

000 001 002 003 004 005 JUCAL: JOINTLY CALIBRATING ALEATORIC AND EPIS- 006 TEMIC UNCERTAINTY IN CLASSIFICATION TASKS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

We study post-calibration uncertainty for trained ensembles of classifiers. Specifically, we consider both aleatoric uncertainty (i.e., label noise) and epistemic uncertainty (i.e., model uncertainty). Among the most popular and widely used calibration methods in classification are temperature scaling (i.e., *pool-then-calibrate*) and conformal methods. However, the main shortcoming of these calibration methods is that they do not balance the proportion of aleatoric and epistemic uncertainty. Nevertheless, not balancing epistemic and aleatoric uncertainty can lead to severe misrepresentation of predictive uncertainty, i.e., can lead to overconfident predictions in some input regions while simultaneously being underconfident in other input regions. To address this shortcoming, we present a simple but powerful calibration algorithm *Joint Uncertainty Calibration (JUCAL)* that jointly calibrates aleatoric and epistemic uncertainty. JUCAL jointly calibrates two constants to weight and scale epistemic and aleatoric uncertainties by optimizing the *negative log-likelihood (NLL)* on the validation/calibration dataset. JUCAL can be applied to any trained ensemble of classifiers (e.g., transformers, CNNs, or tree-based methods), with minimal computational overhead, without requiring access to the models' internal parameters. We experimentally evaluate JUCAL on various text classification tasks, for ensembles of varying sizes and with different ensembling strategies. Our experiments show that JUCAL significantly outperforms SOTA calibration methods across all considered classification tasks, reducing NLL and predictive set size by up to 15% and 20%, respectively. Interestingly, even applying JUCAL to an ensemble of size 5 can outperform temperature-scaled ensembles of size up to 50 in terms of NLL and predictive set size, resulting in up to 10 times smaller inference costs. Thus, we propose JUCAL as a new go-to method for calibrating ensembles in classification.

1 INTRODUCTION

Machine learning (ML) systems have been widely adopted in various applications, and the rate of adoption is only increasing with recent advancements in generative *artificial intelligence (AI)* (Bick et al., 2024). *Deep learning (DL)* models, often at the core of ML systems, can learn meaningful representations by mapping complex high-dimensional data to lower-dimensional feature spaces (LeCun et al., 2015). However, many DL frameworks only provide point predictions without accompanying uncertainty estimates, which poses significant challenges in high-stakes decision-making scenarios (Kendall & Gal, 2017; Weisseiner et al., 2023).

Uncertainty in ML is commonly categorized into *aleatoric* and *epistemic* uncertainty (Der Kiureghian & Ditlevsen, 2009; Liu et al., 2019; Hüllermeier & Waegeman, 2021; Kendall & Gal, 2017). *Aleatoric uncertainty* refers to the inherent randomness in the data-generating process, such as noise or class overlap, which cannot be reduced by collecting more training observations and is therefore often considered irreducible¹. In contrast, *epistemic uncertainty*, also referred to as *model uncertainty*,

¹In practice, aleatoric uncertainty can sometimes be reduced by reformulating the problem, e.g., by including additional informative covariates. For example, a model predicting whether houses will sell within a month based only on price and square footage faces high aleatoric uncertainty. Many houses with identical features have different outcomes. Adding a covariate like location can explain much of this variance, reducing the average aleatoric uncertainty across the dataset.

captures the model’s lack of knowledge about the data-generating process, typically arising from limited number of training observations. It is considered reducible through collecting additional training observations or by incorporating stronger inductive biases, such as priors or architectural constraints. For more details on these concepts, see Appendix A.

While we adopt the conventional distinction between aleatoric and epistemic uncertainty, we note that this dichotomy reflects a theoretical abstraction. In real-world data science workflows, uncertainty arises from a broader range of sources, including modeling choices, data collection, data preprocessing, and domain assumptions. While most aspects of modeling choices fall into the category of epistemic uncertainty, some aspects of the data collection process and imputation methods for missing values do not always fit well into either of these two categories. The *Predictability-Computability-Stability (PCS)* framework for veridical data science offers a more comprehensive view of the *data science life cycle (DSLC)* and highlights the importance of stability in analytical decisions (Yu, 2020; Yu & Barter, 2024). Appendix C.1 provides more details on PCS and how it relates to JUCAL.

In classification, *neural networks (NNs)* typically output class probabilities via the softmax outputs. However, modern NNs often yield poorly calibrated probabilities, where the predicted confidence scores do not reliably reflect the true conditional likelihoods of the labels (Guo et al., 2017). Calibration, therefore, is critical to ensure that uncertainty estimates are meaningful and trustworthy, particularly in high-stakes or safety-critical applications (Naeini et al., 2015; Kuleshov et al., 2018). In the PCS framework (Yu, 2020), calibration directly supports the *Predictability* principle, acting as a statistical reality check to ensure that model outputs are well aligned with empirical results.

Calibration can prevent a model from being *on average* too over- or underconfident on a given dataset. However, a more challenging task is to develop models that accurately adapt their uncertainty for *different* data points. For example, in the absence of strong prior knowledge, one would expect higher epistemic uncertainty for inputs that are far *out-of-distribution* (OOD), where predictive accuracy typically deteriorates (Garg et al., 2022; Heiss et al., 2021).² Conversely, lower epistemic uncertainty is expected for inputs densely surrounded by training data. However, modern NNs typically do not exhibit this sensitivity: softmax outputs tend to remain overconfident far from the training data, and standard calibration techniques cannot change the relative ranking of uncertainties across inputs (see Figure 1(a)). As a result, even calibrated softmax outputs are often overconfident OOD and underconfident in-distribution (while achieving marginal calibration averaged over the validation set).

Although many methods exist for uncertainty estimation in DL, Gustafsson et al. (2020) suggest that *deep ensembles* (DEs), introduced by Lakshminarayanan et al. (2017), should be considered the go-to method. Additionally to incorporating aleatoric uncertainty via softmax outputs, DEs also incorporates epistemic uncertainty via ensemble diversity (which is typically higher OOD). They achieve this simply by averaging the softmax outputs of multiple trained NNs. However, they are inherently not well-calibrated (Kumar et al., 2022; Rahaman et al., 2021; Wu & Gales, 2021).

Again, standard post-hoc calibration techniques, such as conformal methods (Angelopoulos & Bates, 2021) or the *pool-then-calibrate* temperature scaling approach (Rahaman et al., 2021), mitigate the tendency of DEs to be *on average* too under- or overconfident; however, they do not address the balancing of aleatoric and epistemic uncertainty during calibration. The epistemic uncertainty’s dependency on its hyperparameters can be highly unstable. For example, Yu & Barter (2024); Agarwal et al. (2025) recommend training every ensemble member on a different bootstrap sample of the data. This increases the ensemble’s diversity and thus the estimated epistemic uncertainty. On the other hand, Lakshminarayanan et al. (2017) recommend training every ensemble member on the whole training dataset, which is expected to reduce the diversity of the ensemble. Also, other hyperparameters such as batch-size, weight-decay, learning-rate, dropout-rate, and initialization affect the diversity of the ensemble. In practice, all these hyperparameters are usually chosen without considering the ensemble diversity, and we cannot expect that they result in the right amount of epistemic uncertainty. There is also no reason to believe that the miscalibration of DEs’ aleatoric and DEs’ epistemic uncertainty has to be aligned: For example, if we regularize too much, DEs usually overestimate the aleatoric uncertainty and underestimate the epistemic uncertainty. In such cases, decreasing the temperature of the predictive distribution results in overconfident OOD predictions,

²This behavior depends on the assumptions encoded in the model (prior knowledge). For example, if the true logits are known to be a linear function of x , extrapolation beyond the training domain in certain directions may be justified with high confidence.

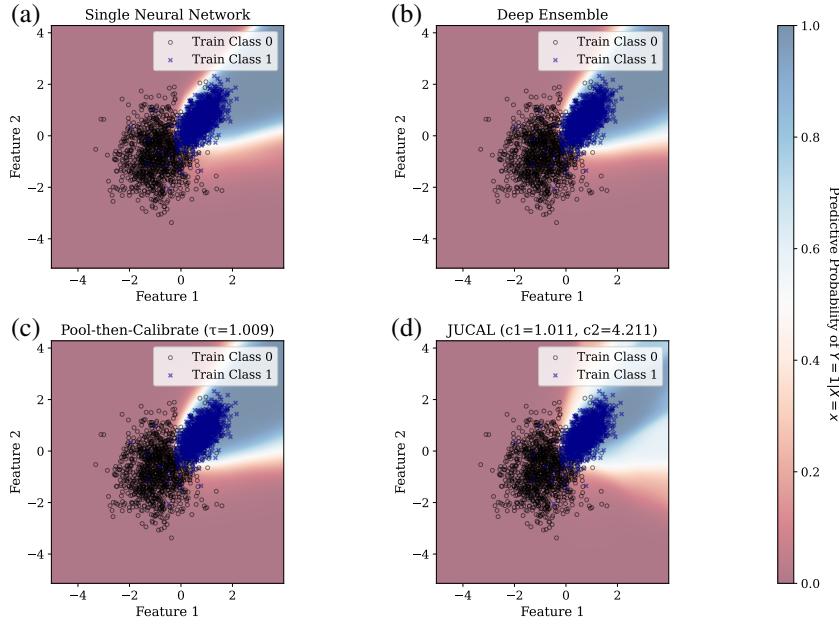


Figure 1: **Predictive probability estimation** for a synthetic 2D binary classification task. (a) Softmax outputs from a single NN. (b) Deep Ensemble. (c) & (d) show the same ensemble as in (b) but with different calibration algorithms applied to it. In all cases, the uncertainty peaks near the decision boundary, but only JUCAL sufficiently accounts for epistemic uncertainty by widening the uncertain region (bright colors) as the distance to the training data increases. This reflects the model’s limited knowledge in data-sparse regions, highlighting the ensemble’s ability to distinguish between aleatory and epistemic components.

while increasing it leads to underconfidence in regions dominated by aleatoric uncertainty. Classical temperature scaling cannot resolve this imbalance between the two types of uncertainty.

To address this shortcoming, we propose *JUCAL*, a novel method specifically for classification that jointly calibrates both *aleatoric* and *epistemic* uncertainty. Unlike standard post-hoc calibration approaches, our method explicitly balances these two uncertainty types during calibration, resulting in well-calibrated point-wise predictions (visualized in Figure 1(b)) and informative decomposed uncertainty estimates. Our algorithm can be easily applied to any already trained ensemble of models that output “probabilities”. Our experiments across multiple text-classification datasets demonstrate that our approach consistently outperforms existing benchmarks in terms of NLL (up to 15%), predictive set size (up to 20% given the same coverage), and AOROC = $(1 - \text{AUROC})$ (up to 40%). Our method reduces the inference cost of the best-performing ensemble proposed in Arango et al. (2024) by a factor of about 10, while simultaneously improving the uncertainty metrics.

2 RELATED WORK

Bayesian methods, such as Bayesian NNs (BNNs) (Neal, 1996; Gal et al., 2016), estimate both epistemic and aleatoric uncertainty by placing a prior over the NN’s weights. If the true prior were known, the posterior predictive distribution would theoretically be well calibrated in a Bayesian sense. However, in practice, the prior is often unknown or misspecified, and thus BNNs are not guaranteed to produce calibrated predictions. We note that our algorithm can easily be extended to BNNs.

As an alternative, DEs, introduced by Lakshminarayanan et al. (2017), have demonstrated competitive or superior performance compared to BNNs across several metrics (Abe et al., 2022; Gustafsson et al., 2020; Ovadia et al., 2019). DEs, from a Bayesian perspective, approximate the posterior predictive distribution by averaging predictions (i.e. softmax outputs) from multiple models trained from independent random initializations. However, like BNNs, DEs are not inherently well-calibrated and often require additional calibration to ensure reliable uncertainty estimates (Ashukha et al., 2020).

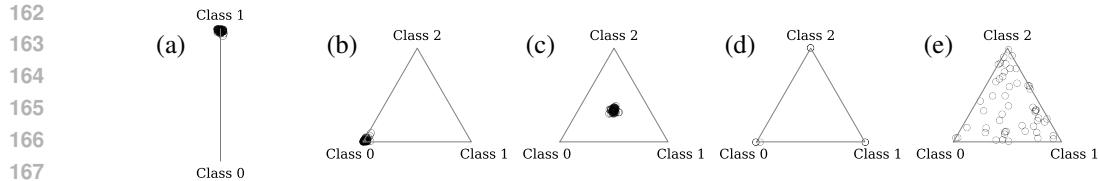


Figure 2: **Scatter plots of ensemble members’ softmax outputs** for (a) binary ($K = 2$) and (b-e) ternary ($K = 3$) classification. Each subplot shows a different possibility of how the $M = 50$ predictions could be arranged for a fixed input point x . Each point represents a probability vector $p(y|x, \theta_m)$ over K classes estimated by an ensemble member. (a)&(b) low total predictive uncertainty; (c) very high aleatoric and low epistemic uncertainty; (d) low aleatoric and very high epistemic uncertainty; (d)&(e) high epistemic uncertainty. *Theoretically* (d) claims that the aleatoric uncertainty is certainly low, while (e) is uncertain about the aleatoric uncertainty, but in practice, both (d)&(e) should usually be simply interpreted as high epistemic uncertainty (see Remark A.1).

Guo et al. (2017) suggest temperature scaling as a simple, yet effective, calibration method for modern NNs. Rahaman et al. (2021) criticize the calibration properties of ensembles and recommend *pool-then-calibrate*, aggregating ensemble member predictions before applying temperature scaling to the combined log-probabilities, using a proper scoring rule such as NLL. Although this approach can improve the calibration of DEs (Rahaman et al., 2021), it relies on a single calibration parameter to scale the total uncertainty, without using separate parameters to explicitly account for aleatoric and epistemic uncertainty. Thus, *pool-then-calibrate* implicitly assumes that aleatoric and epistemic uncertainty are both equally miscalibrated. In contrast, our algorithm calibrates both epistemic and aleatoric uncertainty with *individual* scaling factors, allowing us to increase one of them while simultaneously reducing the other one.

Recently, Azizi et al. (2025) have demonstrated that the conceptual idea of using two calibration constants to balance epistemic and aleatoric uncertainty can also be successfully applied to regression while facing different technical challenges. See Appendix C for further related work.

