
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHY CAN’T TRANSFORMERS LEARN MULTIPLICA-
TION? REVERSE-ENGINEERING IMPLICIT CHAIN-
OF-THOUGHT REVEALS CHALLENGES OF LEARNING
LONG-RANGE DEPENDENCIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Language models are increasingly capable, yet still fail at a seemingly simple task
of multi-digit multiplication. In this work, we study why, by reverse-engineering
a model that successfully learns multiplication via implicit chain-of-thought, and
report three findings: (1) Evidence of long-range structure: Logit attributions and
linear probes indicate that the model encodes the necessary long-range dependen-
cies for multi-digit multiplication. (2) Mechanism: the model encodes long-range
dependencies using attention to construct a directed acyclic graph to “cache” and
“retrieve” pairwise partial products. (3) Geometry: the model implements partial
products in attention heads by forming Minkowski sums between pairs of digits,
and digits are represented using a Fourier basis, both of which are intuitive and
efficient representations that the standard fine-tuning model lacks. With these in-
sights, we revisit the learning dynamics of standard fine-tuning and find that the
model converges to a local optimum that lacks the required long-range dependen-
cies. We further validate this understanding by introducing an auxiliary loss that
predicts the “running sum” via a linear regression probe, which provides an induc-
tive bias that enables the model to successfully learn multi-digit multiplication. In
summary, by reverse-engineering the mechanisms of an implicit chain-of-thought
model we uncover a pitfall for learning long-range dependencies in Transformers
and provide an example of how the correct inductive bias can address this issue.

1 INTRODUCTION

Large language models demonstrate striking capabilities across reasoning, planning, and tool use.
Yet, they also fail on surprisingly simple algorithmic tasks (Nye et al., 2021; Lee et al., 2023).
Why do Transformers excel at some tasks, but fail to learn others? One such example is multi-digit
multiplication. Despite having billions of parameters, models like Llama-3.2 90B or GPT4 still fail
at 4x4-digit multiplication (Gambardella et al., 2024),1 even when explicitly fine-tuned on the task
(Yang et al., 2023). Why do Transformers fail to learn multiplication?

We study these questions by contrasting a standard fine-tuned model (SFT), which fails at multipli-
cation, with a model trained with implicit chain-of-thought (ICoT) (Deng et al., 2024; 2023), which
succeeds. ICoT works by providing explicit chain-of-thought tokens during training, but gradually
removes them and thus forces the model to internalize intermediate steps in its latent states.

We partially reverse-engineer the ICoT model and uncover several insights. First, unlike the SFT
model, the ICoT model learns the correct long-range structure needed for multi-digit multiplication.
We provide evidence of this using logit attributions and linear regression probes. Mechanistically,
the ICoT model encodes long-range dependencies by organizing its attention into a sparse, binary-
tree-like graph, which (i) selects the correct digit pairs to compute partial products and (ii) “caches”
these intermediate computations into earlier tokens for later retrieval. Lastly, geometrically, atten-
tion heads realize partial products as Minkowski sums of digit embeddings, and represent digits

Code: https://anonymous.4open.science/r/icot-F822
1Note that some recent proprietary models that do solve multi-digit multiplication may rely on tool-use.

1

https://anonymous.4open.science/r/icot-F822

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

with Fourier bases, yielding a pentagonal prism structure – both of which are intuitive and efficient
representations that the SFT model lacks.

With these insights, we revisit the dynamics of standard fine-tuning: under gradient descent and an
auto-regressive loss, the model never learns these long-range dependencies, and thus loss plateaus
on the middle digits. To confirm our understanding, we introduce a simple fix by introducing an
auxiliary loss that supervises the model to predict a “running partial sum” through a lightweight
linear regression probe. This provides an inductive bias to learn the proper long-range dependencies,
allowing it to achieve perfect accuracy, without any supervision from chain-of-thought.

In summary, by partially reverse-engineering a network that successfully implements multi-digit
multiplication, we uncover how it implements long-range dependencies, a mechanism that the un-
successful model lacks. Our work highlights a challenge for Transformers to learn long-range de-
pendency using gradient descent and an auto-regressive loss. While we demonstrate a task-specific
inductive bias to address this issue, we anticipate generic improvements to address this limitation.

2 EXPERIMENT SETUP, TRAINING ICOT, NOTATIONS

Task, Models. We are interested in understanding the difference in a model trained with stan-
dard fine-tuning and ICoT. From experiments, we find that the simplest multi-digit multiplication in
which standard fine-tuning fails but ICoT works is 4×4 digit multiplications. Similarly, the smallest
architecture in which ICoT works is a 2-layer model with 4 attention heads. Thus we carefully study
a 2-layer 4-head ICoT model and a standard fine-tuned model trained on 4×4 multiplication.

Training Procedures. Our ICoT setup is the same as that Deng et al. (2024). Here we provide
an informal overview of ICoT, with details in Appendix A.1. Namely, assume two operands a =
(a3, a2, a1, a0), b = (b3, b2, b1, b0) and their product c = (c7 . . . c0). Operands are written least-
significant digit first, similar to other algorithmic setups (Deng et al., 2024; 2023; Lee et al., 2023).

