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ABSTRACT

Efficiently and accurately searching large-scale single-cell RNA-seq databases has
been a long standing computational challenge. There is an increasing number
of single-cell retrieval methods, particularly those based on single-cell founda-
tion models, proposed in the literature. However, this field lacks a comprehensive
benchmark among these methods. This gap exists due to the lack of standard eval-
uation metrics and comprehensive benchmark datasets. Addressing these chal-
lenges, we propose a comprehensive evaluation benchmark to assess the capabil-
ities of 12 existing single-cell retrieval methods from three classes: non-machine
learning method, VAE-based methods and single-cell foundation model (scFM)
based methods. We propose a series of label-dependent and label-free evaluation
metrics to assess the performance of single-cell retrieval methods. Through bench-
marking across diverse settings (cross-platform, cross-species and cross-omics),
our notable findings include: top scFMs such as UCE, scFoundation and SCimi-
larity show substantial overall advantage compared with other methods; traditional
non-machine learning method perform well in cell retrieval thus should not be ne-
glected; common cells retrieved by top methods share distinct gene expression
patterns; label-free metrics have consistent evaluation outcome compared with
label-based methods thus can be employed in a broader scenario. Our rigorous
and comprehensive evaluation identifies the challenges and limitations of current
retrieval methods and serves as foundation for further development of single-cell
retrieval methods.1

1 INTRODUCTION

The technological advancements in single-cell sequencing has led to increasingly available scRNA-
seq datasets. To date, the transcriptome of trillions of cells spanning diverse tissues and species
have been profiled using various sequencing technologies (Biology et al., 2023). The main objective
of vast scRNA sequencing is to create comprehensive single-cell reference for discovering new
biological insights and serve as foundation for clinical usage. For example, for biologists, they
could utilize existing single-cell references to identify cell-type specific marker genes or disease cell
states (Anders & Huber, 2010). For clinicians, they could compare the sequencing outcomes from
patients with the single-cell reference atlas to determine patient specific transcriptome change thus
conduct precision diagnosis (Dann et al., 2023).

Both the clinical and biological applications with respect to single-cell reference require easy and
fast access to these datasets. However, searching the large scale single-cell reference spanning mul-
tiple tissues, species or sequencing platforms is a challenging problem. First, scRNA-seq datasets
are usually high dimensional and sparse (Kharchenko, 2021), thus searching with cosine similar-
ity or L2-distance between count vectors would be inefficient and inaccurate. Second, scRNA-seq
datasets are largely affected by batch effects (Haghverdi et al., 2018), which means that datasets
from different experiment batches or platforms may have substantial distribution shift. Therefore,
retrieving from massive single-cell datasets from different experiment platforms is considerably dif-
ficult. Furthermore, scRNA-seq datasets are affected by multiple types of technical noise during
sequencing (Mereu et al., 2020), thus the retrieval method must be robust.

1Codebase and datasets will be available upon acceptance.
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Figure 1: Pipeline of benchmarking. Single-cell database spanning multiple tissues, species and
experiment platforms is constructed. Given query cells, non-machine learning methods, VAE-based
methods and single-cell foundation models are used for retrieval. In the cell embedding stage, the
count vectors or learned dense embeddings will be used by different methods. In the cell retrieval
stage, local sensitive hashing (LSH) and dense retriever are used to retrieve top similar cells with
respect to query cell from single-cell database. We benchmark the performance of three classes of
cell retrieval methods using both label-dependent and label-free methods.

Multiple methods have been proposed to resolve this challenging problem. These methods can be
categorized into three classes, non-machine learning methods, VAE (Variational Autoencoder)
based methods and single-cell foundation model (scFM) based methods. Initial attempts (Sato
et al., 2019; Lee et al., 2021) utilized classical approaches such as local sensitive hashing to ef-
ficiently search large-scale scRNA-seq databases. With the development of advanced dimension
reduction approach such as VAE (Kingma, 2013), there are growing interests in learning low dimen-
sional representation from high dimensional sparse scRNA-seq count matrix (Lopez et al., 2018;
Svensson et al., 2020). Therefore, several single-cell retrieval methods (Cao et al., 2020) have also
been developed to search for similar cells using learned low dimensional embedding. Recently, in-
spired by the advances of large-scale pre-trained foundation models in a wide range of biological
domains (Chen et al., 2022; Rao et al., 2020; Fan et al., 2024c), there are also several single-cell
foundation models (scFMs) (Theodoris et al., 2023; Cui et al., 2024) developed. These powerful
foundation models generate meaningful dense embeddings in a zero-shot manner and have been
applied to a wide range of downstream applications, including searching large databases (Heimberg
et al., 2023).

