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ABSTRACT

Current facial expression recognition (FER) methods excel in achieving high clas-
sification accuracy but often struggle to generalize effectively across various un-
seen test sets. On the other hand, CLIP (Radford et al., 2021) demonstrates im-
pressive generalization ability, albeit at the cost of lower classification accuracy
compared to SOTA FER methods. In this paper, we propose a novel approach
to adapt CLIP for FER, striking a balance between precision and generalization.
Our motivation is rooted in the potential of large pre-trained models like CLIP to
extract generalizable face features across diverse FER domains, showcasing high
generalization ability. However, these extracted face features, which include extra
information like age and gender, are not directly suitable for FER tasks, resulting
in lower classification accuracy. To solve this problem, we train a traditional FER
model to learn sigmoid masks to only select expression-related features from the
fixed CLIP face features. The selected features are utilized for classification. To
improve the generalization ability of the learned masks, we propose a channel-
separation module to map the channels of the masked features directly to logits
and avoid using the FC layer to reduce overfitting. We also introduce a channel-
diverse loss to make the learned masks as diverse as possible. Extensive experi-
ments on numerous FER datasets verify that our method outperforms SOTA FER
methods by large margins. Based on both the high classification accuracy and
generalization ability, our proposed method has the potential to become a new
paradigm in the FER field. The code will be available.

1 INTRODUCTION

Facial expression recognition (FER) aims to understand human feelings and is vital to human-
computer interaction. With the development of deep learning, FER methods achieve high classi-
fication accuracy on both laboratory-collected and in-the-wild FER datasets. However, we find that
things are different when it comes to the generalization ability of these SOTA FER methods. For
example, if we train the FER model on a given FER dataset like RAF-DB (Li et al., 2017), then it can
only achieve high classification accuracy on the test set of RAF-DB, while very low classification
accuracy on other different FER test sets like AffectNet (Mollahosseini et al., 2017). Though some
works try to deal with the domain generalization problem in FER, they assume accessing labeled or
unlabeled target domain samples. However, in real-world FER, as we do not previously know the
distribution of the target domain, we might not even have access to unlabeled target samples. In such
cases, the domain adaptation FER methods cannot work. In this paper, we aim to study the balance
of classification accuracy and generalization ability of SOTA FER methods. It is well known that
high classification accuracy does not always mean high generalization ability. Through experiments,
we find the opposite is more likely to be true. The baseline method could outperform SOTA FER
methods on test sets with domain gaps of the train set.

Existing FER methods fail to directly generalize to other test sets, we speculate that these methods
might fit the given train set too well to predict only based on expression features on unseen test
sets. Inspired by the strong zero-shot knowledge transfer of CLIP (Radford et al., 2021) across
different downstream tasks, we try to adapt it for FER methods to improve their generalization
ability. Our assumption is that CLIP is trained using large-scale image-text pairs, thus, it generalizes
well across different FER domains. However, the classification accuracy of CLIP-based models
is low in the FER task as the features extracted by CLIP contain much more information that is
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Figure 1: To evaluate the generalization ability of FER methods, we train FER models on one train
set and test the trained models on other unseen test sets. SOTA FER methods do not work well
on unseen test sets, which are unreliable in real-world deployment. Through the learned sigmoid
masks, channel-separation module, and channel-diverse loss, we adapt CLIP to FER and outperform
existing SOTA FER methods like EAC, by large margins on different FER test sets.

not related to expression such as age, gender, race, etc. To solve this problem, we design a novel
method to guide the FER model to learn representations that only relate to facial expressions across
faces from different domains. Specifically, we first extract generalizable face features from CLIP
and fix them during the training to maintain the generalization ability. We train another FER model
to learn masks based on the fixed face features from CLIP. After combining the learned masks
with the fixed face features, the expression features are extracted. In order to make the learned
masks generalizable instead of overfitting the given images, we cleverly utilize a sigmoid function
to regularize the learned masks. Furthermore, we propose a channel-separation module to separate
the learned masks into pieces according to expression classes. This operation avoids using the FC
layer and directly maps different channels to logits for different categories, which further reduces
the overfitting probability of the FER model. Finally, we introduce a channel-diverse loss to learn
the masks corresponding to different expressions as diverse as possible.

Extensive experiments on five different FER datasets validate the effectiveness of our proposed
method. To the best of our knowledge, our work is the first to adapt CLIP to improve the general-
ization ability of FER methods. We summarize our main contributions as follows.