For ICoT, the training data includes intermediate chain-of-thought (CoT) tokens qi that explicitly
record the step-by-step calculations. As a simple illustration, consider 12×34. The tokens appearing
between the two equal signs follow the same CoT format used in our 4×4-digit multiplication tasks:

12 ∗ 34 = 48︸︷︷︸
12∗4

+ 360︸︷︷︸
12∗30

(408)︸ ︷︷ ︸
running sum

= 408

At each training epoch, a fixed number of CoT tokens are removed from the left of the chain. Con-
cretely, the training examples at each epoch may have the following form:

(Epoch 1) a0a1a2a3 ∗ b0b1b2b3%%% q0 . . . qi . . . qj . . . qk . . . qτ #### c0 . . . c7

(Epoch 2) a0a1a2a3 ∗ b0b1b2b3%%% qi . . . qj . . . qk . . . qτ #### c0 . . . c7

(Epoch 3) a0a1a2a3 ∗ b0b1b2b3%%% qj . . . qk . . . qτ #### c0 . . . c7

. . .

(Epoch N) a0a1a2a3 ∗ b0b1b2b3%%% #### c0 . . . c7

where qi are CoT tokens and %,# are special delimiters.2 Note that after each epoch, the model
sees a shorter chain by truncating some tokens, and that by the end, only the operands and final
answer remain. For comparison, standard fine-tuning only trains on the operands: a0a1a2a3 ∗
b0b1b2b3%%%#### c0 . . . c7.

Interestingly, the ICoT model is able to achieve 100% accuracy on 4×4 digit multiplication, while
standard fine-tuning only achieves less than 1% accuracy. Note that scaling does not help – scaling
to a 12 layer 8 head model achieves the same < 1% accuracy, and Yang et al. (2023) show that
fine-tuning a 2B model still plateaus at 95% accuracy.

For more details regarding training (data format, sample size, hyperparameters), see Appendix A.

Notations. hℓ
t indicates the hidden states at layer ℓ timestep t. Timesteps for solution tokens

ck, k = [0, . . . , 7] are notated tck . ATTℓ
h(·), MLPℓ(·) indicate the output of the attention heads or

MLP blocks at layer ℓ, head index h. E,U ∈ RV×d indicate (un)embedding weights.
2These delimiters have no special meaning beyond matching the setup of Deng et al. (2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

𝑎3 𝑎2 𝑎1 𝑎0
𝑏3 𝑏2 𝑏1 𝑏0

𝑎0𝑏0𝑎1𝑏0

𝑎1𝑏1
+

ĉ0ĉ1

+
𝑟0 //10=

𝑐0
%10𝑐1

𝑎2𝑏0

𝑎0𝑏1
𝑎0𝑏2

+
+

𝑟1
+

ĉ2

=

×

𝑐4

𝑎2𝑏1

𝑎3𝑏0

𝑎1𝑏2

+
+

+
𝑎0𝑏3

𝑟2
+

=

ĉ3

𝑎3𝑏1
𝑎2𝑏2
+

+
𝑎1𝑏3

𝑟3
+

=

ĉ4
𝑐2𝑐3𝑐5

𝑎3𝑏2
+

𝑎2𝑏3

𝑟4
+

=

ĉ5
𝑐6

𝑎3𝑏3

𝑟5
+

=

ĉ6
𝑐7

𝑟6=

ĉ7

===

𝑠3

=

𝑠4

=

𝑠5

=

𝑠6 𝑠2 𝑠1 𝑠0

=

Figure 1: Multiplication has long-range dependencies, which can be captured by an intermediate
value ĉi, from which both the solution (ci) and carries (ri) can be derived from.

3 COMPARING THE MECHANISMS OF ICOT VERSUS SFT

3.1 LONG-RANGE DEPENDENCIES IN MULTI-DIGIT MULTIPLICATION

Here we discuss how one might solve multi-digit multiplication, and the required long-range depen-
dencies needed to solve multiplication.

One approach to compute each digit, ck, is as follows:

sk ≜
∑

i+j=k

aibj ,︸ ︷︷ ︸
sum of partial products

ck = (sk + rk−1) mod 10, rk =
⌊sk + rk−1

10

⌋
︸ ︷︷ ︸

carry

, r−1 = 0 (1)

Note that both ck and rk can be expressed with an intermediary term ĉk, which encapsulates both
the relevant information from the partial products and the carry:

ĉk ≜ sk + rk−1, ck = ĉk (mod 10), rk =
⌊ ĉk
10

⌋
(2)

Importantly, note the long-range dependencies needed for multi-digit multiplication. Specifically,
we highlight two observations: (i) To determine ck, one must use all the partial products {aibj |i +
j ≤ k}, since all of these terms contribute to ck. (ii) Knowing the intermediary term ĉk suffices to
compute ck and to propagate necessary information for later digits. Thus we use ĉk as a probing
signature (Section 3.2) at each timestep tck to check if the model is utilizing all the necessary long-
range information to predict the correct tokens ck.

In the following sections, we demonstrate how the ICoT model satisfies such long-range dependency
while the standard fine-tuning model does not.

3.2 EVIDENCE OF LONG-RANGE DEPENDENCIES IN ICOT

We first demonstrate two lines of evidence that the ICoT model satisfies long-range dependencies in
multi-digit multiplication, while the standard fine-tuning SFT model does not.

Logit Attributions. Note from Figure 1 that digits ai, bi can only affect ck terms where k ≥ i. Also
note that at timestep tck , the pairwise products {aibj |i + j = k} affect the final prediction ck the
most. “Earlier” pairwise products {aibj |i + j = k − m} can still affect ck, but with diminishing
effects as m increases.

