
Evaluating Human–LLM Alignment Requires Transparent and Adaptable Statistical Guarantees

Anonymous Author(s)

Affiliation

Address

email

Abstract

As Large Language Models (LLMs) become increasingly embedded in critical domains such as healthcare, education, and public services, ensuring their alignment with human values and intentions is of paramount importance. Misalignment in these contexts can lead to significant harm, underscoring the urgent need for rigorous, interpretable, and actionable evaluation methods. This position paper provides a critical examination of the current landscape of human–LLM alignment evaluation, with a particular focus on statistical guarantees in human annotation-based and LLM-based approaches. We identify key limitations in existing methodologies and **advocate for the development of more transparent, interpretable, and adaptable frameworks for alignment guarantees**. At the heart of our inquiry are two foundational questions: What constitutes a transparent foundation for alignment guarantees? And how can such guarantees be made operational and responsive to real-world conditions? We conclude by outlining future directions for designing alignment guarantee frameworks that are not only technically sound and transparent, but also socially attuned and practically adaptable.

1 Introduction

Large language models are increasingly integrated into real-world applications, from chat assistants to decision-support systems (OpenAI, 2024; Lin and Chen, 2023). However, ensuring that these models align with human values, preferences, and expectations has emerged as a central challenge (Dubois et al., 2023). This alignment—the degree to which LLM outputs match human expectations and values—represents both a technical and societal frontier in AI research.

Traditionally, the evaluation of LLM alignment has relied heavily on human judgments (Taori et al., 2023). While human-based annotation protocols offer direct insights into model-human agreement, they suffer from well-documented limitations, including subjectivity, limited diversity of annotators, poor inter-rater reliability, and high cost (Wu et al., 2023). Recent work has introduced more structured human evaluation protocols—such as pairwise comparisons and Elo-style rating systems—which offer greater statistical stability (Zheng et al., 2023; Dettmers et al., 2023), but do not resolve issues of scalability or systemic bias.

In parallel, the emergence of LLM-based evaluation has opened up promising new directions (Chiang and Lee, 2023). These approaches leverage LLMs themselves as evaluators, enabling scalable and cost-effective assessments across a range of tasks. However, they also come with significant limitations. Evaluator models are prone to positional and stylistic biases, self-enhancement effects, and susceptibility to subtle prompt manipulations (Wang et al., 2023a; Thakur et al., 2024). Moreover, as LLM-based evaluation inherits the limitations of its underlying models, it raises deep epistemological concerns about circularity, bias amplification, and the validity of using imperfect judges to evaluate other imperfect systems (Xiong et al., 2023).

37 To overcome these limitations, researchers have
 38 recently begun introducing statistical guarantees
 39 into alignment evaluation—borrowing tools
 40 from conformal prediction (Angelopoulos et al.,
 41 2022), PAC-style analysis (Jung et al., 2024),
 42 and risk calibration. These methods aim to for-
 43 malize notions of alignment risk, abstention con-
 44 fidence, and human agreement, allowing for in-
 45 terpretable, probabilistic control over evaluation
 46 quality. However, despite these promising ad-
 47 vances, current statistical approaches still face
 48 limitations in terms of generalization, robustness
 49 under distribution shift (Mohri and Hashimoto,
 50 2024), interpretability for practitioners, and flex-
 51 ibility for different domains.

52 **This position paper advocates for a more**
 53 **transparent, interpretable, and adaptive sta-**
 54 **tistical foundation for human-LLM align-**
 55 **ment evaluation.** By transparent, we refer not
 56 only to the availability of formal guarantees, but
 57 also to the clarity with which their underlying
 58 components, assumptions, and limitations are
 59 communicated to users. A transparent frame-
 60 work should enable practitioners—and, where relevant, the public—to understand exactly what is
 61 being guaranteed (e.g., risk bounds, abstention criteria), under what conditions those guarantees
 62 hold (e.g., calibration set representativeness, model stability), and where the limits of validity lie
 63 (e.g., distribution shift, model uncertainty). By adaptive, we refer to the framework’s capacity to
 64 accommodate task-specific requirements, user-defined risk tolerances, and domain variability. An
 65 adaptive statistical foundation should allow for dynamic calibration and parameterization (e.g., adjust-
 66 ing confidence thresholds or risk levels) to align with the practical demands and constraints of diverse
 67 deployment scenarios. Our central claim is that without transparent and adaptive statistical guarantees,
 68 alignment evaluations will remain fragmented, difficult to validate, and potentially misleading in
 69 real-world use. To structure our discussion, we pose two foundational questions:

- 70 • **Transparency:** what constitutes a transparent and principled foundation for alignment
 71 guarantees?
- 72 • **Adaptability:** how can such guarantees be made operational—measurable, interpretable,
 73 and responsive to real-world deployment conditions?

74 We analyze existing evaluation methodologies (Sec. 2), review recent developments in statistical
 75 alignment guarantees (Sec. 3), and identify conceptual and practical gaps that persist. Finally, in
 76 Sec. 4, we argue that designing alignment guarantee frameworks with transparent and adaptable
 77 components is essential—not only for ensuring technical soundness, but also for fostering social trust,
 78 regulatory compliance, and safe deployment of generative models in high-stakes settings.

79 2 Existing evaluation methodologies

80 2.1 Human-based evaluation

81 Human-AI alignment evaluation has long been a central topic of study, early human evaluation
 82 frameworks adopted ordinal classification schemes, where annotators assigned responses to predefined
 83 quality levels. For example, Wang et al. (2022); Wu et al. (2023) used a four-point scale: acceptable,
 84 minor errors, major errors, and unacceptable. However, these categorical approaches suffer from
 85 substantial subjectivity, as evidenced by poor inter-annotator agreement in prior studies (Kalpathy-
 86 Cramer et al., 2016), highlighting the difficulty of applying rigid evaluation criteria to nuanced and
 87 context-dependent language outputs.

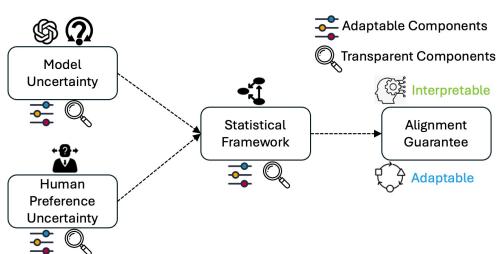


Figure 1: This figure illustrates a conceptual framework for generating statistical alignment guarantees that are both transparent and adaptable. The framework accounts for two primary sources of uncertainty: model uncertainty and human preference uncertainty. These uncertainties are modeled with both transparent components—such as calibration sets and empirical risk estimation—and adaptable elements, including task-specific uncertainty measures and tunable hyper-parameters. By integrating statistical tools with user-defined risk parameters, the framework yields formal guarantees on human–model agreement.

88 To mitigate these limitations, Taori et al. (2023) proposed a pairwise comparison protocol, where
89 annotators judge which of two model responses is superior. This relative evaluation format reduces
90 cognitive load and improves annotation consistency. Building on this, recent work such as Zheng
91 et al. (2023); Dettmers et al. (2023) incorporates Elo rating systems, originally developed for ranking
92 chess players, to dynamically assess model performance. In these systems, model scores are updated
93 iteratively based on pairwise “wins” and “losses,” enabling statistically robust comparisons across
94 multiple LLMs.

