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ABSTRACT

Developing effective instruction-following policies in reinforcement learning re-
mains challenging due to the reliance on extensive human-labeled instruction
datasets and the difficulty of learning from sparse rewards. In this paper, we
propose a novel approach, Open-ended Instruction Relabeling (OIR), that lever-
ages the capabilities of large language models (LLMs) to automatically generate
open-ended instructions retrospectively from previously collected agent trajec-
tories. Our core idea is to employ LLMs to relabel unsuccessful trajectories by
identifying meaningful subtasks the agent has implicitly accomplished, thereby
enriching the agent’s training data and substantially alleviating reliance on human
annotations. Through this open-ended instruction relabeling, we efficiently learn a
unified instruction-following policy capable of handling diverse tasks within a sin-
gle policy. We empirically evaluate our proposed method in the challenging Craftax
environments, demonstrating clear improvements in sample efficiency, instruction
coverage, and overall policy performance compared to state-of-the-art baselines.
Our results highlight the effectiveness of utilizing LLM-guided open-ended instruc-
tion relabeling to enhance the instruction-following abilities through reinforcement
learning. The code is available at https://anonymous.4open.science/r/ICLR26-OIR/.

1 INTRODUCTION

Instruction-following reinforcement learning (RL), where agents learn to efficiently interpret and
execute tasks specified through natural-language instructions, holds immense promise for build-
ing generalizable and flexible Al systems. Despite considerable advances in goal-conditioned RL
methods (Schaul et al., [2015; |/Andrychowicz et al., 2017), existing instruction-following RL ap-
proaches continue to face significant challenges. Typically, such methods heavily rely on large-scale
human-annotated instruction datasets (Hill et al., 2020; Narasimhan et al., [2018) or predefined in-
struction templates, limiting scalability, generalization capabilities, and thereby constraining their
real-world applicability. Furthermore, environments characterized by sparse feedback exacerbate this
challenge—agents are likely to collect numerous unsuccessful trajectories that offer minimal utility,
leading to inefficient exploration and slow policy improvement.

In this paper, we propose a novel framework to address these challenges by leveraging the strong
reasoning capabilities of pretrained large language models (LLMs). Our key insight is to apply
LLMs retrospectively to generate meaningful, open-ended instructions from collected agent tra-
jectories. Specifically, the LLM identifies semantically relevant subtasks that the agent implicitly
accomplished within failed trajectories and provides corresponding instructions, thus enriching these
experiences with informative reward signals. Through this automatic instruction relabeling, we
efficiently transform previously sparse and unsuccessful trajectories into valuable learning samples,
thereby improving the data efficiency and diversity of instruction-conditioned policy learning without
requiring any manual annotation effort.

We empirically validate our method on Craftax (Matthews et al.| [2024]), a challenging benchmark that
offers diverse semantic instructions and inherently sparse rewards. Experimental results demonstrate
that our proposed framework significantly surpasses strong baselines, achieving substantial improve-
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Figure 1: Overview of Open-ended Instruction Relabeling (OIR) framework. — Blue flow — illus-
trates standard reinforcement learning: an instruction-conditioned policy samples rollouts from the
environment using instructions sampled from the instruction buffer, after which the policy parameters
are updated with the collected samples. — Green flow — highlights our novel relabeling mecha-
nism: converting collected trajectories into extual observations and then prompting a pretrained LLM
to retrospectively generate diverse, open-ended instructions identifying successfully accomplished
subtasks. These generated instructions then serve to relabel trajectories by producing binary, semantic
rewards, thereby enriching the instruction buffer with new and informative learning signals.

ments in terms of sample efficiency, coverage and diversity of instructions, and the overall quality of
learned instruction-following policies. Our primary contributions can be summarized as follows:

Sample
Rollouts

1. We propose a novel open-ended instruction relabeling framework that leverages large
language models to automatically assign semantically meaningful instructions to collected
trajectories, completely eliminating dependence on manual human annotations.

2. Our relabeling method effectively transforms unsuccessful trajectories into informative
training examples, enabling more efficient learning of instruction-following policies in
open-ended environments.

3. Extensive empirical experiments conducted on the Craftax benchmark validate that our
approach substantially outperforms state-of-the-art instruction-conditioned reinforcement
learning baselines, demonstrating strong improvements in sample efficiency, instruction
diversity, and instruction-following performance.

2 RELATED WORK

Goal-Conditioned Reinforcement Learning (GCRL). Goal-conditioned reinforcement learning
generalizes standard RL objectives by conditioning policies and reward functions explicitly on goal
representations (Schaul et al., 2015} Liu et al., 2022). Many GCRL methods leverage hindsight relabel-
ing strategies to address sparse rewards, notably Hindsight Experience Replay (HER) (Andrychowicz
et al.,[2017). HER-inspired methods propose various heuristics to select suitable goals, such as goal
discovery based on reward relevance (Pitis et al., 2020; [Fang et al.,|2019), goal diversity (Ren et al.,
2019), and adaptive difficulty selection based on learning progress (Nair et al.,|2018; |Warde-Farley
et al.,|2018)). However, existing methods primarily rely on predefined numeric or state-based goals
and cannot easily scale to instructions presented in open-ended natural language.