We directly test for these relationships in our ICoT and SFT models using logit attributions. Namely,
given an input sample ORIG := a0a1a2a3 ∗ b0b1b2b3, we measure the logits of the model’s predic-
tions for c0−7 : logitck(ORIG). We then randomly swap out one of the operand digits at timestep
t (e.g., ã2) to construct a counterfactual input COUNTERt = a0a1ã2a3 ∗ b0b1b2b3 and measure the
change in logits: ∆t,k = logitck(ORIG) − logitck(COUNTERt) Thus ∆t,k measures the effect that
digit at timestep t has on the prediction of token ck.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

c0 c1 c2 c3 c4 c5 c6 c7

a3
a2
a1
a0
b3
b2
b1
b0

SFT

c0 c1 c2 c3 c4 c5 c6 c7

ICoT

0

5

10

15

20

 lo
gi

t

Figure 2: Logit Attribution. We test for whether each model has correctly learned long-range
dependencies by measuring how sensitive the logits of output digits ci are to each operand digit (i.e.,
ai, bj). This is done by measuring the change in ci’s logits when a single operand digit is perturbed.

0 200

−100

0

100

200

P
re

di
ct

ed
Ĉ

Ĉ2 (MAE 93.69)

Perfect predictions

Predictions

0 200

−100

0

100

200

Ĉ3 (MAE 113.27)

0 200

0

100

200

Ĉ4 (MAE 74.47)

−100 0 100
−100

0

100

Ĉ5 (MAE 79.40)

0 50 100

0

50

100
Ĉ6 (MAE 28.22)

0 100 200

True Ĉ2

0

50

100

150

200

P
re

di
ct

ed
Ĉ

Ĉ2 (MAE 2.00)

0 200

True Ĉ3

0

100

200

Ĉ3 (MAE 1.89)

0 100 200

True Ĉ4

0

100

200

Ĉ4 (MAE 1.74)

0 100

True Ĉ5

0

50

100

150

Ĉ5 (MAE 0.97)

0 50

True Ĉ6

0

25

50

75

Ĉ6 (MAE 0.56)

SFT

ICoT

Figure 3: Linear regression probing results for ĉ. We probe from the middle of the last Trans-
former block, after attention heads but before MLPs.

We use 1,000 samples for each (t, k) pair and show the results in Figure 2. Note that for SFT, the
model does not see the correct dependencies between earlier tokens to middle tokens, while the ICoT
model does, suggesting that the model has indeed learned the correct long-range dependencies.

Probing for ĉk. Note from Figure 1 and Equation 2 that the long-range dependencies can be cap-
tured by an intermediate term, ĉk. We test for whether ĉk information can be decoded from the
hidden states of the models using linear regression probes. Namely, at each timestep tck we predict
for ĉk by training a single vector wk ∈ Rd such that wkh

2.mid
tck

= ĉk using a MSE loss, where h2.mid

is the hidden state at layer 2 after attention heads, before MLPs.

Figure 3 reports the mean absolute error from probing for ĉk for middle and late digits, k = 2, . . . , 6.
Note that the accuracy from the ICoT model is much higher than that of SFT, further suggesting that
the ICoT model has learned the correct long-range dependencies while SFT has not.

3.3 ENCODING LONG-RANGE DEPENDENCIES VIA ATTENTION TREES

How does the ICoT model compute long-range dependencies? Here we describe how the model’s
attention patterns induce a shallow directed acyclic graph, akin to a binary expression tree, in order
to encode long-range dependencies.

Namely, in the first layer, across all timesteps t > 5,3 each attention head only attends to a pair of
digit tokens, {ai, bj} (Figure 4, left). This allows the model to produce the pairwise product aibj
(see Section 4.1 for how attention heads represent pairwise products), but also allows the model to

3Note that only after timestep 5, both a and b tokens appear in the context.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a0a1a2a3 * b0b1b2b3 % % ####c0c1

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1

Layer 1 Head 2

a2b0
a0b2

a0b2

a0a1a2a3 * b0b1b2b3 % % ####c0c1

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1

Layer 1 Head 1

a1b0

a0b1
a1b0

a0a1a2a3 * b0b1b2b3 % % ####c0c1

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1

Layer 2 Head 3
a0a1a2a3 * b0b1b2b3 % % ####c0c1

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1

Layer 2 Head 4

a0 a1 a2 a3 * b0 b1 b2 b3 % % % # ###c0 c1

a0b0:
a0b1:
a0b2:
a1b0:
a1b1:
a2b0:

Figure 4: Visualization of attention tree to compute c2. Left: Attention maps for selected heads
show the first layer “cache” pairwise products (aibj) across earlier timesteps, from which the second
layer reads from (Not all tree paths are shown). Right: A visualization of the attention tree. Each
arc indicates tokens being attended to at specific timesteps. Colored arcs above and below the
digits indicate attention patterns from the first and second layers respectively. Example: orange arc
indicates that at timestep b3, the model attends to a0 and b1, from which the second layer reads from.

cache the product aibj in the hidden state of layer 1 at timestep t (i.e., h1
t). Put differently, product

pairs {aibj}i,j∈{0,...4} are “cached” in the first layer across different timesteps (h1
t , t < tck).

At later timesteps t ≥ tck , when the model predicts solution tokens ck, this allows the second layer
attention heads to attend to a small set of previous cache sites, i.e., where the appropriate pairs of
products aibj , i+ j = k are stored from earlier timesteps.