• We investigate the trade-off between classification accuracy and generalization ability in the
facial expression recognition field, which is relatively less touched as SOTA FER methods
mainly focus on improving classification accuracy.

• We design a novel method to adapt CLIP for facial expression recognition. We propose
to learn sigmoid masks on fixed face features extracted by CLIP to detect expressions.
We further propose a channel-separation module and a channel-diverse loss to increase the
generalization ability of the learned masks.

• Extensive experiments on five different FER methods illustrate that our method outper-
forms SOTA FER methods by remarkable margins. Our method achieves both high classi-
fication accuracy and high generalization ability.

2 RELATED WORK

2.1 FACIAL EXPRESSION RECOGNITION

Facial Expression Recognition (FER) plays a vital role in human-computer interaction, and extensive
research has been conducted to enhance the precision of FER (Shan et al., 2009; Zhi et al., 2010;
Zhong et al., 2012; Bargal et al., 2016; Kahou et al., 2013; Farzaneh & Qi, 2021; Ruan et al., 2021;
Li et al., 2017). For instance, Li et al. (Li et al., 2017) use crowd-sourcing to simulate human
expression recognition, while (Bargal et al., 2016; Kahou et al., 2013) employ model ensembling
to leverage more information. Farzaneh et al. (Farzaneh & Qi, 2021) propose a center loss variant
to maximize intra-class similarity and inter-class separation for FER, and Ruan et al. (Ruan et al.,
2021) acquire expression-relevant information during the decomposition of an expression feature.
However, we find that these FER methods are effective when the test set has no domain gap with
the train set, while their performance drops drastically when facing domain-different test sets. In
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this paper, we aim to improve the generalization ability of FER methods and maintain their high
classification accuracy to make them suitable for real-world deployment.

2.2 DOMAIN GENERALIZATION

Domain Generalization (DG) aims to help models trained on a set of source domains generalize
better on unseen target domains. A common practice is to reduce the feature discrepancy among
multiple source domains. (Tzeng et al., 2014; Long et al., 2015; 2017) all adapt maximum mean dis-
crepancy on multiple layers to enforce the distribution similarity between source and target features.
Deep CORAL (Sun & Saenko, 2016) uses feature covariance to measure the domain discrepancy.
Another stream of works tries to enlarge the available train data space with augmentation of source
domains (Carlucci et al., 2019; Dou et al., 2019; Qiao et al., 2020; Shankar et al., 2018; Zhou et al.,
2020a;b). Several approaches leverage regularization through domain adversarial learning (Jia et al.,
2020; Rahman et al., 2020) to address DG. Despite the promising results achieved by current do-
main generalization (DG) methods, all of them assume the availability of labeled or unlabeled target
samples to aid in fine-tuning the models. However, our motivation and setting differ significantly.
We strive to enhance the generalization ability of FER methods while maintaining their high classi-
fication accuracy. Besides, we exclusively train FER models on a single FER dataset and evaluate
it on various unseen FER test sets. We refrain from accessing any target domain samples, rendering
existing domain adaptation methods infeasible for our task.

3 PROBLEM DEFINITION

In this paper, we focus on improving the generalization ability of FER methods while maintaining
their high classification accuracy. Learning is conducted on one given FER train set, and then test
samples from different FER test sets with domain gaps of the train set should be recognized on the
fly, which is similar to the real-world deployment of FER models.

FER models are trained with Dtrain = {(xi, yi)}Ni=1, where xi is the i-th training image and yi ∈
Y = {1, . . . , L} is the corresponding label, N is the number of training samples and L is the number
of expression classes. Traditional FER models are evaluated on the test set Dtest = {(xi, yi)}Mi=1
that has no domain gap between the train set, M is the number of test samples. However, the real-
world test set Dreal = {(x̃i, yi)}Mi=1 is different from Dtest, as Dreal might contain samples with
domain gaps between the training samples. In this paper, we aim to train the FER model on Dtrain

that can generalize well on the real-world test set Dreal. The difference between our task and the
traditional FER is that we test the FER models on Dreal instead of Dtest. The difference between
our task and domain adaptation FER is that we do not have access to the unlabeled target samples
from Dreal to help fine-tune the FER model, which is more similar to the real-world setting as we
cannot previously know the distribution of the target samples.