Despite numerous efforts in developing powerful methods for searching across large scale single-
cell databases, there lacks unified and comprehensive evaluation and benchmark on the effectiveness
of these methods. First, there is no direct comparison between scFMs and other methods in
existing works. SCimilarity (Heimberg et al., 2023) is the only scFM that explicitly performs cell
retrieval in the downstream applications, but the performance against other retrieval methods has
not been explicitly evaluated. Meanwhile, the evaluation metrics of cell retrieval are still limited.
Unlike query-passage retrieval in text-mining which has explicit ground-truth annotation on retrieval
pairs, there are no ground-truth annotation on cell pairs. Thus, the cell retrieval methods are usually
evaluated on whether the retrieved cells have similar cell types as the ground-truth annotation, which
can be quite limited as the cell type annotations only provide coarse-grained information and can
be biased or incorrect. Furthermore, existing cell retrieval methods have only been evaluated in
limited species or platforms, which limits their applicability and generalizability. For example,
SCimilarity is solely evaluated on scRNA-seq datasets generated with 10x platform for humans and
Cellfishing.jl (Sato et al., 2019) is only evaluated on single-platform datasets.

In this paper, we systematically benchmarked the performance of cell retrieval of various single-
cell FMs against traditional non-machine learning cell retrieval methods and VAE based retrieval
methods with our proposed metrics (Figure. 1). We included 2 non-machine learning methods, 3
VAE-based methods and 7 scFM-based methods, which to the best of our knowledge covers all the
major methods for cell retrieval. Our evaluation datasets span multiple-platforms, multiple-species
and multiple-omics for unbiased and fair evaluation of cell retrieval. Meanwhile, We designed a
comprehensive evaluation pipeline for cell retrieval, including 1) label-dependent evaluation includ-
ing cell type matching, batch mixing and recall 2) label-free evaluation including the consistency
between retrieved cells and the consistency between the DE genes identified from the retrieved cells
across methods.
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The key takeaways from the comprehensive benchmarking of cell retrieval methods can be summa-
rized as follows.

• Top scFMs such as SCimilarity, UCE and scFoundation show significant advantage over
other baseline methods in a zero-shot manner in the majority of settings, but still perform
poorly when used on datasets distant from the pre-training database (e.g. on tissues, species
or omics unseen or rare during pre-training).

• Traditional non-machine learning methods perform surprisingly well in most settings, high-
lighting their unique advantage in retrieving cells with similar cell states thus should not be
ignored in future benchmarking studies.

• Common cells retrieved by top single-cell retrieval methods share distinct differential gene
expression patterns, showing that top methods can identify similar cell states from the
reference cells.

• Label-free metrics are consistent with label-dependent metrics, which can be a comple-
mentary evaluation method when the cell annotations are missing or inconsistent across
different reference datasets.

2 CELL SEARCH AND RETRIEVAL METHODS

2.1 NON-MACHINE LEARNING METHOD

Even before the popularity of machine learning in biological data analysis, there are already a num-
ber of methods proposed to resolve the cell search and retrieval challenge. CellFishing.jl (Sato et al.,
2019) converts the gene expression count matrix to bit vectors with local sensitive hashing (LSH) to
perform retrieval. scFind (Lee et al., 2021) searches large scale scRNA-seq database to identify the
set of cells that express a set of genes specified by the user.

2.2 VARIATIONAL AUTOENCODER BASED METHOD

Projecting high dimensional and sparse gene expression count vector to low-dimensional dense
cell embedding is a central task in machine learning for single-cell analysis. Learning meaning-
ful cell embeddings serves as foundation for a wide range of downstream tasks, such as cell type
annotation (Xu et al., 2021) and trajectory inference (Qiu et al., 2017). Therefore, a number of
machine learning methods mainly based on variational autoencoder have been developed to learn
low-dimensional cell embedding for cell search and retrieval, including CellBlast (Cao et al., 2020),
scmap (Kiselev et al., 2018), scVI (Lopez et al., 2018) and LDVAE (Svensson et al., 2020).

2.3 FOUNDATION MODEL BASED METHOD

single-cell Foundation Models (FMs) have much higher model capacity than traditional machine
learning methods and are pre-trained on massive scRNA-seq datasets. Therefore, single-cell FMs
can generate meaningful low-dimensional embedding of cells, even in a zero-shot manner (He-
imberg et al., 2023). There are several single-cell FMs have been proposed, including Gene-
former (Theodoris et al., 2023), scGPT (Cui et al., 2024), UCE (Rosen et al., 2023), scFounda-
tion (Hao et al., 2024), scMulan (Bian et al., 2024) and SCimilarity (Heimberg et al., 2023). Among
all these methods, SCimilarity is the only FM specifically highlighting cell retrieval, while other
scFMs are also capable of retrieving cells and the performance of different scFMs has not been
explicitly evaluated and benchmarked.

