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ABSTRACT

Language models are increasingly capable, yet still fail at a seemingly simple task
of multi-digit multiplication. In this work, we study why, by reverse-engineering
a model that successfully learns multiplication via implicit chain-of-thought, and
report three findings: (1) Evidence of long-range structure: Logit attributions and
linear probes indicate that the model encodes the necessary long-range dependen-
cies for multi-digit multiplication. (2) Mechanism: the model encodes long-range
dependencies using attention to construct a directed acyclic graph to “cache” and
“retrieve” pairwise partial products. (3) Geometry: the model implements partial
products in attention heads by forming Minkowski sums between pairs of digits,
and digits are represented using a Fourier basis, both of which are intuitive and
efficient representations that the standard fine-tuning model lacks. With these in-
sights, we revisit the learning dynamics of standard fine-tuning and find that the
model converges to a local optimum that lacks the required long-range dependen-
cies. We further validate this understanding by introducing an auxiliary loss that
predicts the “running sum” via a linear regression probe, which provides an induc-
tive bias that enables the model to successfully learn multi-digit multiplication. In
summary, by reverse-engineering the mechanisms of an implicit chain-of-thought
model we uncover a pitfall for learning long-range dependencies in Transformers
and provide an example of how the correct inductive bias can address this issue.

1 INTRODUCTION

Large language models demonstrate striking capabilities across reasoning, planning, and tool use.
Yet, they also fail on surprisingly simple algorithmic tasks (Nye et al., 2021; Lee et al., 2023).
Why do Transformers excel at some tasks, but fail to learn others? One such example is multi-digit
multiplication. Despite having billions of parameters, models like Llama-3.2 90B or GPT4 still fail
at 4x4-digit multiplication (Gambardella et al., 2024),1 even when explicitly fine-tuned on the task
(Yang et al., 2023). Why do Transformers fail to learn multiplication?

We study these questions by contrasting a standard fine-tuned model (SFT), which fails at multipli-
cation, with a model trained with implicit chain-of-thought (ICoT) (Deng et al., 2024; 2023), which
succeeds. ICoT works by providing explicit chain-of-thought tokens during training, but gradually
removes them and thus forces the model to internalize intermediate steps in its latent states.

We partially reverse-engineer the ICoT model and uncover several insights. First, unlike the SFT
model, the ICoT model learns the correct long-range structure needed for multi-digit multiplication.
We provide evidence of this using logit attributions and linear regression probes. Mechanistically,
the ICoT model encodes long-range dependencies by organizing its attention into a sparse, binary-
tree-like graph, which (i) selects the correct digit pairs to compute partial products and (ii) “caches”
these intermediate computations into earlier tokens for later retrieval. Lastly, geometrically, atten-
tion heads realize partial products as Minkowski sums of digit embeddings, and represent digits

Code: https://anonymous.4open.science/r/icot-F822
1Note that some recent proprietary models that do solve multi-digit multiplication may rely on tool-use.
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with Fourier bases, yielding a pentagonal prism structure – both of which are intuitive and efficient
representations that the SFT model lacks.

With these insights, we revisit the dynamics of standard fine-tuning: under gradient descent and an
auto-regressive loss, the model never learns these long-range dependencies, and thus loss plateaus
on the middle digits. To confirm our understanding, we introduce a simple fix by introducing an
auxiliary loss that supervises the model to predict a “running partial sum” through a lightweight
linear regression probe. This provides an inductive bias to learn the proper long-range dependencies,
allowing it to achieve perfect accuracy, without any supervision from chain-of-thought.

In summary, by partially reverse-engineering a network that successfully implements multi-digit
multiplication, we uncover how it implements long-range dependencies, a mechanism that the un-
successful model lacks. Our work highlights a challenge for Transformers to learn long-range de-
pendency using gradient descent and an auto-regressive loss. While we demonstrate a task-specific
inductive bias to address this issue, we anticipate generic improvements to address this limitation.

2 EXPERIMENT SETUP, TRAINING ICOT, NOTATIONS

Task, Models. We are interested in understanding the difference in a model trained with stan-
dard fine-tuning and ICoT. From experiments, we find that the simplest multi-digit multiplication in
which standard fine-tuning fails but ICoT works is 4×4 digit multiplications. Similarly, the smallest
architecture in which ICoT works is a 2-layer model with 4 attention heads. Thus we carefully study
a 2-layer 4-head ICoT model and a standard fine-tuned model trained on 4×4 multiplication.