4 METHOD

CLIP generalizes well across a wide range of downstream tasks while it achieves relatively low
classification accuracy on FER test sets compared with SOTA FER methods as the extracted features
of CLIP contain many expression-unrelated features like age, gender, race, etc. SOTA FER methods
achieve high classification accuracy while they fail to generalize to unseen test sets. We design a
novel method to adapt CLIP for FER and combine the advantages of both CLIP and SOTA FER
methods to achieve high classification accuracy and high generalization ability at the same time.

Specifically, we first use fixed CLIP to extract face features. Since CLIP is trained using large-scale
image-text pairs, we can assume that the extracted face features generalize well across different
domains of FER datasets. However, CLIP’s extracted features contain many expression-unrelated
features. Therefore, we have designed a novel method to adapt CLIP for FER. We train a FER model
to generate sigmoid masks, which select expression-related features from the fixed face features ex-
tracted from CLIP. To further enhance the generalization ability of the learned masks, we introduce a
channel-separation module and a channel-diverse loss to maximize mask diversity. It’s worth noting
that our pipeline is similar to how humans perceive expressions. As humans, when we encounter test
samples with domain gaps from the training samples, we first extract their face features to exclude
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Figure 2: The framework of our proposed method. We adapt CLIP for FER to balance the classi-
fication accuracy and the generalization ability. CLIP is fixed to extract only image features of the
training images, while the FER model is trained to learn masks for the fixed face features to extract
only the expression-related features. It’s worth noting that this process is similar to how humans per-
ceive expressions: we first observe faces and then extract expression-relevant features. The learned
masks are regularized by a sigmoid function to prevent overfitting. We further introduce a channel-
separation module and a channel-diverse loss to make the learned masks as diverse as possible.

the domain features like image styles and backgrounds. Afterward, we focus solely on the features
related to the expressions in order to determine the expression contained within the test sample.
Following a similar approach, our proposed method initially utilizes CLIP to extract face features
of test samples from all different domains. Then, a trained FER model generates sigmoid masks for
selecting expression-related features from the face features and making decisions solely based on
the selected features.

4.1 SIGMOID MASKS ON FIXED FACE FEATURES

Given images x from Dtrain, we first extract the image features using CLIP, denoted as F ∈ RN×C ,
where N is the number of images and C the number of feature dimensions, we fix F during the
training process to prevent the FER model to optimize face features to overfit the given train set.
This operation improves the generalization ability of our proposed method. The FER model, such
as ResNet-18, is trained to learn masks for the given face features. We first extract features f ∈
RN×C×1×1 from x after the global average pooling (GAP) layer and resize them to generate the
masks M ∈ RN×C for face features. Further, in order to regularize the learned masks to generalize
to unseen test samples, we apply a sigmoid function on M and get Ms as

Ms = Sigmoid(M). (1)
The sigmoid function is vital to the success of our method as it introduces non-linearity into the
model, which is crucial for capturing and learning non-linear patterns to generate the masks. The
sigmoid function also normalizes M, ensuring that the values of M fall within [0, 1], which reduces
the overfitting ability of the learned masks as it reduces the range of variation of M. Furthermore,
the sigmoid function provides a probability-like output, where the output value represents the proba-
bility of selecting the feature of the corresponding channel, which is semantically similar to humans
choosing expression-related features from the face features. The performance of our method without
the sigmoid function drops drastically, which is shown in the appendix A.5.

We further utilize Ms to select the face features for expression recognition as

F̃ = MsF. (2)

The classification loss is computed between the selected features F̃ and labels y following

lcls = − 1

N

N∑
i=1

(log
eWyi F̃i∑L
j eWj F̃i

), (3)

where Wyi is the yi-th weight from the FC layer and yi is the label of the i-th image.
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4.2 CHANNEL-SEPARATION MODULE AND CHANNEL-DIVERSE LOSS

To make the learned mask generalizable to other unseen FER test sets, we further design a channel-
separation module to regularize the learned mask. Specifically, we set apart the masked features into
seven pieces according to the channel dimension to make the masked features correspond to seven
basic expressions and then max pool each piece to directly map them into logits. In such a design, we
could avoid the use of the FC layer and directly connect the masked features to the FER labels. The
motivation of our design is twofold: Firstly, the learning ability of the FC layer might be too strong
to overfit the train set. Thus, we abandon the FC layer and directly transform the masked features
into logits to prevent the FC layer from overfitting the labels with the learned features. Secondly,
the channel size of 512 when using ResNet-18 might be too large to learn generalizable masks and
could also lead to overfitting on the training set. If we set apart the mask into seven pieces and make
each piece of the mask correspond to one basic expression, the mask piece with a small channel size
will be more likely to only focus on the useful information.