3 EVALUATION METHODS

3.1 PROBLEM DEFINITION

Given a set of query cells {xi}
Nq

i=1, the objective is to retrieve top K similar cells {{yik}Kk=1}
Nq

i=1

from the reference cells {yi}Nr
i=1. The cells from query cells and reference cells may have annotations

from different aspects, such as cell types and experimental batches. Meanwhile, for some other
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datasets with multi-modal parallel profiling (i.e. single-cell multiomics-profiling (Baysoy et al.,
2023)), there are direct annotations on paired cells (i.e. whether xi and yi are measurements of the
same cell). Analogs to information retrieval, the main objective of single-cell retrieval is to retrieve
similar cells from the reference cells (passages) given the query cells (question), while the success
of retrieval can be evaluated by the agreement between labels (precision and recall) or downstream
label-free applications (REALM (Guu et al., 2020) and RAG (Lewis et al., 2020)).

3.2 EVALUATION CRITERIA

3.2.1 LABEL-DEPENDENT EVALUATION

Cell Type Accuracy The cell states and identities are mainly defined by their cell types, thus
evaluating the abilities of retrieval methods to search for cells belonging to the same cell type is
of vital importance. We used two metrics to evaluate the capabilities of single-cell FMs in cell
type search accuracy, namely average accuracy (Avg-Acc ) and voting accuracy (Vote-Acc ).
Assume the cell type labels of the retrieved cells are {{lik}Kk=1}

Nq

i=1 and the cell type labels of the
query cells are {li}

Nq

i=1. We denote the mode of {lik}Kk=1 as mode({lik}Kk=1). The vote accuracy

is computed by Vote-Acc =
∑Nq

i=1 I(mode({lik}K
k=1)=lk)

Nq
. and the average accuracy is computed by

Avg-Acc =
∑Nq

i=1

∑K
k=1 I(lik=lk)

NqK
.

Batch Diversity scRNA-seq datasets may contain cells from multiple experiment batches as only
limited number of cells can be sequenced in one experiment. Ideally, the model should be ag-
nostic to batch effects and datasets from different batches should mix well in the latent embed-
ding space while preserving the biological information. In that case, the query cells can be linked
with target cells from different biological studies to reveal common associations across cell states.
Therefore, we designed a metric to quantify the batch diversity of the retrieved cells. Assume the
batch labels of the retrieved cells are {{bik}Kk=1}

Nq

i=1 and there are M unique batch labels {bi}Mi=1.

The batch diversity is defined as BatchDiv =
∑Nq

i=1 Entropy({{bik}K
k=1})

Nq
and Entropy({bik}Kk=1) =∑M

m=1 −
∑Nq

i=1 I(bik=bm)

Nq
log(

∑Nq
i=1 I(bik=bm)

Nq
). Intuitively, if batch diversity is higher, the model can

better mix up the datasets from different batches. Different from kBET (Büttner et al., 2019) that
measures the batch mixing with the global cell embedding cluster , the batch diversity metric mea-
sures the batch mixing property for individual cells thus is more suitable for cell retrieval evaluation.

Recall across Omics For single-cell multiomics datasets, there are paired scRNA-seq and
scATAC-seq profiles for cells. Therefore, we compute the top K recall of cross-omic retrieval.
i.e., for query cell {xi}

Nq

i=1, we retrieve cells {{yik}Kk=1}
Nq

i=1 from the reference cells and compute
the recall of retrieval using Recallk =

∑Nq

i=1

∑K
k=1

I(yik=yi)
Nq

. Intutively, the higher K, the more
likely the matched cells from another omic can be retrieved thus Recallk will be higher.

3.2.2 LABEL-FREE EVALUATION

A critical challenge in evaluating cell retrieval is the lack of ground-truth cell-to-cell relationship an-
notations. Unlike traditional information retrieval setting with ground-truth query-target pairs, there
are no ground-truth cell pair annotations. Even though single-cell datasets are usually annotated
with different cell types, using the cell type annotation accuracy as the sole evaluation metric can be
biased. In many cases, the cell types are annotated based on cell clustering with low-dimensional
representation (t-SNE, UMAP) of cells, therefore cannot be considered as fully accurate (Heimberg
et al., 2023). Inspired by the voting theory (O’Connor & Robertson, 2003) that performs a system-
atic aggregation of results in order to achieve consensus, we hypothesis that reference cells that are
commonly retrieved by different single-cell retrieval methods are likely to be more biologically rele-
vant with the query cells. We measure the similarity between different levels of consistency between
the results from different single-cell retrieval methods.
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Consistency between the retrieved cells Following Fan et al. (2024a), we propose to compute
the average overlap between the retrieved cells from each method for the same query cells. Given
query cell xi, retrieval methods a and b may retrieve cells {yaik} and {ybik} respectively. We com-
pute the Jaccard Similarity between {yaik}Kk=1 and {ybik}Kk=1 and average over all query cells as the
AvgOverlap score.