Training Procedures. Our ICoT setup is the same as that Deng et al. (2024). Here we provide
an informal overview of ICoT, with details in Appendix A.1. Namely, assume two operands a =
(a3, a2, a1, a0), b = (b3, b2, b1, b0) and their product c = (c7 . . . c0). Operands are written least-
significant digit first, similar to other algorithmic setups (Deng et al., 2024; 2023; Lee et al., 2023).

For ICoT, the training data includes intermediate chain-of-thought (CoT) tokens qi that explicitly
record the step-by-step calculations. As a simple illustration, consider 12×34. The tokens appearing
between the two equal signs follow the same CoT format used in our 4×4-digit multiplication tasks:

12 ∗ 34 = 48︸︷︷︸
12∗4

+ 360︸︷︷︸
12∗30

(408)︸ ︷︷ ︸
running sum

= 408

At each training epoch, a fixed number of CoT tokens are removed from the left of the chain. Con-
cretely, the training examples at each epoch may have the following form:

(Epoch 1) a0a1a2a3 ∗ b0b1b2b3%%% q0 . . . qi . . . qj . . . qk . . . qτ #### c0 . . . c7

(Epoch 2) a0a1a2a3 ∗ b0b1b2b3%%% qi . . . qj . . . qk . . . qτ #### c0 . . . c7

(Epoch 3) a0a1a2a3 ∗ b0b1b2b3%%% qj . . . qk . . . qτ #### c0 . . . c7

. . .

(Epoch N) a0a1a2a3 ∗ b0b1b2b3%%% #### c0 . . . c7

where qi are CoT tokens and %,# are special delimiters.2 Note that after each epoch, the model
sees a shorter chain by truncating some tokens, and that by the end, only the operands and final
answer remain. For comparison, standard fine-tuning only trains on the operands: a0a1a2a3 ∗
b0b1b2b3%%%#### c0 . . . c7.

Interestingly, the ICoT model is able to achieve 100% accuracy on 4×4 digit multiplication, while
standard fine-tuning only achieves less than 1% accuracy. Note that scaling does not help – scaling
to a 12 layer 8 head model achieves the same < 1% accuracy, and Yang et al. (2023) show that
fine-tuning a 2B model still plateaus at 95% accuracy.

For more details regarding training (data format, sample size, hyperparameters), see Appendix A.

Notations. hℓ
t indicates the hidden states at layer ℓ timestep t. Timesteps for solution tokens

ck, k = [0, . . . , 7] are notated tck . ATTℓ
h(·), MLPℓ(·) indicate the output of the attention heads or

MLP blocks at layer ℓ, head index h. E,U ∈ RV×d indicate (un)embedding weights.
2These delimiters have no special meaning beyond matching the setup of Deng et al. (2024).
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Figure 1: Multiplication has long-range dependencies, which can be captured by an intermediate
value ĉi, from which both the solution (ci) and carries (ri) can be derived from.

3 COMPARING THE MECHANISMS OF ICOT VERSUS SFT

3.1 LONG-RANGE DEPENDENCIES IN MULTI-DIGIT MULTIPLICATION

Here we discuss how one might solve multi-digit multiplication, and the required long-range depen-
dencies needed to solve multiplication.

One approach to compute each digit, ck, is as follows:

sk ≜
∑

i+j=k

aibj ,︸ ︷︷ ︸
sum of partial products

ck = (sk + rk−1) mod 10, rk =
⌊sk + rk−1

10

⌋
︸ ︷︷ ︸

carry

, r−1 = 0 (1)

Note that both ck and rk can be expressed with an intermediary term ĉk, which encapsulates both
the relevant information from the partial products and the carry:

ĉk ≜ sk + rk−1, ck = ĉk (mod 10), rk =
⌊ ĉk
10

⌋
(2)

Importantly, note the long-range dependencies needed for multi-digit multiplication. Specifically,
we highlight two observations: (i) To determine ck, one must use all the partial products {aibj |i +
j ≤ k}, since all of these terms contribute to ck. (ii) Knowing the intermediary term ĉk suffices to
compute ck and to propagate necessary information for later digits. Thus we use ĉk as a probing
signature (Section 3.2) at each timestep tck to check if the model is utilizing all the necessary long-
range information to predict the correct tokens ck.