Specifically, given the masked features F̃, we divide them according to the channel number C to
L pieces corresponding to the class number L, F̃ = {F̃1, F̃2, ..., F̃L}. If C can not be divided by
L, we could divide the selected features non-uniformly. For example, when using ResNet-18, the
channel size is 512, we could assign 73 channels for each of the 6 expressions and leave the rest
74 channels for the ’neural’ expression. We utilize channel-dropping on the selected features to
mitigate the overfitting problem of the selected features. The drop mask is denoted as Mdrop =
{M1,M2, ...,ML} corresponding to the selected features. Each mask contains 0 or 1 for feature
selection. For example, in the M1, which is a vector of size (73, 1), there are 10 channels randomly
selected as 0 and all the rest are 1, leading to a drop rate of 10/73. The channel drop module guides
the model to focus on all channels, which increases the generalization ability of the masked features.
The channel-drop rate only slightly influences the performance at a reasonable rate, and we maintain
the drop rate at 10/73 across all our experiments, as we consider it a minor trick rather than one of
our contributions. After channel dropping, the selected features are denoted as

Msel = F̃Mdrop = {F̃1M1, F̃2M2, ..., F̃LML}. (4)

The selected features Msel are downsized to logits of size (N,L) for classification through a max-
pooling operation.

M̃ = {max(F̃1M1),max(F̃2M2), ...,max(F̃LML)}. (5)

Then, we compute a classification loss lsep with the labels and the logits M̃ obtained by the separa-
tion module without the FC layer.

lsep = − 1

N

N∑
i=1

(log
eWyi M̃i∑L
j eWjM̃i

), (6)

To increase the generalization ability of the learned masks, we want to make the channels corre-
sponding to each class as diverse as possible. Thus, we further introduce a channel-diverse loss.
Specifically, we input the F̃ into the max pooling operation to get

F̃max = {max(F̃1),max(F̃2), ...,max(F̃L}), (7)

the selected max feature channel is regularized to be diverse with other feature channels by the
channel-diverse loss ldiv ,

ldiv = 1− 1

Nc

N∑
i=1

L∑
j=1

F̃max, (8)

where c is the number utilized for normalization, we experimentally set c as 73, which is the same
as the channel number of the separated piece. The channel-diverse loss regularizes the max value
of each piece of F̃max as large as possible, which separates the largest value of each piece of F̃max

from other values, making the values of the channel dimension more diverse.

Combining the separation loss and channel-diverse loss, we aim to learn a powerful while general-
izable mask to only select useful expression features from the fixed generalizable face features. The
total train loss is summarized as

ltrain = lcls + λlsep + βldiv. (9)
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Table 1: The test accuracy of different FER methods on various FER test sets. The FER model is
exclusively trained using the dataset in the second column, and we evaluate it on all five test sets.
Our method significantly outperforms SOTA FER methods by large margins on nearly all unseen test
sets and performs on par with them on the corresponding test set. We underline the best accuracy of
other FER methods and highlight the improvement achieved by our method compared to it in blue.

Method RAF-DB FERPlus AffectNet SFEW2.0 MMA Mean

Baseline 88.40 58.05 43.25 42.76 42.61 55.01
SCN 87.32 58.37 42.85 44.89 36.52 53.99
RUL 88.66 57.89 43.82 46.91 37.11 54.88
EAC 89.15 56.33 44.02 42.76 37.95 54.04
Ours 88.72 73.16 (+14.79) 45.86 (+1.84) 52.86 (+5.95) 56.80 (+14.19) 63.48
Method FERPlus RAF-DB AffectNet SFEW2.0 MMA Mean

Baseline 88.17 56.23 36.31 45.45 59.85 57.20
SCN 86.80 68.71 32.42 43.10 59.12 58.03
RUL 88.40 51.89 35.88 45.90 58.00 56.01
EAC 89.03 41.62 36.49 45.79 59.89 54.56
Ours 89.51 72.91 (+4.20) 39.44 (+2.95) 49.38 (+3.48) 60.14 (+0.25) 62.28
Method AffectNet RAF-DB FERPlus SFEW2.0 MMA Mean

Baseline 56.06 71.22 66.75 44.44 44.35 56.56
SCN 62.48 70.70 63.98 41.98 38.51 55.53
RUL 58.70 55.83 52.88 34.01 31.93 46.67
EAC 63.77 66.10 57.19 44.89 33.49 53.09
Ours 57.87 72.69 (+1.47) 69.94 (+3.19) 51.18 (+6.29) 49.65 (+5.30) 60.27
Method SFEW2.0 RAF-DB FERPlus AffectNet MMA Mean