Instruction-Conditioned Reinforcement Learning. Instruction-conditioned RL extends goal-
conditioned RL by formulating tasks explicitly via natural language instructions that are encoded
directly into policy inputs and rewards (Luketina et al.,2019;Narasimhan et al., 2018} [Hill et al.| 2020).
Recent works propose using hindsight instruction relabeling (HIR) (Zhang et al., 2023} Sumers et al.|
2023;|Xiao et al.l 2022)) methods that retrospectively assign appropriate instruction labels to collected
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trajectories, substantially enhancing data efficiency and policy robustness. Nonetheless, these HIR
approaches typically require human-defined templates (Sumers et al., [2023) or substantial manual
labeling efforts (Zhang et al., 2023; Xiao et al., 2022), limiting their scalability and generalization
potential. Our approach, in contrast, eliminates the need for manually defined instruction spaces or
labels by using LLM-generated relabeling, significantly increasing flexibility and open-ended task
coverage.

Leveraging Large Language Models in Reinforcement Learning. Recent work has increasingly
explored the use of pretrained Large Language Models (LLMs) to assist various aspects of RL tasks,
including semantic reward shaping (Xie et al., 2023} Ma et al.,2023)), task decomposition (Huang
et al.| 2022} |Lin et al.}|2022), and high-level action guidance (Du et al.| 2023} [Yao et al.| 2023}, |[Fan
et al.,2022;|Wang et al., [ 2025). Such methods exploit the reasoning power and semantic understanding
capabilities of LLMs to enrich RL policy learning, although they often focus on forward generation
of guidance or rewards from human-written task descriptions. By contrast, our proposed approach
uniquely applies LLMs in a retrospective fashion: generating meaningful instruction labels from
collected trajectory interactions, thus enabling effective utilization of unsuccessful episodes and
improving sample efficiency and generalization across open-ended natural language instructions.

3 PRELIMINARIES

Markov Decision Process (MDP). A Markov Decision Process (MDP) provides a mathematical
framework for modeling sequential decision-making problems (Puterman, |1994; Sutton & Barto,
2018). Formally, an MDP is defined as a tuple (S, A, T, R,~y), where S is the state space, A is the
action space, T': S x A — & describes the state transition dynamics, R : S x A — R is the reward
function, and y € [0, 1) is the discount factor. The goal of an agent interacting with the MDP is to
find a policy 7 : § — A that maximizes the expected cumulative discounted reward:

J(TF) = ]Esowp(so),atw‘n'(st) [Z 'YtR(Styat)‘| . (1)

t=0

Hindsight Experience Replay (HER). Reinforcement learning algorithms often struggle in sparse
reward environments, as successful experiences occur infrequently. Hindsight Experience Replay
(HER) (Andrychowicz et al.l [2017)) addresses this challenge by enabling agents to learn effectively
from failures through goal relabeling. Specifically, HER retrospectively reinterprets unsuccessful
episodes by setting the goals to states the agent actually achieved later in the trajectory.

Formally, given an observed trajectory 7 = {(s¢, as, 74, 8111,9) }i—g" associated with an original
goal g, HER selects an achieved future state s, (where t' > t) from the trajectory and relabels the
original goal as ¢’ = sy. The reward for the relabeled trajectory is then recomputed accordingly:

7';, = R(s¢, at,g’). )

By using achieved states as hindsight goals, HER significantly enhances the agent’s ability to learn
efficiently from sparse rewards, effectively converting unsuccessful episodes into valuable learning
experiences.

4 METHOD

We propose a novel approach leveraging hindsight instruction relabeling guided by large language
models (LLMs) to efficiently train generalizable instruction-conditioned reinforcement learning
(RL) policies. Unlike traditional hindsight experience replay techniques (Andrychowicz et al.|
2017), which reuse visited states to generate goals, our method synthesizes diverse free-form textual
instructions directly from collected trajectories. This synthesis allows agents to learn from a richer set
of instructions without requiring domain-specific knowledge, thereby facilitating effective training in
environments characterized by sparse and semantic reward signals.