95 More recently, human-based evaluation has advanced beyond static taxonomies and simple compar-
96 isons through the use of fine-grained rubrics and context-aware annotations. For instance, Fan et al.
97 (2025) introduced SedarEval, a rubric-driven framework where task-specific rubrics are automatically
98 constructed from prompts and refined through human judgment. In the safety domain, Xie et al.
99 (2025) developed SORRY-bench, a large-scale corpus of over 7,000 human-annotated refusal cases,
100 emphasizing diversity and inter-annotator agreement to assess LLM safety behavior. Arabzadeh
101 and Clarke (2025) benchmarked LLM-generated judgments against expert relevance assessments in
102 TREC RAG tasks, demonstrating the advantage of hybrid human-machine adjudication over fully
103 automated metrics. Additionally, Yu et al. (2025a) proposed RPGBENCH, where humans interact
104 with LLMs in role-playing scenarios to evaluate their behavioral consistency and narrative plausibility.
105 Collectively, these works reflect a clear shift toward context-rich, trait-grounded human evaluation
106 paradigms that more accurately capture the complexity of aligning LLMs with human expectations.

107 Through these progressive refinements in human evaluation protocols, the field has evolved toward
108 more reliable and systematic assessment methodologies. However, several key challenges remain.

109 **Challenge (Subjectivity):** Human-based alignment evaluation is inherently subjective (Binns et al.,
110 2018; Chang et al., 2024), often reflecting narrow cultural or demographic biases due to limited anno-
111 tator diversity. This can skew alignment objectives and marginalize underrepresented perspectives.
112 Moreover, a preference articulation gap—the mismatch between evaluators’ intentions and how they
113 score—introduces noise, as annotators may struggle to express preferences clearly or rationalize them
114 inconsistently. Evolving social norms further complicate evaluation, making human preferences a
115 moving target. Finally, conflicts between expert and general-user priorities—such as accuracy versus
116 empathy—raise unresolved questions about whose preferences should define alignment.

117 **Challenge (Scalability):** Human evaluations face serious scalability constraints (Li et al., 2023).
118 Recruiting and compensating annotators is costly, limiting coverage across use cases and depth in
119 rare scenarios. As LLMs evolve rapidly, manual evaluations struggle to keep pace, often becoming
120 outdated before deployment. The vast space of possible inputs makes exhaustive testing infeasible,
121 especially for rare but critical failures. Additionally, annotator fatigue and limited domain expertise
122 reduce evaluation quality over time, highlighting the need for more scalable, systematic alternatives.

123 2.2 LLM-based evaluation

124 While human evaluation provides high-quality insights, it faces well-known challenges in terms of
125 scalability, efficiency, and cost. At the same time, the increasing fluency of LLMs has made it difficult
126 for annotators to reliably distinguish between human- and model-generated text in open-ended tasks
127 (Clark et al., 2021), prompting growing interest in using LLMs themselves as evaluators.

128 LLM-based evaluation approaches vary in design. Some extend traditional reference-based metrics by
129 prompting LLMs to generate multiple paraphrased references, thereby expanding evaluation coverage
130 (Tang et al., 2023). However, such methods still rely on at least one human-written reference. More
131 recent reference-free approaches have emerged, where LLMs are prompted to directly assess response
132 quality using task descriptions and evaluation rubrics (Liu et al., 2023; Fu et al., 2023; Chen et al.,
133 2023; Chiang and Lee, 2023). These methods have been adapted to tasks such as summarization
134 (Gao et al., 2023), code generation (Zhuo, 2023), open-ended QA (Bai et al., 2023), and dialogue
135 evaluation (Lin and Chen, 2023), with prompt engineering enabling multi-dimensional assessments
136 over quality, coherence, and factuality (Fu et al., 2023; Lin and Chen, 2023). Factuality remains a core
137 focus of LLM-based evaluation. Studies have assessed factual correctness using both closed-source
138 and open-source models (Min et al., 2023; Zha et al., 2023). Building on the success of human-based
139 pairwise evaluation, models like GPT-4 have been used to conduct direct comparisons between
140 candidate outputs (Dubois et al., 2023; Zheng et al., 2023).

141 Despite promising results, LLM-based evaluators exhibit notable biases. Wang et al. (2023a) observed
142 positional bias, where models favor the first option regardless of content quality; mitigation strategies
143 include candidate shuffling and chain-of-thought prompting. Wu and Aji (2023) reported that LLM
144 judges often over-penalize grammatical issues and brevity while overlooking factual inaccuracies.
145 To address this, a multi-dimensional Elo system has been proposed to separately score accuracy,
146 helpfulness, and fluency. Zheng et al. (2023) also identified self-enhancement bias, where models
147 tend to favor their own outputs. Remedies include randomized candidate positioning, exemplar
148 conditioning, and reasoning-enhanced prompting.

149 Although LLMs like GPT-4 can match human raters in accuracy (Dubois et al., 2024; Li et al., 2024b),
150 their use raises concerns about cost and bias. To improve efficiency and interpretability, researchers
151 have explored judge model distillation (Kim et al., 2024; Zhu et al., 2023), peer review ensembles
152 (Verga et al., 2024), and multi-agent debate systems (Chan et al., 2023). Still, most of these methods
153 lack formal guarantees of reliability. Emerging studies further reveal that LLM judges are susceptible
154 to cognitive and stylistic biases (Zeng et al., 2023; Koo et al., 2023; Panickssery et al., 2024), calling
155 into question their robustness and generalizability. To address privacy and accessibility concerns
156 associated with closed-source evaluators, Wang et al. (2023b) developed PandaLM, a fine-tuned
157 LLaMA-7B model which achieves evaluation quality comparable to GPT-3.5 and GPT-4.

158 Recently, Wang et al. (2025b) proposed OpenForecast, where LLMs perform both forecasting and
159 evaluation using retrieval-augmented prompts—eliminating the need for human-written references.
160 Yu et al. (2025b) introduced xFinder, a unified interface for summarization and translation evaluation
161 using instruction-tuned LLMs to assess fluency, adequacy, and factuality with improved human
162 agreement. Badshah and Sajjad (2025) developed DAFE, a confidence-aware ensemble of multiple
163 LLM judges. Cao et al. (2025) proposed the Multi-Agent LLM Judge, which assigns distinct personas
164 to LLMs to support personalized, context-sensitive evaluations across traits such as coherence,
165 specificity, and style. While such LLM-based evaluation methods represent substantial progress,
166 several critical challenges remain for future investigation.

167 **Challenge (Echo Chamber Effects):** Using LLMs to evaluate other LLMs introduces circular
168 reference problems that complicate alignment evaluation (Wataoka et al., 2024). When models
169 evaluate outputs similar to what they might generate themselves, they often exhibit biases toward
170 familiar patterns and approaches (Bommasani et al., 2023). The evaluating model itself may have
171 alignment issues, creating a recursive problem of determining who evaluates the evaluators. Small
172 changes in evaluation prompts can dramatically shift model judgments, raising questions about the
173 stability of LLM-based evaluation methods. Judge models may show inconsistent calibration across
174 different contexts, being overconfident in some domains and under-confident in others. Perhaps most
175 concerning is the potential for bias amplification—when judge models with subtle biases are used to
176 evaluate and train new models, these biases may be reinforced through successive iterations, creating
177 problematic feedback loops in alignment systems that rely on model-based evaluation.