3 PROBLEM SETUP

Consider the setting of supervised learning, where we are given a training dataset $\mathcal{D}_{\text{train}} = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\} \subset \mathcal{X} \times \mathcal{Y}$, where the pairs (\mathbf{x}_i, y_i) are assumed to be *independent and identically distributed (i.i.d.)* and $\mathcal{Y} = \{1, \dots, K\}$ consists of K classes. Similar to the setup described in Lakshminarayanan et al. (2017), let $\{f_m\}_{m=1}^M$ be an ensemble of M independently³ trained NN classifiers and let $\{\theta_m\}_{m=1}^M$ denote the parameters of the ensemble. For each $\mathbf{x} \in \mathcal{X}$, each ensemble member f_m , followed by a softmax activation, produces a probability-vector

$$\text{Softmax}(f_m(\mathbf{x})) = p(y | \mathbf{x}, \theta_m) = (p(y = 0 | \mathbf{x}, \theta_m), \dots, p(y = K - 1 | \mathbf{x}, \theta_m))$$

in the simplex Δ_{K-1} , as visualized in Figure 2 (this can be seen as an approximation of a Bayesian posterior as described in Appendix A.2.2). A classical DE would now simply average these probability vectors to obtain a predictive distribution over the K classes for a given input datapoint \mathbf{x}_{N+1} :

$$\bar{p}(y | \mathbf{x}_{N+1}, \{\theta_m\}_{m=1}^M) = \frac{1}{M} \sum_{m=1}^M p(y | \mathbf{x}_{N+1}, \theta_m) \in \Delta_{K-1}. \quad (1)$$

3.1 ALEATORIC AND EPISTEMIC UNCERTAINTY

There are fundamentally different reasons to be uncertain. Case 1: If each ensemble of the M ensemble members outputs a probability vector in the center of the simplex without favoring any

³The neural networks are not statistically independent if the dataset \mathcal{D} is treated as a random variable, since all models are trained on the same \mathcal{D} . However, they can be considered conditionally independent given \mathcal{D} , due to independent random initialization and data shuffling at the beginning of each training epoch.

216 class, you should be uncertain (aleatoric uncertainty; similar to Figure 2(c)).⁴ Case 2: If each ensemble
 217 member outputs a probability vector in a corner of the simplex, where each corner is chosen by $\frac{M}{K}$
 218 ensemble members, you should be uncertain too (epistemic uncertainty; similar to Figure 2(d)).⁵ Both
 219 cases result in a predictive distribution \bar{p} that is uniform over the K classes. However, in practice, this
 220 can lead to very different decisions. The diversity of the ensemble members describes the epistemic
 221 uncertainty, while each individual ensemble member estimates the aleatoric uncertainty. There are
 222 multiple different approaches to quantify them mathematically (see Appendix A.2). In our method,
 223 we calibrate these two uncertainty components separately.

225 4 JOINTLY CALIBRATING ALEATORIC AND EPISTEMIC UNCERTAINTY

227 4.1 TEMPERATURE SCALING

229 For any probability vector $p \in \Delta_{K-1}$, one can transform p by temperature scaling

$$230 \quad p^{\text{TS}(T)} := \text{Softmax}(\text{Softmax}^{-1}(p)/T), \quad \text{with logits } f^{\text{TS}(T)} := \text{Softmax}^{-1}(p)/T,$$

232 which moves p towards the center of the simplex for temperatures $T > 1$ and away from the center
 233 towards the corners for $T < 1$, where $\text{Softmax}(z) = \frac{1}{\sum_{j=1}^K \exp(z_j)} (\exp(z_1), \dots, \exp(z_K))$.

234 *Pool-then-calibrate* applies temperature scaling to the predictive probabilities \bar{p} from Equation (1).
 235 This allows to increase the total predictive uncertainty with $T > 1$ or reducing it with $T < 1$.

237 *Calibrate-then-pool* applies temperature scaling on each individual ensemble-member $p(y | \mathbf{x}, \theta_m)$
 238 before averaging them. Thus, *Calibrate-then-pool* mainly adjusts the aleatoric uncertainty.

239 4.2 JUCAL

241 *JUCAL* uses two calibration constants c_1 and c_2 . *JUCAL* applies temperature scaling on each
 242 individual ensemble-member $p(y | \mathbf{x}, \theta_m) = \text{Softmax}(f_m(\mathbf{x}))$ with temperature $T = c_1$, resulting in
 243 temperature-scaled logits $f_m^{\text{TS}(c_1)} = \frac{f_m}{c_1} \in \mathbb{R}^K$, as in *Calibrate-then-pool*. This allows us to increase
 244 the estimated aleatoric uncertainty by setting $c_1 > 1$ and to reduce it by setting $c_1 < 1$. However, c_1
 245 is not sufficient to calibrate the epistemic uncertainty.

247 Therefore, we introduce a second calibration mechanism for calibrating the epistemic uncertainty
 248 via c_2 . Concretely, c_2 adjusts the ensemble-diversity of the already temperature-scaled logits
 249 $f_m^{\text{TS}(c_1)}(\mathbf{x})$ without changing their mean $\bar{f}^{\text{TS}(c_1)}(\mathbf{x}) := \frac{1}{M} \sum_{m=1}^M f_m^{\text{TS}(c_1)}(\mathbf{x})$. I.e., the diversity-
 250 adjusted ensemble-logits $f_m^{\text{JUCAL}(c_1, c_2)}(\mathbf{x}) := (1 - c_2) \bar{f}^{\text{TS}(c_1)}(\mathbf{x}) + c_2 f_m^{\text{TS}(c_1)}(\mathbf{x})$ increase their distance
 251 to their mean $\bar{f}^{\text{TS}(c_1)}(\mathbf{x})$ for $c_2 > 1$ and decrease it for $c_2 < 1$. By applying Softmax we obtain an
 252 ensemble of M probability-vectors $p_m^{\text{JUCAL}(c_1, c_2)}(\mathbf{x}) = \text{Softmax} \left(f_m^{\text{JUCAL}(c_1, c_2)}(\mathbf{x}) \right) \in \Delta_{K-1}$.
 253

254 By combining these steps and averaging, *JUCAL* obtains the calibrated predictive distribution

$$256 \quad \bar{p}^{\text{JUCAL}(c_1, c_2)}(\mathbf{x}) := \frac{1}{M} \sum_{m=1}^M \text{Softmax} \left(\frac{(1 - c_2)}{c_1} \bar{f}(\mathbf{x}) + \frac{c_2}{c_1} f_m(\mathbf{x}) \right) \quad (2)$$

259 from the uncalibrated logits $f_m(\mathbf{x})$ of the M ensemble members and their mean $\bar{f} := \sum_{m=1}^M f_m(\mathbf{x})$.
 260 In practice, we usually don't know a priori how to set c_1 and c_2 . Hence, *JUCAL* picks

$$261 \quad (c_1^*, c_2^*) \in \arg \min_{(c_1, c_2) \in (0, \infty) \times [0, \infty)} \text{NLL}(\bar{p}^{\text{JUCAL}(c_1, c_2)}, \mathcal{D}_{\text{cal}}) \quad (3)$$

263 that minimize the $\text{NLL}(p, \mathcal{D}_{\text{cal}}) := \frac{-1}{|\mathcal{D}_{\text{cal}}|} \sum_{(x, y) \in \mathcal{D}_{\text{cal}}} \log p(y | x)$ on a calibration dataset \mathcal{D}_{cal} .
 264 The NLL is a proper scoring rule, and rewards low uncertainty for correct predictions and strongly
 265 penalizes low uncertainty for wrong predictions. In our experiments, we are reusing the validation
 266 dataset \mathcal{D}_{val} as a calibration dataset while evaluating our results on a separate test set $\mathcal{D}_{\text{test}}$. For a
 267 pseudo-code implementation of *JUCAL*, see Algorithm 1.

269 ⁴This is analogous to multiple doctors telling you that they are too uncertain to make a diagnosis.

⁵This is analogous to multiple doctors telling you highly contradictory diagnoses.

324 **5 RESULTS**
 325

326 In this section, we empirically evaluate JUCAL based on a comprehensive set of experiments. In
 327 Section 5.1 we describe the experimental setup and in Section 5.2 the experimental results.
 328

329 **5.1 EXPERIMENTAL SETUP**
 330

331 Arango et al. (2024) introduce a comprehensive metadataset containing prediction probabilities from
 332 a large number of fine-tuned *large language models (LLMs)* on six text classification tasks. For each
 333 task, predictions are provided on both validation and test splits. The underlying models include GPT2,
 334 BERT-Large, BART-Large, ALBERT-Large, and T5-Large, spanning a broad range of architectures
 335 and parameter counts, from 17M to 770M parameters. This metadataset is particularly valuable as
 336 it allows us to use already finetuned models for our experiments. Arango et al. (2024) used 3800
 337 GPU hours to fine-tune these models, allowing us to isolate and study the effects of aggregation and
 338 calibration strategies independently of model training. In comparison, applying JUCAL to these
 339 expensively fine-tuned models only requires a few CPU-minutes. Six full-sized datasets and six
 340 reduced mini-datasets were used. Additional details about the metadataset are provided in Table 10.
 341

342 **5.1.1 EVALUATION METRICS AND BENCHMARKS**

343 Model performance is evaluated using the average NLL, which is commonly used in related work and
 344 also reported by Arango et al. (2024) for their ensemble methods. It is computed as $\text{NLL}(p, \mathcal{D}_{\text{test}}) :=$
 345 $-\sum_{(x,y) \in \mathcal{D}_{\text{test}}} \log p(y | x)$. In addition, we report AORAC = 1 – AURAC, representing the area
 346 over the rejection-accuracy curve. Each point on this curve gives the accuracy on a subset of the
 347 dataset, where the model is most certain, i.e., the model is allowed to reject answering questions
 348 for which it estimates high uncertainty. The AORAC is equal to the average misclassification rate,
 349 averaged over all different rejection rates. As a third metric, we report AOROC = 1 – AUROC,
 350 representing the area over the *receiver-operator-curve (ROC)*. Here, the AUROC is computed by
 351 averaging the one-vs-rest AUROC scores obtained for each class. Both AORAC and AOROC measure
 352 how well the model is able to rank the uncertainty of different input datapoints. As a fourth metric,
 353 we evaluate the average size of the prediction set required to cover the true label with high confidence
 354 (coverage threshold). For most datasets we use a 99% coverage threshold, but for DBpedia we
 355 increase this to 99.9% due to the high accuracy of the model predictions.

356 Among the ensemble methods presented by Arango et al. (2024), *Greedy-50*, a greedy algorithm that
 357 iteratively adds the model providing the largest performance gain (in terms of $\text{NLL}(p, \mathcal{D}_{\text{val}})$) until an
 358 ensemble of size 50 is formed, achieves the best overall performance. The authors demonstrate that
 359 *Greedy-50* outperforms several ensemble construction strategies, including: *Single Best*, which selects
 360 the single model with the best validation performance; *Random-M*, which builds an ensemble by
 361 randomly sampling M models; *Top-M*, which selects the M models with the highest validation scores;
 362 *Model Average (MA)*, which averages predictions from all models using uniform weights without
 363 model selection. They evaluated $M = 5$ and $M = 50$, and *Greedy-50* had the best performance in
 364 terms of NLL across all 12 datasets.

365 Given its strong empirical performance, we adopt *Greedy-50* as our benchmark. Additionally, we
 366 adopt *Greedy-5* as another benchmark, due to its up to 10 times lower computational prediction costs,
 367 which can be crucial in certain applications. For both of these ensembles, we compare three different
 368 calibration strategies: JUCAL (Algorithm 1), *pool-then-calibrate*, and no calibration.

369 **5.2 EXPERIMENTAL RESULTS**
 370

371 Figures 4–5 present the performance of different calibration techniques on the Greedy-50 and Greedy-
 372 5 ensembles across six metrics. For detailed tables and further ablation studies, see Appendix F.

373 Arango et al. (2024) demonstrated the strength of the *Greedy-50* ensemble, which we further improve
 374 with our calibration method at a negligible computational cost (see Appendix H). The state-of-the-art
 375 *pool-then-calibrate* method improves NLL (Figures 4(a)&5(a)) but only rarely the other metrics.
 376 Our proposed method, JUCAL, simultaneously improves all four metrics compared to both the
 377 uncalibrated and state-of-the-art calibrated ensembles across most datasets. We observe similar
 378 performance gains for JUCAL on the smaller *Greedy-5* ensembles.

378 In line with Arango et al. (2024), the uncalibrated *Greedy-50* ensemble consistently outperforms
 379 *Greedy-5* in terms of test-NLL, but at an approximately 10x higher computational inference cost.
 380 However, applying JUCAL to *Greedy-5* requires only a negligible one-time computational investment
 381 and maintains its low inference costs, while achieving superior performance to both the uncalibrated
 382 *Greedy-50* and the *pool-then-calibrate Greedy-50* across most datasets and metrics. This demonstrates
 383 JUCAL’s ability to significantly reduce inference costs without sacrificing predictive quality. We
 384 recommend *JUCAL Greedy-5* for cost-sensitive applications and *JUCAL Greedy-50* for scenarios
 385 where overall performance is the top priority.

386 Figure 4(a) shows the NLL on a held-out test set $\mathcal{D}_{\text{test}}$, our primary metric due to its property as
 387 a strictly proper scoring rule. JUCAL consistently improves the NLL of the *Greedy-50* ensemble,
 388 outperforming all other non-JUCAL ensembles across all 12 datasets, with most improvements
 389 being statistically significant (see Tables 2 and 6 in Appendix F). Even more notably, for the smaller
 390 *Greedy-5* ensembles, JUCAL achieves the best average test-NLL among all size-5 ensembles, with
 391 NLL reductions up to 30%. For example, on DBpedia, JUCAL *Greedy-5* trained on just 10% of
 392 the data achieves a lower average NLL than all non-JUCAL ensembles, including the 10x larger
 393 ensembles trained on the full dataset. This demonstrates that JUCAL offers a more effective and
 394 computationally efficient path to improving performance than simply scaling up the training data or
 395 ensemble size.

396 Figure 4(b)&(c) show the $\text{AORAC} = 1 - \text{AURAC}$ and $\text{AOROC} = 1 - \text{AUROC}$, respectively, as
 397 defined in Section 5.1.1. The pool-then-calibrate method shows no effect for these metrics. This is
 398 expected because these metrics measure the **relative uncertainty** which is invariant to monotonic
 399 transformations. They assess whether positive examples have higher certainty than negative ones,
 400 irrespective of absolute uncertainty level. In contrast, JUCAL and calibrate-then-pool consistently
 401 improve AOROC across all datasets, with statistically significant gains in most cases. This shows
 402 that JUCAL actively improves the relative uncertainty ranking of the model.