We formalize instruction-following RL tasks as an MDP extended with an explicit instruction space
(S, A,Z,R,T,~), where S is the state space, .A the action space, and Z is the (potentially unbounded)
textual instruction space expressed in natural language.
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Algorithm 1 OIR: LLM-Guided Hindsight Instruction Relabeling

Require: pretrained LLM L, encoders fstate, finstr, Off-policy RL algorithm alg
1: Initialise instruction buffer 3 and E parallel environments
2: for each iteration do

3: D+

4: Collect trajectories {7 }£_, with policy g

S: fore =1 to E do

6: prompt, < h(7e) > build LLM prompt
7: for k =1 to K do

8: iy x ~ L(prompt,) > generate candidate
9: T R(il ., Te) B> cosine-similarity reward, Eq.
10: D+ DU {(7e, il 1, 7%}

11: Update 5 with all the relabeled instructions {i, ;, | e € [E], k € [K]} using Section
12: Update (6, 1) using batch D with alg
13: Reset finished environments with instructions sampled uniformly from 3

At each timestep t, the agent observes a state s; € S and an instruction ¢ € Z. It then selects an action
a; € A according to a conditional policy a; ~ mg(as | St, finsue(i)), where finge(-) is an embedding
function encoding textual instructions into embedding vectors. In our setup, we assume access to a
pretrained instruction embedding encoder finy,, such as SBERT (Reimers & Gurevychl 2019).

Subsequently, the environment transitions to the next state s;11 ~ T'(s¢, a¢) and produces a reward
explicitly conditioned on the current instruction 7, = R(sy, ag, 7).

We assume that the ground truth reward function R is binary (with R(s:, as, i) = 1 indicating
successful completion and 0 otherwise), but typically not acessible for arbitrary instructions during
training. To address this challenge, we use hindsight instruction relabeling with automatically
generated instructions from LLMs, effectively synthesizing surrogate binary reward signals based on
collected trajectories to enable efficient learning.

Finally, we express our overall training and evaluation objective through a statistical mapping f,
aggregating individual instruction-conditioned returns (or success indicators) into a single scalar
metric:

max f(Einz [G(i,m0)]), (3)

where G (i, 7g) denotes the instruction-conditioned cumulative reward or binary achievement indi-
cator. Specific instantiations of the aggregation function f include mean cumulative reward across
instructions (expected return), success rate, and aggregated achievement score. We describe and
evaluate these metrics concretely in Section 3}

Detailed in Algorithm[I] our method is composed of: (1) the instruction generation and relabeling
procedure; (2) reward and episode termination assignment based on the new instructions; and (3) the
prioritized instruction buffer used to efficiently manage the instructions utilized during rollouts.

4.1 TRAJECTORY COLLECTION AND INSTRUCTION RELABELING VIA LLMS

During training, we concurrently deploy E parallel instances of the environment, each collecting
trajectories under policy g (- | o¢,1;). We denote the set of collected trajectories as {7.}Z_;, where

e=1>
. . . . . T
each trajectory is a sequence consisting of state-action pairs 7. = {(s§, a7)};<,-

To generate meaningful instructions from these trajectories, we leverage the capacity of large language
models to perform semantic reasoning over textual descriptions of observed interactions. Concretely,
we first convert each trajectory 7. into an interpretable textual format suitable for prompting a
pretrained LLM L. Formally, given a trajectory 7., we construct a textual prompt structured temporally
as follows:
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Prompt:
What instruction is this trajectory following?

timestep 0: textual observation {{of}}, agent takes action {{af}}
timestep 1: textual observation {{of}}, agent takes action {{af}}

timestep T.: textual observation {{o7,}}, agent takes action {{a7, }}

Using such temporally structured prompts, the LLM returns plausible instructions corresponding
to the actions of the trajectory. In general, given the language model L, a trajectory-based textual
observation transformation function h, and hyperparameter K controlling instruction quantity and
diversity, the instruction generation process is given by:

{ie} iz ~ L (prompt(re)), “
with prompt being the prompt template shown above.

Thus, each trajectory yields a set of K candidate instructions suitable for the corresponding behavior.
These synthetically generated instructions are subsequently used to generate synthetic reward and
termination signals.

Relabeling Failed Trajectories. An important property of our method is its ability to explicitly
leverage and reinterpret trajectories that fail under their originally assigned instructions. Even
when the agent does not successfully achieve the intended task during data collection, the hindsight
relabeling procedure can still extract meaningful learning signals by deriving alternative instructions
associated with the same behavioral sequence.

We evaluate relabeled instructions by asking whether an oracle agent that can perfectly follow any
instruction would score the observed behavior as good for that instruction. For any instruction ¢ with
encoding finstr (%), discount v € (0, 1), transition kernel 7', and initial state distribution p(sg), define:

o0
el € argmax B\ R(se, ar,1) | sop, ar~vm(-| st finser (), see1~T( | st,ar) |
t=0

oo
Verede(s) =B ' R(si,a0.4) | so=5, ar~m™ (- | s, finser (i), 001 ~T(- | 50,a0)
t=0

%)
Let the action value be Q"' (s, a) := R(s,a,) + v Egur(.|s,a) [V (s")]. A candidate instruc-
tion ¢’ proposed at step ¢ for the observed pair (s¢, a;) is effective if

Q;_)lracle (st; at) > Qraxcle(st7 at)» (6)

lorig

This stepwise test supports partial instruction following, since an instruction can be rewarded even if
only part of the trajectory would be optimal under it. In practice, the oracle is unavailable; we use a
language model to propose such effective candidates.

