements form a robust, interpretable, and
scalable foundation for alignment guarantee—capable of supporting both principled assessment and
responsible deployment of LLMs.

6 Conclusion

In this position paper, we argued that ensuring reliable and trustworthy human—LLM alignment
requires more than formal guarantees—it demands frameworks that are transparent in construction
and adaptable to diverse deployment scenarios. We examined the limitations of current human- and
LLM-based evaluation methodologies, as well as recent statistical guarantee approaches. To address
these challenges, we argued for a principled framework that decomposes guarantees into modular
components, clarifies assumptions, enables human-interpretable reporting, and supports task-specific
configuration. By embedding transparency and adaptability as core design goals, we aim to bridge
the gap between statistical rigor and real-world usability, advancing alignment evaluation methods
that are not only technically sound but also socially accountable and practically implementable.
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A Confidence measures

To calibrate when to trust each model’s judgment, Jung et al. (2024) introduces simulated annotators
confidence measure. This method simulates multiple human-like preferences to improve the cali-
bration of the model’s confidence estimation, ensuring that its evaluations are reliable and aligned
with human preferences. For a given test instance x, and its associated preference labels y € ) (e.g.,
ay or as being preferred), the model calculates the probability Py, 5 (y|x) of each possible outcome
(i.e., the preference label y). The model is given a few (/) examples of preferences provided by
simulated annotators. These are used as context for the model’s decision-making. The model is then
prompted to predict a preference label based on this context, for a total of IV different simulations
(i.e., simulating NV different annotators). Each simulated annotator produces a prediction for the
preference label. Then, the simulated annotators confidence measure is defined as

N
1
Crm(z) = max D Pear(ylas (vg,515)s 5 (@, vics)), ()
j=1
where (z1,5,y1,), -, (TK,j,YK,;) are K examples of preferences provided by j-th simulated

annotator. Specifically, the confidence measure is the average probability over all simulated annotators’
predictions for the preference label. If the simulated annotators agree, the confidence measure is high;
if they disagree, the confidence is lower.

The predictive probability confidence measure was proposed by Geifman and El-Yaniv (2017) in
selective classification, it represents the probability assigned by LLM to its predicted label.

The code and original data for AlpacaEva were obtained from: https://github.com/
jaehunjungl/cascaded-selective-evaluation.

In addition, we collected 500 supplementary records from AlpacaEval (Li et al., 2023), which have
also been made available in the uploaded material.
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