Consistency between the DE genes from the retrieved cells Simply comparing the overlap of
retrieved cells ignores the gene expression similarity between retrieved cells. Therefore, we analyze
the consistency of gene expression features and patterns of the retrieved cells from different methods
by comparing their DE (Differentially Expressed) genes. For each query cell and its retrieved cells,
we computed their DE genes compared with all other cells. The DE genes are defined as genes with
statistically higher expression compared with background (Wilcoxon rank-sum test, p-value < 0.02
and log-fold changes > 0.5). Then, we computed the Jaccard similarity between the DE genes
across all query cells. Therefore, this method better captures the consistency between retrieved cells
by considering their DE gene patterns.

3.3 EVALUATION SETTINGS

3.3.1 IMPLEMENTATION

Different single-cell retrieval methods have different cell embedding and cell retrieval approaches.
From the cell embedding perspective, except for CellFishing.jl, all other methods perform retrieval
based on low-dimensional cell embedding. For VAE-based method, we train the corresponding
method using the reference cells {yi}Nr

i=1 and extract the low-dimensional embedding for both
{xi}

Nq

i=1 and {yi}Nr
i=1 ({VAE-Enc(xi)}

Nq

i=1 and {VAE-Enc(yi)}Nr
i=1). For scFM-based method, the

foundation models are used in a zero-shot manner without additional tuning to avoid bias, we encode
{xi}

Nq

i=1 and {yi}Nr
i=1 into low-dimensional embedding ({FM-Enc(xi)}

Nq

i=1 and {FM-Enc(yi)}Nr
i=1).

From the cell retrieval perspective, CellFishing.jl uses local senstive hashing (LSH) to directly search
using the gene count vector. For all other methods with dense low-dimensional cell embeddings, we
implement the retrieval framework using the widely used dense vector search tool Faiss (Johnson
et al., 2019). Details regarding the implementation can be found in our codebase.

3.3.2 EVALUATION DATASETS

We utilized multiple commonly used scRNA-seq datasets to evaluate the effectiveness of cell re-
trieval. These datasets span multiple species, tissues and experiment platforms.

Multi-platform evaluation Multiple scRNA-seq technologies have been developed with differ-
ent tagging methods and sequencing libraries, thus different sequencing technologies may exhibit
significant technical variation. With the increasing number of sequencing technologies, it is vital to
evaluate whether single-cell retrieval methods could retrieve cells from different platforms with high
accuracy. Therefore, we adopted two scRNA-seq datasets including multiple platforms, the PBMC
dataset spanning 9 different sequencing platforms (Ding et al., 2020) and the human pancreas dataset
spanning 4 different sequencing platforms (Luecken et al., 2022).

Multi-species evaluation Single-cell sequencing has been carried out extensively in different
species. Analysis of single-cell datasets from diverse organisms is vital for understanding evolution-
ary processes of conservation and diversification of cell types. Therefore, we evaluated the cross-
species retrieval capabilities of single-cell retrieval methods using two large scale human (Consor-
tium* et al., 2022) and mouse (Consortium, 2020) single-cell atlas spanning more than 10 tissues.

Multi-omics evaluation Single-cell multi-omics profiling allows for measurements of transcrip-
tome (scRNA-seq) and chromatin accessibility (scATAC-seq) for the same cells, i.e. {xi}Ni=1

(scRNA-seq) and {yi}Ni=1 (scATAC-seq) datasets where xj and yj measures the same cell j. We
collected three widely used single-cell multiomics profiling datasets, namely 10X PBMC (pbm,
2020), Chen-2019 (Chen et al., 2019) and Ma-2020 (Ma et al., 2020). These datasets contain 9631,
9190 and 32231 cells respectively.
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Table 1: Evaluating single-cell FMs in cross-platform retrieval setting on human PBMC dataset
(Vote-Acc and BatchDiv ). K denotes the number of cells retrieved given 1 query cell. Setting:
Leave-one-out. Given scRNA-seq sequencing results from N platforms, the sequencing results from
N − 1 platforms are used as reference and the remaining platform is used as query. Bold numbers,
underline numbers, and dashed numbers show the first, second, and third best scores respectively.