Language models may propose inaccurate or misleading instructions because they lack environment-
specific context and can struggle with long trajectories. We therefore add simple rule-based instruc-
tions as a second supervision signal. This also motivates the subsequent design of reward function
and instruction replay buffer, which are designed to ensure the quality of the relabeled instructions.

4.2 REWARD DEFINITION AND EPISODE TERMINATION CRITERION

To flexibly handle diverse, free-form instructions, we utilize an embedding-based reward function
defined by semantic cosine similarity following ELLM (Gallici et al.,[2024). Let fyu(0¢) denote the
embedding of transition (o4, at, 044+1) and fine:(7) the embedding of instruction i. At each time step
t, the reward for instruction completion is given by

7401, 1) = cosim( fstate (01, @ty 014+1), finsue (7)), (7
where the cosine similarity is defined as cosim(a, b) = Wll\)bl\' An episode is deemed successful

the first time the reward exceeds a predefined threshold 6, r;(o¢,4) > &, at which point the episode is
marked as terminated.
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4.3 PRIORITIZED INSTRUCTION REPLAY BUFFER

To handle the enlarged instruction set while keeping memory bounded, we adopt an eviction—rather
than a sampling—based replay strategy inspired by Prioritized Level Replay (PLR) (Jiang et al., 2021).
For every instruction ¢ we maintain its empirical mean return R(¢), which are used only to order new
instructions before they are inserted; afterwards, instructions are drawn uniformly at random from the
buffer.

Priority ordering. We assign each instruction to one of three categories,

0 = Learning boundary, Tiow < R(i) < Thigh,
Status(i) = ¢ 1 = Failing, R(1) < Tiow, 8)
2 = Mastered, R(i) > Thigh-
where 0 < Tiow < Thign are fixed thresholds. Learning boundary items are most valuable because
they reveal the agent’s frontier of competence. Within each category, we break ties by R(i), preferring
instructions seen fewer times. Formally, we sort candidates by their status and empirical return:

(Status(i), R(7)), Status(z) € {0, 1,2}, 9
where lexicographically smaller tuples have higher eviction priority.

Round-robin eviction. The replay buffer is a fixed-size circular array. After sorting, we iterate
through the ordered list of new instructions and insert them sequentially, overwriting existing entries
in round-robin fashion. In this way the buffer always contains the most recent instructions from the
top of the priority list while still retaining a mixture of older tasks.

Uniform sampling at episode termination. Whenever an environment reaches the end of an
episode, the next instruction is selected uniformly at random from the buffer. Because the buffer
composition is itself prioritized, this simple sampling rule suffices to focus training on tasks close
to the agent’s learning boundary while still providing occasional exposure to harder and already
mastered instructions.

This eviction-based replay mechanism balances exploration (by continually introducing under-
sampled or failing tasks) and exploitation (by frequently retaining learning-boundary tasks), leading to
faster and more robust policy improvement without the need for complicated probability computations
or importance-sampling corrections.

5 EXPERIMENTS

We empirically evaluate our proposed method to assess its capability in learning instruction-
conditioned RL policies, specifically addressing three central research questions.

* RQ1 (Efficiency): Does the integration of LL.M-guided hindsight instruction relabeling
improve training efficiency compared to baseline methods?

* RQ2 (Generalization): Can our method generalize beyond training instructions and suc-
cessfully handle previously unseen instructions through semantic supervision obtained from
LLM-generated instruction relabeling?

* RQ3 (Diversity): Does our approach increase the semantic diversity and coverage of
instructions compared to baseline methods?

Environment. We adopt the Craftax-Classic environment (Matthews et al.,|2024), an open-ended
reinforcement learning benchmark that provides diverse, procedurally-generated environments ex-
plicitly characterized by textual instructions (achievements), which makes it particularly suitable for
evaluating instruction-conditioned RL methods. Craftax-Classic originally offers sparse achieve-
ment notifications linked explicitly to environment-defined tasks (e.g., “collect wood”). However,
we completely remove all built-in rewards and environment-provided achievement signals during
training, making it necessary for the agent to rely exclusively on its own to explore the open-ended
environment.

Training Protocol. We conduct all experiments using parallelised Q-network (PQN) (Gallici et al.|
2024])) as our base RL algorithm. PQN enables efficient sampling across multiple parallel environment
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Figure 2: (a-c) Performance comparison of OIR against baseline methods measured by (a) aggregate
score, (b) number of completed instructions, and (c) average success rate across all original instruc-
tions. (d) Success rates of OIR compared to baselines for individual instructions. OIR consistently
outperforms baseline methods across all evaluation metrics and nearly all individual tasks. Results
are averaged over three random seeds, with shaded areas representing standard errors.

instances, allowing batched interaction and large-scale querying of the LLM for instruction generation.
Throughout training, the agent does not receive reward signals from the environment. For fair and
direct comparison, all evaluated baselines are implemented using the same PQN algorithm backbone.