178 **Challenge (Inherent Uncertainty):** LLM-based alignment evaluation is fundamentally limited
179 by the model’s own epistemic and aleatoric uncertainties (Farquhar et al., 2024). As evaluators,
180 LLMs generate preference judgments based on patterns learned from data, but lack true grounding
181 or access to objective truth. This introduces epistemic uncertainty, especially in out-of-distribution
182 or ambiguous cases where the model’s internal representations are unreliable. In addition, aleatoric
183 uncertainty arises when the evaluation instruction itself admits multiple reasonable interpretations,
184 causing variability in outputs across different runs or prompts. Without principled mechanisms to
185 quantify and communicate these uncertainties, model-generated evaluations may project a false sense
186 of confidence, undermining their trustworthiness. This challenge is further exacerbated when such
187 evaluations are used in downstream systems to guide training decisions, as unrecognized uncertainty
188 can propagate misaligned updates and erode human trust in alignment processes.

189 3 Existing statistical guarantee for alignment

190 To address the limitations of prior human- and LLM-based methods, recent research has increasingly
191 turned to enhancing LLMs with rigorous statistical guarantees aimed at controlling risk in high-stakes
192 applications. Notable efforts include reducing hallucination rates in factual generation tasks (Yadkori
193 et al., 2024; Mohri and Hashimoto, 2024) and controlling false discovery rates in medical decision-
194 making (Gui et al., 2024). These approaches frequently leverage conformal methods (Angelopoulos

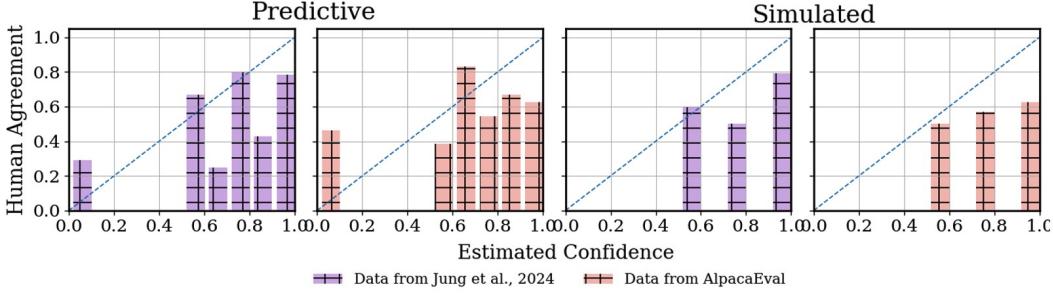


Figure 2: Reliability plot for confidence estimation methods (**left**: predictive probability measure; **right**: simulated annotators measure), using GPT-4 as judge on the data from [Jung et al. \(2024\)](#) (purple) and additional 500 records from AlpacaEval (orange) ([Li et al., 2023](#)). Horizontal axis represents the estimated LLM confidence, vertical axis represents the rate of human-LLM agreement, and dashed lines denote perfect calibration. More experimental details are given in [Appendix A](#).

195 et al., 2022), which provide marginal control over prescribed risks. Complementary work has
 196 investigated fine-tuning objectives for LLMs to improve truthfulness ([Kang et al., 2024](#); [Tian et al., 2023](#)) or to enable appropriate abstention when knowledge is insufficient ([Zhang et al., 2024](#)).

198 Notably, [Yadkori et al. \(2024\)](#) introduces a principled method to reduce hallucinations (enhance
 199 alignment) in LLMs by employing a conformal prediction-based abstention mechanism. The authors
 200 propose leveraging the LLM itself to evaluate the consistency among multiple responses generated
 201 for a given query, thereby measuring model uncertainty. Based on this uncertainty, their approach
 202 decides whether the model should respond or abstain, providing rigorous theoretical guarantees on
 203 limiting the rate of hallucinations. [Mohri and Hashimoto \(2024\)](#) also integrates conformal prediction
 204 into LLMs to ensure high-probability correctness guarantees for generated outputs. The authors
 205 conceptualize the correctness of an LLM’s output as an uncertainty quantification problem, where
 206 each output corresponds to an entailment-based uncertainty set. By progressively “backing off” or
 207 making outputs less specific based on uncertainty estimates, the proposed method ensures that model
 208 outputs meet user-specified correctness levels with rigorous statistical guarantees.

209 Building on these foundations, [Jung et al. \(2024\)](#) extends them by developing an unsupervised
 210 confidence measure and establishing an exact upper bound on disagreement risk conditional on
 211 calibration set. Rather than issuing a decision unconditionally, the framework introduces a selective
 212 evaluation mechanism: the LLM makes a judgment only when it is sufficiently confident in its
 213 preference. This confidence is quantified by the confidence measure $C_{LM}(x)$ for each input x , and a
 214 prediction is accepted if and only if the confidence exceeds a predefined threshold λ ; otherwise, the
 215 model abstains.

216 [Jung et al. \(2024\)](#) frames the selection of λ as a multiple hypothesis testing problem. Given access
 217 to a small calibration set of human preferences, they measure the empirical risk of disagreeing
 218 with humans when using threshold λ . Since the empirical risk follows a binomial distribution, they
 219 compute the exact $(1 - \delta)$ upper confidence bound of the risk. The risk tends to increase as λ
 220 decreases, allowing to use fixed sequence testing ([Bauer, 1991](#)) to choose the threshold.

221 For a threshold chosen as above, and a selective evaluator operating based on the threshold, given a
 222 user-defined risk tolerance α and an error level δ , they obtain the guarantee that:

$$\mathbb{P}(\text{human-model agreement} | C_{LM}(x) \geq \lambda) \geq 1 - \alpha \quad (1)$$

223 holds with probability at least $1 - \delta$. While this statistical guarantee represents a significant advancement,
 224 several challenges remain to be addressed in future work.

225 **Challenge (Confidence Measure):** While the simulated annotators confidence measure introduced
 226 by [Jung et al. \(2024\)](#) provides a promising approach to calibrating model judgments, its generalization
 227 capabilities across diverse tasks and domains remain uncertain. As LLMs are deployed in open-world
 228 environments, confidence scores derived from context-limited simulations may fail to capture the
 229 full variability of real-world queries. As shown in [Fig. 2](#), the performance of the same confidence
 230 measure can vary substantially depending on the calibration set used. Moreover, the effectiveness of
 231 this measure in scenarios with highly technical or specialized content—where even human annotators
 232 might disagree significantly—requires further investigation. Future work should explore adaptive

233 confidence measures that dynamically adjust to task complexity and domain-specific characteristics,
234 potentially incorporating domain knowledge and uncertainty quantification techniques.

235 **Challenge (Calibration Set):** The statistical guarantees provided by the framework rely critically
236 on the assumption that the calibration set is representative of the distribution encountered during
237 deployment (Malinin et al., 2021; Gui et al., 2024). In real-world scenarios, however, user queries
238 may differ significantly from those in the calibration set—both in linguistic style and semantic content.
239 This distributional shift jeopardizes the reliability of the estimated risk and its upper bound, leading
240 to a potential mismatch between theoretical guarantees and practical performance. Future research
241 should explore robust calibration methods that remain valid under distribution shifts, potentially
242 incorporating concepts from domain adaptation, transfer learning, and human performance modeling
243 to continuously update calibration parameters in response to evolving environments.