Example: Figure 4 depicts the attention patterns when the model predicts c2, given input “a0...3 ∗
b0...3 = c0c1”. These attention maps are averaged from 1,000 samples from a held out test set. The
necessary terms to compute c2 are a2b0, a1b1, a0b2, and ĉ1 (which in turn requires a1b0, a0b1, a0b0).

Attention heads ATT2
3, ATT2

4 each attend to positions (b0, b2, c1) and (b3, “#”, c0). Inspecting what
was “cached” in the first layer at those timesteps reveals the necessary partial products to compute
c2. For example, at timestep b0, ATT1

1, ATT1
2 attend to a2, b0; at timestep b2 ATT1

1 attends to a1, b1
while ATT1

2 attends to a0, b2; at timestep c0 ATT1
1 attends to a1, b0, ATT1

2 attends to a0b1. Thus the
model can derive partial products, a2b0, a1b1, a0b2, a1b0, a0b1 with its attention tree.4

While Figure 4 shows an example of the “attention tree” for predicting c2, one can similarly recon-
struct the correct trees for all digits c0, . . . , c7 using the attention patterns for all digits in Figure 10.

In summary, for each output step ck, the ICoT model constructs a binary-tree-like graph, spread out
across timesteps, to attend to the correct pairs of tokens, allowing it to compute partial products.

4 FEATURE GEOMETRY OF ICOT

In addition to the mechanisms seen in Section 3, we also study the geometry of features in ICoT.

4.1 DIGIT-WISE MULTIPLICATIONS AS MINKOWSKI SUMS

Note from Section 3.3 that the attention patterns are sparse, often only attending to the two digits
ai, bj being multiplied. In such a case, the outputs of the attention head form a Minkowski sum.

4Note that there may be a couple of different ways that a0b0 is derived. One possibility is to re-use a0, b0
information that was fetched at various timesteps. Another possibility is when a0 is slightly attended to at ATT2

3

(difficult to see in our visuals). Note that a0b0 plays a relatively minor role in computing c2 compared to all
other partial products.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Attention Layer 1

Colored by b0

(b) Attention Layer 1 Head 3

Colored by b1

(c) Attention Layer 1 Head 3

Colored by a1

(d) Attention Layer 1 Head 3

Zoomed in: Points inside box

Colored by a1

Figure 5: 3D PCA of attention head outputs can form Minkowski sums, which in turn can form
nested representations. Each color represents a different digit.

Namely, consider a single head ATT1(i, j) at the first layer, attending to two digits ai, bj . Let
WO ∈ Rd×dhead ,WV ∈ Rdhead×d be the output and value weights of the attention head, E[ai] ∈ Rd

the token embedding for token ai, and Ai := WOWV E[ai], Bj := WOWV E[bj], Ai, Bj ∈ Rd.

In such a case, when the model spends α% of its attention on digit ai, and thus attends to digit bj by
(1−α)%, the set of all possible values for the output of the attention head forms a Minkowski sum:

ATT1(i, j) = αAi + (1− α)Bj + ϵ (3)

{ATT1(i, j)}i,j ⊆ (αA)⊕ ((1− α)B)⊕ ϵ (4)

(ignoring position embeddings). See Figure 5 (a) for a visualization.

Visually, 3D PCAs can reveal nested representations. Namely, we can observe clusters, each cluster
corresponding to a feature (i.e., ai). These clusters form a “global” geometry. When zoomed in
to each cluster, we observe additional clusters for a second feature (i.e., bj) that form a “local”
geometry of the same shape as its global counterpart. See Figure 5 (b-d) for examples.

This observation can be explained by deconstructing the covariance of the attention output:

ΣATT = α2ΣA + (1− α)2ΣB , (5)

where ΣA = Cov(Ai),ΣB = Cov(Bj). First, note that if we ignore positional encodings, ΣA and
ΣB share the same eigenvectors, as they each depend on the same terms (E[·],WO,WV), which
are picked by PCA. Further note that fixing a value for ai leaves a local covariance, Σlocal|ai

=

(1 − α)2ΣB , which again share the same eigenvectors with the global ΣATT term, leading to the
same local geometry when projected onto.

4.2 EMBEDDING DIGITS ON A PENTAGONAL PRISM VIA FOURIER BASES

Similar to Kantamneni & Tegmark (2025), we find that our model encodes digits in Fourier space.
Specifically, the model’s embeddings E, the final hidden layer hL, and even the weights of the last
MLP can be well reconstructed from a small set of Fourier basis functions.

Figure 6 shows a 3D PCA visualization of the final hidden layer at timestep tc2 , for both the SFT
and ICoT models. While the SFT hidden states do not reveal any obvious patterns, the ICoT hidden
states reveal a striking pattern: the ten digits form vertices of a pentagonal prism.

