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Abstract
Label-free organelle prediction presents a long-
standing challenge in cellular imaging, given the
promise to to circumvent the numerous drawbacks
associated with fluorescent microscopy, including
its high costs, cytotoxicity, and time-consuming
nature. Recent advancements in deep learning
have introduced numerous effective algorithms,
primarily deterministic, for predicting fluorescent
patterns from transmitted light microscopy im-
ages. However, existing models frequently suffer
from poor performance or are limited to specific
datasets, image modalities, and magnifications,
thus lacking a universal solution. In this paper,
we present a simplified VQGAN training scheme
that is easily adapted with different input/output
channels for image-to-image translation tasks. We
applied the algorithm to generate multi-channel
organelle staining outputs from bright field inputs,
equivalent to the popular Cell Painting assay. The
same algorithm also participated and placed first
in the ISBI 2024 Light My Cell challenge.

1. Introduction
Fluorescence microscopy is a commonly used technique
in cell biology. However, the use of fluorescent probes in
combination with the strong light needed to illuminate the
fluorophore can introduce phototoxic effects and perturb
cellular functions (Laissue et al., 2017). These limitations
hinder the utility of fluorescence microscopy for long-term
live cell imaging studies. Conversely, label-free transmitted
light (TL) microscopy offers a non-invasive alternative with
reduced phototoxicity, yet it does not inherently provide
the specific cellular insights offered by targeting molecules
by fluorescence probes. These label-free images captured
through TL microscopy are believed to embed much more
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information about the cell and subcellular patterns than
readily discernible to the human eye. Deep neural networks,
which have demonstrated incredible effectiveness in natural
image tasks, have proven powerful to unlock this latent
information in biological images.

Recent advancements in deep learning, particularly image-
to-image translation, have enabled innovative methods to
predict organelle signals from TL images, bypassing the
limits of traditional fluorescence microscopy. However,
most approaches are limited to specific datasets or imaging
modalities. For example, DeepHCS+ (Lee et al., 2021) used
convolutional neural networks (CNN) for multi-task predic-
tion of different channels (Nucleus, Cytosol and Apoptosis).
Another notable study about label-free prediction (Cross-
Zamirski et al., 2022) used UNET (Ronneberger et al., 2015)
to predict five CellPaint channels from bright-field images.
Both approaches incorporate adversarial training (discrim-
inator). A more complex training dataset, including three
imaging modalities, cell lines, and data generated in three
labs, was presented in a study where a CNN autoencoder
was trained to predict organelles from TL inputs (Chris-
tiansen et al., 2018). Despite being diverse in modality and
cell line, this training dataset was still acquired at the same
pixel size (as designed for the study), which helped CNN
based models to recognize and learn perceptive fields. A
more generalizable approach is needed to make use of pre-
vious microscopy studies, either intended or not intended
for this task, as the public dataset pool grows.

Overall, there is great interest to develop generalized com-
putational tools that can provide molecular labels from TL
image input, and to validate such models in the most compre-
hensive way possible to facilitate downstream applications.
For these tools to be easily usable by biologists, they need to
be robust across a wide range of acquisition protocols, irre-
spective of the size of the images, cell line, acquisition site,
modality or instrument. In the light of this aim, ISBI2024
Light My Cell (LMC) challenge recently made public a large
diverse and heterogeneous dataset, including 30+ studies
from 23 data acquisition sites, three main TL imaging modal-
ities, multiple imaging settings and cell lines. Additionally,
the Joint Undertaking in Morphological Profiling (JUMP)
Cell Painting Consortium also gathers and makes available
a massive public CellPaint datasets (Chandrasekaran et al.,
2023). These resources offer great opportunities to develop
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methodology aimed for greater generalizability across di-
verse biological specimens and imaging conditions. This
paper outlines our first-place approach to the LMC chal-
lenge, using relatively light-weight generative models for
image-to-image translation tasks. This approach also per-
formed well on the popular label-free CellPaint task. The
resulting models bring us a step closer to obtaining molecu-
lar readouts from non-invasive cellular imaging technology,
offering profound opportunities for biological research.