Evaluation Protocol. For the evaluation (conducted periodically during training), agent policies are
assessed on a pre-defined suite of instructions covering three types:

1. Original Instructions: Standard Craftax-achievements defined by the environment (e.g.,
collect wood).

2. Simple Variant Instructions: Three linguistic variations per original instruction, assessing
agent robustness to superficial textual differences (e.g., collect wood — pick up
logs from the ground.).

3. Complex Variant Instructions: Three semantically enriched and compositional variants
testing deeper instruction-following capabilities (e.g., Your inventory requires
wood; chop down several trees.).

The evaluation provides external ground-truth success signals given by the environment. These
signals are used only at evaluation to measure true instruction-following capabilities.

Evaluation Metrics. To quantitatively evaluate the learned instruction-following behavior, we
employ three primary metrics:
* Mean Success Rate: Arithmetic average of the success rates across all individual instruc-
tions.

¢ Mean Number of Completed Instructions: The count of distinct instructions for which
the policy achieves a success rate greater than zero.

» Aggregate Score: Calculated as exp (% Zfil 1og(1+si)) —1, where s; denotes the success
rate for instruction ¢. This scoring approach emphasizes improvements on instructions with
lower success rates, rather than on those for which performance is already proficient.
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Figure 3: Generalization performance of OIR compared to baseline methods measured by aggregated
score evaluation on (a) original instructions, (b) simple variant instructions, and (c) complex variant
instructions. OIR demonstrates superior generalization capabilities, significantly outperforming
baseline methods across all three variants. Results are averaged across three random seeds, with
shaded areas denoting standard errors.

Baselines. We compare our proposed method against three representative baseline approaches. First,
we adopt PQN w/ cosine similarity reward, which utilizes the PQN trained directly on the predefined
Craftax instructions, leveraging the same cosine similarity reward function as ours. Second, we
consider PQN w/ Ground-Truth Reward, where PQN is trained on the ground-truth sparse binary
achievement rewards provided by the environment (+1 upon the achievement of the instructed task,
0 otherwise); this baseline serves as an approximate performance upper bound, as it leverages the
fully accurate reward. Finally, we include ELLM (Exploring with LLMs) (Du et al.|[2023), where
exploratory goals are generated via a LLM. For fairness, we adapt ELLM to the same PQN backbone
as our method and remove any domain-specific heuristics and engineering.

5.1 RQI1 (EFFICIENCY)

From Figures[2(a)-(c), we observe that our method OIR surpasses all baselines across every aggregated
evaluation metric. Similarly, OIR demonstrates superior performance in terms of the number of
completed instructions, achieving approximately 10 completed tasks compared to fewer than four
tasks for other baselines. This indicates that our method not only achieves better task-specific
performance but also scales better across the diverse set of instructions. The overall average success
rate across instructions (33.10%) further confirms that OIR leads to consistently improved policy
performance and learning efficiency compared to traditional PQN methods and ELLM.

Figure [2d) further elucidates performance differences at the individual-instruction level. OIR learns
challenging instructions, such as "Defeat Zombie" (87.78%), "Place Table" (95.83%),
and "Make Wood Pickaxe" (76.59%), which other baselines completely fail to master. Such
hard instructions require multi-step exploration and purposeful behavior, clearly demonstrating that
the semantic guidance from open-ended instructions generated by the LLM substantially improves
the exploration and learning outcomes in sparse-reward scenarios.

However, it is important to recognize that OIR does not universally outperform other methods on
every individual instruction. For instance, the instruction "Wake Up" consistently yields better
performance with the ground-truth PQN baseline (90.53%) compared to OIR. This reflects a trade-off
inherent to our method’s design: due to the fixed buffer capacity of relabeled instructions, the agent
may gradually reduce proficiency on instructions that occur infrequently or lack semantic relevance
to a diverse set of other instructions. Such instructions are less likely to be frequently sampled during
policy updates and can decrease in performance over training. This trade-off, nonetheless, is balanced
by the overall substantial improvement across a broader and richer set of instructions.

5.2 RQ2 (GENERALIZATION)

According to Figure |3} our OIR method consistently outperforms baselines across all instruction
categories, including previously unseen variations. In contrast, baseline methods show nearly identical
performance across original and previously unseen instruction variants, but at notably lower aggregate
scores. Combined with the observation in Figure [2d) that these baselines learn to successfully
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LLM backbone (Qwen3-8B, Qwen3-4B, Gemma3-1b-it); (c) effect of the instruction-buffer sampling
strategy (prioritized instruction replay vs. uniform sampling).

complete only a small and fixed subset of instructions, we conclude that their apparently stable
performance reflects an inability to learn nuanced instruction-following behaviors. Instead, they
execute shallow and repetitive actions that are independent of the instruction context. Overall, these
results highlight the clear advantage and scalability of OIR in effectively generalizing instruction-
following policies to handle diverse and previously unseen natural-language instruction variants.