244 **Challenges in Transparency and Adaptability:** While the the previous works introduce promising
245 statistical tools for alignment guarantees, the foundational underpinnings of these methods remain
246 insufficiently examined. The effectiveness of current frameworks hinges on several assumptions
247 that are often unverifiable or oversimplified in practice—such as the generalizability of confidence
248 measures across domains, the monotonic behavior of empirical risk bounds, and the representativeness
249 of calibration sets relative to deployment conditions (Angelopoulos and Bates, 2021). When these
250 assumptions are violated—as is often the case in real-world settings—the guarantees provided become
251 difficult to interpret, unreliable to uphold, and potentially misleading. This lack of clarity in the
252 statistical foundation obscures the true meaning of alignment risk estimates and complicates their
253 communication to developers, users, and regulators. Furthermore, in practice, different applications
254 of LLMs impose distinct requirements on risk tolerance, abstention behavior, and evaluation criteria.
255 Therefore, a key challenge lies in designing adaptive statistical guarantee frameworks that can
256 be tuned to different tasks—whether through configurable risk parameters, dynamic confidence
257 thresholds, or domain-specific calibration strategies. Without this adaptability, even well-calibrated
258 guarantees risk being either too permissive in high-stakes settings or overly restrictive in low-stakes
259 applications, ultimately limiting their real-world usability.

260 4 Future: A transparent and adaptable guarantee framework

261 To advance the interpretability and real-world applicability of human–LLM alignment guarantees, we
262 advocate for the development of transparent and adaptable statistical frameworks. These directions
263 aim not only to enhance the technical rigor of evaluation methods but also to ensure that alignment
264 guarantees are trustworthy, interpretable, and practically deployable across diverse tasks and domains.

265 4.1 Transparency

266 Transparency is a prerequisite for trust—particularly in high-stakes applications where the con-
267 sequences of model misalignment may be severe (Afroogh et al., 2024). While recent methods
268 provide formal alignment guarantees, the internal mechanics, assumptions, and limitations of these
269 frameworks are often opaque to both practitioners and end-users. We argue that statistical guarantees
270 for alignment must not only be valid, but also interpretable and auditable. To achieve this, future
271 frameworks should offer four essential pillars.

272 First, **explicit decomposition of guarantee components** is critical for demystifying the statistical
273 machinery behind alignment evaluation. Each guarantee should be broken down into interpretable
274 elements that explain its construction and function (Wei et al., 2024). This includes detailing how
275 confidence scores are computed, how decision thresholds are selected to balance precision and
276 coverage and how risk metrics—such as empirical disagreement rates or abstention-adjusted error
277 bounds—are calculated. Furthermore, the abstention mechanism itself should be clearly explained,
278 outlining when and why the model chooses to abstain, and what that implies for the overall evaluation
279 coverage. Making these elements modular and transparent not only enhances trust but also facilitates
280 debugging, tuning, and context-specific adaptation by downstream users (Wang et al., 2025a).

281 Second, any meaningful statistical guarantee must be accompanied by a **clear articulation of its**
282 **assumptions and scope of validity**. Guarantees are only as strong as the premises on which they
283 rest (Li et al., 2024a). Therefore, the framework must explicitly state the assumptions made about the
284 data—such as the independence and identically distributed nature of calibration and test samples, the

285 representativeness of human preference annotations, or the reliability of confidence measures across
286 input types. Additionally, assumptions about the model—such as the monotonicity of risk-confidence
287 relationships or the correctness of label predictions—should be clearly noted. Where appropriate,
288 the framework should specify for which domains, input styles, or task settings the guarantees are
289 valid, and include warnings or diagnostics when these conditions are likely violated (e.g., due to
290 distribution shift (Chopra et al., 2024), adversarial inputs (Chaudhary et al., 2025), or semantic
291 ambiguity (Chaudhary et al., 2024)). This clarity is essential to avoid a false sense of security in
292 settings where the guarantees may no longer be valid.

293 Third, **human-interpretable reporting** is indispensable for bridging the gap between technical
294 precision and user-facing clarity. Statistical guarantees should be communicated in formats that
295 facilitate understanding, decision-making, and trust (Wei et al., 2024). This involves translating
296 formal quantities—such as confidence levels, coverage percentages, and upper bounds on alignment
297 error—into natural language summaries that explain what these numbers mean in practice (Dubois
298 et al., 2023; Lin and Chen, 2023). For example, rather than stating that "the upper bound on empirical
299 disagreement is 0.05", the system could report that "the model is expected to agree with human
300 preferences at least 95% of the time when confident". Visualization tools such as risk-vs-coverage
301 curves (Ao et al., 2023), abstention frequency histograms (Tayebati et al., 2025), or error calibration
302 plots can further enhance comprehension. Additionally, contextual explanations that clarify why the
303 model abstained or flagged uncertainty in a particular instance can empower users to make informed
304 judgments, especially in domains such as medicine or law where interpretability is non-negotiable.

305 Finally, to support transparency at the ecosystem level, **auditable and reproducible evaluation**
306 processes must be a cornerstone of any guarantee framework. This requires that the entire pipeline—from
307 data collection and calibration to risk computation and threshold selection—be open to inspection,
308 verification, and reuse. Practically, this means releasing detailed descriptions (or ideally open-source
309 code) of how calibration datasets were sampled and processed (Yao et al., 2024), how risk statistics
310 were computed (Tayebati et al., 2025), and how decision thresholds were derived (Sarmah et al.,
311 2024). Evaluation tools should be modular and version-controlled, enabling consistent application
312 across models and tasks while allowing traceability over time. Furthermore, when statistical claims
313 are made—such as "the model meets a 95% alignment threshold"—external auditors should be able
314 to reproduce the result from public artifacts. This level of transparency is essential not only for
315 academic reproducibility, but also for regulatory oversight and responsible deployment in sensitive
316 environments (Machado, 2025).

317 4.2 Adaptability

318 An adaptable statistical guarantee framework must be capable of responding to the diverse and
319 evolving demands of real-world deployment contexts (Badawi et al., 2025). Unlike fixed, one-
320 size-fits-all approaches, adaptability requires a framework that can be tuned to domain-specific
321 constraints, task complexity, and operational realities. We identify the following characteristics of
322 such a framework.

323 First, a statistically grounded guarantee framework should be **task-specific and configurable**. Alignment
324 requirements and acceptable error rates vary substantially across use cases—what constitutes a
325 tolerable mistake in a casual chatbot may be completely unacceptable in a clinical decision-support
326 system (Kumar et al., 2025). Consequently, evaluation pipelines must offer control over key par-
327 ameters such as abstention thresholds, acceptable risk bounds, and confidence thresholds. These
328 parameters should not be hard-coded, but rather dynamically configurable based on the risk sensitivity
329 of the task, its user base, or the deployment environment (Gallego, 2024). For example, an application
330 in legal reasoning may demand a very low risk of misalignment with authoritative interpretations,
331 justifying a high abstention rate; meanwhile, a creative writing assistant might prioritize broader
332 coverage and fluency over strict alignment with normative content. An adaptable framework should
333 allow such trade-offs to be explicitly set and monitored.