This structure is naturally explained by Fourier modes. Consider the Fourier expansion∑
Cn ∗ e−2πi

kn
10 , n = 0, . . . , 9.

where Cn(̸= ck) is some constant per digit n. Following Kantamneni & Tegmark (2025), we take
frequencies k ∈ {0, 1, 2, 5}, yielding the real Fourier basis

Φ(n) =

[
1(n) cos

(
2π n

10

)
sin

(
2π n

10

)
cos

(
2π n

5

)
sin

(
2π n

5

)
p(n)

(k=0) (k=1) (k=1) (k=2) (k=2) (k=5)

]
,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

PCA of Last Hidden State (SFT) PCA of Last Hidden State (ICoT)

0

1
23

4

5

6

7

8

9

cos, sin(2π n / 5)

(k=2)
Parity (±5)

(k=5)

Figure 6: Digits embedded in a pentagonal prism, using Fourier bases. No obvious patterns in
the SFT model, but the ICoT model encodes digits in a pentagonal prism using Fourier bases.

where 1(n) ≡ 1 (the DC component) and p(n) ≡ (−1)n (the Nyquist/parity vector). The sine terms
for k = 0 and k = 5 vanish over n = 0, . . . , 9 and are omitted.

The final hidden layer hL can be reconstructed via these six terms (see Appendix B), indicating that
the final hidden state is encoded using Fourier bases.

Revisiting Figure 6, the first principal component (PC1) aligns with the parity vector p(n), sepa-
rating even from odd digits. Second and third principal components span the k = 2 Fourier pair
(cos, sin(2πn5)), so the digits lie on two regular pentagons: one each for even and odd digits. The
digits within each pentagon advance by n+4 (mod 10) (e.g., n = 0→4→8 . . ., same for odd dig-
its), allowing a walk around the pentagon while staying within the even/odd set. Interestingly, taking
(mod 5) on such a sequence yields decreasing steps of 1 (n (mod 5) = 0→ 4→ 3 . . .). Lastly,
the two pentagons are parallel and stacked along PC1, with corresponding vertices differing by ±5
(same phase, opposite parity). Together, these yield the pentagonal-prism geometry in Figure 6.

5 PITFALLS OF LEARNING: LACK OF LONG-RANGE DEPENDENCY

Given our insights, we revisit why Transformers fail at multiplication under standard fine-tuning.

In particular, in Figure 7 (a), we inspect the gradient norms (top row) and losses (bottom row) per
token ck over the course of training. There are a few observations to make.

First, note from the loss curves that the first two digits, c0, c1, followed by the last digit, c7, are
learned first, as indicated by their immediate drop in loss to near zero. This aligns with the gradient
norms observed for these tokens: within the first few steps, these tokens receive gradients, but their
norms quickly drop to near zero once the loss for these tokens reach zero. Also note that the order
in which tokens are learned according to gradient norms and losses is consistent.

The model then eventually learns to predict c2. However, middle digits, c3 to c6 are never learned.
Despite only the middle digits receiving gradients (as they are the only sources of loss remaining),
their losses plateau, suggesting that the model is stuck in a local optimum that lacks the long-range
dependencies to properly learn the middle digits.

Note that scaling to a larger model does not address this issue, as the same pattern can be found in a
12 layer 8 head model: see Appendix C.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

Gradient Steps

C0

C1

C2

C3

C4

C5

C6

C7

C
k

P
os

it
io

n

(a) Standard Fine Tuning

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

Gradient Steps

C0

C1

C2

C3

C4

C5

C6

C7

C
k

P
os

it
io

n

(b) Training with Auxiliary Loss

10−1

100

101

102

Grad Norm
(Log Scale)

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

Gradient Steps

0.0

0.5

1.0

1.5

2.0

2.5

L
os

s
(P

er
c k

P
os

it
io

n
)

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

Gradient Steps

0.0

0.5

1.0

1.5

2.0

2.5

L
os

s
(P

er
c k

P
os

it
io

n
)

Position

c0
c1
c2
c3
c4
c5
c6
c7

Figure 7: Gradient norms and losses per token ck. While both methods learn digits c0, c1, c7
first, standard fine-tuning gets stuck in a local optimum without having learned the right long-range
dependencies, while training with the auxiliary loss allows the model to learn the middle digits.

6 LEARNING MULTIPLICATION WITHOUT ICOT

To further validate our understanding of why Transformers fail to learn multiplication, we demon-
strate an example of a simple fix to teach Transformers multiplications without needing ICoT.

In particular, we leverage the observation from Section 3.1 in that (i) multi-digit multiplication
requires long-range dependencies between digit ck and pairwise products {aibj |i+ j ≤ k}, and (ii)
such dependency can be summarized by an intermediate value ĉk to produce ck.

Thus in order to guide the Transformer to learn long-range dependencies, we simply add an auxiliary
loss term to predict ĉk at each timestep tck . We attach an additional linear regression head wh ∈ Rd

to the output of H(= 2) attention heads in the second layer. These regression heads are trained to
predict the correct accumulated sum ĉk at each timestep tck , ck ∈ [0, . . . 7] with a MSE loss:

zhi = w⊤
h ATT2

h(·) (6)

Laux =
1

H

∑
h∈H

1

8

7∑
i=0

(zhi − ĉi)
2 (7)

L = LLM + λLaux (8)

where LLM is the standard language modeling loss.

This introduces an inductive bias for the task, and allows our 2-layer model to correctly learn 4x4
multiplication with 99% accuracy. Again, note that a larger 12-layer model still fails at multiplica-
tion under standard fine-tuning.

Revisiting Figure 7 (b) demonstrates a very different learning dynamic. We observe the model learn
early and last digits (c0, c1, c7) and work inwards (c2, c3, c4, c6, and finally c5).