2. Method
2.1. Datasets

CellPaint dataset: A subset of the JUMP pilot dataset
(cp0000) (Chandrasekaran et al., 2024; 2023) was down-
loaded and preprocessed to test model capacity when all
organelle channels are present. In specific, 4429 large field
of views (FOVs) from unperturbed U2OS cells were each di-
vided into 16 tiles. Each FOV contains 8 channels: 3 bright
field (BF) and 5 organelle channels (DNA, ER, RNANucle-
oli, AGP and Mitochondria). After removing empty and low
cell count tiles, the final JUMP dataset included 58237 tiles.
This dataset was acquired with a widefield microscope at
20x objective. This dataset was split into train/validation/test
at 80%/10%/10% proportion, stratified by plate.

LMC Challenge dataset: The challenge dataset includes
56700 previously unpublished images from 30 studies from
different sites, containing TL channels and 4 organelles:
Nucleus, Actin, Mitochondria and Tubulin. This dataset
is very heterogeneous, including 3 TL imaging modalities
(Bright Field, Phase Contrast, Differential Interference Con-
trast microscopy), 40x - 100x objective, pixel sizes from
65 to 110 nm, 11 different human and dog cell lines. Each
study consists of one mode of TL (multiple z-stacks), 1-3
organelles stained in one cell line. In terms of organelle
class, there is a great class imbalance, i.e. 2 orders of mag-
nitude difference in the number of training data for Actin
(27 images) compared to Nucleus (2533 images) (Figure
1A). Furthermore, among 2574 unique non-empty FOVs,
each has 1-3 organelle channel combinations and there’s no
FOV with all organelles, as presented in Figure 1B.
The LMC challenge dataset was split into train/validation
at 95%/5%, stratified split by studies. For the competition,
participants submitted 1 algorithm that would predict 4 or-
ganelle channels from each TL input. There is also a strict
limit on computational resources that each algorithm can
use, for real-world applicability and leveling the playing
field. At test time, all participating algorithms were eval-
uated with a wide range of metrics for each organelle and
6 z-stack deviations. The held-out test set consists of 322
FOVs, including one additional acquisition site completely
separated from the challenge dataset.

Figure 1. Challenge data distribution. A. Number of images from
challenge dataset in each class: transmitted light modalities and
4 organelles. B. Venn diagram of number of field of views with
certain channel combinations.

2.2. Evaluation Metrics

A combination of metrics were used to evaluate all
algorithm submissions in the LMC challenge, including
Mean Absolute Error (MAE), Structural Similarity
Index (SSIM), Pearson Correlation Coefficient (PCC),
Euclidean and Cosine Distances (E dist & C dist).
For the LMC challenge, for each input (1 TL z-stack),
four organelle outputs were predicted. For Nucleus
and Mitochondria, all five metrics were used. For the
filamentous organelles Tubulin and Actin, only SSIM
and PCC were used. A ranking for each organelle was
determined by all metrics calculated from 0-to-5 deviations
from the focus plane where specific organelle patterns
were captured. Participants were ranked based on this
4 organelle x 6 deviation metrics matrix, with winners
determined by the best average across all metrics. More
information about metrics and scoring can be found here
https://lightmycells.grand-challenge.
org/metrics-evaluation/.
For the CellPaint dataset, all metrics were calculated for all
output channels.

2.3. Model architecture

The generative architectural framework we chose for this
study is a simplified version of the VQGAN(Esser et al.,
2020) (without taming transformer), selectively retaining
crucial components to ensure good performance while main-
taining simplicity and relatively low computational burden
during training. The architecture (Figure 2) incorporates
an encoder for data compression and a decoder for output
prediction. Quantization is applied within the embedding
space to promote a more generalized codebook. Notably,
the decoder functions as a generator, synthesizing organelle
channels based on the quantized vector. Moreover, a dis-
criminator is incorporated into the prediction process to
foster the generation of realistic output representations.

In specific, we define two image domains X (transmitted
light) and Y (organelle staining), the aim is to provide a
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transformation f : X →Y. The encoder, E, compresses the
input data x ∈ RH×W×C into a latent representation z ∈
Rh×w×nz . The latent representation z is quantized to z′

using a element-wise quantization q(·), which maps each
spatial code zij to the nearest codebook entry:

z′ = q(z) :=

(
arg min

zk∈Z
∥zij − zk∥

)
∈ Rh×w×nz

The codebook loss, Lcodebook, ensures the quantized vectors
z′ are close to the encoder output z while also encouraging
the encoder output to move towards the codebook entries:

Lcodebook = ∥sg[z]− z′∥22 + ∥z − sg[z′]∥22

where sg[·] denotes the stop-gradient operation (van den
Oord et al., 2017).
The decoder, G, reconstructs the high-resolution output ŷ
from the quantized latent representation z′. To facilitate
high-resolution output, the decoder is larger than the en-
coder, with 1.5 times the number of trainable parameters.