In the following sections, we demonstrate how the ICoT model satisfies such long-range dependency
while the standard fine-tuning model does not.

3.2 EVIDENCE OF LONG-RANGE DEPENDENCIES IN ICOT

We first demonstrate two lines of evidence that the ICoT model satisfies long-range dependencies in
multi-digit multiplication, while the standard fine-tuning SFT model does not.

Logit Attributions. Note from Figure 1 that digits ai, bi can only affect ck terms where k ≥ i. Also
note that at timestep tck , the pairwise products {aibj |i + j = k} affect the final prediction ck the
most. “Earlier” pairwise products {aibj |i + j = k − m} can still affect ck, but with diminishing
effects as m increases.

We directly test for these relationships in our ICoT and SFT models using logit attributions. Namely,
given an input sample ORIG := a0a1a2a3 ∗ b0b1b2b3, we measure the logits of the model’s predic-
tions for c0−7 : logitck(ORIG). We then randomly swap out one of the operand digits at timestep
t (e.g., ã2) to construct a counterfactual input COUNTERt = a0a1ã2a3 ∗ b0b1b2b3 and measure the
change in logits: ∆t,k = logitck(ORIG) − logitck(COUNTERt) Thus ∆t,k measures the effect that
digit at timestep t has on the prediction of token ck.

3
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Figure 2: Logit Attribution. We test for whether each model has correctly learned long-range
dependencies by measuring how sensitive the logits of output digits ci are to each operand digit (i.e.,
ai, bj). This is done by measuring the change in ci’s logits when a single operand digit is perturbed.
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Figure 3: Linear regression probing results for ĉ. We probe from the middle of the last Trans-
former block, after attention heads but before MLPs.

We use 1,000 samples for each (t, k) pair and show the results in Figure 2. Note that for SFT, the
model does not see the correct dependencies between earlier tokens to middle tokens, while the ICoT
model does, suggesting that the model has indeed learned the correct long-range dependencies.

Probing for ĉk. Note from Figure 1 and Equation 2 that the long-range dependencies can be cap-
tured by an intermediate term, ĉk. We test for whether ĉk information can be decoded from the
hidden states of the models using linear regression probes. Namely, at each timestep tck we predict
for ĉk by training a single vector wk ∈ Rd such that wkh

2.mid
tck

= ĉk using a MSE loss, where h2.mid

is the hidden state at layer 2 after attention heads, before MLPs.

Figure 3 reports the mean absolute error from probing for ĉk for middle and late digits, k = 2, . . . , 6.
Note that the accuracy from the ICoT model is much higher than that of SFT, further suggesting that
the ICoT model has learned the correct long-range dependencies while SFT has not.

3.3 ENCODING LONG-RANGE DEPENDENCIES VIA ATTENTION TREES

How does the ICoT model compute long-range dependencies? Here we describe how the model’s
attention patterns induce a shallow directed acyclic graph, akin to a binary expression tree, in order
to encode long-range dependencies.

Namely, in the first layer, across all timesteps t > 5,3 each attention head only attends to a pair of
digit tokens, {ai, bj} (Figure 4, left). This allows the model to produce the pairwise product aibj
(see Section 4.1 for how attention heads represent pairwise products), but also allows the model to

3Note that only after timestep 5, both a and b tokens appear in the context.
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Figure 4: Visualization of attention tree to compute c2. Left: Attention maps for selected heads
show the first layer “cache” pairwise products (aibj) across earlier timesteps, from which the second
layer reads from (Not all tree paths are shown). Right: A visualization of the attention tree. Each
arc indicates tokens being attended to at specific timesteps. Colored arcs above and below the
digits indicate attention patterns from the first and second layers respectively. Example: orange arc
indicates that at timestep b3, the model attends to a0 and b1, from which the second layer reads from.

cache the product aibj in the hidden state of layer 1 at timestep t (i.e., h1
t ). Put differently, product

pairs {aibj}i,j∈{0,...4} are “cached” in the first layer across different timesteps (h1
t , t < tck ).