K 1 5 10 20 50 100

Metric Vote
Acc

Batch
Div

Vote
Acc

Batch
Div

Vote
Acc

Batch
Div

Vote
Acc

Batch
Div

Vote
Acc

Batch
Div

Vote
Acc

Batch
Div

PCA 0.556 0.000 0.592 0.513 0.604 0.620 0.613 0.702 0.604 0.796 0.583 0.861
CellFishing.jl 0.812 0.000 0.843 0.389 0.851 0.483 0.858 0.560 0.861 0.653 0.859 0.733

scVI 0.778 0.000 0.810 0.252 0.822 0.316 0.832 0.374 0.830 0.453 0.830 0.531
LDVAE 0.754 0.000 0.800 0.334 0.808 0.406 0.812 0.461 0.815 0.523 0.810 0.579

CellBlast 0.762 0.000 0.802 0.328 0.812 0.407 0.817 0.472 0.812 0.545 0.812 0.599
scFoundation 0.849 0.000 0.876 0.324 0.882 0.399 0.884 0.463 0.887 0.555 0.889 0.639

scGPT 0.803 0.000 0.838 0.349 0.844 0.430 0.849 0.497 0.844 0.582 0.840 0.654
SCimilarity 0.850 0.000 0.876 0.539 0.883 0.681 0.885 0.794 0.886 0.931 0.884 1.044

UCE 0.852 0.000 0.878 0.471 0.884 0.600 0.886 0.706 0.888 0.824 0.886 0.913
Geneformer 0.768 0.000 0.810 0.526 0.824 0.662 0.828 0.769 0.820 0.893 0.810 0.994

scMulan 0.822 0.000 0.857 0.487 0.863 0.609 0.863 0.706 0.858 0.814 0.854 0.893
CellPLM 0.806 0.000 0.841 0.413 0.852 0.524 0.858 0.615 0.861 0.719 0.860 0.792

3.3.3 DATASET PRE-PROCESSING

General preprocessing Different single-cell retrieval methods exhibit different pre-processing
steps. For example, scFoundation does not select highly variable genes while scGPT selects the
top 4000 highly variable genes. To avoid bias, we adopt the default pre-processing method of each
method respectively.

Cross-species mapping To perform cross-species retrieval, gene alignment is crucial as human
and mouse genes are different. Mouse and human have well annotated one-to-one gene homolog
mapping as they have close evolutionary distance and have been well studied. We download human
and mouse gene homology from existing database2 and align the mouse and human scRNA-seq
datasets.

Cross-omic mapping As scFMs are pre-trained on scRNA-seq datasets, directly applying them to
other omics such as scATAC-seq is not trivial. For each dataset, We retained 80000 highly variable
peaks for scATAC-seq and 8000 highly variable genes for scRNA-seq. We followed the standard
implementation from DeepMAPS (Ma et al., 2023a) to align scATAC-seq peaks to the same gene
space as scRNA-seq based on gene regulatory potential.

4 RESULTS

4.1 CROSS PLATFORM RETRIEVAL

We first benchmarked the performance of single-cell retrieval methods across different platforms
using the human PBMC (Table 1) and human pancreas (Appendix Table 1) datasets. The detailed
results for each platform can be found in Appendix.

Benchmarking on Human PBMC dataset On the human PBMC dataset (Table 1), UCE, scFoun-
dation and SCimilarity show substantial advantage over all other methods. Meanwhile, we also
noticed that the batch diversity of retrieved cells from scFMs is also significantly higher than other
methods, indicating these methods can better find cells across different experiment platforms.

Benchmarking on Human pancreas dataset On the human pancreas dataset (Appendix Table 1),
scFMs do not show significant advantage in cell type vote accuracy, while CellFishing.jl has promis-
ing performance. VAE-based methods LDVAE and scVI also perform quite well in this setting.

2https://www.informatics.jax.org/downloads/reports/HOM_
MouseHumanSequence.rpt
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Among all scFMs, SCimilarity still shows the best performance considering the cell type vote accu-
racy and batch diversity. As the human PBMC scRNA-seq datasets are much more accessible com-
pared with the human pancreas datasets, the performance gap can be attributed to the pre-training
data distribution difference.

4.2 CROSS SPECIES RETRIEVAL

Table 2: Evaluating single-cell FMs in cross-species retrieval setting (Vote-Acc ). K denotes
the number of cells retrieved given 1 query cell. Bold numbers, underlined numbers, and dashed
numbers show the first, second, and third best scores respectively.