ŷ = G(z′) = G(q(E(x)))

The pixel loss, Lpixel, measures the reconstruction error
between the target y and the output ŷ:

Lpixel = ∥y − ŷ∥1

A discriminator, D, is incorporated into the prediction pro-
cess to foster the generation of realistic output representa-
tions.

Ldisc = E[logD(y)] + E[log(1−D(ŷ))]

The overall training objective is to minimize the combined
loss:

Ltotal = Lpixel + λcodebookLcodebook + λdiscLdisc

where λcodebook and λdisc are weighting factors.
Each VQGAN model has 58.1 million trainable parameters.

Adaptation for channels: The architecture easily adapts to
various input and output channels for biological image data.
Without a perceptual loss pretrained on natural images (lpips
with vgg pretrained on Imagenet (Zhang et al., 2018)), the
model is not restricted to 3-channel inputs/outputs. In this
study, it handles 3-channel inputs and produces outputs with
5 or n channels, offering flexibility for different biological
imaging applications.

2.4. Training Scheme

Preprocessing: To reduce batch effects and intensity range
difference, each image was normalized between 2% and
99.8% pixel percentile. Simple augmentation techniques,

Figure 2. Model architecture of VQGAN with an encoder for data
compression, a quantized embedding space for generalization, and
a generator that generates organelle channels. A discriminator
ensures realistic output representations.

including flipping along 2 principal axes, 90 rotations, and
random cropping and resizing ranging from 70% to 95%
of the image size, were employed to somewhat address the
different resolutions of studies ranging from 20x to 100x
objectives. After augmentation, each sample was resized to
the final input size of 256x256 before feeding in the model.

Experiments: To check the performance of the specialized
organelle models compared to the combined model, we
train seven models on the same train/validation/test split
for on the subset of JUMP pilot dataset described above.
The experiments and performance is outlined in Table 1
and Appendix A.1. Each model was trained on 1 NVIDIA
A100 GPU, with ADAM optimizer, learning rate of 4.0e-06,
batch size of 20, and for 20 epochs ( 20h). For LMC, four
organelle specific models were trained, each on 1 NVIDIA
A100 GPU, with ADAM optimizer and learning rate of
2.0e-06 (for Actin), 4.0e-06 (for Nucleus), 1.0e-06 (for
Mitochondria and Tubulin), and batch size of 16. Validation
was performed every epoch for Tubulin and Actin, and every
half epoch for Nucleus and Mitochondria. See more details
about the submission in Appendix A.2.

3. Result
3.1. Organelle-specifc vs combined model performance

We compared the performance of organelle-specific models
to a combined model by systematically varying the input
and output configurations in the CellPaint dataset. First, we
observed that more input (BF) information boosted model
performance, as models with all 3 BF channels outperform
single BF inputs for all five organelles. In most real-life
acquisitions (especially live imaging), a single BF is more
common due to time and cost constraints, so this comparison
could help experimenters evaluate the cost benefit of acquir-
ing more BF inputs for better output quality. Second, with
the same data split and computational resources, specialized
models still outperformed one combined model, consistently
from the worst (Mitochondria) to the best (DNA) performing
organelle class (Table 1). Image outputs from the combined
model are visualized in Figure A.1.
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Table 1. Performance Metrics for Different Image Channels and Model Inputs on CellPaint dataset

Image channel Model output Model input MSE↓ SSIM↑ MAE↓ PCC↑ Edist↓ Cdist↓
DNA DNA 3 BF channels 207.45 0.92 5.82 0.97 3501.84 0.03

5 channels 3 BF channels 297.03 0.91 6.51 0.95 4221.56 0.04
BF 1 475.57 0.88 8.22 0.94 5356.85 0.06
BF 2 391.17 0.89 7.55 0.94 4855.18 0.05
BF 3 833.86 0.85 10.59 0.85 6983.43 0.06