At later timesteps t ≥ tck , when the model predicts solution tokens ck, this allows the second layer
attention heads to attend to a small set of previous cache sites, i.e., where the appropriate pairs of
products aibj , i+ j = k are stored from earlier timesteps.

Example: Figure 4 depicts the attention patterns when the model predicts c2, given input “a0...3 ∗
b0...3 = c0c1”. These attention maps are averaged from 1,000 samples from a held out test set. The
necessary terms to compute c2 are a2b0, a1b1, a0b2, and ĉ1 (which in turn requires a1b0, a0b1, a0b0).

Attention heads ATT2
3, ATT2

4 each attend to positions (b0, b2, c1) and (b3, “#”, c0). Inspecting what
was “cached” in the first layer at those timesteps reveals the necessary partial products to compute
c2. For example, at timestep b0, ATT1

1, ATT1
2 attend to a2, b0; at timestep b2 ATT1

1 attends to a1, b1
while ATT1

2 attends to a0, b2; at timestep c0 ATT1
1 attends to a1, b0, ATT1

2 attends to a0b1. Thus the
model can derive partial products, a2b0, a1b1, a0b2, a1b0, a0b1 with its attention tree.4

While Figure 4 shows an example of the “attention tree” for predicting c2, one can similarly recon-
struct the correct trees for all digits c0, . . . , c7 using the attention patterns for all digits in Figure 10.

In summary, for each output step ck, the ICoT model constructs a binary-tree-like graph, spread out
across timesteps, to attend to the correct pairs of tokens, allowing it to compute partial products.

4 FEATURE GEOMETRY OF ICOT

In addition to the mechanisms seen in Section 3, we also study the geometry of features in ICoT.

4.1 DIGIT-WISE MULTIPLICATIONS AS MINKOWSKI SUMS

Note from Section 3.3 that the attention patterns are sparse, often only attending to the two digits
ai, bj being multiplied. In such a case, the outputs of the attention head form a Minkowski sum.

4Note that there may be a couple of different ways that a0b0 is derived. One possibility is to re-use a0, b0
information that was fetched at various timesteps. Another possibility is when a0 is slightly attended to at ATT2

3

(difficult to see in our visuals). Note that a0b0 plays a relatively minor role in computing c2 compared to all
other partial products.

5
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(a) Attention Layer 1
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(b) Attention Layer 1 Head 3
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(d) Attention Layer 1 Head 3
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Figure 5: 3D PCA of attention head outputs can form Minkowski sums, which in turn can form
nested representations. Each color represents a different digit.

Namely, consider a single head ATT1(i, j) at the first layer, attending to two digits ai, bj . Let
WO ∈ Rd×dhead ,WV ∈ Rdhead×d be the output and value weights of the attention head, E[ai] ∈ Rd

the token embedding for token ai, and Ai := WOWV E[ai], Bj := WOWV E[bj ], Ai, Bj ∈ Rd.

In such a case, when the model spends α% of its attention on digit ai, and thus attends to digit bj by
(1−α)%, the set of all possible values for the output of the attention head forms a Minkowski sum:

ATT1(i, j) = αAi + (1− α)Bj + ϵ (3)

{ATT1(i, j)}i,j ⊆ (αA)⊕ ((1− α)B)⊕ ϵ (4)

(ignoring position embeddings). See Figure 5 (a) for a visualization.

Visually, 3D PCAs can reveal nested representations. Namely, we can observe clusters, each cluster
corresponding to a feature (i.e., ai). These clusters form a “global” geometry. When zoomed in
to each cluster, we observe additional clusters for a second feature (i.e., bj) that form a “local”
geometry of the same shape as its global counterpart. See Figure 5 (b-d) for examples.

This observation can be explained by deconstructing the covariance of the attention output:

ΣATT = α2ΣA + (1− α)2ΣB , (5)

where ΣA = Cov(Ai),ΣB = Cov(Bj). First, note that if we ignore positional encodings, ΣA and
ΣB share the same eigenvectors, as they each depend on the same terms (E[·],WO,WV ), which
are picked by PCA. Further note that fixing a value for ai leaves a local covariance, Σlocal|ai

=

(1 − α)2ΣB , which again share the same eigenvectors with the global ΣATT term, leading to the
same local geometry when projected onto.