@o

5.3 RQ3 (DIVERSITY)

A
L . . . O¥ @ 5 %D
To address RQ3, we visualize instruction embeddings with B, wun ooy
a two-dimensional t-SNE in Figure 5} Each data point cor- <% g *@
responds to an individual instruction generated during policy @7, %g < ‘
training. We observe that OIR-generated instructions popu- ¢t & " © ©

late a significantly larger subregion of the embedding space, \
extending notably beyond the original Craftax achievements. ®

In contrast, instructions from ELLM predominantly cluster & © @
near predefined achievements, suggesting restricted semantic £

variation and limited exploratory signals.

OIR
ELLM
A Env Achievements

The greater semantic coverage of OIR is attributable to our hind- Figure 5: t-SNE visualization of se-
sight instruction relabeling strategy. By generating instructions - . diversity of instructions gen-
in hindsight from collected trajectories (including unsuccess-  orqiad by OIR compared to ELLM
ful ones), OIR naturally provides a more diverse instruction
distribution that semantically explains agent behaviors.

and environment achievements.

Ablations. Figure[d]presents three ablations: (a) Cosine-similarity threshold 6. Lower ¢ yields denser
early rewards and faster initial gains but risks over-rewarding partial progress; higher § trades slower
starts for cleaner semantics. (b) LLM backbone for relabeling. Qwen3-4B matches—and sometimes
surpasses—Qwen3-8B, whereas a much smaller model (Gemma3-1B-IT) performs substantially
worse. This pattern suggests a minimum capability threshold beyond which returns diminish; the
location of this threshold likely shifts with environment difficulty. (c) Sampling strategy. Prioritized
instruction replay eventually overtakes uniform sampling and finishes higher, consistent with the
hypothesis that prioritization keeps the curriculum near the agent’s learning frontier.

6 CONCLUSION

We proposed OIR to learn instruction-following policies by leveraging open-ended instruction rela-
beling with large language models. Our method automatically generates instructions from collected
trajectories, effectively reducing reliance on human annotation. Experiments on the Craftax environ-
ment demonstrated improved sample efficiency, the capability to master challenging instructions, and
better semantic coverage over the instruction space compared to baseline methods.

However, our method depends on the quality of instructions generated by pretrained LLMs, potentially
inheriting their biases or inaccuracies. Additionally, the limited capacity of our instruction buffer can
lead to the forgetting of infrequently sampled tasks. Future work should explore improved buffer
management, instruction filtering, and human-in-the-loop verification to enhance robustness and
applicability.
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ETHICS STATEMENT

Our study trains agents entirely in the synthetic Craftax simulator and does not use human subjects,
personal data, or copyrighted third-party content. Because the method relies on a pretrained LLM to
generate open-ended instructions, we acknowledge potential risks from model biases or inaccurate
generations. These risks are mitigated since we apply a semantic filtering step using cosine similarity
reward and instruction buffer to reduce low-quality relabels. The work is intended for research on
instruction-following in bounded simulators.

REPRODUCIBILITY STATEMENT

We document the environment details (including observation space, action space, reward function),
and evaluation protocols in detail in Appendix [B]and[C| We also report the hyperparameters in Table[T]
including those for our algorithm and for the baselines. Finally, we provide an anonymous repository
for reproducibility (link in Appendix [C). We hope these materials would facilitate reproduction of
our results.
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A LLM USAGE

LLMs play a central role in our pipeline. We condition pretrained, open-weight models (Qwen3-4B
and Qwen3-8B) on environment-generated trajectories to synthesize diverse, open-ended candidate
instructions for relabeling. The exact prompts are included in our codebase and in Appendix[C.5] We
also use an LLM for editorial support, i.e., grammar checking and LaTeX assistance.

B ENVIRONMENT DETAILS

We adopt the codebase for Craftax (Matthews et al.,[2024) available at https://github.com/
MichaelTMatthews/Craftax.

B.1 STATE SPACE
* World grid: discrete H xW array of block IDs.

* Mobs: position, health, cooldown and alive-mask for up to a fixed budget of zombies, cows,
skeletons, arrows, and growing plants.

* Player avatar: position (x, y), facing direction, health, food, drink, energy, fatigue, thirst,
sleep flag.

 Inventory: integer counts (0-9) for {wood, stone, coal, iron, diamond, sapling,
wood/stone/iron pickaxe, wood/stone/iron sword}.

* Achievements: per-task Boolean flags (defeat, craft, collect, etc.).
 Time/light: global timestep and continuous light level in [0, 1].