ER ER 3 BF channels 333.18 0.85 9.55 0.95 4473.44 0.03
5 channels 3 BF channels 483.46 0.80 11.72 0.92 5418.48 0.02

BF 1 656.83 0.76 13.61 0.90 6349.34 0.03
BF 2 682.02 0.76 13.88 0.89 6466.65 0.03
BF 3 927.12 0.74 16.81 0.84 7553.60 0.04

RNANucleoli RNANucleoli 3 BF channels 244.95 0.90 8.66 0.97 3796.91 0.01
5 channels 3 BF channels 330.34 0.87 10.16 0.96 4444.67 0.02

BF 1 502.32 0.82 12.65 0.94 5508.25 0.03
BF 2 530.29 0.81 13.10 0.93 5670.64 0.03
BF 3 791.99 0.72 16.78 0.89 6969.78 0.05

AGP AGP 3 BF channels 414.68 0.81 10.74 0.92 5035.28 0.03
5 channels 3 BF channels 525.75 0.78 12.36 0.90 5709.45 0.04

BF 1 654.37 0.57 13.97 0.88 6378.49 0.06
BF 2 667.41 0.74 14.23 0.88 6450.29 0.04
BF 3 869.75 0.69 16.89 0.86 7359.61 0.07

Mitochondria Mitochondria 3 BF channels 683.10 0.70 18.74 0.87 6205.44 0.02
5 channels 3 BF channels 955.22 0.65 22.34 0.83 7361.92 0.03

BF 1 1336.08 0.57 27.90 0.77 8782.18 0.03
BF 2 1252.43 0.59 26.55 0.77 8528.63 0.07
BF 3 1311.16 0.56 26.69 0.73 8852.29 0.04

3.2. Model performance in LMC challenge

Our algorithm submission to the LMC challenge consists
of 4 organelle-specific models. Some sample images from
the validation set are visualized in Figure A.2. On the final
hidden test set, our method achieved the average ranking
of 2.4, surpassing the 2nd solution by 1.0 point. Our solu-
tion placed first for 6/14 metrics across organelles. Notably,
there doesn’t seem to be a great agreement among the ”inten-
sity” (PCC, MAE), structure (SSIM) or ”texture” (E dist &
C dist) metrics, as defined by the challenge. For example,
our Nucleus model placed 1st for 3/5 metrics, but only 4th
on the other 2 metrics (Table A.1). This disagreement is
beneficial for a more comprehensive evaluation, as a combi-
nation of diverse metrics, each capturing different aspects of
model performance and potentially offering conflicting per-
spectives, can account for various strengths and weaknesses
of each channel.

4. Discussion
With advances in deep learning, label-free organelle predic-
tion is becoming feasible. We present a simplified VQGAN

training scheme, which can be applied flexibly to different
biological image datasets, and tested this approach on two
large and diverse TL-to-organelles datasets. This approach
outperforms other solutions (UNET and GANs) in ISBI
2024 LMC challenge to predict organelle patterns through
TL images. The winning solution includes individual mod-
els trained to predict specific organelles (specialized mod-
els). While the extreme class and study (output combina-
tion) imbalances inherent in the competition context posed
great challenges for devising a universally optimized train-
ing scheme for all output types, a combined model whose
encoder learnt common features from TL inputs would be
much more efficient and might provide the generalizabil-
ity that large models are after (for e.g. through regular-
ization). However, experiments with the CellPaint dataset
demonstrate that, with the same resources, specialized mod-
els still outperform one combined model. Moreover, in a
low-data regime, specialized models can be trained with
different hyperparameters and can maximize performance
separately. Additionally, they allow for organelle-specific
improvements, for e.g. when there’s more training data for
just one certain class, without affecting other outputs, which
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might be preferable for many researchers.