Settings Mouse->Human Human->Mouse

K 1 5 10 20 50 100 Avg 1 5 10 20 50 100 Avg

PCA 0.690 0.692 0.696 0.695 0.682 0.668 0.687 0.799 0.830 0.843 0.835 0.802 0.794 0.817
CellFishing.jl 0.687 0.701 0.706 0.706 0.699 0.686 0.698 0.749 0.764 0.760 0.739 0.719 0.717 0.741

scVI 0.709 0.714 0.714 0.702 0.634 0.643 0.686 0.769 0.798 0.790 0.789 0.786 0.772 0.784
LDVAE 0.671 0.680 0.693 0.696 0.690 0.680 0.685 0.768 0.782 0.788 0.778 0.789 0.793 0.783

CellBlast 0.534 0.555 0.522 0.518 0.503 0.503 0.523 0.583 0.606 0.603 0.607 0.610 0.595 0.601
scFoundation 0.748 0.754 0.730 0.726 0.734 0.745 0.740 0.866 0.859 0.863 0.852 0.850 0.846 0.856

scGPT 0.759 0.760 0.763 0.766 0.766 0.761 0.763 0.841 0.846 0.845 0.849 0.810 0.796 0.831
SCimilarity 0.799 0.796 0.804 0.779 0.794 0.798 0.795 0.897 0.911 0.911 0.914 0.883 0.881 0.900

UCE 0.785 0.785 0.776 0.780 0.799 0.801 0.788 0.882 0.905 0.906 0.901 0.874 0.860 0.888
Geneformer 0.594 0.595 0.597 0.588 0.568 0.537 0.580 0.608 0.619 0.615 0.611 0.611 0.604 0.611

scMulan 0.766 0.772 0.770 0.721 0.699 0.733 0.744 0.834 0.852 0.858 0.862 0.836 0.834 0.846
CellPLM 0.731 0.741 0.740 0.743 0.746 0.747 0.741 0.859 0.862 0.866 0.858 0.839 0.832 0.853

We then evaluated the single-cell retrieval methods in cross-species retrieval setting. We bench-
marked the model performance using human and mouse scRNA-seq datasets across 10 tissues.

Superiority of scFMs over other methods In the challenging cross-species setting, scFMs signif-
icantly outperform traditional methods and VAE-based methods. The results are shown in Table 2.
For example, on the mouse to human retrieval setting, the vote-acc of the best non-scFM method
CellFishing.jl is 10% lower than the best scFM method SCimilarity.

Comparison between multi-species scFM and human-centered scFM UCE is the only scFM pre-
trained with multi-species datasets, while other scFMs are human-centered with only human scRNA-
seq pre-training datasets. As shown in Table 2, UCE ranks second among all single-cell retrieval
methods, but does not show significant improvement over human-centered scFMs. It indicates that
human-centered scFMs can well generalize in human-mouse cross-species retrieval setting even
without explicitly trained on mouse datasets. It is also important to notice that human and mouse
have explicit one-to-one gene homolog thus human-centered scFMs can be directly applied to cross-
species retrieval. Generalization of scFMs to other distant species without explicit homolog mapping
still remains an open problem.

4.3 CROSS OMIC RETRIEVAL

Single-cell sequencing technologies measure individual cell state from different omics, thus whether
the single-cell retrieval methods can find relevant cells spanning different omics is an important
evaluation of cell retrieval capabilities. In additional to cell type retrieval accuracy, we also utilized
the recall across omic metric to test whether the retrieval methods can find the exact match cells
across omics. The results are shown in Table 3. We evaluated the model performance on three
widely studied single-cell multiomics datasets spanning different tissues and species.

Advantage of scFMs on human multi-omics datasets UCE, scFoundation and SCimilarity per-
form best on the 10x Multiome datasets and show significant advantages compared with other non-
scFM methods in both retrieval directions.

Poor performance of scFMs on mouse multi-omics datasets On the Chen-2019 and Ma-2020
dataset, scFM methods all perform poorly and VAE-based methods including scVI, LDVAE and
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Table 3: Evaluating single-cell FMs in cross-omic retrieval setting. We set the retrieval cell number
for each query cell as 50. Bold numbers, underline numbers, and dashed numbers show the first,
second, and third best scores respectively.