B.2 OBSERVATION SPACE

Agent receives a fixed-length vector obtained from a Chebyshev radius R=3 (7x7 window) centered
on the player. Each tile is one-hot-encoded and concatenated with:

* counts of each mob type at distances 1, ..., R,
¢ the ID of the block (or mob) directly in front of the player,
¢ the full inventory vector,

* the four vital statistics (health, food, drink, energy).

All features are normalised to [0, 1] and packed into a Box in R,

B.3 TEXTUAL OBSERVATION

Each step also supplies a single natural-language sentence constructed as ‘‘Facing: ...;
Nearby: ...; Inventory: ...; Status: ..." " where

1. Facing names the object or mob on the tile ahead,

2. Nearby lists non-trivial blocks/mobs in the 7x7 window, grouped by distance and alphabe-
tised within each group,

3. Inventory enumerates items with non-zero count,

4. Status reports health, food, drink, energy and whether the avatar is sleeping.

The string is tokenised, padded to a fixed length, and embedded once per step.

B.4 ACTION SPACE

Discrete set of |.4|=17 actions:
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0 NOOP

1-4 LEFT, RIGHT, UP, DOWN
5 DO / INTERACT

6 SLEEP

7-10 PLACE_STONE, PLACE_TABLE, PLACE_FURNACE, PLACE_PLANT

11-13  MAKE_WOOD_PICKAXE, MAKE_STONE_PICKAXE, MAKE_IRON_PICKAXE
14-16 MAKE_WOOD_SWORD, MAKE_STONE_SWORD, MAKE_IRON_SWORD

These cover movement, interaction, resting, block placement, and crafting. To make the text
Description more informative, we replace the generic DO / INTERACT with the actual object in front
of the agent, e.g., grass.

B.5 TESTING PROTOCOL DETAILS

Original Instructions We adopt the following 22 original environment-provided instructions as
the ground truth:

— collect wood

— place table

— eat cow

— collect sapling

— collect drink

— make wooden pickaxe
— make wooden sword
— place plant

— defeat zombie

— collect stone

— place stone

— eat plant

— defeat skeleton

— make stone pickaxe
— make stone sword
— wake up

— place furnace

— collect coal

— collect iron

— collect diamond

— make iron pickaxe
— make iron sword

Simple & Complex Variants Below are examples illustrating simple and complex variants for 5
instructions:

* Place Table

— Simple:
o A construction bench is needed; deploy one.
o The floor is a good spot for a new making-area.
o Time to set up the workbench.

— Complex:
o Find a solid spot and deploy the construction apparatus there.
o Ready the zone for making things by placing the special surface.
o The workspace needs a crafting implement; position it.

* Eat Cow
— Simple:
o Restore your energy by consuming cooked animal flesh.
o Meat from the beast is on the menu.
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o Prepared creature meat should be eaten.
— Complex:
o To stave off hunger, prepare and then consume the animal parts.
o Sustenance can be gained from the cooked beast meat.
o Replenish your energy by ingesting the prepared animal tissue.

* Collect Sapling

— Simple:
o Young trees are available; gather one.
o A tree sprout is on the ground, pick it up.
o Procure a small tree for future planting.
— Complex:
o For replanting efforts, obtain some juvenile trees.
o Tree seedlings must be collected and then stored.
o Environmental small tree starts are yours for the taking.

¢ Collect Drink

— Simple:
o Clear liquid is present; get some.
o A beverage is available for pickup.
o H,O for later consumption should be gathered.
— Complex:
o Ensure you have drinking liquid by filling a container.
o Potable water needs to be collected and bottled.
o From a nearby source, gather fluid for later use.

* Make Wood Pickaxe

— Simple:
o A digging tool from tree material is the goal.
o Create a mining implement using wood.
o Lumber can be fashioned into a digging utensil.
— Complex:
o The crafting table is where a digging implement of wood is made.
o Combine tree-based planks and sticks for a new mining tool.
o Construct a digging utensil; lumber components are required.

C IMPLEMENTATION DETAILS

Code for implementation of our method is available at an anonymous GitHub repository: https:
//anonymous.4open.science/r/ICLR26-0IR/.

C.1 ALGORITHM PSEUDOCODE

We present the detailed version of the pseudocode as in Algorithm [I]

C.2 HYPERPARAMETERS

Here we present in Table [T|the hyperparameter configurations used in all of our experiments for the
baselines (PQN and ELLM) and our algorithm OIR.