Baseline 39.68 46.68 33.41 29.18 22.85 34.36
SCN 43.39 46.74 32.58 23.19 17.38 32.66
RUL 42.00 46.35 36.02 30.41 22.06 35.37
EAC 43.39 47.29 33.66 25.57 22.26 34.43
Ours 45.01 54.43 (+7.14) 48.39 (+12.37) 32.24 (+1.83) 36.34 (+13.49) 43.28
Method MMA RAF-DB FERPlus SFEW2.0 AffectNet Mean

Baseline 61.93 70.50 69.97 45.79 37.46 57.13
SCN 63.00 74.09 73.99 45.90 35.94 58.58
RUL 61.70 71.94 69.05 39.21 34.45 55.27
EAC 65.06 74.32 71.85 42.87 35.83 57.99
Ours 65.97 78.36 (+4.04) 73.57 (-0.42) 49.05 (+3.15) 41.85 (+4.39) 61.76

After training, the module to compute lsep and ldiv can be abandoned, we only need to keep the
module that is used to compute lcls to recognize the test samples as lsep and ldiv are only used to
regularize the mask learning during training.

5 EXPERIMENTS

5.1 DATASETS AND METHODS

RAF-DB (Li et al., 2017) is annotated with seven basic expressions by 40 trained human coders,
including 12,271 images for training and 3,068 images for testing.

FERPlus (Barsoum et al., 2016) is extended from FER2013 (Goodfellow et al., 2013) with cleaner
labels, which consists of 28,709 training images and 3,589 test images collected by the Google
search engine, we utilize the same seven basic expressions with the RAF-DB.
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AffectNet (Mollahosseini et al., 2017) is a large-scale FER dataset, which contains eight expressions
(seven basic expressions and contempt). There are a total of 286,564 training images and 4,000 test
images. We utilize the seven basic expressions in our experiments.

SFEW2.0 is the most commonly used version of SFEW (Dhall et al., 2011). SFEW2.0 contains 958
train samples, 436 validation samples, and 372 test samples. Each image is assigned to one of the
seven basic expressions.

MMA is a large-scale FER dataset with the majority of expressions from individuals of European
and American descent. The dataset contains 92,968 training samples, 17,356 validation samples,
and 17,356 test samples. Each image is assigned to one of the seven basic expressions.

Since we aim to evaluate the classification accuracy and generalization ability of FER methods, our
main comparison methods are SOTA FER methods like SCN (Wang et al., 2020), RUL (Zhang et al.,
2021) and EAC (Zhang et al., 2022). We only use one train set to train the FER model, in the test
phase, different unseen FER test sets are utilized to simulate the real-world deployment. We do not
compare with domain adaptation FER methods as we do not use any unlabeled samples of the target
domain, which makes existing domain adaptation methods in FER impractical.

5.2 IMPLEMENTATION DETAILS

We utilize ResNet-18 (He et al., 2016) as the backbone in most experiments of our paper. The
learning rate η is set to 0.0002 and we use Adam (Kingma & Ba, 2014) optimizer with weight decay
of 0.0001. We utilize a learning rate scheduler of ExponentialLR, with a gamma of 0.9. We set the
weight for the channel-wise loss as 1.5 and the weight for the diverse loss as 5. The max training
epoch Tmax is set to 60.

5.3 MAIN EXPERIMENTS

To evaluate the classification accuracy and generalization ability of existing FER methods, we uti-
lize one of the five FER datasets as the training set. Instead of testing only on the test set of the
corresponding train set, we test on all five FER test sets. To simulate the real-world deployment,
we do not have access to any images of the different FER test sets during the training stage, which
means the domain adaptation method is not feasible under our setting. The results shown in Table 5
demonstrate that SOTA FER methods do not perform well on FER test sets with domain gaps be-
tween the train set. For example, though the SOTA FER method EAC improves the baseline method
by remarkable margins on the test set corresponding to the train set, it achieves similar or even in-
ferior results on other FER test sets than the baseline method. We speculate the reason might lie
in that EAC fits the train set too much to learn generalizable FER features to other different FER
test sets. Our method maintains high accuracy on the test set corresponding to the train set. Under
other unseen test sets, we underline the best result of other FER methods and compare it with our
method. Our method outperforms SOTA FER methods by large margins almost under all settings.
We also show the mean accuracy on five FER test sets on the right. Under different FER train sets,
our method always achieves the best mean accuracy on five FER test sets. We further provide the
test accuracy of each expression class and the mean accuracy on all expression classes in Table 6
and find that our method also achieves the best mean accuracy and the best accuracy on most of the
expression classes.