Software and Data
Code and documentation can be found at https://
github.com/trangle1302/lmc_GenCellPaint
JUMP CellPaint dataset are available from the Cell
Painting Gallery on the Registry of Open Data
on AWS https://registry.opendata.aws/
cellpainting-gallery/.
LMC Challenge dataset are available to download at:
https://lightmycells.grand-challenge.
org/database/.
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A. Appendix

Table A.1. Performance Evaluation of Algorithms on phase 2 hidden test set of LMC Challenge

Algorithm Avg
Pos

Nucleus Mitochondria Tubulin Actin

SSIM↑
(Pos)

MAE↓
(Pos)

PCC↑
(Pos)

Edist↓
(Pos)

Cdist↓
(Pos)

MAE↓
(Pos)

SSIM↑
(Pos)

PCC↑
(Pos)

Edist↓
(Pos)

Cdist↓
(Pos)

PCC↑
(Pos)

SSIM↑
(Pos)

PCC↑
(Pos)

SSIM↑
(Pos)

VQGAN 2.4 0.76
(1)

0.06
(1)

0.74
(4)

164.9
(1)

0.18
(4)

0.08
(1)

0.56
(5)

0.68
(2)

211.1
(1)

0.25
(5)

0.64
(3)

0.59
(1)

0.63
(3)

0.69
(2)

UNET,UNETR 3.4 0.74
(3)

0.07
(4)

0.71
(5)

183.4
(4)

0.20
(5)

0.09
(2)

0.57
(4)

0.68
(1)

217.9
(2)

0.23
(4)

0.59
(5)

0.53
(6)

0.66
(1)

0.71
(1)

RUNET 3.6 0.75
(2)

0.07
(3)

0.75
(3)

176.7
(3)

0.17
(3)

0.10
(6)

0.60
(3)

0.65
(4)

226.7
(3)

0.21
(3)

0.60
(4)

0.55
(5)

0.56
(5)

0.68
(4)

UNETR 4.0 0.70
(6)

0.07
(2)

0.78
(1)

169.3
(2)

0.15
(1)

0.10
(7)

0.61
(2)

0.63
(6)

231.7
(5)

0.21
(2)

0.65
(2)

0.50
(8)

0.57
(4)

0.64
(8)

UNET 4.6 0.68
(7)

0.09
(7)

0.78
(2)

199.7
(7)

0.15
(2)

0.12
(10)

0.63
(1)

0.65
(7)

265.9
(10)

0.20
(1)

0.66
(1)

0.55
(4)

0.64
(2)

0.68
(3)

* Scores are rounded up to 2 decimal points. For full leaderboard check
https://lightmycells.grand-challenge.org/evaluation/phase-2/leaderboard/. For first

result analysis check https://lightmycells.grand-challenge.org/results/.
* UNETR (UNEt TRansformers) uses transformers as encoder.

* RUNET (Robust UNET), designed for image super-resolution, leverages long-range connections and a spatially varying
degradation model to enhance learning capabilities and handle non-stationary image degradations.

A.1. Details for experiments on CellPainting

We trained 7 models with these combinations of inputs/outputs:

• 3 BF channels →5 organelle channels

• 1 BF channel (chosen from BF1, BF2, BF3) →5 organelle channels

• 5 organelle specific models: 3 BF channels →DNA | ER | RNANucleoli | AGP | Mitochondria

A.2. Details for first place submission to LMC challenge

While some models just started to converge, the training time at submitted checkpoints varies for each model:

• Model for Nucleus was trained for 54 epochs, average train (and validation) time of 2h/epoch.

• Model for Mitochondria was trained for 55 epochs, average train (and validation) time of 2.2h/epoch.

• Model for Tubulin was trained for 309 epochs, average train (and validation) time of 24 min/epoch.

• Model for Actin was pre-trained for 24 epochs on JUMP dataset (70 min/epoch), then 122 epochs fine-tuning with
average training time of 15 min/epoch. Pretraining/Finetuning details: CellPaint was used for pre-training for the
Actin prediction model, specifically the middle bright field (ch07, BF2) and AGP (Actin, Golgi, Plasma membrane,
ch02) channels. After the models learnt basic cell morphology from the background in transmitted light images, the
training data was updated to employ 1/5th of the JUMP data from pretraining in addition to the LMC training set, with
validation exclusively performed on the provided LMC validation set.
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High-Resolution In Silico Painting with Generative Models

Figure A.1. 3 BF channel to 5 organelle model outputs on test images from JUMP CellPaint dataset, sampled at random. Inputs and
Targets are rescaled to [2,99.8] percentile.
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High-Resolution In Silico Painting with Generative Models

Figure A.2. Model outputs on validation images from LMC challenge dataset, sampled at random. Inputs and Targets are rescaled to
[2,99.8] percentile.
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