C.3 TRAINING RESOURCES & TRAINING TIME
Our experiments were conducted on a server running Ubuntu 24.04. The hardware configuration

included Dual AMD EPYC 7453 28-core processors, providing a total of 112 threads. For accelerated
computing, we utilized two NVIDIA A6000 GPUs and two NVIDIA A6000 Ada GPUs. The total
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Algorithm 2 OIR: LLM-Guided Hindsight Instruction Relabeling (detailed version)

Inputs

Require: pretrained LLM L; state encoder fstate; instruction encoder finstr
Require: off-policy RL algorithm alg (parameters 6, )
Require: # LLM candidates K; instruction buffer capacity Bmax; # parallel envs E/
1: Initialise instruction buffer B < (; launch {Enve}le
2: for iteration =1,2,... do

(1) Trajectory Collection & LLM Generation

14:

15:
16:
17:

D+ 0

for allenvs e = 1,..., FE in parallel do
Roll out trajectory 7. = {(s§, a§)};<, with current policy 7o

prompt, ¢ h(7e)
for Kk =1to K do

ie ~ L(prompt,)
& < R(il g, 7e)
D DU{(Te,ig 57

o)}

(2) Instruction-Buffer Maintenance
Update 5 with all relabeled instructions { 4. ;, | e € [E], k € [K]} using Section

if |B| > Bmax then

EVICTOLDEST(B, |B| —

(3) Policy Update

Bmax)

Update (6, ) with one step of alg on batch D
(4) Environment Reset / Curriculum
for all envs e that have terminated do

Sample i ~ UNIFORM(B)

Reset Env, with instruction %

> build LLM prompt

> generate candidate instruction
> cosine-similarity reward, Eq.

Table 1: Hyperparameters used in Craftax-Classic.

Hyperparameter PQN (all versions) ELLM OIR (ours)
Total Timesteps 1 x 107 1 x 107 1 x 107
Total Timesteps (decay) 1 x 107 1 x 107 1x 107
Number of Environments (/Nepy) 64 1024 64
Steps per Environment (Neps) 128 8 128
Estart 1.0 1.0 1.0
€finish 0.1 0.1 0.1

€ Decay Ratio 0.1 0.1 0.1
Number of Minibatches 4 4 4
Number of Epochs 8 8 8
Input Normalization True True True
Normalization Type Layer Norm Layer Norm Layer Norm
Hidden Size 512 512 512
Number of Layers 1 1 1
Number of RNN Layers 1 1 1
Add Last Action False False False
Learning Rate 1x107° 1 x107° 1x107°
Max Gradient Norm 0.5 0.5 0.5
Linear LR Decay True True True
Discount Factor () 0.99 0.99 0.99
GAE )\ 0.5 0.5 0.5
Instruction Buffer Size - - 10
Shaping Threshold 0.5&0.9 0.9 0.9
LLM - Qwen3-8B Qwen3-8B

computational resources comprised 112 CPU threads and 512GB of system memory. Each training
run for OIR and ELLM required approximately 6-8 hours to complete.
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C.4 BASELINE IMPLEMENTATION DETAILS

We adopt the official PQN implementation available at https://github.com/mttga/
purejaxqgl. For ELLM, we closely follow the methodology presented in the original paper (Du
et al.,[2023)), carefully implementing ELLM on top of PQN as described in the official repository
(https://github.com/yugingd/ellm).

To ensure a fair comparison, we remove environment-specific customizations originally included in
their implementation, such as task decomposition and action-space-related checks for goal completion.
Additionally, we increase the number of parallel environments to 1024, enabling batched calls to the
LLM at each step. Without batching, the turnaround time would be prohibitively high.

C.5 PROMPTS

OIR Prompt prompt : CraftAX

Description in Crafter:

You are an expert Hindsight Instruction Relabeler for Minecraft agents.

You are a strict instruction generator. Under no circumstances may your output contain any movement or
exploration instructions. Do NOT use the words "move", "explore", "navigate", "go to", or
any synonyms indicating changing position.

Environment:

* Resources: wood (trees), stone, coal, iron, water, sapling (from grass)
* Tools: crafting table, furnace, pickaxe (wood, stone, iron), sword (wood, stone, iron)
* Mobs: cow, zombie, skeleton

Principles (max 2 each; mention an entity in every instruction):
Mid-Level (atomic, 1-2 steps)

* e.g., "collect wood from the tree", "collect stone", "make a stone
pickaxe", "place crafting table", "place furnace", "attack zombie",
"attack skeleton", "drink the water", "wake up"

High-Level (multi-step, purposeful)

* e.g., "Make tools for collecting the iron", "Collect wood then
place a table, finally make a wood pickaxe"
Task:
Given only a trajectory segment, output: "Analysis": "...", "Completed
Instructions": "Mid-Level": I
"High-Level": ["...", "...", "...", "..."]
Example:
Segment:
0-4: move to tree

5: chop tree

7-8: place crafting table

9-10: make wood pickaxe

11-20: sleep

20-22: wake up

Your answer: "Analysis": "Chopped tree first, then set up crafting
table, finally make wood pickaxe.", "Completed Instructions":
"Mid-Level": [ "collect wood from tree", "place crafting table",
"make a wood pickaxe", "sleep and wake up" ], "High-Level": [
"Prepare to collect stone", "collect tools to mine stone and coal",
"prepare all tools to collect stone, then make stone pickaxe" ]

{{trajectory}}
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