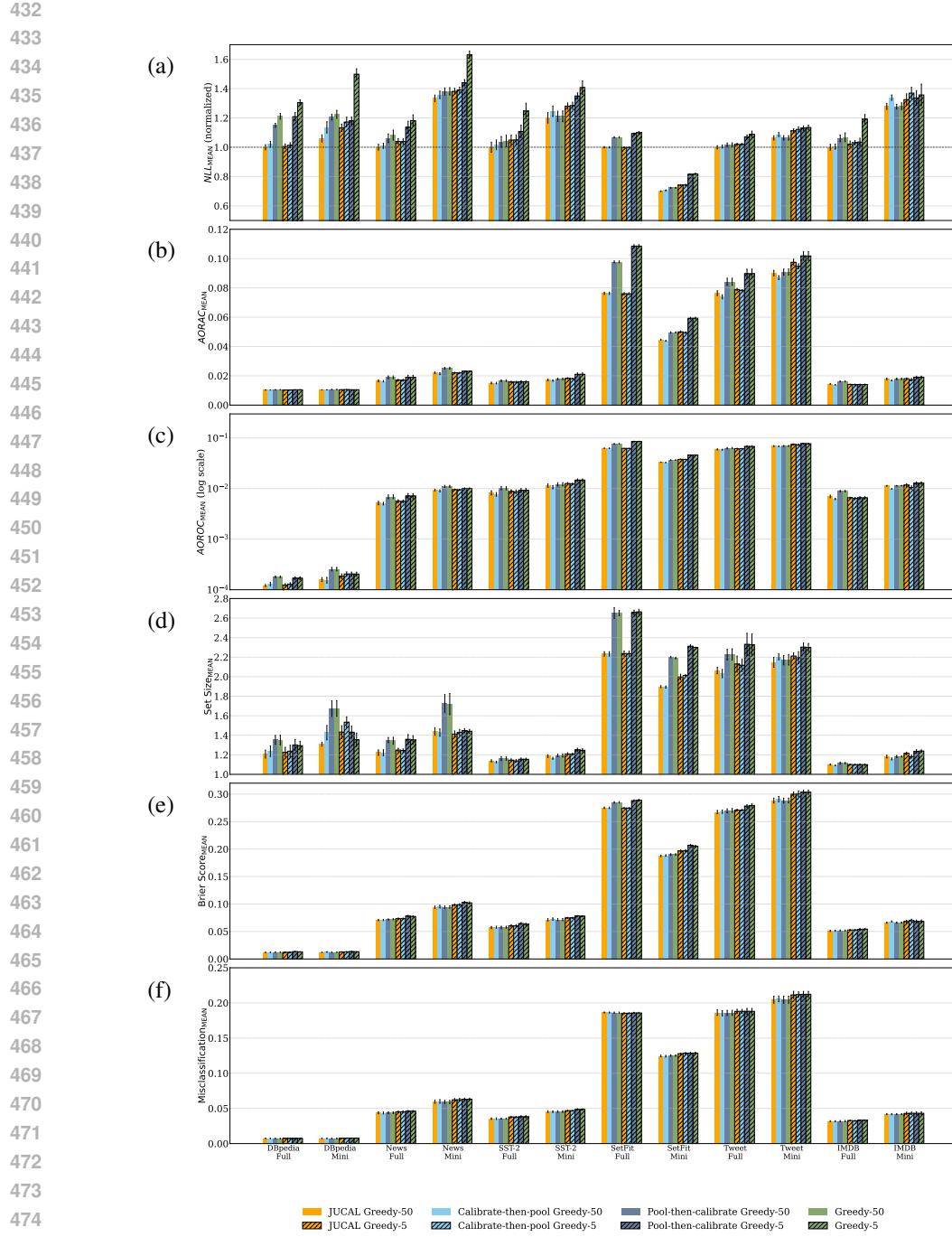
403 Figure 4(d), presents the predictive set size results. JUCAL and calibrate-then-pool achieve signifi-
 404 cantly smaller predictive sets. Already, a reduction in set size from 1.2 to 1.1 can equate to halving
 405 the costs of human interventions, if a set size of one corresponds to zero human intervention.

406 5.3 JUCAL’S DISENTANGLEMENT INTO ALEATORIC AND EPISTEMIC UNCERTAINTY.

408 Figure 6 demonstrates that the epistemic uncertainty estimated by *JUCAL Greedy-50* substantially
 409 decreases as more training observations are collected for each of the 6 datasets, and for 5 out of 6
 410 datasets in the case of *JUCAL Greedy-5*. Conversely, the estimated aleatoric uncertainty usually
 411 does not show any systematic tendency to decrease as more training observations are collected.
 412 These results align well with the theoretical understanding that epistemic uncertainty is reducible
 413 by collecting more training observations and aleatoric uncertainty is not. We used Equations (6)
 414 and (7) from Appendix A.2.1 to compute the values presented in Figure 6, while there would be other
 415 alternatives too. More research is needed to interpret different scales of estimated epistemic and
 416 aleatoric uncertainty across different datasets and different ensembles to better estimate the potential
 417 benefits of collecting more data to guide efficient data collection. For more details, see Appendix A.3.

418 6 CONCLUSION

421 We have presented a simple yet effective method that jointly calibrates both aleatoric and epistemic
 422 uncertainty in DEs. Unlike standard post-hoc approaches such as temperature scaling, our method
 423 addresses both absolute and relative uncertainty through structured fitting of prediction distributions.
 424 Experiments on several datasets show that our method consistently and often significantly improves
 425 upon state-of-the-art baselines, including *Greedy-50* and *Pool-then-Calibrate Greedy-50*, and is
 426 almost never significantly outperformed by any of the baselines on any evaluated metric. Our method
 427 is remarkably stable and reliable, making it a safe and practical addition to any classification task. It
 428 can also be used to reduce inference costs without sacrificing predictive performance or uncertainty
 429 quality by compensating for the weakness of *Greedy-5*. **Limitations and future work:** So far, our
 430 empirical evaluation focused on text classification with fine-tuned LLMs and image classification
 431 with CNNs, using rather large calibration datasets. Future work includes evaluating JUCAL on other
 data modalities and models and extending it to Chatbots.



476 **Figure 4: Text Classification Results.** For each of the six subplots, lower values of the metrics
477 (displayed on the y-axis) are better. On the x-axis, we list 12 text classification datasets (a 10%-
478 mini and a 100%-full version of 6 distinct datasets). The striped bars correspond to ensemble size
479 $M = 5$, while the non-striped bars correspond to $M = 50$. JUCAL's results are yellow. For all six
480 metrics (defined in Section 5.1.1), we show the average and ± 1 standard deviation across 5 random
481 validation-test splits. (a) **NLL** normalized by the mean of JUCAL Greedy-50 on the corresponding
482 full dataset; (b) **AORAC** = $1 - \text{AURAC}$; (c) **AOROC** = $1 - \text{AUROC}$; (d) **Average set size** for the
483 coverage threshold of 99.9% for *DBpedia* (Full and Mini) and 99% for all other datasets; (e) **Brier
484 Score**; (f) **Misclassification Rate** = $1 - \text{Accuracy}$. For more detailed results, see the corresponding
485 tables in Appendix F.

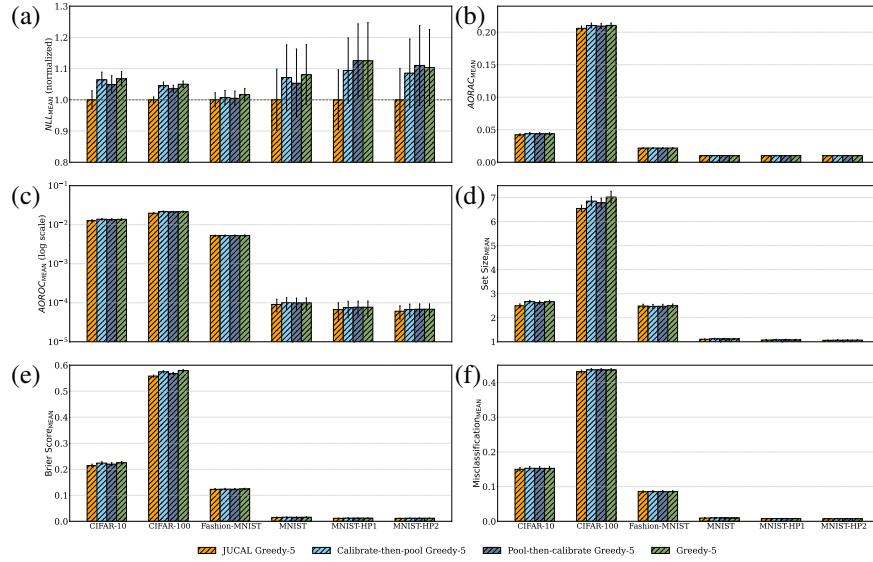


Figure 5: **Image Classification Results.** For each of the six subplots, lower values of the metrics (displayed on the y-axis) are better. On the x-axis, we list distinct image classification datasets (and two hyperparameter-ablation studies for MNIST). JUCAL’s results are yellow. For all six metrics (defined in Section 5.1.1), we show the average and ± 1 standard deviation across 10 random train-validation-test splits. (a) **NLL** normalized by the mean of JUCAL Greedy-5; (b) **AORAC** = $1 - \text{AURAC}$; (c) **AOROC** = $1 - \text{AUROC}$; (d) **Average set size** for the coverage threshold of 99% for *CIFAR-10*, 90% for *CIFAR-100*, and 99.9% for all variants of *MNIST* and *Fashion-MNIST*; (e) **Brier Score**; (f) **Misclassification Rate** = $1 - \text{Accuracy}$.

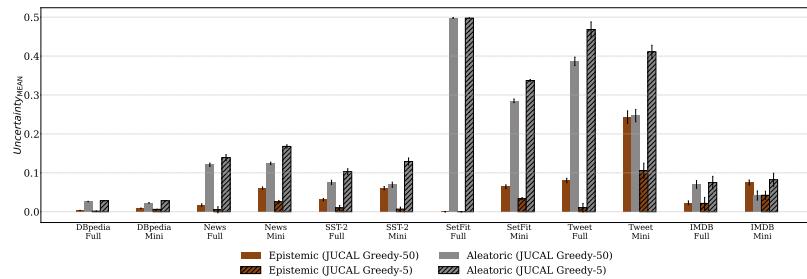


Figure 6: **Epistemic and Aleatoric Uncertainty** (computed as in Appendix A.2.1) of JUCAL applied on Greedy-50 ensembles across six datasets in the metadataset. We compare the full (100%) and the mini (10%) metadataset configurations for both epistemic and aleatoric uncertainty. Bars indicate the mean uncertainty, and error bars denote one standard deviation over random seeds.

540 REPRODUCIBILITY STATEMENT
541542 Our source code for all experiments is available at https://github.com/anoniclr2/iclr26_anon. Upon final publication, we will provide a permanent public repository with an
543
544 installable package.
545546 THE USE OF LARGE LANGUAGE MODELS (LLMs)
547548 We used Large Language Models (LLMs), specifically ChatGPT and Gemini, to assist with improving
549 the English writing on a sentence or paragraph level. The content and scientific ideas presented in the
550 paper are entirely our own. Every suggestion provided by the LLM was carefully reviewed, iterated
551 upon, and corrected by a human. We confirm that every sentence in the paper and the appendix has
552 been checked and verified by a human author.
553554 In writing the code, we used standard LLM-based coding tools, specifically ChatGPT and Claude
555 Code, to increase efficiency. These LLMs were used mainly for generating figures rather than for
556 developing core modules of the source code. All changes made with the help of an LLM were
557 carefully reviewed before being committed to the GitHub repository.
558559 REFERENCES
560561 Taiga Abe, Estefany Kelly Buchanan, Geoff Pleiss, Richard Zemel, and John P Cunningham. Deep
562 ensembles work, but are they necessary? *Advances in Neural Information Processing Systems*, 35:
563 33646–33660, 2022.564 Abhineet Agarwal, Michael Xiao, Rebecca Barter, Omer Ronen, Boyu Fan, and Bin Yu. Pcs-uq:
565 Uncertainty quantification via the predictability-computability-stability framework, 2025. URL
566 <https://arxiv.org/abs/2505.08784>.567 Gustaf Ahdritz, Aravind Gollakota, Parikshit Gopalan, Charlotte Peale, and Udi Wieder. Provable
568 uncertainty decomposition via higher-order calibration. In *The Thirteenth International Conference*
569 *on Learning Representations*, 2025. URL <https://openreview.net/forum?id=TId1SHe8JG>.570
571 Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
572 distribution-free uncertainty quantification. *arXiv preprint arXiv:2107.07511*, 2021.
573574 Sebastian Pineda Arango, Maciej Janowski, Lennart Purucker, Arber Zela, Frank Hutter, and
575 Josif Grabocka. Ensembling finetuned language models for text classification. *arXiv preprint*
576 *arXiv:2410.19889*, 2024.577 Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain
578 uncertainty estimation and ensembling in deep learning. *arXiv preprint arXiv:2002.06470*, 2020.
579580 Ilia Azizi, Juraj Bodik, Jakob Heiss, and Bin Yu. Clear: Calibrated learning for epistemic and
581 aleatoric risk, 2025. URL <https://arxiv.org/abs/2507.08150>.582 Mostafa Bakhouya, Hassan Ramchoun, Mohammed Hadda, and Tawfik Masrour. Gaussian mixture
583 models for training bayesian convolutional neural networks. *Evolutionary Intelligence*, 17:1–22,
584 January 2024. doi: 10.1007/s12065-023-00900-9.
585586 Sumanta Basu, Karl Kumbier, James B Brown, and Bin Yu. Iterative random forests to discover
587 predictive and stable high-order interactions. *Proceedings of the National Academy of Sciences*,
588 115(8):1943–1948, 2018.589 Alexander Bick, Adam Blandin, and David J Deming. The rapid adoption of generative ai. Technical
590 report, National Bureau of Economic Research, 2024.
591592 Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
593 neural networks. In *32nd International Conference on Machine Learning (ICML)*, 2015. URL
594 <http://proceedings.mlr.press/v37/blundell15.pdf>.

594 Erez Buchweitz, João Vitor Romano, and Ryan J. Tibshirani. Asymmetric penalties underlie proper
 595 loss functions in probabilistic forecasting, 2025. URL <https://arxiv.org/abs/2505.00937>.

596

597

598 Peter Bühlmann and Bin Yu. Analyzing bagging. *The annals of Statistics*, 30(4):927–961, 2002.

599

600 L. M. C. Cabezas, V. S. Santos, T. R. Ramos, and R. Izbicki. Epistemic uncertainty in conformal
 601 scores: A unified approach, 2025. URL <https://arxiv.org/abs/2502.06995>.

602

603 Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection from
 604 libraries of models. In *Proceedings of the Twenty-First International Conference on Machine
 605 Learning*, ICML '04, pp. 18, New York, NY, USA, 2004. Association for Computing Machinery.
 606 ISBN 1581138385. doi: 10.1145/1015330.1015432. URL <https://doi.org/10.1145/1015330.1015432>.

607

608 Rich Caruana, Art Munson, and Alexandru Niculescu-Mizil. Getting the most out of ensemble
 609 selection. In *Proceedings of the Sixth International Conference on Data Mining*, ICDM '06, pp.
 610 828–833, USA, 2006. IEEE Computer Society. ISBN 0769527019. doi: 10.1109/ICDM.2006.76.
 611 URL <https://doi.org/10.1109/ICDM.2006.76>.

612

613 Matthew A. Chan, Maria J. Molina, and Christopher A. Metzler. Estimating epistemic and aleatoric
 614 uncertainty with a single model. In *Proceedings of the 38th International Conference on Neural
 615 Information Processing Systems*, NIPS '24, Red Hook, NY, USA, 2025. Curran Associates Inc.
 616 ISBN 9798331314385.