334 Beyond static configuration, alignment guarantee should also be **context-aware**—that is, sensitive
335 to the semantic, social, and operational context in which the LLM is operating. Context-awareness
336 includes the ability to incorporate auxiliary metadata, user roles (Sundaram et al., 2024), domain-
337 specific knowledge (Zhao et al., 2024), or even prompt uncertainty (Martinson et al., 2025) into the
338 evaluation logic. For instance, a system responding to novice users in educational settings might
339 weight helpfulness and clarity more heavily than technical correctness, while the reverse may apply
340 in scientific or engineering contexts. Guarantee criteria might also vary depending on input types

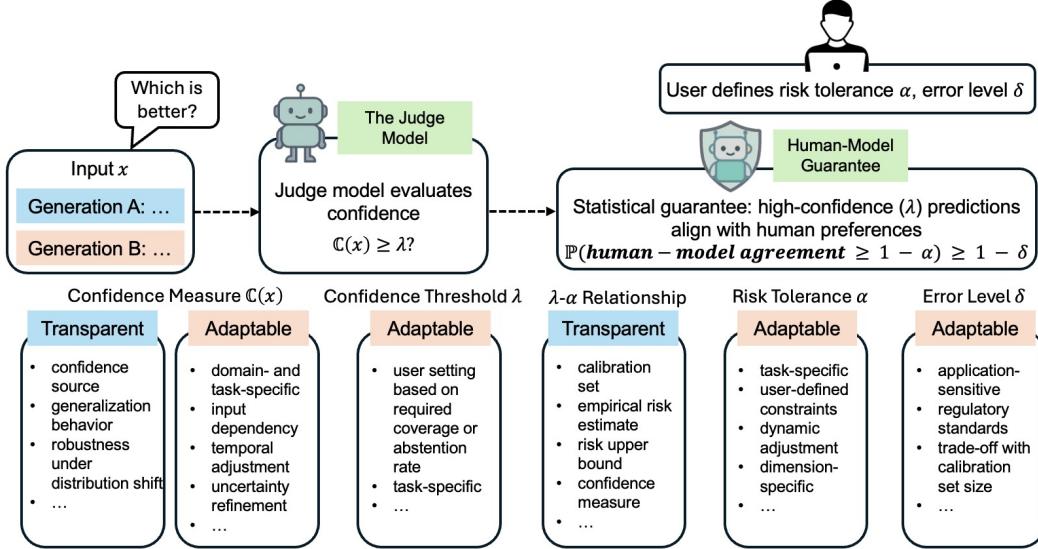


Figure 3: An example of the guarantee framework (Jung et al., 2024) with more transparent and adaptable components.

341 (e.g., structured queries vs. free-form dialogue) or user intent (e.g., exploratory vs. authoritative
 342 use). By embedding contextual signals into both risk estimation and abstention logic, the guarantee
 343 framework can become more aligned with the practical demands of different usage settings.

344 A major threat to the stability of statistical guarantees is distribution shift on calibration set. Therefore,
 345 adaptability also requires that the framework be **robust to domain shift**. Most existing methods
 346 assume that the calibration set used to construct statistical guarantees is representative of the de-
 347 ployment distribution—a condition that is rarely sustained in practice (Liu et al., 2024). A truly
 348 adaptable framework should include mechanisms to detect and respond to such shifts. This might
 349 involve monitoring model confidence drift, estimating divergence between calibration and live input
 350 distributions, or leveraging techniques from transfer learning and domain adaptation to re-calibrate
 351 guarantees in situ. Incorporating human-in-the-loop feedback, either through active learning (Goel
 352 et al., 2025) or post-deployment auditing (Cherian and Candès, 2024), can also help maintain the
 353 validity of guarantees over time. Without this robustness, statistical guarantees risk becoming brittle
 354 and misleading as models are deployed in new or evolving environments.

355 Finally, to support scalability and long-term usability, the guarantee framework should be **composable**
 356 and **extensible**. This means it should be modular in design, allowing components such as confidence
 357 estimation, calibration logic, and risk computation to be reused, replaced, or improved independently.
 358 Such modularity facilitates integration with different LLM architectures, evaluation settings, and
 359 interface modalities. It also enables researchers and practitioners to extend the framework—e.g.,
 360 by incorporating new types of uncertainty quantification, social value priors, or hybrid human-AI
 361 judgment protocols—without requiring a complete system overhaul. A composable framework
 362 encourages experimentation and evolution, making it more likely to remain relevant as alignment
 363 research and model capabilities progress.

364 4.3 An example

365 Fig. 3 illustrates an enhanced version of the statistical guarantee framework introduced by Jung
 366 et al. (2024), enriched with explicit transparency and adaptability across its core components. The
 367 framework operates by assessing whether a judge model is confident enough—based on a confidence
 368 measure $C(x)$ —to make a reliable preference judgment between different generations. A prediction
 369 is only accepted if the confidence exceeds a threshold λ , thereby invoking a formal guarantee: with
 370 high probability $1 - \delta$, the probability of agreement with human preferences is at least $1 - \alpha$. This
 371 process ensures that the selected threshold satisfies the desired risk tolerance α under controlled
 372 sampling variability δ , thus grounding the guarantee in observable empirical data.

373 This refined schematic highlights how each component of the evaluation pipeline—ranging from
 374 confidence estimation to risk quantification—can be made both transparent and adaptable. Trans-

375 transparency is ensured through the explicit decomposition of evaluation elements, including the source
376 and calibration of confidence scores, the construction of risk bounds, and the role of the empirical
377 calibration set. Assumptions are made visible, such as the expected generalization behavior and the
378 statistical relationship between confidence and error.

379 At the same time, adaptability is introduced through user-configurable parameters that tailor the
380 framework to specific deployment scenarios. The confidence measure can be domain- and input-
381 dependent, dynamically refined, and robust to distribution shifts. The confidence threshold λ is
382 adjustable based on desired abstention or coverage, while the risk tolerance α can be adjusted in
383 accordance with task sensitivity. These dimensions collectively allow the framework to be customized
384 for diverse applications—from high-stakes decision-making to exploratory human–AI interaction.

385 Together, these enhancements make the alignment guarantee framework not only more interpretable
386 and auditable for developers and evaluators, but also significantly more practical for real-world,
387 context-sensitive deployment.

388 5 Discussion

389 To address the challenges of subjectivity, inconsistency, and low inter-rater reliability in human
390 evaluation (Binns et al., 2018; Chang et al., 2024), the proposed framework centers on the explicit
391 decomposition of statistical guarantee components and human-interpretable reporting. This involves
392 systematically modeling and exposing the uncertainties associated with both LLM predictions and
393 human preference annotations—such as variability in annotator agreement or instability in model
394 outputs. By breaking down the guarantee into its constituent parts (e.g., confidence scores, abstention
395 thresholds, empirical risk bounds), the framework makes transparent what is being guaranteed, under
396 which assumptions (e.g., representativeness of the calibration set), and where the limitations lie
397 (e.g., under distribution shift or in edge cases). This transparency enhances interpretability not
398 only for developers and model evaluators, but also for downstream stakeholders—particularly in
399 sensitive domains where trust and accountability are essential. At the same time, the framework
400 improves scalability (Li et al., 2023) by embedding statistical guarantees within LLM-based evaluation
401 pipelines. Rather than relying on extensive human annotation for every deployment setting, it
402 leverages a compact human-labeled calibration set to compute risk bounds, enabling consistent reuse
403 of calibration, evaluation, and abstention logic across multiple tasks. This significantly reduces the
404 dependence on costly, large-scale manual annotation.