Limitation. Obviously the suggested inductive bias pertains specifically to our task. However,
our experiments demonstrate the pitfall of Transformers that require long-range dependencies, and
that it is possible to overcome such a pitfall with the correct inductive biases. We speculate that
there are other generalizing inductive biases that can improve performance on tasks with long-range
dependencies (Tay et al., 2020), and leave this for future work.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

a0 a1 a2 a3 * b0 b1 b2 b3 % % #
c0 c1 c2 c3 c4 c5 c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 0

a0 a1 a2 a3 * b0 b1 b2 b3 % % #
c0 c1 c2 c3 c4 c5 c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 1

a0 a1 a2 a3 * b0 b1 b2 b3 % % #
c0 c1 c2 c3 c4 c5 c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 2

a0 a1 a2 a3 * b0 b1 b2 b3 % % #
c0 c1 c2 c3 c4 c5 c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 2

Figure 8: Attention pattern of model trained with auxiliary loss. This model similarly produces
a “binary attention tree” (red boxes), but interestingly, we also see an attention head that attends to
all necessary pairwise digits simultaneously (black box), producing a pattern akin to Figure 2.

6.1 DOES THE MODEL WITH AUXILIARY LOSS LEARN THE SAME MECHANISM AS ICOT?

A natural question that arises is whether ICoT and our inductive bias leads to the same mechanisms.

Inspecting the attention patterns suggests that a similar (but not necessarily exact) mechanism is
learned: see Figure 8. Namely, the model similarly forms an “attention tree” to sparsely attend to
the correct pairs of digits for each ci in the first layer (red boxes). Interestingly, in the auxiliary-loss
model we also observe an attention head (Layer 2 Head 2) that simultaneously attends to all the
necessary digits, {ai≤k, bi≤k}, at each timestep tck , forming a parallelogram-like attention pattern
(black box) akin to the shape seen in Figure 2.

7 RELATED WORK

Studying Transformers with Arithmetic Tasks. A growing line of work study Transformers un-
der controlled settings to better characterize their behavior (Allen-Zhu & Li, 2023a;b; Li et al., 2023;
Nanda et al., 2023b; Park et al., 2024b;a). Often, arithmetics is a natural and popular domain (Lee
et al., 2023; Ye et al., 2024; Nikankin et al., 2024), which has led to numerous insights. For instance,
Nanda et al. (2023a) study how Transformers perform modular addition to explain grokking. Kan-
tamneni & Tegmark (2025) find that large language models use trigonometry to do addition, encod-
ing digits using Fourier bases, while Nikankin et al. (2024) suggest that they also rely on heuristics.
Cai et al. (2025) study length generalization in Transformers using arithmetic tasks. Similarly, we
study the limitations of Transformers by studying why it fails to learn multi-digit multiplication.

Process Supervision. Recent work trains models with process supervision, in which feedback is
given not just on final correctness but on each intermediate reasoning step. For example, Uesato et al.
(2022) demonstrate that process-supervision can yield less reasoning errors on GSM8K compared to
outcome-only supervision. Similarly, Lightman et al. (2023) show that step-level human feedback
on MATH leads to stronger reward models. More recently, Zhong et al. (2023)’s Math-Shepherd
automates step-wise rewards via continuation-based verification, improving performance on both
GSM8K and MATH. ICoT similarly plays the role of process supervision in latent space, by slowly
removing chain-of-thought tokens during training such that the model internalizes the reasoning
procedure. We thus use ICoT’s success on multiplication to study why Transformers fail.

8 CONCLUSION

In this work, we study why Transformers fail on a seemingly simple task of multi-digit multiplica-
tion. We answer this question by reverse-engineering a model trained with implicit chain-of-thought,
and uncover that it has learned to compute the correct long-range dependencies needed for multi-
digit multiplication. Our findings point to a pitfall of the standard recipe for training language
models: using gradient descent with an auto-regressive loss on Transformers. While we provide a
simple example of how the right inductive bias can address such a limitation, we anticipate future
work to provide a generic solution to improve on tasks with long-range dependencies.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

9 REPRODUCIBILITY STATEMENT

Our code to reproduce all of our experiments can be found in https://anonymous.4open.
science/r/icot-F822/. Appendix A provides details of our training setup, including data
formats, sample size, and hyperparameters.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
e-prints, pp. arXiv–2305, 2023a.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction. arXiv preprint arXiv:2309.14316, 2023b.

Ziyang Cai, Nayoung Lee, Avi Schwarzschild, Samet Oymak, and Dimitris Papailiopoulos. Ex-
trapolation by association: Length generalization transfer in transformers. arXiv preprint
arXiv:2506.09251, 2025.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and Stu-
art Shieber. Implicit chain of thought reasoning via knowledge distillation. arXiv preprint
arXiv:2311.01460, 2023.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to inter-
nalize cot step by step, 2024. URL https://arxiv.org/abs/2405.14838.

Andrew Gambardella, Yusuke Iwasawa, and Yutaka Matsuo. Language models do hard arith-
metic tasks easily and hardly do easy arithmetic tasks. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pp. 85–91, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-short.8. URL https:
//aclanthology.org/2024.acl-short.8/.

Subhash Kantamneni and Max Tegmark. Language models use trigonometry to do addition. arXiv
preprint arXiv:2502.00873, 2025.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Watten-
berg. Emergent world representations: Exploring a sequence model trained on a synthetic task.
ICLR, 2023.