5.4 ABLATION STUDY

To study the effectiveness of each of the proposed modules in our method, we carry out thorough ab-
lation studies. The results in Table 3 show that without our method, the FER model cannot generalize
to other datasets that have domain gaps with the train set, which is unsatisfactory for the real-world
deployment of FER models. With our proposed sigmoid mask learning, the performance on other
unseen test sets outperforms the baseline by a large margin. However, the fitting probability of the
mask is too strong as the dimension of 512 might be too much to learn generalizable expression
features. Thus, we introduce the channel-separation module which separates the masked features
into pieces corresponding to the different expression classes. The performance improves from only
using the sigmoid mask module. We introduce a channel-diverse loss to make the channels in each
piece as diverse as possible, which further improves the accuracy. From the results in Table 3, each
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Table 2: The performance on the FERPlus test set with the accuracy of each expression class, when
the train set is RAF-DB. Overall accuracy is the accuracy on the whole test set, mean accuracy is
the mean value of the accuracy of each expression class. Our method achieves both the best overall
and the mean accuracy compared with other methods.

Method Surprise Fear Disgust Happiness Sadness Anger Neutral Overall Mean

Baseline 61.36 24.10 22.22 83.43 68.49 49.45 37.71 58.05 49.54
SCN 82.83 14.46 27.78 77.72 61.20 61.17 35.78 58.37 51.56
RUL 69.70 45.78 22.22 82.53 70.57 52.01 31.93 57.89 53.54
EAC 70.71 39.76 16.67 81.30 76.04 58.24 25.14 56.33 52.55
Ours 78.54 37.35 33.33 94.96 78.65 57.51 58.72 73.16 62.72

Table 3: The ablation study of our proposed method. The results on different FER test sets show
that the most effective module of our method is the sigmoid mask module. The channel-separation
module and the channel-diverse loss make the learned mask more generalizable to other FER test
sets and further improve the performance of our method.

Mask Separation Diverse FERPlus AffectNet SFEW2.0 MMA Mean

58.05 43.25 42.76 42.61 46.67
✓ 70.90 43.77 51.63 55.65 55.49
✓ ✓ 72.01 45.17 53.31 56.69 56.80
✓ ✓ ✓ 73.16 45.86 52.86 56.80 57.17

module contributes to the success of our proposed method, and combining them together achieves
the best result.

5.5 DIFFERENT BACKBONES

We combine our method with different backbones to show its generalization ability. The results in
Table 4 illustrate that our method improves the performance of baseline under different backbones
by remarkable margins. Specifically, the improvement is largest when using ResNet-18 as the back-
bone, the reason might lie in that the dimension of the output feature of ResNet-18 is 512, which
is the same as the dimension of the output feature of CLIP. When using MobileNet (Howard et al.,
2017) or ResNet-50, we reduce the size of the output feature through mean operation to suit the
feature dimension of CLIP, which might slightly limit the performance improvement. For exam-
ple, when the backbone is ResNet-50, we simply reduce the output feature dimension of 2048 to
512 through mean operation using sliding windows. We also observe that stronger backbones have
better generalization ability in our experiment. The ResNet-50 backbone achieves the overall best
performance across experiments.

5.6 HYPERPARAMETER STUDY

We study the influence of the weight of separation loss λ and the weight of diverse loss β on our
method. The results shown in Figure 3 illustrate that both the λ and β can be chosen from a wide
range and the performance is only slightly different across an order of magnitude, e.g., λ from
[0.5, 5] and β from [1, 10]. For simplicity, we choose λ as 1.5 and β as 5 across all our experiments.

5.7 VISUALIZATION

We visualize the learned features using t-SNE (van der Maaten & Hinton, 2008) to provide an
intuitive understanding of our method in Fig. 4. The FER model is trained on RAF-DB train set and
the features on the FERPlus test set are displayed.
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Table 4: The performance of our method under different backbones.