405 In response to the limitations of LLM-based evaluation and the fragility of current statistical guarantee
406 frameworks, the design incorporates transparent and adaptable components, selective evaluation,
407 and robustness to calibration set shift (Malinin et al., 2021) as foundational principles. Given that
408 LLM-based evaluators inevitably inherit biases—such as positional or stylistic preferences—from the
409 underlying models they are built upon (Farquhar et al., 2024), the framework allows for user-defined
410 risk tolerances and abstention criteria to adapt the evaluation process to specific task requirements, risk
411 levels, and fairness considerations. Additionally, it introduces mechanisms for dynamic adjustment
412 of guarantees based on the quality and characteristics of the calibration data, as well as detection
413 of distributional drift between calibration and deployment inputs (Angelopoulos and Bates, 2021).
414 This adaptive architecture ensures that alignment guarantees remain both valid and meaningful
415 when applied to diverse real-world conditions, from high-stakes professional domains to more
416 flexible consumer applications. Taken together, these elements form a robust, interpretable, and
417 scalable foundation for alignment guarantee—capable of supporting both principled assessment and
418 responsible deployment of LLMs.

419 6 Conclusion

420 In this position paper, we argued that ensuring reliable and trustworthy human–LLM alignment
421 requires more than formal guarantees—it demands frameworks that are transparent in construction
422 and adaptable to diverse deployment scenarios. We examined the limitations of current human- and
423 LLM-based evaluation methodologies, as well as recent statistical guarantee approaches. To address
424 these challenges, we argued for a principled framework that decomposes guarantees into modular
425 components, clarifies assumptions, enables human-interpretable reporting, and supports task-specific
426 configuration. By embedding transparency and adaptability as core design goals, we aim to bridge
427 the gap between statistical rigor and real-world usability, advancing alignment evaluation methods
428 that are not only technically sound but also socially accountable and practically implementable.

429 **References**

430 Afroogh, S., Akbari, A., Malone, E., Kargar, M., and Alambeigi, H. (2024). Trust in ai: progress,
431 challenges, and future directions. *Humanities and Social Sciences Communications*, 11(1):1–30.

432 Angelopoulos, A. N. and Bates, S. (2021). A gentle introduction to conformal prediction and
433 distribution-free uncertainty quantification. *arXiv preprint arXiv:2107.07511*.

434 Angelopoulos, A. N., Bates, S., Fisch, A., Lei, L., and Schuster, T. (2022). Conformal risk control.
435 *arXiv preprint arXiv:2208.02814*.

436 Ao, S., Rueger, S., and Siddharthan, A. (2023). Empirical optimal risk to quantify model trustworthi-
437 ness for failure detection. *arXiv preprint arXiv:2308.03179*.

438 Arabzadeh, N. and Clarke, C. L. (2025). Benchmarking llm-based relevance judgment methods.
439 *arXiv preprint arXiv:2504.12558*.

440 Badawi, A., Laskar, M. T. R., Huang, J. X., Raza, S., and Dolatabadi, E. (2025). Position: Beyond
441 assistance–reimagining llms as ethical and adaptive co-creators in mental health care. *arXiv*
442 *preprint arXiv:2503.16456*.

443 Badshah, S. and Sajjad, H. (2025). Dafe: Llm-based evaluation through dynamic arbitration for
444 free-form question-answering. *arXiv preprint arXiv:2503.08542*.

445 Bai, Y., Ying, J., Cao, Y., Lv, X., He, Y., Wang, X., Yu, J., Zeng, K., Xiao, Y., Lyu, H., et al.
446 (2023). Benchmarking foundation models with language-model-as-an-examiner. *arXiv preprint*
447 *arXiv:2306.04181*.

448 Bauer, P. (1991). Multiple testing in clinical trials. *Statistics in medicine*.

449 Binns, R., Van Kleek, M., Veale, M., Lyngs, U., Zhao, J., and Shadbolt, N. (2018). 'it's reducing a
450 human being to a percentage' perceptions of justice in algorithmic decisions. In *CHI*.

451 Bommasani, R., Liang, P., and Lee, T. (2023). Holistic evaluation of language models. *Annals of the*
452 *New York Academy of Sciences*.

453 Cao, H., Driouich, I., Singh, R., and Thomas, E. (2025). Multi-agent llm judge: automatic person-
454 alized llm judge design for evaluating natural language generation applications. *arXiv preprint*
455 *arXiv:2504.02867*.

456 Chan, C.-M., Chen, W., Su, Y., Yu, J., Xue, W., Zhang, S., Fu, J., and Liu, Z. (2023). Chateval:
457 Towards better llm-based evaluators through multi-agent debate. *arXiv preprint arXiv:2308.07201*.

458 Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen, H., Yi, X., Wang, C., Wang, Y., et al.
459 (2024). A survey on evaluation of large language models. *ACM transactions on intelligent systems*
460 *and technology*.

461 Chaudhary, I., Hu, Q., Kumar, M., Ziyadi, M., Gupta, R., and Singh, G. (2025). Certifying counter-
462 factual bias in llms. In *The Thirteenth International Conference on Learning Representations*.

463 Chaudhary, I., Jain, V. V., and Singh, G. (2024). Quantitative certification of knowledge comprehen-
464 sion in llms. In *ICLR 2024 Workshop on Secure and Trustworthy Large Language Models*.

465 Chen, Y., Wang, R., Jiang, H., Shi, S., and Xu, R. (2023). Exploring the use of large language
466 models for reference-free text quality evaluation: A preliminary empirical study. *arXiv preprint*
467 *arXiv:2304.00723*.

468 Cherian, J. J. and Candès, E. J. (2024). Statistical inference for fairness auditing. *Journal of machine*
469 *learning research*, 25(149):1–49.

470 Chiang, C.-H. and Lee, H.-y. (2023). Can large language models be an alternative to human
471 evaluations? *arXiv preprint arXiv:2305.01937*.

472 Chopra, T., Li, M., and Haimes, J. (2024). View from above: A framework for evaluating distribution
473 shifts in model behavior. *arXiv preprint arXiv:2407.00948*.

474 Clark, E., August, T., Serrano, S., Haduong, N., Gururangan, S., and Smith, N. A. (2021). All that's
 475 'human' is not gold: Evaluating human evaluation of generated text. In *Annual Meeting of the*
 476 *Association for Computational Linguistics*.

477 Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). Qlora: Efficient finetuning of
 478 quantized llms. *NeurIPS*.

479 Dubois, Y., Galambosi, B., Liang, P., and Hashimoto, T. B. (2024). Length-controlled alpacaeval: A
 480 simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*.

481 Dubois, Y., Li, X., Taori, R., Zhang, T., Gulrajani, I., Ba, J., Guestrin, C., Liang, P., and Hashimoto,
 482 T. B. (2023). Alpacafarm: A simulation framework for methods that learn from human feedback.
 483 *arXiv preprint arXiv:2305.14387*.

484 Fan, Z., Wang, W., Wu, X., and Zhang, D. (2025). Sedareval: Automated evaluation using self-
 485 adaptive rubrics. *arXiv preprint arXiv:2501.15595*.

486 Farquhar, S., Kossen, J., Kuhn, L., and Gal, Y. (2024). Detecting hallucinations in large language
 487 models using semantic entropy. *Nature*.

488 Fu, J., Ng, S.-K., Jiang, Z., and Liu, P. (2023). Gptscore: Evaluate as you desire. *arXiv preprint*
 489 *arXiv:2302.04166*.

490 Gallego, V. (2024). Configurable safety tuning of language models with synthetic preference data.
 491 *arXiv preprint arXiv:2404.00495*.