617

618 Bai Cong, Nico Daheim, Yuesong Shen, Daniel Cremers, Rio Yokota, Mohammad Emtiyaz Khan,
 619 and Thomas Möllenhoff. Variational low-rank adaptation using ivon, 2024. URL <https://arxiv.org/abs/2411.04421>.

620

621 G. Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of Control,
 622 Signals and Systems*, 2(4):303–314, December 1989. ISSN 1435-568X. doi: 10.1007/BF02551274.
 623 URL <https://doi.org/10.1007/BF02551274>.

624

625 Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer,
 626 and Philipp Hennig. Laplace redux - effortless bayesian deep learning. In M. Ran-
 627 zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances
 628 in Neural Information Processing Systems*, volume 34, pp. 20089–20103. Curran Asso-
 629 ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/a7c9585703d275249f30a088cebba0ad-Paper.pdf.

630

631 Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Uncertainty
 632 decomposition in bayesian neural networks with latent variables. *arXiv preprint arXiv:1706.08495*,
 633 2017.

634

635 Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decom-
 636 position of uncertainty in bayesian deep learning for efficient and risk-sensitive learning. In
 637 *International conference on machine learning*, pp. 1184–1193. PMLR, 2018.

638

639 Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? *Structural safety*,
 640 31(2):105–112, 2009.

641

642 Raaz Dwivedi, Yan Shuo Tan, Briton Park, Mian Wei, Kevin Horgan, David Madigan, and Bin
 643 Yu. Stable discovery of interpretable subgroups via calibration in causal studies. *International
 644 Statistical Review*, 88:S135–S178, 2020.

645

646 Michael Havbro Faber. On the treatment of uncertainties and probabilities in engineering decision
 647 analysis. *Journal of Offshore Mechanics and Arctic Engineering*, 127(3):243–248, August 2005.
 648 ISSN 0892-7219, 1528-896X. doi: 10.1115/1.1951776.

649

650 Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model
 651 Uncertainty in Deep Learning. June 2015. URL <http://arxiv.org/abs/1506.02142>.
 652 arXiv: 1506.02142.

648 Yarin Gal et al. Uncertainty in deep learning. 2016.
 649

650 Saurabh Garg, Sivaraman Balakrishnan, Zachary C Lipton, Behnam Neyshabur, and Hanie
 651 Sedghi. Leveraging unlabeled data to predict out-of-distribution performance. *arXiv preprint*
 652 *arXiv:2201.04234*, 2022.

653 T. Gneiting and A. E Raftery. Strictly proper scoring rules, prediction, and estimation. *Journal of the*
 654 *American statistical Association*, 102(477):359–378, 2007.
 655

656 Alex Graves. Practical variational inference for neural networks. In *Advances in neural informa-*
 657 *tion processing systems*, pp. 2348–2356, 2011. URL <http://papers.nips.cc/paper/4329-practical-variational-inference-for-neural-networks.pdf>.

658 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
 659 networks. In *International conference on machine learning*, pp. 1321–1330. PMLR, 2017.
 660

661 Fredrik K Gustafsson, Martin Danelljan, and Thomas B Schon. Evaluating scalable bayesian deep
 662 learning methods for robust computer vision. In *Proceedings of the IEEE/CVF conference on*
 663 *computer vision and pattern recognition workshops*, pp. 318–319, 2020.
 664

665 Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lak-
 666 shminarayanan, Andrew Mingbo Dai, and Dustin Tran. Training independent subnetworks
 667 for robust prediction. In *International Conference on Learning Representations*, 2021. URL
 668 <https://openreview.net/forum?id=OGg9XnKxFAH>.
 669

670 J. Heiss. *Inductive Bias of Neural Networks and Selected Applications*. Doctoral thesis, ETH Zurich,
 671 Zurich, 2024. URL <https://www.research-collection.ethz.ch/handle/20.500.11850/699241>.
 672

673 J. Heiss, J. Teichmann, and H. Wutte. How infinitely wide neural networks can benefit from multi-task
 674 learning - an exact macroscopic characterization. *arXiv preprint arXiv:2112.15577*, 2022. doi:
 675 10.3929/ETHZ-B-000550890.
 676

677 Jakob Heiss, Josef Teichmann, and Hanna Wutte. How implicit regularization of Neural Networks
 678 affects the learned function – Part I, November 2019. URL <https://arxiv.org/abs/1911.02903>.
 679

680 Jakob Heiss, Jakob Weisseiner, Hanna Wutte, Sven Seuken, and Josef Teichmann. Nomu: Neural
 681 optimization-based model uncertainty. *arXiv preprint arXiv:2102.13640*, 2021.
 682

683 Jakob Heiss, Josef Teichmann, and Hanna Wutte. How (implicit) regularization of relu neural
 684 networks characterizes the learned function – part ii: the multi-d case of two layers with random
 685 first layer, 2023. URL <https://arxiv.org/abs/2303.11454>.
 686

687 Jakob Heiss, Florian Krach, Thorsten Schmidt, and Félix B. Tambe-Ndonfack. Nonparametric
 688 filtering, estimation and classification using neural jump odes, 2025. URL <https://arxiv.org/abs/2412.03271>.
 689

690 José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning
 691 of bayesian neural networks. In *International Conference on Machine Learning*, pp. 1861–1869,
 692 2015. URL <http://proceedings.mlr.press/v37/hernandez-lobato15.pdf>.
 693

694 Paul Hofman, Yusuf Sale, and Eyke Hüllermeier. Quantifying aleatoric and epistemic uncertainty: A
 695 credal approach. July 2024. URL <https://openreview.net/forum?id=MhLnSoWp3p>.
 696

697 Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
 698 that solves small tabular classification problems in a second. In *International Conference on*
 699 *Learning Representations 2023*, 2023.
 700

701 Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin
 702 Hoo, Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a
 703 tabular foundation model. *Nature*, 01 2025. doi: 10.1038/s41586-024-08328-6. URL <https://www.nature.com/articles/s41586-024-08328-6>.

702 Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. The tabular foundation model tabpfn
 703 outperforms specialized time series forecasting models based on simple features, 2025. URL
 704 <https://arxiv.org/abs/2501.02945>.

705 Kurt Hornik. Approximation capabilities of multilayer feedforward networks. *Neural Networks*,
 706 4(2):251 – 257, 1991. ISSN 0893-6080. doi: 10.1016/0893-6080(91)90009-T. URL [https://doi.org/10.1016/0893-6080\(91\)90009-T](https://doi.org/10.1016/0893-6080(91)90009-T).

707 Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
 708 An introduction to concepts and methods. *Machine learning*, 110(3):457–506, 2021.

709 Alireza Javanmardi, Soroush H. Zargarbashi, Santo M. A. R. Thies, Willem Waegeman, Aleksandar
 710 Bojchevski, and Eyke Hüllermeier. Optimal conformal prediction under epistemic uncertainty.
 711 (arXiv:2505.19033), May 2025. doi: 10.48550/arXiv.2505.19033. URL <http://arxiv.org/abs/2505.19033>. arXiv:2505.19033 [stat].

712 Edwin T Jaynes. Information theory and statistical mechanics. *Physical review*, 106(4):620, 1957.

713 Hamed Karimi and Reza Samavi. Evidential uncertainty sets in deep classifiers using conformal
 714 prediction. In Simone Vantini, Matteo Fontana, Aldo Solari, Henrik Boström, and Lars Carlsson
 715 (eds.), *Proceedings of the Thirteenth Symposium on Conformal and Probabilistic Prediction with
 716 Applications*, volume 230 of *Proceedings of Machine Learning Research*, pp. 466–489. PMLR,
 717 09–11 Sep 2024. URL <https://proceedings.mlr.press/v230/karimi24a.html>.

718 Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
 719 vision? *Advances in neural information processing systems*, 30, 2017.

720 Michael Kirchhof, Gjergji Kasneci, and Enkelejda Kasneci. Position: Uncertainty quantification
 721 needs reassessment for large-language model agents. (arXiv:2505.22655), May 2025. doi: 10.
 722 48550/arXiv.2505.22655. URL <http://arxiv.org/abs/2505.22655>. arXiv:2505.22655
 723 [cs].

724 Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? *Structural Safety*,
 725 31(2):105–112, March 2009. ISSN 0167-4730. doi: 10.1016/j.strusafe.2008.06.020.

726 Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
 727 using calibrated regression. In *International conference on machine learning*, pp. 2796–2804.
 728 PMLR, 2018.

729 Ananya Kumar, Tengyu Ma, Percy Liang, and Aditi Raghunathan. Calibrated ensembles can mitigate
 730 accuracy tradeoffs under distribution shift. In *Uncertainty in Artificial Intelligence*, pp. 1041–1051.
 731 PMLR, 2022.

732 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 733 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,
 734 30, 2017.

735 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,
 736 2015.

737 Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
 738 networks with a nonpolynomial activation function can approximate any function. *Neural networks*,
 739 6(6):861–867, 1993.

740 Jiayu Lin. On the dirichlet distribution. *Department of Mathematics and Statistics, Queens University*,
 741 40, 2016.

742 Jeremiah Liu, John Paisley, Marianthi-Anna Kioumourtzoglou, and Brent Coull. Accurate uncertainty
 743 estimation and decomposition in ensemble learning. *Advances in neural information processing
 744 systems*, 32, 2019.

745 Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
 746 Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting of the
 747 association for computational linguistics: Human language technologies*, pp. 142–150, 2011.

756 D. J. C. MacKay. A practical bayesian framework for backpropagation networks. *Neural Computation*,
 757 4(3):448–472, 05 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.3.448.
 758

759 Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gor-
 760 don Wilson. A simple baseline for bayesian uncertainty in deep learning. In H. Wal-
 761 lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), *Ad-
 762 vances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
 763 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/118921efba23fc329e6560b27861f0c2-Paper.pdf.
 764

765 Wei Chen Maggie and Phil Culliton. Tweet sentiment extraction, 2020. URL <https://kaggle.com/competitions/tweet-sentiment-extraction>.
 766
 767

768 Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. *Advances in
 769 neural information processing systems*, 31, 2018.
 770

771 Andrey Malinin, Bruno Mlozoeniec, and Mark Gales. Ensemble distribution distillation. *arXiv
 772 preprint arXiv:1905.00076*, 2019.
 773

774 Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated proba-
 775 bilities using bayesian binning. In *Proceedings of the AAAI conference on artificial intelligence*,
 776 volume 29, 2015.
 777

777 Radford M. Neal. *Bayesian Learning for Neural Networks*, volume 118 of *Lecture Notes in Statistics*.
 778 Springer New York, New York, NY, 1996.
 779

780 Luong-Ha Nguyen and James-A. Goulet. Analytically tractable hidden-states inference in bayesian
 781 neural networks. *Journal of Machine Learning Research*, 23(50):1–33, 2022a. URL <http://jmlr.org/papers/v23/21-0758.html>.
 782

783 Luong-Ha Nguyen and James-A. Goulet. cuTAGI: a CUDA library for Bayesian neural networks
 784 with tractable approximate Gaussian inference. <https://github.com/lhnguyen102/cuTAGI>, 2022b.
 785

786 Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
 787 Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
 788 evaluating predictive uncertainty under dataset shift. *Advances in neural information processing
 789 systems*, 32, 2019.
 790

791 John Platt. Probabilistic outputs for support vector machines and comparisons to regularized likeli-
 792 hood methods. *Advances in Large Margin Classifiers*, pp. 61–74, 1999.
 793

794 Rahul Rahaman et al. Uncertainty quantification and deep ensembles. *Advances in neural information
 795 processing systems*, 34:20063–20075, 2021.
 796

797 H. Ritter, A. Botev, and D. Barber. A scalable laplace approximation for neural networks. In
 798 *6th International Conference on Learning Representations (ICLR)*, 2018. URL <https://openreview.net/forum?id=Skdv2xAZ>. Conference Track Proceedings.
 799

800 Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive
 801 coverage. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Ad-
 802 vances in Neural Information Processing Systems*, volume 33, pp. 3581–3591. Curran Asso-
 803 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/244edd7e85dc81602b7615cd705545f5-Paper.pdf.
 804

805 R. Rossellini, R. F. Barber, and R. Willett. Integrating uncertainty awareness into conformalized
 806 quantile regression. (arXiv:2306.08693), March 2024. doi: 10.48550/arXiv.2306.08693. URL
 807 <http://arxiv.org/abs/2306.08693>. arXiv:2306.08693 [stat].
 808

809 Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classification
 uncertainty. *Advances in neural information processing systems*, 31, 2018.

810 Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Bazan Clement Emile Mar-
 811 cel Raoul, Rio Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, and Thomas
 812 Möllenhoff. Variational learning is effective for large deep networks. In Ruslan Salakhutdinov, Zico
 813 Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
 814 (eds.), *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of
 815 *Proceedings of Machine Learning Research*, pp. 44665–44686. PMLR, 21–27 Jul 2024. URL
 816 <https://proceedings.mlr.press/v235/shen24b.html>.

817 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
 818 Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
 819 In *Proceedings of the 2013 conference on empirical methods in natural language processing*, pp.
 820 1631–1642, 2013.

821 L. Tunstall, O. Pereg, L. Bates, M. Wasserblat, U. Eun, D. Korat, N. Reimers, and T. Aarsen.
 822 Setfit-mnli. <https://huggingface.co/datasets/SetFit/mnli>, 2021. Accessed:
 823 2025-05-16.

825 Qianru Wang, Tiffany M Tang, Nathan Youlton, Chad S Weldy, Ana M Kenney, Omer Ronen,
 826 J Weston Hughes, Elizabeth T Chin, Shirley C Sutton, Abhineet Agarwal, et al. Epistasis regulates
 827 genetic control of cardiac hypertrophy. *Research square*, pp. rs-3, 2023.

828 Jakob Weissteiner, Jakob Heiss, Julien Siems, and Sven Seuken. Bayesian optimization-based
 829 combinatorial assignment. *Proceedings of the AAAI Conference on Artificial Intelligence*, 37,
 830 2023.

832 Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
 833 ensemble and lifelong learning. *arXiv preprint arXiv:2002.06715*, 2020.

834 Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt, Jasper
 835 Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the Bayes posterior
 836 in deep neural networks really? In *Proceedings of the 37th International Conference on Machine
 837 Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 10248–10259. PMLR,
 838 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/wenzel120a.html>.

840 Lisa Wimmer, Yusuf Sale, Paul Hofman, Bernd Bischl, and Eyke Hüllermeier. Quantifying
 841 aleatoric and epistemic uncertainty in machine learning: Are conditional entropy and mutual
 842 information appropriate measures? In Robin J. Evans and Ilya Shpitser (eds.), *Proceedings
 843 of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence*, volume 216 of *Pro-
 844 ceedings of Machine Learning Research*, pp. 2282–2292. PMLR, 31 Jul–04 Aug 2023. URL
 845 <https://proceedings.mlr.press/v216/wimmer23a.html>.