Backbone RAF-DB FERPlus AffectNet SFEW2.0 MMA Mean

MobileNet 84.65 61.33 43.45 43.21 40.67 54.66
MobileNet + Ours 85.07 64.97 42.91 45.45 43.11 56.30
ResNet-18 88.40 58.05 43.25 42.76 42.61 55.01
ResNet-18 + Ours 88.72 73.16 45.86 52.86 56.80 63.48
ResNet-50 88.49 70.13 47.46 49.94 48.90 60.98
ResNet-50 + Ours 89.05 75.26 47.49 51.07 57.46 64.07

Figure 3: The hyperparameter study of our method. Our method is not very sensitive to the two
hyperparameters, and we could choose them from a wide range. For simplicity, we use λ = 1.5 and
β = 5 across all experiments.

OursBaseline

Figure 4: The t-SNE visualization of the learned
features of the baseline and our method.

The learned features of the baseline are ex-
tracted after the global average pooling layer.
The learned features of the FER model under
our method are the learned masks, which are
the outputs of the FER model, corresponding to
the features extracted from the baseline. We can
observe that in Fig. 4, the features on FERPlus
are not well separated by the baseline method.
The reason lies in that there is a domain gap
between RAF-DB and FERPlus, which means
that the baseline method cannot generalize well
to other test sets different from the train set of
RAF-DB. Our method outperforms the baseline
method and separates the samples from differ-
ent expression classes better.

6 CONCLUSION

In this paper, we study the balance between classification accuracy and the generalization ability of
FER methods. We observe that existing FER methods fail to generalize on test sets with domain
gaps between the training set, which is far from reliable in real-world deployment. To address
this problem, we design a novel method to learn sigmoid masks on fixed CLIP face features to
adapt CLIP for FER. To further enhance the generalization ability on unseen FER datasets, we
propose a channel-separation module and a channel-diverse loss to make the learned sigmoid masks
as diverse as possible. Extensive experiments on different FER datasets and backbones show that
our method outperforms state-of-the-art FER methods by remarkable margins and achieves both
high classification accuracy and high generalization ability.
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A APPENDIX

A.1 PIPELINE OF OUR METHOD

We summarize the pipeline of our method in Alg. 1. We utilize fixed pre-trained large model like
CLIP ffixed to extract generalizable face features for any given facial expression recognition (FER)
samples.We then train a newly initialized FER model f from scratch to extract useful expression-
related features from the given face features. We assume that if the FER model learns how to extract
expression features from given face features, it can generalize to other unseen FER domains based on
the generalizable face features extracted from CLIP. We input the learned mask of the FER model to
a sigmoid function to reduce overfitting. The learned sigmoid mask is multiplied with the fixed face
features to select useful expression-related features. To make the selected features generalizable, we
separate them according to the channel dimension into seven pieces corresponding to the seven basic
expression classes. Each piece of the selected features represents the features of a certain expression
class. To further increase the generalization ability, we make the channels within each piece as
diverse as possible through a channel-diverse loss. The training loss is calculated by summing the
classification loss, channel-separation loss, and the channel-diverse loss.

Algorithm 1 Training Algorithm
Require: Fixed pre-trained large model ffixed, FER dataset D, newly initialized FER model f with

parameters Θ, learning rate η, total epochs Tmax, data loader iterations Itrain.
1: for t = 1 to Tmax do
2: for n = 1 to Itrain do
3: Fetch mini-batch Dn from D
4: Extract fixed face features F using ffixed
5: Extract facial expression features f using f
6: Calculate sigmoid mask M by resizing f and inputting it to the sigmoid function
7: Obtain the masked feature F̃ using Eq. (2)
8: Calculate the classification loss ℓcls using Eq. (3)
9: Separate the masked feature F̃ and apply channel dropping as per Eq. (4)

10: Calculate the logits without FC layer using Eq. (5)
11: Calculate the channel-separation loss ℓsep using Eq. (6)
12: Separate and max pool the masked feature F̃ according to Eq. (7)
13: Calculate the channel-diverse loss ℓdiv using Eq. (8)
14: Calculate the training loss ℓtrain using Eq. (9)
15: Update Θ = Θ− η∇ℓtrain
16: end for
17: end for
Ensure: The trained FER model f , which can selectively extract expression-related features from

the given fixed face features.

A.2 IMPLEMENTATION DETAILS ON AFFECTNET

Implementation details are slightly different on AffectNet dataset as it is large-scale and imbalanced.
The learning rate is 0.0001 and the gamma of the scheduler is 0.8. As AffectNet is extremely
imbalanced, we adopt a balanced sampler to keep the samples of each class similar within each
batch. The training epoch is 20 instead of 60 because AffectNet has much more training samples
than RAF-DB.