10x Multiome (Human Blood) Chen-2019 (Mouse Cortex) Ma-2020 (Mouse Skin)

Setting scRNA->scATAC scATAC->scRNA scRNA->scATAC scATAC->scRNA scRNA->scATAC scATAC->scRNA

Method Recall Vote-Acc Recall Vote-Acc Recall Vote-Acc Recall Vote-Acc Recall Vote-Acc Recall Vote-Acc
PCA 0.006 0.225 0.048 0.522 0.008 0.214 0.012 0.222 0.008 0.392 0.003 0.282

CellFishing.jl 0.027 0.613 0.063 0.622 0.009 0.333 0.020 0.284 0.010 0.384 0.034 0.412
scVI 0.009 0.204 0.006 0.212 0.016 0.371 0.012 0.231 0.031 0.677 0.016 0.414

LDVAE 0.010 0.233 0.006 0.187 0.021 0.472 0.015 0.283 0.034 0.696 0.026 0.506
CellBlast 0.083 0.580 0.075 0.658 0.016 0.266 0.025 0.263 0.019 0.596 0.021 0.499

scFoundation 0.105 0.808 0.080 0.691 0.008 0.232 0.006 0.199 0.014 0.379 0.011 0.296
scGPT 0.055 0.673 0.034 0.550 0.009 0.263 0.009 0.221 0.009 0.325 0.005 0.227

SCimilarity 0.077 0.726 0.053 0.535 0.013 0.279 0.006 0.188 0.013 0.362 0.011 0.308
UCE 0.099 0.855 0.078 0.709 0.011 0.272 0.006 0.203 0.014 0.390 0.008 0.274

Geneformer 0.013 0.320 0.006 0.196 0.006 0.243 0.008 0.240 0.002 0.162 0.002 0.196
scMulan 0.044 0.639 0.036 0.556 0.011 0.292 0.009 0.239 0.009 0.325 0.006 0.261
CellPLM 0.067 0.701 0.063 0.541 0.012 0.344 0.010 0.197 0.012 0.380 0.010 0.292

CellBlast achieve the best performance. The performance gap across the human and mouse multi-
omics datasets could be attributed to the large gap between the pre-training corpus of scFMs (human
scRNA-seq) and the testing omic and species (mouse scATAC-seq). scFMs can generalize well
either on another close species (mouse scRNA-seq) or another omic (human scATAC-seq), but on
mouse scATAC-seq which is quite distant from the pre-training corpus, scFMs would be likely to
fail. Even for UCE which is pre-trained on multi-species datasets, the performance is still relatively
poor. Therefore, when the target species and omics are both distant from the pre-training corpus,
single-cell FMs may not be preferred in cell retrieval.

Poor performance of single-cell retrieval methods to find exact match cells The recall metric
measures whether single-cell retrieval methods can identify the exact match cells using information
from another omic. The result shows that even all methods perform better than random, most meth-
ods do not show significant improvement over the random baseline, highlighting that identifying the
matching cells aross omic is still a highly challenging task.

4.4 LABEL-FREE EVALUATION OF SINGLE-CELL RETRIEVAL METHODS

Cell type annotations only provide coarse grained information as cells in the same cell type may
belong to different regions or different stages. Meanwhile, cell type annotations can be highly in-
consistent across different studies and can even sometimes be wrong. Motivated by this, besides
computing the agreement between cell type annotations and retrieval results, comparing the con-
sistency of the retrieval cells between different methods may serve as another signal of correctness
for cell retrieval. As mentioned in Section 3.2, we proposed the label-free evaluation of single-cell
retrieval methods, considering both the consistency between the retrieved cells and the consistency
between the DE patterns from the retrieved cells.

First, we evaluated the overlap between the retrieved cells between different single-cell retrieval
methods. As shown in Fig. 2a, we found that Cellfishing.jl, scFoundation and scGPT have high
overlap on the retrieved cells. Meanwhile, UCE and SCimilarity also have high overlap with these
methods. In Fig. 2b, we visualized the AvgOverlap score of single-cell retrieval methods and
found that scFoundation, CellFishing.jl and scGPT rank the highest among all methods. It is vi-
tal to validate that whether the AvgOverlap score correlates with the Vote-Acc metric so that
AvgOverlap can be a signal of correctness of cell retrieval when no high-quality cell type anno-
tations are available. As shown in Fig. 2c, the label-free metric AvgOverlap and label-dependent
metric Vote-Acc are strongly correlated across four benchmarking datasets. Therefore, we could
use the label-free metric AvgOverlap to evaluate single-cell retrieval methods even when the cell
type annotations on the target dataset are not available.