846 Siqi Wu, Antony Joseph, Ann S Hammonds, Susan E Celniker, Bin Yu, and Erwin Frise. Stability-
 847 driven nonnegative matrix factorization to interpret spatial gene expression and build local gene
 848 networks. *Proceedings of the National Academy of Sciences*, 113(16):4290–4295, 2016.

849 Xixin Wu and Mark Gales. Should ensemble members be calibrated? *arXiv preprint
 850 arXiv:2101.05397*, 2021.

852 Han-Jia Ye, Si-Yang Liu, and Wei-Lun Chao. A closer look at tabPFN v2: Strength, limitation, and
 853 extension, 2025. URL <https://arxiv.org/abs/2502.17361>.

854 Bin Yu. Veridical data science. In *Proceedings of the 13th international conference on web search
 855 and data mining*, pp. 4–5, 2020.

857 Bin Yu and Rebecca L Barter. *Veridical data science: The practice of responsible data analysis and
 858 decision making*. MIT Press, 2024. URL <https://vdsbook.com>.

859 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
 860 classification. *Advances in neural information processing systems*, 28, 2015.

864	LIST OF APPENDICES	
865		
866		
867	A Aleatoric vs. Epistemic Uncertainty	18
868	A.1 A Conceptual Point Of View on Aleatoric and Epistemic Uncertainty	18
869	A.2 An Algorithmic/Mathematical Point Of View on Aleatoric and Epistemic Uncertainty	18
870	A.3 An applied Goal-Oriented Point Of View: How Can Aleatoric and Epistemic Uncertainty Be Reduced?	21
871	A.4 Aleatoric and Epistemic Uncertainty from the Point of View of their Properties	23
872	A.5 Applications of Epistemic and Aleatoric Uncertainty	25
873		
874		
875		
876	B Conditional vs. Marginal Coverage	26
877	B.1 Relative vs. Absolute Uncertainty	26
878		
879		
880	C Further related work	26
881	C.1 The PCS Framework for Veridical Data Science	26
882	C.2 Uncertainty Calibration Techniques in the Literature	27
883	C.3 Pre-calibrated Uncertainty Quantification in the Literature	28
884		
885		
886		
887	D More Intuition on Jointly Calibrating Aleatoric and Epistemic Uncertainty	30
888	D.1 Desiderata	30
889	D.2 JUCAL	30
890		
891		
892	E Extended Versions of Method	35
893	E.1 Implementation of JUCAL with Reduced Computational Costs	35
894	E.2 Ensemble Slection	35
895		
896		
897	F Tables and Figures	38
898	F.1 Tables with Detailed Results	38
899	F.2 Results on Expected Calibration Error (ECE)	41
900	F.3 Results on Conformal Prediction Sets	43
901	F.4 Further Intuitive Low-Dimensional Plots	46
902		
903		
904		
905	G Detailed description of Metadataset	47
906		
907	H Computational Costs	47
908		
909		
910	I Theory	48
911	I.1 Finite-sample Conformal Marginal Coverage Guarantee	48
912	I.2 Properties of the Negative Log-Likelihood	49
913	I.3 Theoretical Justification of Deep Ensemble	51
914	I.4 Independence of JUCAL to the Choice of Right-Inverse of Softmax	52
915		
916		
917		

918 A ALEATORIC VS. EPISTEMIC UNCERTAINTY
919920 There are many different point of views on *aleatoric* and *epistemic Uncertainty* (Kirchhof et al.,
921 2025). While Kirchhof et al. (2025) emphasizes the differences between these points of views, we
922 want to highlight their connection, while also mentioning some subtle differences.
923924 A.1 A CONCEPTUAL POINT OF VIEW ON ALEATORIC AND EPISTEMIC UNCERTAINTY
925926 In this subsection, we try to provide a high-level discussion of the underlying philosophical ideas of
927 epistemic and aleatoric uncertainty, which might be slightly vague from a mathematical point of view.
928929 Aleatoric uncertainty describes the inherent randomness in the data-generating process (such as label
930 noise) or class overlap. This is the uncertainty some with perfect knowledge of the true distribution
931 $p(y|x)$ would face. This uncertainty cannot be reduced by observing further i.i.d. training samples.
932 For this reason, aleatoric uncertainty is sometimes seen as “irreducible”. In practice, one can reduce
933 aleatoric uncertainty by reformulating the problem: E.g., by measuring additional features that can be
934 added as additional coordinates to x .935 Epistemic uncertainty describes the lack of knowledge about the underlying data-generating process.
936 Epistemic uncertainty captures the limits in understanding the unknown distribution of the data on
937 a population level. If we knew exactly the distribution $p(y|x)$, then we would have no epistemic
938 uncertainty for this x , even if $p(y|x)$ gives a non-zero probability mass to multiple different classes.
939 We expect this uncertainty to shrink as we observe more training data.940 These are descriptions should not be understood as precise mathematical definitions, but rather
941 provide some basic guidance for intuition. They are vague in the sense that different mathematical
942 formalisms have been proposed to quantify them, which do not agree on a quantitative level. Some
943 parts of the literature even (slightly) disagree with these descriptions (Kirchhof et al., 2025).944 A.2 AN ALGORITHMIC/MATHEMATICAL POINT OF VIEW ON ALEATORIC AND EPISTEMIC
945 UNCERTAINTY
946947 Now the question arises, how to precisely quantify aleatoric and epistemic uncertainty and how to
948 estimate them with tangible algorithms.
949950 For an ensemble of classifiers, the uncertainty estimated by individual classifiers is often considered
951 as an estimator for *aleatoric uncertainty*, while the disagreement among different classifiers is often
952 considered as an estimator for *epistemic uncertainty*. Before we give an example for a possibility
953 to quantify the “disagreement”, we discuss the alignment and the misalignment of this algorithmic
954 description with the conceptual description from the previous section.955 If we use a too restricted class of models (e.g., using only linear models for a highly non-linear
956 problem), then typical ensembles would estimate an increased aleatoric uncertainty, counting this
957 approximation error as part of the aleatoric uncertainty, while according to our conceptual description
958 from Appendix A.1, one should not count this approximation error as part of aleatoric uncertainty.
959 While (Kirchhof et al., 2025, Section 2.2) portrays this as a dramatic inconsistency among different
960 definitions, we want to emphasize that this inconsistency vanishes when sufficiently expressive
961 models are chosen. E.g., the universal approximation theorem (UAT) (Cybenko, 1989; Hornik, 1991;
962 Leshno et al., 1993) shows that sufficiently large neural networks with non-polynomial activation
963 function can approximate any measurable function on any compact subset of \mathbb{R}^n .964 A.2.1 QUANTIFYING THE MAGNITUDE OF ESTIMATED ALEATORIC AND EPISTEMIC
965 UNCERTAINTY
966967 Here, we will quantify the estimated magnitude of the aleatoric, the epistemic, and the total predictive
968 uncertainty, each with a number for each input data point x . First we want to note, that there are
969 many alternatives to quantifying uncertainties via numbers: One could quantify uncertainties via sets
970 (e.g., confidence/credible/credal sets for frequentist/Bayesian/Levi epistemic uncertainty (Hofman
971 et al., 2024), or predictive sets for the total predictive uncertainty, see Figure 4(d)) or via distributions
972 (e.g., distributions over the classes for aleatoric or total predictive uncertainty, or a distribution over

such distributions for epistemic uncertainty, see Appendix A.2.2). While distributions give a more fine-grained quantification of uncertainty, numbers can be easier to visualize, for example.

Shannon Entropy One way to quantify the amount of uncertainty of $p \in \Delta_{K-1}$ as a single number is the Shannon entropy

$$H(p) = - \sum_{i=1}^K p(y = i) \log p(y = i), \quad (4)$$

which increases with the level of uncertainty (Jaynes, 1957).⁶ We can compute the Shannon entropy of the predictive distribution \bar{p} to quantify the total uncertainty

$$U_{\text{total}}(\mathbf{x}) = H[\bar{p}] = H \left[\frac{1}{M} \sum_{m=1}^M p(y \mid \mathbf{x}_{N+1}, \theta_m) \right], \quad (5)$$

In classification, *mutual information* (MI) has become widely adopted to divide uncertainty into *aleatoric* and *epistemic* uncertainty. As proposed by Depeweg et al. (2017; 2018).

We define, analogously to the Bayesian equivalent in Appendix A.2.3, *aleatoric* uncertainty as

$$U_{\text{aleatoric}}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^M H[p(y \mid \mathbf{x}_{N+1}, \theta_m)], \quad (6)$$

which is highest if all ensemble members output a probability vector in the center of the simplex, as in Case 1 from Section 3.1. We can use the MI to quantify *epistemic* uncertainty

$$U_{\text{epistemic}}(\mathbf{x}) = U_{\text{total}}(\mathbf{x}) - U_{\text{aleatoric}}(\mathbf{x}), \quad (7)$$

which is highest in Case 2 from Section 3.1. Numerous works have employed MI for decomposing uncertainty into aleatoric and epistemic components (Hüllermeier & Waegeman, 2021; Sensoy et al., 2018; Malinin et al., 2019; Malinin & Gales, 2018; Liu et al., 2019).

In our method, JUCAL, we calibrate these two uncertainty components separately, where c_1 is primarily calibrating the aleatoric uncertainty and c_2 is primarily calibrating the epistemic uncertainty.⁷

Note that there are multiple other alternative decomposition-formulas (Kirchhof et al., 2025). While they differ on a quantitative level, most of them roughly agree on a qualitative level. On a qualitative level, Kirchhof et al. (2025); Wimmer et al. (2023) criticize that the MI is maximal if the ensemble members' predictions are symmetrically concentrated on the K corners of the simplex Δ_{K-1} , while one could also argue that the epistemic uncertainty should be maximal if the ensemble members' predictions are uniformly spread over the simplex. Our opinion is that both cases should be considered as "very high epistemic uncertainty", while it is often not that important in practice to decide which of them has even higher epistemic uncertainty.

Remark A.1 (Uniform over the Simplex vs. Corners of the Simplex). From the conceptual description of epistemic uncertainty in Appendix A.1, we would expect the uniform distribution over the simplex Δ_{K-1} to have very high or even maximal epistemic uncertainty. From this perspective, it can be surprising that the MI (7) assigns an even larger value to Case 2 from Section 3.1. For example, Wimmer et al. (2023) argues that Case 2 should have a lower epistemic uncertainty than the uniform distribution over the simplex, since Case 2 (interpreted as a Bayesian posterior) seems to know already about the absence of aleatoric uncertainty, which is some knowledge about the data-generating process, while the uniform distribution represents the absence of any knowledge on the data-generating process. However, in practice, typically, Case 2 does not actually imply any knowledge of the absence of aleatoric uncertainty. For example, ReLU-NNs have the property that they extrapolate the logits almost linearly in a certain sense (Heiss et al., 2019; 2023; 2022; Heiss, 2024), which results in ReLU-NNs' softmax outputs typically converging to a corner of the simplex as you move further

⁶The entropy $H : \Delta_{K-1} \rightarrow [0, \infty)$ is a concave function. The entropy is zero at the corners of the simplex, positive everywhere else, and maximal in the center of the simplex. [link to plot]

⁷No calibration method can adjust aleatoric and epistemic uncertainty in complete isolation. The two are inherently linked: e.g., when total uncertainty is maximal (i.e., a uniform mean prediction), an increase in one type must decrease the other. Thus, while JUCAL's parameters have primary targets— c_1 for aleatoric and c_2 for epistemic—they inevitably have secondary effects on the other uncertainty component.

away from the training distribution. Therefore, it is very common that far out of distribution all ensemble members' softmax outputs lie in the corners of the simplex Δ_{K-1} , which usually should *not* be interpreted as having very reliable knowledge that the true probability is not in the center of the simplex, but rather simply as being very far OOD. Overall, we think the most pragmatic approach is to consider every value of MI larger than the MI of the uniform distribution over the simplex as high epistemic uncertainty, without differentiating much among even higher values of MI. We think this pragmatic approach can be sensible in both settings (a) when using a typical DE, where Case 2 should not be overinterpreted, and (b) when having access to a reliable posterior that (for some exotic reason) is really purposefully only concentrated on the corners of the simplex.

A.2.2 A BAYEISAN POINT OF VIEW

In a Bayesian setting, we place a prior distribution $p(\theta)$ over the model parameters⁸. The posterior predictive distribution for a new input \mathbf{x}_{N+1} and class label k is given by:

$$p(y = k \mid \mathbf{x}_{N+1}, \mathcal{D}) = \int p(y = k \mid \mathbf{x}_{N+1}, \theta) p(\theta \mid \mathcal{D}) d\theta, \quad (8)$$

and can be approximated by averaging the ensemble members:

$$\bar{p}(y \mid \mathbf{x}_{N+1}, \mathcal{D}) = \frac{1}{M} \sum_{m=1}^M p(y \mid \mathbf{x}_{N+1}, \theta_m, \mathcal{D}), \quad (9)$$

if the ensemble members θ_m are approximately sampled from the posterior $p(\theta \mid \mathcal{D})$.

For any fixed input data point x , each sample from the posterior corresponds to a point on the simplex $\Delta_{K-1} := \{ p \in [0, 1]^K : \sum_{k=0}^{K-1} p_k = 1 \}$. Thus, for any fixed input data point x , the posterior distribution corresponds to a distribution on the simplex Δ_{K-1} . Such a distribution on the simplex (illustrated in Figure 7) can be referred to as a *higher-order distribution*, since each point on the simplex corresponds to a categorical distribution over the K classes. Each point on the simplex Δ_{K-1} corresponds to a hypothetical aleatoric uncertainty. The posterior distribution over the simplex describes the epistemic uncertainty over these hypotheses. The posterior predictive distribution (8) contains the total predictive uncertainty over the K classes, incorporating both aleatoric and epistemic uncertainty in a principled Bayesian way.

Remark A.2 (Ensembles as Bayesian approximation). One interpretation of DEs is that they approximate an implicit distribution over the simplex Δ_{K-1} , conditioned on the input (see Figure 2). We can use the collection of member outputs to apply moment matching and fit the $\alpha(x) \in \mathbb{R}_{>0}^K$ parameters of a Dirichlet distribution. This results in an explicit higher-order distribution over the simplex. For example, for $K > 3$ it is hard to visualize the m K -dimensional outputs of the ensembles, whereas it is easier to visualize the K -dimensional $\alpha(x)$ -vector for multiple x -values simultaneously.

Remark A.3 (Applying JUCAL to Bayesian methods). Mathematically, JUCAL could be directly applied to Bayesian methods by replacing the sums in Algorithm 1 by posterior-weighted integrals. In practice, we sample m ensemble members from the Bayesian posterior and then apply Algorithm 1 to this ensemble, which corresponds to using Monte-Carlo approximations of these posterior-weighted integrals.