492 Gao, M., Ruan, J., Sun, R., Yin, X., Yang, S., and Wan, X. (2023). Human-like summarization
 493 evaluation with chatgpt. *arXiv preprint arXiv:2304.02554*.

494 Geifman, Y. and El-Yaniv, R. (2017). Selective classification for deep neural networks. *NeurIPS*.

495 Goel, A., Hu, Y., Gurevych, I., and Sanyal, A. (2025). Differentially private steering for large
 496 language model alignment. *arXiv preprint arXiv:2501.18532*.

497 Gui, Y., Jin, Y., and Ren, Z. (2024). Conformal alignment: Knowing when to trust foundation models
 498 with guarantees. *arXiv preprint arXiv:2405.10301*.

499 Jung, J., Brahman, F., and Choi, Y. (2024). Trust or escalate: Llm judges with provable guarantees
 500 for human agreement. *arXiv preprint arXiv:2407.18370*.

501 Kalpathy-Cramer, J., Campbell, J. P., Erdogmus, D., Tian, P., Kedarisetti, D., Moleta, C., Reynolds,
 502 J. D., Hutcheson, K., Shapiro, M. J., Repka, M. X., et al. (2016). Plus disease in retinopathy
 503 of prematurity: Improving diagnosis by ranking disease severity and using quantitative image
 504 analysis. *Ophthalmology*.

505 Kang, K., Wallace, E., Tomlin, C., Kumar, A., and Levine, S. (2024). Unfamiliar finetuning examples
 506 control how language models hallucinate. *arXiv preprint arXiv:2403.05612*.

507 Kim, S., Suk, J., Longpre, S., Lin, B. Y., Shin, J., Welleck, S., Neubig, G., Lee, M., Lee, K., and
 508 Seo, M. (2024). Prometheus 2: An open source language model specialized in evaluating other
 509 language models. *arXiv preprint arXiv:2405.01535*.

510 Koo, R., Lee, M., Raheja, V., Park, J. I., Kim, Z. M., and Kang, D. (2023). Benchmarking cognitive
 511 biases in large language models as evaluators. *arXiv preprint arXiv:2309.17012*.

512 Kumar, N., Seifi, F., Conte, M., and Flynn, A. (2025). An llm-powered clinical calculator chatbot
 513 backed by verifiable clinical calculators and their metadata. *arXiv preprint arXiv:2503.17550*.

514 Li, A. J., Krishna, S., and Lakkaraju, H. (2024a). More rlhf, more trust? on the impact of preference
 515 alignment on trustworthiness. *arXiv preprint arXiv:2404.18870*.

516 Li, T., Chiang, W.-L., Frick, E., Dunlap, L., Wu, T., Zhu, B., Gonzalez, J. E., and Stoica, I. (2024b).
 517 From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder pipeline. *arXiv*
 518 *preprint arXiv:2406.11939*.

519 Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I., Guestrin, C., Liang, P., and Hashimoto, T. B.
520 (2023). Alpacaeval: An automatic evaluator of instruction-following models.

521 Lin, Y.-T. and Chen, Y.-N. (2023). Llm-eval: Unified multi-dimensional automatic evaluation for
522 open-domain conversations with large language models. *arXiv preprint arXiv:2305.13711*.

523 Liu, Y., Iter, D., Xu, Y., Wang, S., Xu, R., and Zhu, C. (2023). Gpteval: Nlg evaluation using gpt-4
524 with better human alignment. *arXiv preprint arXiv:2303.16634*.

525 Liu, Y., Meng, Y., Wu, F., Peng, S., Yao, H., Guan, C., Tang, C., Ma, X., Wang, Z., and Zhu, W.
526 (2024). Evaluating the generalization ability of quantized llms: Benchmark, analysis, and toolbox.
527 *arXiv preprint arXiv:2406.12928*.

528 Machado, J. (2025). Toward a public and secure generative ai: A comparative analysis of open and
529 closed llms.

530 Malinin, A., Band, N., Chesnokov, G., Gal, Y., Gales, M. J., Noskov, A., Ploskonosov, A.,
531 Prokhorenkova, L., Provikov, I., Raina, V., et al. (2021). Shifts: A dataset of real distributional
532 shift across multiple large-scale tasks. *arXiv preprint arXiv:2107.07455*.

533 Martinson, S., Kong, L., Kim, C. W., Taneja, A., and Tambe, M. (2025). Llm-based agent simulation
534 for maternal health interventions: Uncertainty estimation and decision-focused evaluation. *arXiv
535 preprint arXiv:2503.22719*.

536 Min, S., Krishna, K., Lyu, X., Lewis, M., Yih, W.-t., Koh, P. W., Iyyer, M., Zettlemoyer, L., and
537 Hajishirzi, H. (2023). Factscore: Fine-grained atomic evaluation of factual precision in long form
538 text generation. *arXiv preprint arXiv:2305.14251*.

539 Mohri, C. and Hashimoto, T. (2024). Language models with conformal factuality guarantees. *arXiv
540 preprint arXiv:2402.10978*.

541 OpenAI (2024). Chatgpt. <https://chat.openai.com/>. May 11 version.

542 Panickssery, A., Bowman, S., and Feng, S. (2024). Llm evaluators recognize and favor their own
543 generations. *NeurIPS*.

544 Sarmah, B., Li, M., Lyu, J., Frank, S., Castellanos, N., Pasquali, S., and Mehta, D. (2024).
545 How to choose a threshold for an evaluation metric for large language models. *arXiv preprint
546 arXiv:2412.12148*.

547 Sundaram, S. S., Solomon, B., Khatri, A., Laumas, A., Khatri, P., and Musen, M. A. (2024). Use of a
548 structured knowledge base enhances metadata curation by large language models. *arXiv preprint
549 arXiv:2404.05893*.

550 Tang, T., Lu, H., Jiang, Y. E., Huang, H., Zhang, D., Zhao, W. X., and Wei, F. (2023). Not all metrics
551 are guilty: Improving nlg evaluation with llm paraphrasing. *arXiv preprint arXiv:2305.15067*.

552 Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X., Guestrin, C., Liang, P., and Hashimoto, T. B.
553 (2023). Stanford alpaca: an instruction-following llama model.

554 Tayebati, S., Kumar, D., Darabi, N., Jayasuriya, D., Krishnan, R., and Trivedi, A. R. (2025). Learning
555 conformal abstention policies for adaptive risk management in large language and vision-language
556 models. *arXiv preprint arXiv:2502.06884*.

557 Thakur, A. S., Choudhary, K., Ramayapally, V. S., Vaidyanathan, S., and Hupkes, D. (2024).
558 Judging the judges: Evaluating alignment and vulnerabilities in llms-as-judges. *arXiv preprint
559 arXiv:2406.12624*.

560 Tian, K., Mitchell, E., Yao, H., Manning, C. D., and Finn, C. (2023). Fine-tuning language models
561 for factuality. In *ICLR*.

562 Verga, P., Hofstatter, S., Althammer, S., Su, Y., Piktus, A., Arkhangorodsky, A., Xu, M., White, N.,
563 and Lewis, P. (2024). Replacing judges with juries: Evaluating llm generations with a panel of
564 diverse models. *arXiv preprint arXiv:2404.18796*.