A.3 PERFORMANCE WITHOUT PRE-TRAINED FER MODEL

To further illustrate the effectiveness of our proposed method, we carry out experiments without
using the pre-trained backbone of FER model.

All the FER methods are trained from scratch without a pre-trained backbone on RAF-DB and
tested on all five different FER test sets. The results are shown in Table 5. We observe that our
method outperforms the SOTA FER methods on the generalization ability by even larger margins
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Method RAF-DB FERPlus AffectNet SFEW2.0 MMA Mean

With Pre-Trained FER Backbone

Baseline 88.40 58.05 43.25 42.76 42.61 55.01
SCN 87.32 58.37 42.85 44.89 36.52 53.99
RUL 88.66 57.89 43.82 46.91 37.11 54.88
EAC 89.15 56.33 44.02 42.76 37.95 54.04
Ours 88.72 73.16 (+14.79) 45.86 (+1.84) 52.86 (+5.95) 56.80 (+14.19) 63.48

Without Pre-Trained FER Backbone

Baseline 75.01 36.75 24.48 19.75 19.38 35.07
SCN 75.23 38.48 21.41 17.17 30.11 36.48
RUL 79.53 35.86 16.42 11.78 11.89 31.10
EAC 80.64 41.73 23.73 22.22 29.51 39.57
Ours 85.92 69.14 (+27.41) 40.96 (+16.48) 45.79 (+23.57) 54.65 (+24.54) 59.29

Table 5: Comparison between with or without pre-trained FER backbone. The test accuracy of
different FER methods on various FER test sets is shown. We underline the best accuracy of other
FER methods and highlight the improvement achieved by our method compared to it in blue. Our
method outperforms SOTA FER methods by even larger margins when without a pre-trained FER
backbone.

SCN EACBaseline OursRUL

Figure 5: The confusion matrices of different methods when the train set is RAF-DB and the test set
is FERPlus. Zoom in for better visualization.

when without a pre-trained FER backbone. For example, without a pre-trained FER backbone, our
model increases the second-best performance on FERPlus by 27.41% compared with 14.79% when
with the pre-trained FER backbone. The performance of all FER methods drops when without the
pre-trained FER backbone, however, our method achieves a very similar performance between the
two groups, only decreasing the mean performance from 63.48% to 59.29%, which is acceptable.
While the EAC method decreases the mean performance from 54.04% to 39.57%, which is rather
drastic. The results illustrate that the pre-trained FER backbone is not necessary for our method to
achieve the best performance. Our method without a pre-trained FER backbone still achieves a mean
accuracy of 59.29%, outperforming the best mean accuracy of other methods with a pre-trained FER
backbone of 55.01%. From the comparison between the two groups, we conclude that our method
is robust and performs well even without the pre-trained FER backbone. The reason lies in that
our method only learns a mask to select fixed face features instead of learning the whole expression
features, which does not need a very strong FER model to perform well. Furthermore, a simple FER
model without pre-training can extract simple patterns to select fixed face features, which is more
likely to generalize across different FER datasets.

A.4 CONFUSION MATRICES

Due to the space limitation, we display the accuracy of each class on FERPlus in Table 2 of our
paper. In this section, to provide a more accurate reference, we display the confusion matrices
of different methods in Fig. 5. From the results, we conclude that our method achieves the best
accuracy in most of the expression classes.
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Method RAF-DB FERPlus AffectNet SFEW2.0 MMA Mean

No sigmoid 89.24 62.58 46.37 46.58 45.49 58.05
Ours 88.72 73.16 (+10.58) 45.86 (-0.51) 52.86 (+6.28) 56.80 (+11.31) 63.48

Table 6: Influence of the sigmoid function on our method. Our method uses the sigmoid mask to
select expression-related features, the comparison group has no sigmoid function and the others are
the same as our method. The results show that the sigmoid function is very important for our method
to learn generalizable masks.

A.5 THE EFFECT OF THE SIGMOID FUNCTION

To illustrate the effectiveness of the sigmoid function applied to the learned mask, we design a
comparison group of our method without the sigmoid function, while we keep the others exactly
the same. The experiment results on different FER test sets are shown in Table 6. The results
demonstrate that the sigmoid function for mask learning is very important, without it, our method
barely works. The reason lies in that the sigmoid function normalizes the learned masks, ensuring
that the values fall within [0, 1], which reduces the overfitting ability of the learned masks.
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