A.2.3 QUANTIFYING THE MAGNITUDE OF BAYESIAN ALEATORIC AND EPISTEMIC UNCERTAINTY

As discussed in Appendix A.2.1, the Shannon entropy (4) can summarize the magnitude of uncertainty into a single numerical value. Analogously to Appendix A.2.1, we can use the Shannon entropy H to quantify the magnitude of epistemic and aleatoric uncertainty in the Bayesian setting by replacing sums by expectations:

⁸For a Bayesian neural network (BNN) (Neal, 1996), the parameters θ correspond to a finite-dimensional vector. However, the concepts of epistemic and aleatoric uncertainty and JUCAL are much more general and can also be applied to settings where θ corresponds to an infinite-dimensional object. E.g., it is quite common in Bayesian statistics to consider a prior over functions that has full support on the space of L2-functions. For example, (deep) Gaussian processes (often with full support on L2) are popular choices. The notation $p(\theta)$ should be taken with a grain of salt, as in the infinite-dimensional case, probability densities usually don't exist, but one can still define priors as probability measures.

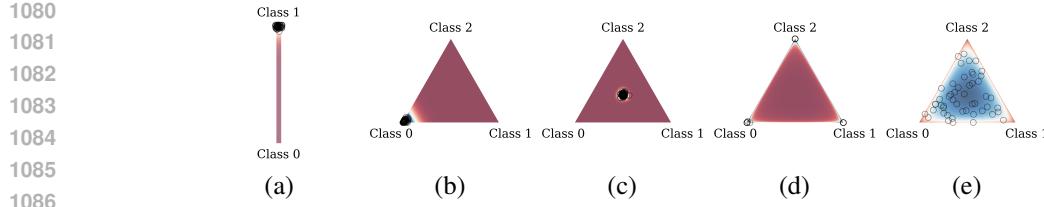


Figure 7: Different possible behaviors of a higher-order distribution over the simplex Δ_{K-1} in a binary (a) and ternary (b-e) classification task. We both show the density of a higher-order distribution (such as a posterior distribution) via colors and $M = 50$ samples from this distribution via semi-transparent black circles. Each point on the simplex Δ_{K-1} corresponds to a (first-order) distribution over the K classes. Sub-figure (a)&(b) show almost **no aleatoric or epistemic uncertainty** (i.e., very low aleatoric and epistemic uncertainty, leading to a low total predictive uncertainty), (c) shows almost **only aleatoric uncertainty**, (d) shows almost **only epistemic uncertainty** and (e) shows **both aleatoric and epistemic uncertainty**. More precisely, (e) shows epistemic uncertainty on whether the aleatoric uncertainty is large or small, whereas (d) is theoretically more certain that the aleatoric uncertainty is large; (a), (b), and theoretically (d) are more certain that the aleatoric uncertainty is low. Note that (d)’s “certainty” on the absence of aleatoric uncertainty, should not be trusted in typical settings as discussed in Remarks A.1 and A.4. (c) is certain that the aleatoric uncertainty is high.

In classification, *mutual information* (MI) has become widely adopted to divide uncertainty into *aleatoric* and *epistemic* uncertainty. As proposed by Depeweg et al. (2017; 2018), we define total uncertainty as

$$U_{\text{total}}(\mathbf{x}) = H[\mathbb{E}_m[p(y | \mathbf{x}, \theta_m)]], \quad (10)$$

and *aleatoric* uncertainty as

$$U_{\text{aleatoric}}(\mathbf{x}) = \mathbb{E}_m[H[p(y | \mathbf{x}, \theta_m)]], \quad (11)$$

we can use MI to quantify *epistemic* uncertainty

$$U_{\text{epistemic}}(\mathbf{x}) = U_{\text{total}}(\mathbf{x}) - U_{\text{aleatoric}}(\mathbf{x}). \quad (12)$$

Numerous works have employed mutual information for decomposing uncertainty into aleatoric and epistemic components (Hüllermeier & Waegeman, 2021; Sensoy et al., 2018; Malinin et al., 2019; Malinin & Gales, 2018; Liu et al., 2019).

Remark A.4 (Bayesian version of Remark A.1). Remark A.1 analogously also holds in the Bayesian setting. Note that ReLU-BNNs also have the property to put the majority of the posterior mass into the corners of the simplex Δ_{K-1} for far OOD data points. In practice, this should usually not be interpreted as actually being certain about the absence of aleatoric uncertainty.

A.3 AN APPLIED GOAL-ORIENTED POINT OF VIEW: HOW CAN ALEATORIC AND EPISTEMIC UNCERTAINTY BE REDUCED?

In applications, one of the most important questions is how one can reduce the uncertainty. In simple words, epistemic uncertainty can be reduced by collecting more samples (which doesn’t affect aleatoric uncertainty), and aleatoric uncertainty can be reduced by measuring more features per sample (which can even increase epistemic uncertainty). In the following, we will give a more detailed point of view. First, we want to note that the reducibility properties of uncertainty could even serve as a useful definition of epistemic and aleatoric uncertainty. While other definitions rely more on mental constructs (e.g., Bayesian or frequentist probabilistic constructs), this definition relies more on properties that can be empirically measured in the real world.

Epistemic uncertainty can be reduced by increasing the number of training observations and by incorporating additional prior knowledge (i.e., improving your modeling assumptions), while these actions have no effect on aleatoric uncertainty. In particular, increasing the number of training observations in a specific region of the input space \mathcal{X} , typically reduces mainly the epistemic uncertainty in this region. Adding more covariates (also denoted as features) decreases the aleatoric uncertainty on average if they provide additional useful information without ever harming the aleatoric uncertainty. In contrast, epistemic uncertainty typically increases when more covariates are added,

especially if the additional covariates are not very useful. Decreasing the noise has a very strong direct effect on reducing the aleatoric uncertainty. Additionally, decreasing the noise indirectly also decreases the epistemic uncertainty. However, if the epistemic uncertainty is already negligible (e.g., if you have already seen a very large number of training observations), then decreasing the scale of the noise can obviously not have any big effect on the epistemic uncertainty anymore in terms of absolute numbers (since the epistemic uncertainty can obviously not become smaller than zero). For a summary, see Table 1.

	More observations	Better prior	More covariates	Smaller noise
Epistemic	☺ Decreases	☺ Decreases	☺ Increases (typically) / ☺/☺	☺ Decreases
Aleatoric	☺ No effect	☺ No effect	☺ Decreases / ☺	☺☺ Decreases

Table 1: Expected effects of different factors on epistemic and aleatoric uncertainty.

Remark A.5 (Table 1 should be understood on average). While adding covariates decreases aleatoric uncertainty *on average*, it can increase it for specific subgroups. Consider a 1,000 sq. ft. apartment listed for USD 10 million on an online platform. Based on these features alone, the probability of a sale is near zero (low aleatoric uncertainty). However, adding the covariate `location='Park Avenue Penthouse'` may shift the sale probability closer to 0.5, thereby *increasing* the aleatoric uncertainty for this specific data point.

Empirical Evaluation. The experimental results displayed in Figure 6 strongly support our hypothesis that adding more training observations clearly decreases our estimated epistemic uncertainty, in contrast to the aleatoric uncertainty. For all 6 datasets, the estimated epistemic uncertainty significantly decreases as we increase the number of training observations for JUCAL Greedy-50, and for 5 out of 6 for JUCAL Greedy-5. For DBpedia, the models already had quite small epistemic uncertainty when only trained on the reduced dataset; thus, the estimated aleatoric uncertainty was already quite accurate, and adding more training observations did not change much, except for further decreasing the already small epistemic uncertainty. For most other datasets, the epistemic uncertainty of the models trained on the reduced dataset significantly contributed to the overall uncertainty. When adding more training observations, for some of them, the *estimated* aleatoric uncertainty increased, while for others it decreased. This is expected, as in the presence of significant epistemic uncertainty, the initial estimate of aleatoric uncertainty can be very imprecise. As the true aleatoric uncertainty is not affected by adding more training observations, in contrast to epistemic uncertainty, we do not expect the aleatoric uncertainty to significantly decrease on average when adding more training observations (in our experiments, the *estimated* aleatoric uncertainty even increased on average). This empirically shows that epistemic and aleatoric uncertainty react very differently to increasing the number of training observations. Azizi et al. (2025) demonstrated in an experiment that adding more covariates can reduce the aleatoric uncertainty. We think that many more experiments should be conducted to better empirically evaluate how well different estimators of epistemic and aleatoric uncertainty agree with Table 1. More insights in this direction could help practitioners to gauge the potential effects of expensively collecting more training data or expensively measuring more covariates before investing these costs. For example, by only looking at the results for the reduced dataset (mini) in Figure 6, one could already guess that for datasets such as IMBD, Tweet, and SST-2 (for JUCAL Greedy-50), where a relatively large proportion of the estimated total uncertainty is estimated to be epistemic, there is a big potential for improving the performance by collecting more observations; while for DBpedia and SetFit, where the estimated total uncertainty is clearly dominated by estimated aleatoric uncertainty, there is little potential for benefiting from increasing the number of training observations. However, the quantification of epistemic and aleatoric uncertainty via Equations (6) and (7) from Appendix A.2.1 seem quite noisy and hard to interpret across different datasets and different ensembles, and our experiments in this direction are still way too limited. Therefore, we think further research in this direction is needed.

This Definition Is Relative To the Definition of a “Training Observation”. This applied goal-oriented definition (i.e., epistemic uncertainty can be reduced by increasing the number of training observations, whereas aleatoric uncertainty can be reduced by increasing the number of covariates) heavily relies on the notion of a “training observation”. For some ML tasks, it is quite clear what a training observation (x, y) is; however, for other ML tasks, this is more ambiguous. For example, for time-series classification as in Heiss et al. (2025), you can (a) consider each partially observed

1188 labeled path (corresponding, for example, to each patient in a hospital) as one training observation, or
 1189 you can (b) consider each single measurement of any path at any time as one training observation. In
 1190 case (a), each measurement in time can be seen as a covariate of a path; therefore, the proportion
 1191 of the uncertainty that can be reduced by taking more frequent measurements per path should be
 1192 seen as part of the aleatoric uncertainty in case (a). However, in case (b), each measurement of the
 1193 path is seen as a training observation; therefore, the proportion of the uncertainty that can be reduced
 1194 by taking more frequent measurements per path should be seen as part of the epistemic uncertainty
 1195 in case (b). Hence, especially in the context of time series, one should first agree on a definition
 1196 of what a “training observation” is before talking about epistemic and aleatoric uncertainty for less
 1197 ambiguous communication. E.g., for the text-classification datasets that we study in this paper, we
 1198 consider each labeled text as a training observation (x, y) (and *not* every token, for example).
 1199

1200 **Imprecise Formulations of this Definition.** We refrain from saying that epistemic uncertainty can
 1201 be reduced by collecting “more data”. Collecting more labeled training observations (e.g., increasing
 1202 the number of rows in your tabular dataset) can reduce the epistemic uncertainty without affecting
 1203 the aleatoric uncertainty, whereas collecting more covariates (e.g., increasing the number of columns
 1204 in your tabular dataset) tends to increase the epistemic uncertainty and can reduce the aleatoric
 1205 uncertainty instead. We also refrain from saying that aleatoric uncertainty is “irreducible”, since in
 1206 practice it can be reduced by measuring more covariates or by reducing the label noise.⁹
 1207

1208 A.4 ALEATORIC AND EPISTEMIC UNCERTAINTY FROM THE POINT OF VIEW OF THEIR 1209 PROPERTIES

1210 Some readers might find it useful to think about how one could intuitively guess in which regions one
 1211 should estimate large/low epistemic uncertainty and in which regions one should estimate large/low
 1212 aleatoric uncertainty when looking at a dataset.

1213 For regression, Heiss et al. (2021) discusses that, roughly speaking, epistemic uncertainty usually
 1214 increases as you move further away from the training data. For classification, this is more compli-
 1215 cated.¹⁰ At least in regions with many data points, the epistemic uncertainty should be low, both for
 1216 regression and classification. However, an input data-point x is an unusually extreme version of a
 1217 particular class can be far away from the training data, but can still be considered to quite certainly
 1218 belong to this class as the following thought-experiments demonstrate.

1219 *Example A.6* (Electronic component). Consider a binary classification dataset where x is the tempera-
 1220 ture of an electronic component and $y = 1$ denotes the failure of the component. If the training dataset
 1221 only contains temperatures $x \in [10C, 120C]$ and all the electronic components with temperatures
 1222 larger than $100C$ fail, then an electrical component at temperature $X = 500C$ is very far OOD;
 1223 however, we can still be rather certain that it will also fail. Here in this example, we have quite a
 1224 strong prior knowledge, allowing us to have very little epistemic uncertainty.

1225 *Example A.7* (Similar example for a more generic prior). Imagine the situation where, for a generic
 1226 dataset, within the training dataset, there is a clearly visible trend that the further the input x moves
 1227 into the direction v , the more likely it is to have label $y = A$. Imagine a datapoint x which is moved
 1228 exceptionally far away from the center in the direction v . Knowing that for many real-world datasets,
 1229 such trends are continued as in Example A.6, one should not have maximal epistemic uncertainty for
 1230 this x , as one would intuitively guess that label $y = A$ is more likely than other labels without any
 1231

⁹In theoretical settings, the aleatoric uncertainty is often seen as “irreducible”, if you consider the input space \mathcal{X} and the data distribution is fixed. This makes sense from a theoretical point of view, and sometimes makes sense practically when you are for example in a kaggle-challenge setting; however, for real-world problems, it is sometimes possible to reformulate the learning problem by measuring further covariates, resulting in a different higher-dimensional input space \mathcal{X} , or to improve the labeling quality in the data collection process. Note that parts of the literature also denote uncertainty that can be reduced by measuring more covariates as epistemic (Kiureghian & Ditlevsen, 2009; Faber, 2005), which is not compatible which is not compatible with our definition. However, Kiureghian & Ditlevsen (2009); Faber (2005) also mention that depending on the application, it sometimes makes more sense to count this type of uncertainty as aleatoric, which then again agrees more with our definition.

¹⁰Also, for regression, there are some subtleties discussed in Heiss et al. (2021), making it already complicated. However, for classification, there are additional complications on top. We hypothesize that the disederata of Heiss et al. (2021) should not be applied directly to the epistemic uncertainty for classification settings; but, we also hypothesize that the disederata of Heiss et al. (2021) can be applied quite well to the logit-diversity.