565 Wang, P., Li, L., Chen, L., Zhu, D., Lin, B., Cao, Y., Liu, Q., Liu, T., and Sui, Z. (2023a). Large
566 language models are not fair evaluators. *arXiv preprint arXiv:2305.17926*.

567 Wang, X., Li, H., Zhang, Z., Chen, H., and Zhu, W. (2025a). Modular machine learning: An indis-
568 pensable path towards new-generation large language models. *arXiv preprint arXiv:2504.20020*.

569 Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A., Khashabi, D., and Hajishirzi, H. (2022).
570 Self-instruct: Aligning language model with self generated instructions. *arXiv:2212.10560*.

571 Wang, Y., Yu, Z., Zeng, Z., Yang, L., Wang, C., Chen, H., Jiang, C., Xie, R., Wang, J., Xie, X., et al.
572 (2023b). Pandalm: An automatic evaluation benchmark for llm instruction tuning optimization.
573 *arXiv preprint arXiv:2306.05087*.

574 Wang, Z., Zhou, X., Yang, Y., Ma, B., Wang, L., Dong, R., and Anwar, A. (2025b). Openforecast:
575 A large-scale open-ended event forecasting dataset. In *Proceedings of the 31st International
576 Conference on Computational Linguistics*, pages 5273–5294.

577 Wataoka, K., Takahashi, T., and Ri, R. (2024). Self-preference bias in llm-as-a-judge. *arXiv preprint
578 arXiv:2410.21819*.

579 Wei, H., He, S., Xia, T., Liu, F., Wong, A., Lin, J., and Han, M. (2024). Systematic evaluation of
580 llm-as-a-judge in llm alignment tasks: Explainable metrics and diverse prompt templates. *arXiv
581 preprint arXiv:2408.13006*.

582 Wu, M. and Aji, A. F. (2023). Style over substance: Evaluation biases for large language models.
583 *arXiv preprint arXiv:2307.03025*.

584 Wu, M., Waheed, A., Zhang, C., Abdul-Mageed, M., and Aji, A. F. (2023). Lamini-lm: A diverse
585 herd of distilled models from large-scale instructions. *arXiv:2304.14402*.

586 Xie, T., Qi, X., Zeng, Y., Huang, Y., Sehwag, U. M., Huang, K., He, L., Wei, B., Li, D., Sheng, Y.,
587 et al. (2025). Sorry-bench: Systematically evaluating large language model safety refusal. In *The
588 Thirteenth International Conference on Learning Representations*.

589 Xiong, M., Hu, Z., Lu, X., Li, Y., Fu, J., He, J., and Hooi, B. (2023). Can llms express their uncer-
590 tainty? an empirical evaluation of confidence elicitation in llms. *arXiv preprint arXiv:2306.13063*.

591 Yadkori, Y. A., Kuzborskij, I., Stutz, D., György, A., Fisch, A., Doucet, A., Beloshapka, I., Weng,
592 W.-H., Yang, Y.-Y., Szepesvári, C., et al. (2024). Mitigating llm hallucinations via conformal
593 abstention. *arXiv preprint arXiv:2405.01563*.

594 Yao, J., Yi, X., and Xie, X. (2024). Clave: An adaptive framework for evaluating values of llm
595 generated responses. *arXiv preprint arXiv:2407.10725*.

596 Yu, P., Shen, D., Meng, S., Lee, J., Yin, W., Cui, A. Y., Xu, Z., Zhu, Y., Shi, X., Li, M., et al.
597 (2025a). Rpgbench: Evaluating large language models as role-playing game engines. *arXiv
598 preprint arXiv:2502.00595*.

599 Yu, Q., Zheng, Z., Song, S., Xiong, F., Tang, B., Chen, D., et al. (2025b). xfinder: Large language
600 models as automated evaluators for reliable evaluation. In *The Thirteenth International Conference
601 on Learning Representations*.

602 Zeng, Z., Yu, J., Gao, T., Meng, Y., Goyal, T., and Chen, D. (2023). Evaluating large language models
603 at evaluating instruction following. *arXiv preprint arXiv:2310.07641*.

604 Zha, Y., Yang, Y., Li, R., and Hu, Z. (2023). Alignscore: Evaluating factual consistency with a unified
605 alignment function. *arXiv preprint arXiv:2305.16739*.

606 Zhang, H., Diao, S., Lin, Y., Fung, Y., Lian, Q., Wang, X., Chen, Y., Ji, H., and Zhang, T. (2024).
607 R-tuning: Instructing large language models to say ‘i don’t know’. In *Proceedings of the 2024
608 Conference of the North American Chapter of the Association for Computational Linguistics:
609 Human Language Technologies (Volume 1: Long Papers)*, pages 7106–7132.

610 Zhao, Y., Zhang, B., Hu, X., Ouyang, S., Kim, J., Jain, N., de Berardinis, J., Meroño-Peñuela, A., and
611 Simperl, E. (2024). Improving ontology requirements engineering with ontachat and participatory
612 prompting. In *Proceedings of the AAAI Symposium Series*, volume 4, pages 253–257.

613 Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E.,
614 et al. (2023). Judging llm-as-a-judge with mt-bench and chatbot arena. *NeurIPS*.

615 Zhu, L., Wang, X., and Wang, X. (2023). Judgelm: Fine-tuned large language models are scalable
616 judges. *arXiv preprint arXiv:2310.17631*.

617 Zhuo, T. Y. (2023). Large language models are state-of-the-art evaluators of code generation. *arXiv*
618 *preprint arXiv:2304.14317*.

619 **A Confidence measures**

620 To calibrate when to trust each model’s judgment, [Jung et al. \(2024\)](#) introduces simulated annotators
621 confidence measure. This method simulates multiple human-like preferences to improve the cali-
622 bration of the model’s confidence estimation, ensuring that its evaluations are reliable and aligned
623 with human preferences. For a given test instance x , and its associated preference labels $y \in \mathcal{Y}$ (e.g.,
624 a_1 or a_2 being preferred), the model calculates the probability $\mathbb{P}_{LM}(y|x)$ of each possible outcome
625 (i.e., the preference label y). The model is given a few (K) examples of preferences provided by
626 simulated annotators. These are used as context for the model’s decision-making. The model is then
627 prompted to predict a preference label based on this context, for a total of N different simulations
628 (i.e., simulating N different annotators). Each simulated annotator produces a prediction for the
629 preference label. Then, the **simulated annotators confidence measure** is defined as

$$\mathbb{C}_{LM}(x) = \max_y \frac{1}{N} \sum_{j=1}^N \mathbb{P}_{LM}(y|x; (x_{1,j}, y_{1,j}), \dots, (x_{K,j}, y_{K,j})), \quad (2)$$

630 where $(x_{1,j}, y_{1,j}), \dots, (x_{K,j}, y_{K,j})$ are K examples of preferences provided by j -th simulated
631 annotator. Specifically, the confidence measure is the average probability over all simulated annotators’
632 predictions for the preference label. If the simulated annotators agree, the confidence measure is high;
633 if they disagree, the confidence is lower.

634 The **predictive probability confidence measure** was proposed by [Geifman and El-Yaniv \(2017\)](#) in
635 selective classification, it represents the probability assigned by LLM to its predicted label.

636 The code and original data for AlpacaEva were obtained from: <https://github.com/jaehunjung1/cascaded-selective-evaluation>.

638 In addition, we collected 500 supplementary records from AlpacaEval (Li et al., 2023), which have
639 also been made available in the uploaded material.