Alex Lightman, Yuntao Bai, Saurav Kadavath, Tamera Lanham, Nicholas Schiefer, et al. Let’s verify
step by step, 2023. URL https://arxiv.org/abs/2305.20050.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023a.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. arXiv preprint arXiv:2309.00941, 2023b.

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algo-
rithms: Language models solve math with a bag of heuristics. arXiv preprint arXiv:2410.21272,
2024.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. 2021.

Core Francisco Park, Andrew Lee, Ekdeep Singh Lubana, Yongyi Yang, Maya Okawa, Kento Nishi,
Martin Wattenberg, and Hidenori Tanaka. Iclr: In-context learning of representations. arXiv
preprint arXiv:2501.00070, 2024a.

10

https://anonymous.4open.science/r/icot-F822/
https://anonymous.4open.science/r/icot-F822/
https://arxiv.org/abs/2405.14838
https://aclanthology.org/2024.acl-short.8/
https://aclanthology.org/2024.acl-short.8/
https://arxiv.org/abs/2305.20050

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Core Francisco Park, Ekdeep Singh Lubana, Itamar Pres, and Hidenori Tanaka. Competition dynam-
ics shape algorithmic phases of in-context learning. arXiv preprint arXiv:2412.01003, 2024b.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Jonathan Uesato, Po-Sen Huang, Tim Rocktäschel, Pushmeet Kohli, et al. Solving math word
problems with process- and outcome-based feedback, 2022. URL https://arxiv.org/
abs/2211.14275.

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, Zehai He, Yuyi Guo, Jinfeng Bai, and Jie Tang.
Gpt can solve mathematical problems without a calculator. arXiv preprint arXiv:2309.03241,
2023.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. arXiv preprint arXiv:2407.20311, 2024.

Zexue Zhong, Zihan Zhao, Yutao Sun, et al. Math-shepherd: Process supervision for large language
models, 2023. URL https://arxiv.org/abs/2312.08935.

A TRAINING DETAILS

Here we provide additional details regarding the training procedures of each of our models.

A.1 ICOT TRAINING

Our ICoT training setup follows the practice outlined in the original ICoT paper (Deng et al., 2024).

ICoT works by initially presenting explicit chain-of-thought tokens during training, but gradually
removing them across numerous “stages” (e.g., epochs). Concretely, the training examples at each
epoch may have the following form:

(Epoch 1) a0a1a2a3 ∗ b0b1b2b3%%% q0 . . . qi . . . qj . . . qk . . . qτ #### c0 . . . c7

(Epoch 2) a0a1a2a3 ∗ b0b1b2b3%%% qi . . . qj . . . qk . . . qτ #### c0 . . . c7

(Epoch 3) a0a1a2a3 ∗ b0b1b2b3%%% qj . . . qk . . . qτ #### c0 . . . c7

. . .

(Epoch N) a0a1a2a3 ∗ b0b1b2b3%%% #### c0 . . . c7

where qi are CoT tokens and %,# are special delimiters. These delimiters have no special meaning
beyond matching the setup of Deng et al. (2024). Note that after each epoch, the model sees a shorter
chain by truncating some tokens, and that by the end, only the operands and final answer remain.

The actual format of our ICoT data is as follows. Using an example input of 8331× 5015, digits are
presented in least-significant digits first, resulting in the following format:

1338 ∗ 5105||5614 + 013380(569421) + 0000000(5694210) + 0005561%%####56997714

Unlike Deng et al. (2024), instead of using a pre-trained 12-layer GPT model, we train a smaller
2-layer, 4-head GPT-based model from scratch, not only to remove any confounding factors from
pre-trained knowledge, but also because the 2-layer 4-head architecture is the simplest form in which
ICoT succeeds but standard fine-tuning fails. The training data consists of 80,800 samples, while
the validation and test sets each contain 1,000 held out samples. We train with a learning rate of
5e-5, and remove 8 chain-of-thought tokens at every “stage” (which in our case is an epoch). Both
training and validation loss converge after 13 epochs, and achieves 100% accuracy on the test set.

A.2 STANDARD FINE-TUNING

Similar to ICoT, for our standard fine-tuning model, we train a 2-layer, 4-head GPT-based model
from scratch, on the same data as ICoT. We use a learning rate of 5e-5, and the input format

11

https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2312.08935

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

is a0a1a2a3 ∗ b0b1b2b3%%####c0 . . . c7. All other hyperparameters match those in our ICoT
setup. The model’s loss and accuracy plateaus after 13 epochs, it achieves only about 1% train and
validation accuracy, while digit-level accuracy converges at approximately 81%, and remains the
same even after 60 epochs.

Note that scaling the model larger to a 12-layer, 8-head model achieves the same low accuracy at
1% and digit-level accuracy of 80%.

B FOURIER STRUCTURE IN MODEL’S WEIGHTS, ACTIVATIONS

Here we provide a deeper dive into the Fourier structure found in the ICoT model’s weights and
hidden states. Namely, we analyze the model’s embedding weights, final MLP’s weights, and last
hidden layer:

1. Embeddings E ∈ R10×d

2. Final layer MLP output weights Wout ∈ Rdmlp×d, given MLP(x) = σ(Winx)Wout

3. Final hidden layer hL
t ∈ RN×d

where N(= 1, 000) is the size of our validation set. For the latter two, we first project them onto the
model’s embedding space:

Ŵout = (EWout)
⊤ ∈ Rdmlp×10

ĥL = (EhL)⊤ ∈ RN×10

Each item X ∈ {E , Ŵout, ĥL} is a collection of row vectors x ∈ R10 whose ten entries correspond
to digits n = 0, . . . , 9.