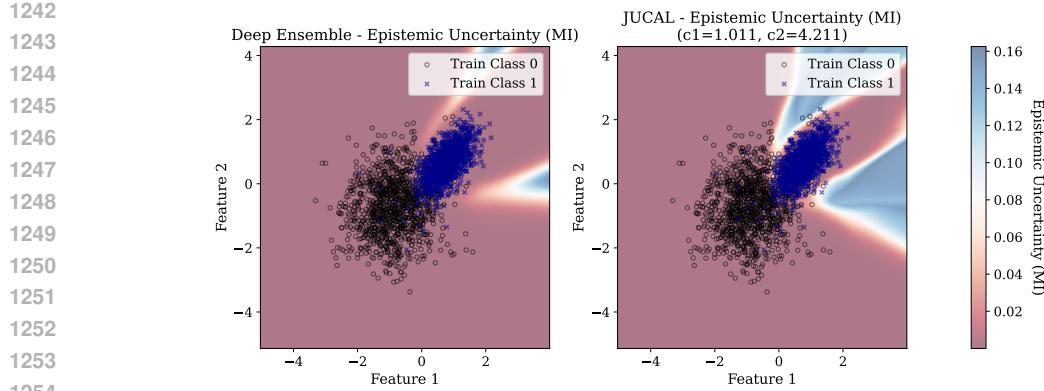


Figure 8: Estimated Epistemic Uncertainty for Figure 1

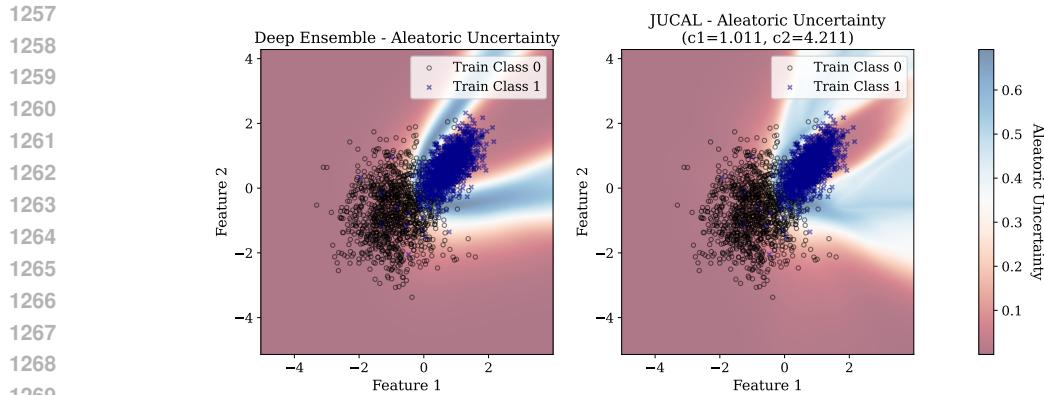


Figure 9: Estimated Aleatoric Uncertainty for Figure 1. In regions of high epistemic uncertainty, one usually does not know if the aleatoric uncertainty is high or low; thus it has the possibility to be high, and averaging over all possibilities can result in quite high estimates of the aleatoric uncertainty.

1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

domain-specific prior knowledge. However, in such a situation, one should usually also not guess minimal epistemic uncertainty, as trends are not always continued in the real world. Intuitively, in a region with many labeled training data points, the epistemic uncertainty should be even lower. On the other hand, for an input \tilde{x} that is as far away from the training data as x , but deviates from the training data in a direction u which is orthogonal to v , one should intuitively typically estimate more epistemic uncertainty than for x . See Figure 8.

Remark A.8 (How do different algorithms deal with Example A.7). We expect that for an ensemble of linear logistic regression models trained on the dataset described in Example A.7, the coordinate of the logits corresponding to class A increases linearly as you move in the direction v , for each ensemble member. This means that if you move far enough in a direction v , both epistemic and aleatoric uncertainty vanish asymptotically. Pool-then-calibrate or calibrate-then-pool can slow down this decrease in uncertainty, but cannot stop this asymptotic behavior in direction v (no matter which finite value you use as a calibration constant). In contrast, JUCAL can change this asymptotic behavior; it can even reverse it: If the slopes of the ensemble members' logits in direction v at least slightly disagree, then this disagreement linearly increases as you move into direction v . Thus, for sufficiently large values of c_2 the epistemic uncertainty increases as you further move away in the direction v instead of vanishing.¹¹ Analogous effects are expected for models that extrapolate local trends, such as logistic spline regression. Theoretical results in Heiss et al. (2019; 2023; 2022); Heiss (2024) suggest that ReLU neural networks also extrapolate local trends (or global trends for larger

¹¹For example, JUCAL can choose a value c_2 which is neither so large that epistemic uncertainty quickly increases in direction v nor a value of c_2 so small that epistemic uncertainty quickly vanishing in direction v , but rather something in between where the epistemic uncertainty almost stays constant when extrapolating in direction v (while quickly increasing when extrapolating in other orthogonal directions).

regularization), and in our experiments on synthetic datasets, we actually observe such phenomena. See Figure 10 as an example of trained NNs.

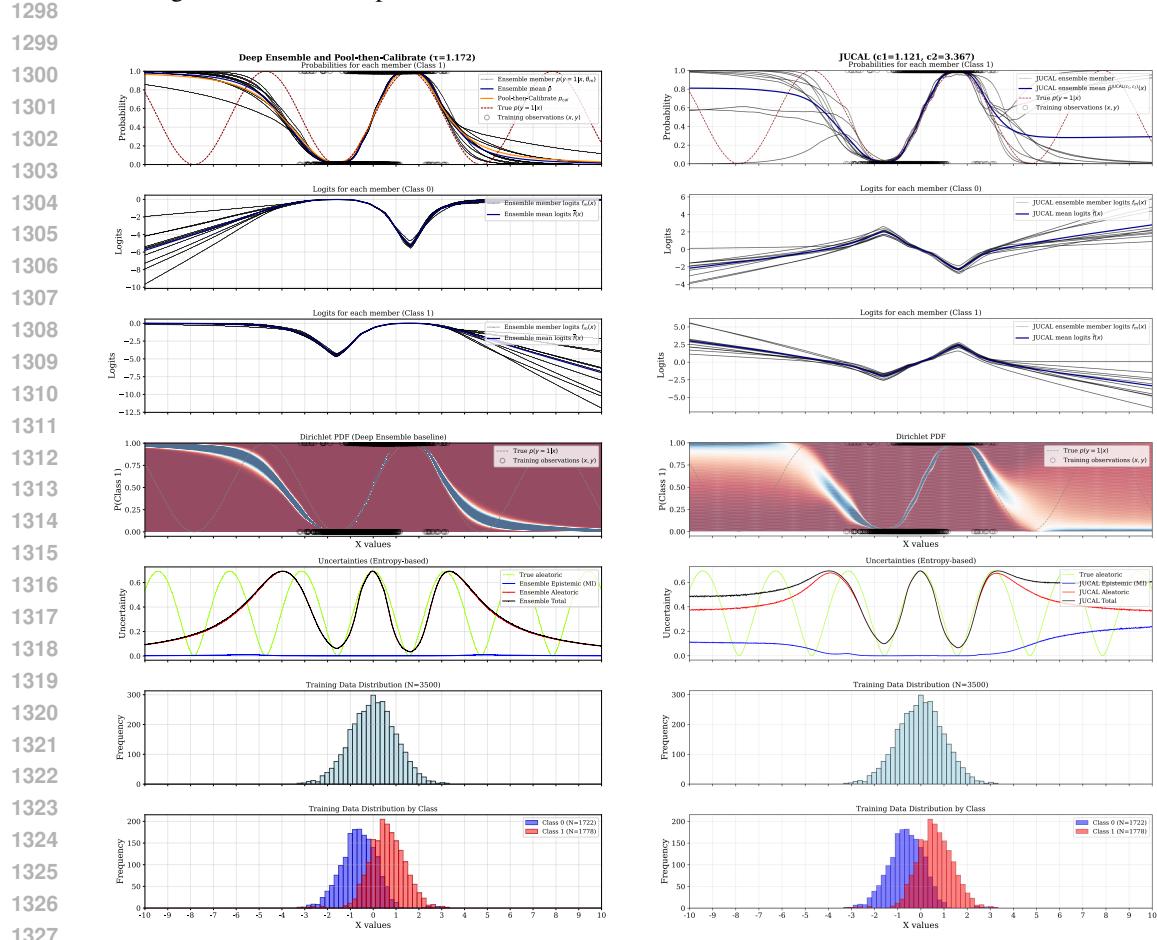


Figure 10: The same ensemble without and with JUCAL calibration. The logit diversity increases as you move further OOD, but the probability-diversity decreases without JUCAL.

If you observe different labels $y_i \neq y_j$ for identical inputs $x_i = x_j$, there has to be some aleatoric uncertainty present. In practice, you rarely observe exactly the same input x more than once, but typical models also estimate large aleatoric uncertainty if the labels vary for almost identical x . Intuitively, this is a reasonable, if one assumes that the true conditional distribution does not fluctuate a lot between almost identical inputs x .

A.5 APPLICATIONS OF EPISTEMIC AND ALEATORIC UNCERTAINTY

Aleatoric uncertainty and epistemic uncertainty can play different roles for different applications. For some applications, estimating pure epistemic uncertainty is more relevant, while for other applications, the combined total predictive uncertainty is more relevant.

Active Learning, Experimental Design, and Efficient Data Collection. In active learning, ranking the epistemic uncertainty of different input points x can help to prioritize which of them to collect expensive labels for to reduce the overall uncertainty. After having trained a model on a labeled training dataset, comparing the epistemic and aleatoric uncertainty aggregated over some (unseen) dataset can help you to decide whether (a) collecting more labeled training samples, or (b) measuring more covariates per sample has more potential to reduce the overall uncertainty, even before investing anything into conducting (a) or (b): If the estimated epistemic uncertainty dominates the total predictive uncertainty of your current model, then (a) is more promising whereas if vice-versa

1350 the estimated aleatoric uncertainty dominates then (b) has more potential, if there are promising
 1351 candidates for further covariances.
 1352

1353 **Prediction Tasks.** The total predictive uncertainty tries to predict the true label. Both epistemic
 1354 and aleatoric uncertainty are reasons to be uncertain about your prediction.
 1355

1356 B CONDITIONAL VS. MARGINAL COVERAGE

1358 This section clarifies the distinction between conditional and marginal coverage in the context of
 1359 classification. These concepts are closely related to the notions of *relative vs. absolute uncertainty*
 1360 (Heiss et al., 2021), and also overlap with the terminology of *adaptive vs. calibrated*¹² *uncertainty*.
 1361

1362 **Input-conditional coverage** (which we refer to as *conditional coverage*) requires that, for every
 1363 possible input x , the probability that the prediction set $C(x)$ contains the true class is at least $1 - \alpha$:

$$1364 \forall x \in \text{supp}(X) : \mathbb{P}[Y_{n+1} \in C(X_{n+1}) \mid X_{n+1} = x] \geq 1 - \alpha. \quad (13)$$

1366 This definition is agnostic to the input distribution and instead enforces a per-instance guarantee.

1367 In contrast, **marginal coverage** provides an average-case guarantee across the data distribution:

$$1369 \mathbb{P}[Y_{n+1} \in C(X_{n+1})] \geq 1 - \alpha. \quad (14)$$

1370 While marginal coverage is easier to attain and is the guarantee provided by standard conformal
 1371 prediction methods, it can hide undercoverage in specific regions of the input space.
 1372

1373 Crucially, conditional coverage implies marginal coverage under any distribution on X , but not vice
 1374 versa. As such, achieving approximate conditional coverage is a desirable but more ambitious goal in
 1375 practice.

1376 B.1 RELATIVE VS. ABSOLUTE UNCERTAINTY

1378 To move toward conditional guarantees, two complementary components are needed: (i) a method
 1379 that ranks uncertainty effectively (relative uncertainty), and (ii) a calibration mechanism to set the
 1380 correct scale (absolute uncertainty).
 1381

1382 **Relative uncertainty** refers to how well the model can identify which instances are more or less
 1383 uncertain. For classification, this is often expressed through metrics like AOROC and AORAC,
 1384 which are invariant under monotonic transformations of the confidence scores. Methods with strong
 1385 relative uncertainty assign higher uncertainty to ambiguous or out-of-distribution samples and lower
 1386 uncertainty where predictions are more certain and reliable.

1387 **Absolute uncertainty**, on the other hand, involves calibrating the scale of predicted confidence. A
 1388 model has a poor absolute scale of uncertainty if it is on average overconfident or underconfident
 1389 averaged over the whole test dataset.

1390 C FURTHER RELATED WORK

1393 C.1 THE PCS FRAMEWORK FOR VERIDICAL DATA SCIENCE

1395 The *Predictability-Computability-Stability* (PCS) framework for veridical data science (Yu, 2020;
 1396 Yu & Barter, 2024) provides a framework for the whole data-science-life-cycle (DSLC). They argue
 1397 that uncertainty in each step of the DSLC needs to be considered. These steps include the problem
 1398 formulation, data collection, exploratory analyses, data pre-processing (e.g., data transformations),
 1399 data cleaning, modeling, algorithm choices, hyper-parameter tuning, interpretation, and even visual-
 1400 ization). They suggest creating an ensemble by applying reasonable perturbations to each judgment
 1401 call across all steps of the DSLC (Yu & Barter, 2024, Chapter 13). (Yu & Barter, 2024, Chapter 13)

1402 ¹²When we write about “calibrated uncertainty”, we more precisely mean *marginally calibrated uncertainty*,
 1403 $\mathbb{P}[Y_{n+1} \in C(X_{n+1})] = 1 - \alpha$, which is orthogonal to adaptivity; in contrast to *input-conditionally calibrated*
 1404 *uncertainty*, $\forall x \in \text{supp}(X) : \mathbb{P}[Y_{n+1} \in C(x) \mid X_{n+1} = x] = 1 - \alpha$, which requires perfect adaptivity.

1404 demonstrates PCS-based uncertainty quantification on a regression problem and poses PCS-based
 1405 uncertainty quantification for classifications as an open problem.
 1406

1407 Agarwal et al. (2025) extend the method from (Yu & Barter, 2024, Chapter 13) to classification and
 1408 suggest additional improvements: The majority of the calibration literature (including Yu & Barter
 1409 (2024)) removes part of the training data to leave it as calibration data, whereas Agarwal et al. (2025)
 1410 give each ensemble member a bootstrap sample of the *whole* training data and only uses out-of-bag
 1411 data for calibration, leading to improved data efficiency. This approach also increases the amount of
 1412 data used for calibration. We believe that our method could potentially benefit even more from such
 1413 an enlarged amount of calibration data, since our method calibrates 2 constants c_1 and c_2 instead of 1
 1414 constant on the calibration data. Therefore, it would be an interesting future work to combine this
 1415 out-of-bag technique with JUCAL. As JUCAL can be applied to any ensemble of soft classifiers,
 1416 JUCAL can also be applied to ensembles obtained via the PCS framework (the out-of-bag technique
 1417 would only require a small change in the code).

1418 We note that while (Yu & Barter, 2024, Chapter 13) and Agarwal et al. (2025) do not explicitly
 1419 model aleatoric uncertainty for the case of regression, Agarwal et al. (2025) do explicitly model
 1420 aleatoric uncertainty for classification by directly averaging the *soft* labels. However, they only use
 1421 one calibration constant to calibrate their predictive sets, which does not allow them to compensate
 1422 for a possible imbalance between aleatoric and epistemic uncertainty.¹³ In contrast, our data-driven
 1423 joint calibration method decides automatically in a data-driven way how to combine aleatoric and
 1424 epistemic uncertainty.