4.2 EMBEDDING DIGITS ON A PENTAGONAL PRISM VIA FOURIER BASES

Similar to Kantamneni & Tegmark (2025), we find that our model encodes digits in Fourier space.
Specifically, the model’s embeddings E, the final hidden layer hL, and even the weights of the last
MLP can be well reconstructed from a small set of Fourier basis functions.

Figure 6 shows a 3D PCA visualization of the final hidden layer at timestep tc2 , for both the SFT
and ICoT models. While the SFT hidden states do not reveal any obvious patterns, the ICoT hidden
states reveal a striking pattern: the ten digits form vertices of a pentagonal prism.

This structure is naturally explained by Fourier modes. Consider the Fourier expansion∑
Cn ∗ e−2πi

kn
10 , n = 0, . . . , 9.

where Cn( ̸= ck) is some constant per digit n. Following Kantamneni & Tegmark (2025), we take
frequencies k ∈ {0, 1, 2, 5}, yielding the real Fourier basis

Φ(n) =

[
1(n) cos

(
2π n

10

)
sin

(
2π n

10

)
cos

(
2π n

5

)
sin

(
2π n

5

)
p(n)

(k=0) (k=1) (k=1) (k=2) (k=2) (k=5)

]
,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

PCA of Last Hidden State (SFT) PCA of Last Hidden State (ICoT)
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23
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cos, sin(2π n / 5)

(k=2)
Parity (±5)

(k=5)

Figure 6: Digits embedded in a pentagonal prism, using Fourier bases. No obvious patterns in
the SFT model, but the ICoT model encodes digits in a pentagonal prism using Fourier bases.

where 1(n) ≡ 1 (the DC component) and p(n) ≡ (−1)n (the Nyquist/parity vector). The sine terms
for k = 0 and k = 5 vanish over n = 0, . . . , 9 and are omitted.

The final hidden layer hL can be reconstructed via these six terms (see Appendix B), indicating that
the final hidden state is encoded using Fourier bases.

Revisiting Figure 6, the first principal component (PC1) aligns with the parity vector p(n), sepa-
rating even from odd digits. Second and third principal components span the k = 2 Fourier pair
(cos, sin( 2πn5 )), so the digits lie on two regular pentagons: one each for even and odd digits. The
digits within each pentagon advance by n+4 (mod 10) (e.g., n = 0→4→8 . . ., same for odd dig-
its), allowing a walk around the pentagon while staying within the even/odd set. Interestingly, taking
(mod 5) on such a sequence yields decreasing steps of 1 (n (mod 5) = 0→ 4→ 3 . . .). Lastly,
the two pentagons are parallel and stacked along PC1, with corresponding vertices differing by ±5
(same phase, opposite parity). Together, these yield the pentagonal-prism geometry in Figure 6.

5 PITFALLS OF LEARNING: LACK OF LONG-RANGE DEPENDENCY

Given our insights, we revisit why Transformers fail at multiplication under standard fine-tuning.

In particular, in Figure 7 (a), we inspect the gradient norms (top row) and losses (bottom row) per
token ck over the course of training. There are a few observations to make.

First, note from the loss curves that the first two digits, c0, c1, followed by the last digit, c7, are
learned first, as indicated by their immediate drop in loss to near zero. This aligns with the gradient
norms observed for these tokens: within the first few steps, these tokens receive gradients, but their
norms quickly drop to near zero once the loss for these tokens reach zero. Also note that the order
in which tokens are learned according to gradient norms and losses is consistent.

The model then eventually learns to predict c2. However, middle digits, c3 to c6 are never learned.
Despite only the middle digits receiving gradients (as they are the only sources of loss remaining),
their losses plateau, suggesting that the model is stuck in a local optimum that lacks the long-range
dependencies to properly learn the middle digits.

Note that scaling to a larger model does not address this issue, as the same pattern can be found in a
12 layer 8 head model: see Appendix C.
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Figure 7: Gradient norms and losses per token ck. While both methods learn digits c0, c1, c7
first, standard fine-tuning gets stuck in a local optimum without having learned the right long-range
dependencies, while training with the auxiliary loss allows the model to learn the middle digits.