We find that vectors x are encoded in a low-dimensional trigonometric subspace.

Namely, consider the Fourier expansion∑
Cn ∗ e−2πi

kn
10 , n = 0, . . . , 9.

where Cn(̸= ck) is some constant per n. Following Kantamneni & Tegmark (2025), we take fre-
quencies k ∈ {0, 1, 2, 5}, yielding the real Fourier basis

Φ(n) =

[
1(n) cos

(
2π n

10

)
sin

(
2π n

10

)
cos

(
2π n

5

)
sin

(
2π n

5

)
p(n)

(k=0) (k=1) (k=1) (k=2) (k=2) (k=5)

]
,

where 1(n) ≡ 1 (the DC component) and p(n) ≡ (−1)n (the Nyquist/parity vector). The sine terms
for k = 0 and k = 5 vanish over n = 0, . . . , 9 and are omitted.

Let F ∈ 10 × 6 be a Fourier matrix with rows indexed by n ∈ {0, . . . , 9} and columns as defined
above.

For each row x ∈ R10 we fit least squares coefficients

C = arg min
C∈R6

∥x− FC∥22

and quantify goodness-of-fit using coefficient of determination

R2(x) = 1− ∥x− FC∥22
∥x− x̄∥22

,

We report the median R2 over the set of rows in each X (i.e., over dmlp rows for Ŵout, d rows for
E , and over batch examples for hL.

In Table 1 we observe strong fits: the per-row medians lie between 0.85 and 0.99, indicating that a
six-dimensional trigonometric basis over digits captures the vast majority of variance:

We can extend the Fourier bases to include additional terms, for k = 3, 4, which forms a 8 dimen-
sional basis (excluding sine terms for k = 0, 5), which leads to perfect R2 fits.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 1: Median R2 of Fourier fits over digits (n = 0 . . . 9).

Object Fourier Basis Rows aggregated Median R2

E k = 0, 1, 2, 5 dmodel 0.84
MLP Wout weights k = 0, 1, 2, 5 dmlp 0.95

hL k = 0, 1, 2, 5 batch examples 0.99
E k = 0, 1, 2, 3, 4, 5 dmodel 1

MLP Wout weights k = 0, 1, 2, 3, 4, 5 dmlp 1
hL k = 0, 1, 2, 3, 4, 5 batch examples 1

0e+00 2e+04 5e+04 8e+04 1e+05 1e+05 2e+05 2e+05 2e+05

Gradient Steps

C0

C1

C2

C3

C4

C5

C6

C7

C
k

P
os

it
io

n

(a) Standard Fine Tuning

10−1

100

101

102

Grad Norm
(Log Scale)

0e+00 2e+04 5e+04 8e+04 1e+05 1e+05 2e+05 2e+05 2e+05

Gradient Steps

0.0

0.5

1.0

1.5

2.0

2.5

L
os

s
(P

er
c k

P
os

it
io

n
)

Position

c0
c1
c2
c3
c4
c5
c6
c7

Figure 9: Gradients and loss per token for a 12-layer model.

C PER TOKEN GRADIENTS AND LOSSES: 12-LAYER MODEL

Even with a larger 12 layer model, the model fails to learn the right long-range dependencies. Fig-
ure 9 displays the results – we see the similar patterns as the 2-layer model, in which middle digits
never receive the right gradients and loss does not drop.

D ATTENTION PATTERNS OF ALL MODELS

In Section 3.3, we illustrate how a binary tree is constructed for c2 in the ICoT model. In Figure 10,
we present the attention patterns for all digits across the three models, from with attention trees can
be derived for the ICoT model for each solution token ci.

E LLM USAGE

We used LLMs to proof read our draft and polish our notations.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

ICoT

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 0

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 1

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 2

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 3

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 0

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 1

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 2

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 3

SFT

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 0

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 1

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 2

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 3

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 0

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 1

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 2

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 3

Auxiliary Loss Model

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 0

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 1

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 2

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 1 Head 3

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 0

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 1

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 2

a0a1a2a3 * b0b1b2b3 %% ####c0c1c2c3c4c5c6

a0
a1
a2
a3

*
b0
b1
b2
b3

%
%
#

###
c0
c1
c2
c3
c4
c5
c6

Layer 2 Head 3

Figure 10: Attention patterns of ICoT, standard fine-tuned model, and the model trained with auxil-
iary loss

14

	Introduction
	Experiment Setup, Training ICoT, Notations
	Comparing the Mechanisms of ICoT versus SFT
	Long-range dependencies in multi-digit multiplication
	Evidence of Long-Range Dependencies in ICoT
	Encoding Long-Range Dependencies via Attention Trees

	Feature Geometry of ICoT
	Digit-wise Multiplications as Minkowski Sums
	Embedding Digits on a Pentagonal Prism via Fourier Bases

	Pitfalls of Learning: Lack of Long-Range Dependency
	Learning Multiplication Without ICoT
	Does the model with auxiliary loss learn the same mechanism as ICoT?

	Related Work
	Conclusion
	Reproducibility Statement
	Training Details
	ICoT Training
	Standard Fine-Tuning

	Fourier structure in model's weights, activations
	Per Token Gradients and Losses: 12-Layer Model
	Attention Patterns of All Models
	LLM Usage