Second, we further computed the consistency of differential gene expression patterns from the re-
trieved cells of different methods. Simply relying on the overlap between cell indexes can be biased
as it ignores the semantic information from cells, i.e. the gene expression patterns. We analyzed
whether the retrieved cells given the same query cell from each method have consistent differential
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Figure 2: Consistency between the retrieved cells from different methods. a. Heatmap of the over-
lap between the retrieved cells between different methods on Human PBMC dataset (K=50). b.
AvgOverlap score of 12 single-cell retrieval methods on Human PBMC dataset (K=50). c. Cor-
relation between Vote-Acc and AvgOverlap on four benchmarking datasets across different
methods.

gene expression patterns. Following the steps in Section 3.2.2, we visualized the Jaccard similarity
of identified DE genes between all query cells on human PBMC dataset for CD4+ T cells in Fig. 3a
for different methods. As we can see, some single-cell retrieval methods such as scVI and LDVAE
do not show significant variation within the cell type, while the retrieved cells from scFMs and
CellFishing.jl have distinct differences and sub-groups with similar DE patterns can be identified
within a cell type (red boxes). We can see that the DE gene patterns of SCimilarity are very similar
to that of Cellfishing, scFoundation and scGPT while scVI does not exhibit similar patterns, which
indicates that these top scFMs can identify common cells with similar gene expression patterns and
the sub-groups they find may correspond to certain unannotated sub-types of CD4+ T cells. Besides
visual inspection, we next quantitatively evaluated how similar are sub-groups identified by different
methods in Fig. 3b. Concretely, we computed the Jaccard similarity between identified DE genes
from different methods for each query cell and average over all the query cells. Intuitively, the higher
average similarity between methods means that the sub-groups they identified have more similarity.
We found that top cell retrieval methods in quantitative benchmarking, including scGPT, SCimilar-
ity, UCE, scFoundation and CellFishing.jl, also have higher similarity in cell DE sub-groups. The
cell DE sub-groups identified in common can be further explored and explained by biologists.

5 RELATED WORKS

5.1 SINGLE-CELL FMS BENCHMARKING

There are various attempts in evaluating single-cell FMs from multiple aspects. For example, Alsab-
bagh et al. (2023) mainly evaluate the cell type annotation capabilities of scFMs. Kedzierska et al.
(2023) focus on evaluating the zero-shot cell embedding capabilities of single-cell FMs. Zhao et al.
(2023) evaluates single-cell FMs in terms of cell annotation, gene annotation, perturbation response
and imputation. With the increasing number of single-cell FMs, evaluating and benchmarking these
FMs have been considered of greater significance.
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Figure 3: Consistency between the DE genes of the retrieves cells from different methods. (a).
Heatmap showing the Jaccard similarity between DE genes of query cells. Each entry (i, j) in
the heatmap indicates the Jaccard similarity of the DE genes computed from the query cell i and its
corresponding retrieved cells and the DE genes computed from the query cell j and its corresponding
retrieved cells. The red boxes indicates the sub-group of cells that share similar DE gene patterns.
(b). Heatmap showing the overlap of DE genes from the retrieved cells across different methods.

5.2 BIOLOGICAL DATA SEARCH AND RETRIEVAL

Retrieving cells from large scale biological databases with machine learning methods has already
been widely studied across different biological domains. For example, in the protein domain, Hong
et al. (2024) searches large scale protein databases with pre-trained protein large language model,
Ma et al. (2023b) jointly trains the protein retriever and protein language model to train protein
language models with stronger representation abilities. In the neuron domain, Fan et al. (2024b)
pre-trains a foundation model to retrieve similar neurons.

6 CONCLUSION AND LIMITATION

In this paper, we comprehensively benchmarked and evaluated 12 existing single-cell retrieval meth-
ods. We proposed two types of evaluation metrics: label-free evaluation and label-dependent eval-
uation to assess the capabilities of single-cell retrieval methods. The key recommendations are
summarized as follows: scFMs show promising performance in retrieving similar cell states given
query cells, but are not reliable when the target species and omics are distant from the pre-training
dataset; Traditional non-machine learning cell retrieval methods still yield promising results in ma-
jor settings, which should be used as strong baselines in further method development; In cases where
the target species and omics are distant from the scFM pre-training datasets, VAE-based methods
such as scVI and LDVAE are good alternatives; Label-free metrics yield consistent results as label-
dependent results, thus can be adapted especially when the cell type labels are inconsistent across
studies. We envision the development of large-scale scFMs pre-trained on more species, tissues,
omics that enables the development of a general cell ”search engine”.

Limitations: Quantitatively benchmarking of single-cell retrieval methods still heavily relies on the
cell type annotations. However, these annotations may be inconsistent across studies or incorrect,
therefore causing bias in the evaluation outcome. In this paper, we aim to alleviate this issue by
proposing a label-free evaluation methodology. We believe that more label-free validation methods
of cell retrieval performance are key to evaluating the single-cell retrieval methods at scale across
more diverse datasets.
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