6 LEARNING MULTIPLICATION WITHOUT ICOT

To further validate our understanding of why Transformers fail to learn multiplication, we demon-
strate an example of a simple fix to teach Transformers multiplications without needing ICoT.

In particular, we leverage the observation from Section 3.1 in that (i) multi-digit multiplication
requires long-range dependencies between digit ck and pairwise products {aibj |i+ j ≤ k}, and (ii)
such dependency can be summarized by an intermediate value ĉk to produce ck.

Thus in order to guide the Transformer to learn long-range dependencies, we simply add an auxiliary
loss term to predict ĉk at each timestep tck . We attach an additional linear regression head wh ∈ Rd

to the output of H(= 2) attention heads in the second layer. These regression heads are trained to
predict the correct accumulated sum ĉk at each timestep tck , ck ∈ [0, . . . 7] with a MSE loss:

zhi = w⊤
h ATT2

h(·) (6)

Laux =
1

H

∑
h∈H

1

8

7∑
i=0

(zhi − ĉi)
2 (7)

L = LLM + λLaux (8)

where LLM is the standard language modeling loss.

This introduces an inductive bias for the task, and allows our 2-layer model to correctly learn 4x4
multiplication with 99% accuracy. Again, note that a larger 12-layer model still fails at multiplica-
tion under standard fine-tuning.

Revisiting Figure 7 (b) demonstrates a very different learning dynamic. We observe the model learn
early and last digits (c0, c1, c7) and work inwards (c2, c3, c4, c6, and finally c5).

Limitation. Obviously the suggested inductive bias pertains specifically to our task. However,
our experiments demonstrate the pitfall of Transformers that require long-range dependencies, and
that it is possible to overcome such a pitfall with the correct inductive biases. We speculate that
there are other generalizing inductive biases that can improve performance on tasks with long-range
dependencies (Tay et al., 2020), and leave this for future work.
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Figure 8: Attention pattern of model trained with auxiliary loss. This model similarly produces
a “binary attention tree” (red boxes), but interestingly, we also see an attention head that attends to
all necessary pairwise digits simultaneously (black box), producing a pattern akin to Figure 2.

6.1 DOES THE MODEL WITH AUXILIARY LOSS LEARN THE SAME MECHANISM AS ICOT?

A natural question that arises is whether ICoT and our inductive bias leads to the same mechanisms.

Inspecting the attention patterns suggests that a similar (but not necessarily exact) mechanism is
learned: see Figure 8. Namely, the model similarly forms an “attention tree” to sparsely attend to
the correct pairs of digits for each ci in the first layer (red boxes). Interestingly, in the auxiliary-loss
model we also observe an attention head (Layer 2 Head 2) that simultaneously attends to all the
necessary digits, {ai≤k, bi≤k}, at each timestep tck , forming a parallelogram-like attention pattern
(black box) akin to the shape seen in Figure 2.

7 RELATED WORK

Studying Transformers with Arithmetic Tasks. A growing line of work study Transformers un-
der controlled settings to better characterize their behavior (Allen-Zhu & Li, 2023a;b; Li et al., 2023;
Nanda et al., 2023b; Park et al., 2024b;a). Often, arithmetics is a natural and popular domain (Lee
et al., 2023; Ye et al., 2024; Nikankin et al., 2024), which has led to numerous insights. For instance,
Nanda et al. (2023a) study how Transformers perform modular addition to explain grokking. Kan-
tamneni & Tegmark (2025) find that large language models use trigonometry to do addition, encod-
ing digits using Fourier bases, while Nikankin et al. (2024) suggest that they also rely on heuristics.
Cai et al. (2025) study length generalization in Transformers using arithmetic tasks. Similarly, we
study the limitations of Transformers by studying why it fails to learn multi-digit multiplication.

Process Supervision. Recent work trains models with process supervision, in which feedback is
given not just on final correctness but on each intermediate reasoning step. For example, Uesato et al.
(2022) demonstrate that process-supervision can yield less reasoning errors on GSM8K compared to
outcome-only supervision. Similarly, Lightman et al. (2023) show that step-level human feedback
on MATH leads to stronger reward models. More recently, Zhong et al. (2023)’s Math-Shepherd
automates step-wise rewards via continuation-based verification, improving performance on both
GSM8K and MATH. ICoT similarly plays the role of process supervision in latent space, by slowly
removing chain-of-thought tokens during training such that the model internalizes the reasoning
procedure. We thus use ICoT’s success on multiplication to study why Transformers fail.

8 CONCLUSION

In this work, we study why Transformers fail on a seemingly simple task of multi-digit multiplica-
tion. We answer this question by reverse-engineering a model trained with implicit chain-of-thought,
and uncover that it has learned to compute the correct long-range dependencies needed for multi-
digit multiplication. Our findings point to a pitfall of the standard recipe for training language
models: using gradient descent with an auto-regressive loss on Transformers. While we provide a
simple example of how the right inductive bias can address such a limitation, we anticipate future
work to provide a generic solution to improve on tasks with long-range dependencies.
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9 REPRODUCIBILITY STATEMENT

Our code to reproduce all of our experiments can be found in https://anonymous.4open.
science/r/icot-F822/. Appendix A provides details of our training setup, including data
formats, sample size, and hyperparameters.
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A TRAINING DETAILS

Here we provide additional details regarding the training procedures of each of our models.

A.1 ICOT TRAINING

Our ICoT training setup follows the practice outlined in the original ICoT paper (Deng et al., 2024).

ICoT works by initially presenting explicit chain-of-thought tokens during training, but gradually
removing them across numerous “stages” (e.g., epochs). Concretely, the training examples at each
epoch may have the following form:

(Epoch 1) a0a1a2a3 ∗ b0b1b2b3%%% q0 . . . qi . . . qj . . . qk . . . qτ #### c0 . . . c7

(Epoch 2) a0a1a2a3 ∗ b0b1b2b3%%% qi . . . qj . . . qk . . . qτ #### c0 . . . c7

(Epoch 3) a0a1a2a3 ∗ b0b1b2b3%%% qj . . . qk . . . qτ #### c0 . . . c7

. . .

(Epoch N) a0a1a2a3 ∗ b0b1b2b3%%% #### c0 . . . c7

where qi are CoT tokens and %,# are special delimiters. These delimiters have no special meaning
beyond matching the setup of Deng et al. (2024). Note that after each epoch, the model sees a shorter
chain by truncating some tokens, and that by the end, only the operands and final answer remain.

The actual format of our ICoT data is as follows. Using an example input of 8331× 5015, digits are
presented in least-significant digits first, resulting in the following format:

1338 ∗ 5105||5614 + 013380(569421) + 0000000(5694210) + 0005561%%####56997714

Unlike Deng et al. (2024), instead of using a pre-trained 12-layer GPT model, we train a smaller
2-layer, 4-head GPT-based model from scratch, not only to remove any confounding factors from
pre-trained knowledge, but also because the 2-layer 4-head architecture is the simplest form in which
ICoT succeeds but standard fine-tuning fails. The training data consists of 80,800 samples, while
the validation and test sets each contain 1,000 held out samples. We train with a learning rate of
5e-5, and remove 8 chain-of-thought tokens at every “stage” (which in our case is an epoch). Both
training and validation loss converge after 13 epochs, and achieves 100% accuracy on the test set.

A.2 STANDARD FINE-TUNING

Similar to ICoT, for our standard fine-tuning model, we train a 2-layer, 4-head GPT-based model
from scratch, on the same data as ICoT. We use a learning rate of 5e-5, and the input format
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is a0a1a2a3 ∗ b0b1b2b3%%####c0 . . . c7. All other hyperparameters match those in our ICoT
setup. The model’s loss and accuracy plateaus after 13 epochs, it achieves only about 1% train and
validation accuracy, while digit-level accuracy converges at approximately 81%, and remains the
same even after 60 epochs.

Note that scaling the model larger to a 12-layer, 8-head model achieves the same low accuracy at
1% and digit-level accuracy of 80%.

B FOURIER STRUCTURE IN MODEL’S WEIGHTS, ACTIVATIONS

Here we provide a deeper dive into the Fourier structure found in the ICoT model’s weights and
hidden states. Namely, we analyze the model’s embedding weights, final MLP’s weights, and last
hidden layer:

1. Embeddings E ∈ R10×d

2. Final layer MLP output weights Wout ∈ Rdmlp×d, given MLP(x) = σ(Winx)Wout

3. Final hidden layer hL
t ∈ RN×d

where N(= 1, 000) is the size of our validation set. For the latter two, we first project them onto the
model’s embedding space:

Ŵout = (EWout)
⊤ ∈ Rdmlp×10

ĥL = (EhL)⊤ ∈ RN×10

Each item X ∈ {E , Ŵout, ĥL} is a collection of row vectors x ∈ R10 whose ten entries correspond
to digits n = 0, . . . , 9.

We find that vectors x are encoded in a low-dimensional trigonometric subspace.

Namely, consider the Fourier expansion∑
Cn ∗ e−2πi

kn
10 , n = 0, . . . , 9.

where Cn(̸= ck) is some constant per n. Following Kantamneni & Tegmark (2025), we take fre-
quencies k ∈ {0, 1, 2, 5}, yielding the real Fourier basis

Φ(n) =

[
1(n) cos

(
2π n

10

)
sin

(
2π n

10

)
cos

(
2π n

5

)
sin

(
2π n

5

)
p(n)

(k=0) (k=1) (k=1) (k=2) (k=2) (k=5)

]
,

where 1(n) ≡ 1 (the DC component) and p(n) ≡ (−1)n (the Nyquist/parity vector). The sine terms
for k = 0 and k = 5 vanish over n = 0, . . . , 9 and are omitted.

Let F ∈ 10 × 6 be a Fourier matrix with rows indexed by n ∈ {0, . . . , 9} and columns as defined
above.

For each row x ∈ R10 we fit least squares coefficients

C = arg min
C∈R6

∥x− FC∥22

and quantify goodness-of-fit using coefficient of determination

R2(x) = 1− ∥x− FC∥22
∥x− x̄∥22

,

We report the median R2 over the set of rows in each X (i.e., over dmlp rows for Ŵout, d rows for
E , and over batch examples for hL.

In Table 1 we observe strong fits: the per-row medians lie between 0.85 and 0.99, indicating that a
six-dimensional trigonometric basis over digits captures the vast majority of variance:

We can extend the Fourier bases to include additional terms, for k = 3, 4, which forms a 8 dimen-
sional basis (excluding sine terms for k = 0, 5), which leads to perfect R2 fits.
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Table 1: Median R2 of Fourier fits over digits (n = 0 . . . 9).

Object Fourier Basis Rows aggregated Median R2

E k = 0, 1, 2, 5 dmodel 0.84
MLP Wout weights k = 0, 1, 2, 5 dmlp 0.95

hL k = 0, 1, 2, 5 batch examples 0.99
E k = 0, 1, 2, 3, 4, 5 dmodel 1

MLP Wout weights k = 0, 1, 2, 3, 4, 5 dmlp 1
hL k = 0, 1, 2, 3, 4, 5 batch examples 1

0e+00 2e+04 5e+04 8e+04 1e+05 1e+05 2e+05 2e+05 2e+05

Gradient Steps

C0

C1

C2

C3

C4

C5

C6

C7

C
k

P
os

it
io

n

(a) Standard Fine Tuning

10−1

100

101

102

Grad Norm
(Log Scale)

0e+00 2e+04 5e+04 8e+04 1e+05 1e+05 2e+05 2e+05 2e+05

Gradient Steps

0.0

0.5

1.0

1.5

2.0

2.5

L
os

s
(P

er
c k

P
os

it
io

n
)

Position

c0
c1
c2
c3
c4
c5
c6
c7

Figure 9: Gradients and loss per token for a 12-layer model.

C PER TOKEN GRADIENTS AND LOSSES: 12-LAYER MODEL

Even with a larger 12 layer model, the model fails to learn the right long-range dependencies. Fig-
ure 9 displays the results – we see the similar patterns as the 2-layer model, in which middle digits
never receive the right gradients and loss does not drop.

D ATTENTION PATTERNS OF ALL MODELS

In Section 3.3, we illustrate how a binary tree is constructed for c2 in the ICoT model. In Figure 10,
we present the attention patterns for all digits across the three models, from with attention trees can
be derived for the ICoT model for each solution token ci.

E LLM USAGE

We used LLMs to proof read our draft and polish our notations.
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Figure 10: Attention patterns of ICoT, standard fine-tuned model, and the model trained with auxil-
iary loss
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