1425 Agarwal et al. (2025) conducted a large-scale empirical evaluation, showing the strong empirical
 1426 performance of PCS-based uncertainty quantification on real-world datasets. For these experiments,
 1427 they focused only on a smaller part of the DSLC than Yu & Barter (2024), i.e., they did not consider
 1428 uncertainty from data-cleaning choices and other human judgment calls. In our experiments, we
 1429 follow the setting from Arango et al. (2024), where some judgement calls (such as the choice
 1430 over different pre-trained LLMs, different LoRA-ranks, and learning rate) are explicitly considered,
 1431 while we also ignore other steps of the DSLC. For real-world data-science projects, we recommend
 1432 combining the full PCS framework (considering all steps of the DSLC) from Yu (2020); Yu & Barter
 1433 (2024) with the techniques from Agarwal et al. (2025) with JUCAL.¹⁴

1434 C.2 UNCERTAINTY CALIBRATION TECHNIQUES IN THE LITERATURE

1435 *CLEAR* (Azizi et al., 2025) uses two constants to calibrate epistemic and aleatoric uncertainty for
 1436 regression tasks, while leaving classification explicitly as open future work. For regression, once you
 1437 have good uncalibrated estimators for epistemic and aleatoric uncertainty, additively combining is
 1438 more straightforward than for classification, i.e., they simply add the width of the scaled intervals.
 1439 JUCAL’s defining equation (2) is a non-trivial extension of this, as for classification, we cannot
 1440 simply add predictive sets or predictive distributions. *CLEAR* does not give predictive distributions
 1441 but predictive intervals, using the pinball loss and a constraint on the marginal coverage to calibrate
 1442 the two constants. In contrast, JUCAL can output both predictive distributions and predictive sets and
 1443 uses the NLL to calibrate the two constants. *CLEAR* significantly outperforms recent state-of-the-art
 1444 models for uncertainty quantification in regression, such as CQR, PCS-UQ, and UACQR, across
 1445 17 real-world datasets, demonstrating that the conceptual idea of using two calibration constants
 1446 to calibrate epistemic and aleatoric uncertainty goes beyond JUCAL’s success in classification,
 1447 suggesting the fundamental importance of correctly combining epistemic and aleatoric uncertainty
 1448 across various learning problems. In the future, we want to extend JUCAL’s concept to LLM chatbots.
 1449

1450 ¹³Through the lens of epistemic and aleatoric uncertainty, (Yu & Barter, 2024, Subsection 13.1.2) only focuses
 1451 on aleatoric uncertainty when computing the AUROC since they only use the soft labels of a single model,
 1452 whereas (Yu & Barter, 2024, Subsection 13.2.2) mainly focuses on epistemic uncertainty since they only use the
 1453 *hard* (i.e., binary) labels of the ensemble members, and Agarwal et al. (2025) combines aleatoric and epistemic
 1454 uncertainty in the fixed ratio 1:1 since they average the soft labels.

1455 ¹⁴Note that while Yu (2020); Yu & Barter (2024) were very thoroughly vetted across many real-world
 1456 applications with an actual impact to practice (Wu et al., 2016; Wang et al., 2023; Basu et al., 2018; Dwivedi
 1457 et al., 2020), Agarwal et al. (2025) and JUCAL are more recent works which have so far only shown their
 1458 success on benchmark datasets without being vetted in the context of the full data-science-life-cycle. Therefore,
 1459 the second part of the recommendation should be taken with a grain of salt.

1458 The concept of post-hoc calibration was formalized for binary classification by Platt (1999) with
 1459 the two-parameter *Platt scaling*. This idea was later adapted for the multi-class setting by Guo et al.
 1460 (2017), who introduced *temperature scaling*, a simple single-parameter approach. Through a large-
 1461 scale empirical study, they demonstrated that modern neural networks are often poorly calibrated and
 1462 showed that this method was highly effective at correcting this. As a result, temperature scaling has
 1463 become a common baseline for this task. Notably, some modern works still refer to this one-parameter
 1464 method as Platt scaling, acknowledging its intellectual lineage. Beyond single-model calibration,
 1465 these techniques are crucial for methods like Deep Ensembles, which improve uncertainty estimates
 1466 by averaging predictions from multiple models (Lakshminarayanan et al., 2017). For ensembles, a
 1467 naive approach is to calibrate each model’s outputs before averaging them. However, Rahaman et al.
 1468 (2021) have shown that a *pool-then-calibrate* strategy is more effective.
 1469

1470 Ahdritz et al. (2025) suggest a higher-order calibration algorithm for decomposing uncertainty into
 1471 epistemic and aleatoric uncertainty with provable guarantees. However, in contrast to our algorithm,
 1472 they assume that multiple labels y per training input point x are available during training. For many
 1473 datasets, such this is not the case. E.g., for the datasets we used in our experiment, we have only one
 1473 label per input datapoint x .

1474 Javanmardi et al. (2025) assumes that they have access to valid credal sets, i.e., subsets $\tilde{C}(x)$ of
 1475 the simplex Δ_{K-1} that definitely contain the true probability vector $p(x)$. Under this assumption,
 1476 they can trivially obtain predictive sets with a conditional coverage at least as large as the target
 1477 coverage. However, in practice, without strong assumptions, it is impossible to obtain such valid
 1478 credal sets $\tilde{C}(x) \subsetneq \Delta_{K-1}$. Furthermore, even if one had access to such credal sets, their predictive
 1479 sets would be poorly calibrated as they are strongly biased towards over-covering, resulting in
 1480 large predictive sets (which can be very far from optimal from a Bayesian perspective). They also
 1481 conduct a few experiments on real-world datasets with approximate credal sets, where they achieve
 1482 (slightly) higher conditional coverage than other methods, but at the cost of having larger sets than
 1483 their competitor in every single experiment. They did not show a single real-world experiment
 1484 where they Pareto-outperform APS in terms of coverage and set size. In contrast, JUCAL Pareto-
 1485 outperforms both APS and pool-then-calibrate-APS in terms of coverage and set size in 22 out of
 1486 24 experiments. Additionally the method proposed by Javanmardi et al. (2025) is computationally
 1487 much more expensive than JUCAL. In contrast to JUCAL, the method proposed by Javanmardi et al.
 1488 (2025) does not adequately balance the ratio of epistemic and aleatoric uncertainty. In principle, one
 1489 could apply the method by Javanmardi et al. (2025) on top of JUCAL.

1490 Rossellini et al. (2024) introduced UACQR, a method that combines aleatoric and epistemic un-
 1491 certainty in a conformal way by calibrating only the epistemic uncertainty for regression tasks,
 1492 while keeping classification open for future work. They achieve good empirical results, but are
 1493 outperformed by CLEAR (Azizi et al., 2025) which achieves even better results.

1494 Cabezas et al. (2025) introduces EPISCORE, a conformal method to combine epistemic and aleatoric
 1495 uncertainty using Bayesian techniques. However, they focus mainly on regression, where they achieve
 1496 good results but are outperformed by CLEAR (Azizi et al., 2025). They also extent their method to
 1497 classification settings and in (Cabezas et al., 2025, Appendix A.2) they also conduct one preliminary
 1498 experiment for classification, where they achieve better coverage with larger set sizes, but they don’t
 1499 report how much larger the set size is on average.

1500 Karimi & Samavi (2024) introduces a conformal version of Evidential Deep Learning.

1501 C.3 PRE-CALIBRATED UNCERTAINTY QUANTIFICATION IN THE LITERATURE

1502 *Bayesian neural networks* (BNNs) MacKay (1992); Neal (1996) offer a principled Bayesian frame-
 1503 work for quantifying both epistemic and aleatoric uncertainty through the placement of a prior
 1504 distribution on network weights. However, the ratio of estimated epistemic and aleatoric uncertainty
 1505 in BNNs is highly sensitive to the choice of prior. Consequently, we advocate applying JUCAL
 1506 to an already trained BNN, calibrating both uncertainty types via scaling factors c_1 and c_2 with
 1507 negligible additional computational overhead. While exact Bayesian inference in large BNNs is
 1508 computationally intractable, numerous approximation techniques have been proposed, including
 1509 variational inference (Graves, 2011; Blundell et al., 2015; Gal & Ghahramani, 2015; Bakhouya et al.,
 1510 2024; Cong et al., 2024; Shen et al., 2024), Laplace approximations (Ritter et al., 2018; Daxberger
 1511 et al., 2021), probabilistic propagation methods (Hernández-Lobato & Adams, 2015; Nguyen &

1512 Goulet, 2022b;a), and ensembles or heuristics (Lakshminarayanan et al., 2017; Maddox et al., 2019;
 1513 Heiss et al., 2021), with MCMC methods often serving as a gold standard for evaluation (Neal,
 1514 1996; Wenzel et al., 2020).¹⁵ JUCAL can be applied to all these approximated BNNs as a simple
 1515 post-processing step.

1516 *TabPFN* (Hollmann et al., 2023) and in particular *TabPFN v2* (Hollmann et al., 2025) achieve
 1517 remarkable results with their predictive uncertainty across a wide range of tabular real-world datasets
 1518 (Ye et al., 2025). *TabPFN* (v2) is a fully Bayesian method based on a very well-engineered, highly
 1519 realistic prior. A few years ago, doing Bayesian inference for such a sophisticated prior would have
 1520 been considered computationally intractable. However, they managed to train a foundational model
 1521 that can do such a Bayesian inference at an extremely computational cost within a single forward
 1522 pass through their transformer. Their method directly outputs predictive uncertainty, which already
 1523 contains both epistemic and aleatoric uncertainty. Since their prior contains a wide variety of infinitely
 1524 many different realistic noise structures and function classes, we expect their method to struggle
 1525 less with imbalances between epistemic and aleatoric uncertainty. Recently *TabPFN-TS*, a slightly
 1526 modified version of *TabPFN* v2 was also able to outperform many state-of-the-art times models (Hoo
 1527 et al., 2025). However, they come with 2 limitations compared to our method:

1528

- 1529 1. *TabpPFNv2* can only deal with datasets of at most 10,000 samples and 500 features. The
 1530 limited number of samples was to some extent mitigated by *TabPFN* v2*-DT (Ye et al.,
 1531 2025). However, for high dimensional images or language datasets, such as the language
 1532 datasets from our experimental setting, *TabPFN* is not applicable. In contrast, our method
 1533 easily scales up to arbitrarily large models and is compatible with all modalities of input
 1534 data, no matter if you want to classify videos, text, sound, images, graphs, or whatever.
- 1535 2. *TabPFN* directly outputs the total predictive uncertainty without disentangling it into aleatoric
 1536 and epistemic uncertainty. And we don't see any straightforward way to do so. However, in
 1537 some applications it is crucial to understand which proportion of the uncertainty is epistemic
 1538 and how much of it is aleatoric. Our joint calibration method explicitly entangles the
 1539 predictive distribution into these 2 sources of uncertainty.

1540

1541 Yet another Bayesian deep learning framework is presented by (Kendall & Gal, 2017). Again they
 1542 place a prior over weights and alter the output of the classification task, such that the network outputs
 1543 both the mean logits and the aleatoric noise parameter $\hat{z}_t = f_\theta(\mathbf{x}) + \sigma_\theta(\mathbf{x}) \varepsilon_t$, $\varepsilon_t \sim \mathcal{N}(0, I)$.
 1544 The posterior, being intractable, needs to be approximated. With Monte Carlo integration, the
 1545 posterior predictive distribution becomes $p(y = c \mid \mathbf{x}_{n+1}, \mathcal{X}, \mathcal{Y}) \approx \frac{1}{T} \sum_{t=1}^T \text{Softmax}\left(f_{\theta_t}(\mathbf{x}_{n+1}) +\right.$
 $\left.\sigma_{\theta_t}(\mathbf{x}_{n+1}) \varepsilon_t\right)_c$, where each θ_t is a sample from $q(\theta)$. Aleatoric uncertainty is directly estimated
 1547 through the fitted σ_θ and epistemic uncertainty through using the posterior distribution. Again this
 1548 framework does not yield inherently well calibrated results.

1549
 1550 Evidential deep learning (EDL) as presented by Sensoy et al. (2018) is a probabilistic framework
 1551 for quantifying uncertainty in classification task specifically. EDL explicitly models a higher-order
 1552 distribution, more specifically the Dirichlet distribution, which defines a probability density over the
 1553 K -dimensional unit simplex Lin (2016). EDL directly fits the α parameters of a Dirichlet distribution
 1554 such that: $\alpha_k = f_k(\mathbf{X} \mid \boldsymbol{\theta}) + 1$, where f_k denotes the output for class k , \mathbf{X} is the input, and $\boldsymbol{\theta}$ are
 1555 the model parameters. Uncertainty can then be estimated utilizing the Dirichlet distribution and its
 1556 properties. Karimi & Samavi (2024) introduces a conformal version of EDL.

1557 Malinin & Gales (2018) work on Prior Networks (PNs) entangles uncertainty estimation into *data*
 1558 *uncertainty*, *model uncertainty*, and *distributional uncertainty*. In most methods for estimating
 1559 uncertainty, the distributional uncertainty is not explicitly modeled and will also not be explicitly
 1560 studied in this work. Dirichlet Prior Network (DPN) is one implementation that explicitly models the
 1561 higher-order distribution as a Dirichlet distribution.

1562
 1563

1564 ¹⁵Interestingly, there are theoretical (Heiss et al., 2022; Heiss, 2024) and empirical (Wenzel et al., 2020)
 1565 studies suggesting that some of these approximations might actually provide superior estimates compared to
 their exact counterparts, due to poor choices of priors, such as i.i.d. Gaussian priors, in certain settings.

1566
1567
1568
1569
1570
1571

1572 Figure 11: Desired behavior of a higher-order distribution over the simplex in a ternary classification
1573 task. Sub-figure (a) almost **no aleatoric or epistemic uncertainty**, (b) shows almost **only aleatoric uncertainty**,
1574 (c) shows almost **only epistemic uncertainty** and (d) shows **both aleatoric and epistemic uncertainty**
1575

D MORE INTUITION ON JOINTLY CALIBRATING ALEATORIC AND EPISTEMIC UNCERTAINTY

1581 To address shortcomings in DEs, we suggest a simple yet powerful calibration method that jointly
1582 calibrates *aleatoric* and *epistemic* uncertainty. We formulate desiderata for calibrated uncertainty,
1583 which motivate the design of our proposed method. Building on these principles, we develop JUCAL
1584 (Algorithm 1) as a structured calibration procedure that satisfies the desiderata by utilizing two
1585 calibration hyperparameters.

D.1 DESIDERATA

1589 To describe the desiderata, we consider the Dirichlet distribution as a distribution over the predicted
1590 class probabilities $\mathbf{p}_i = (p_{0,i}, p_{1,i}, \dots, p_{K-1,i})$. This provides an interpretable representation,
1591 visualized on the 2-dimensional simplex in Figure 11. Calibrated classification methods should satisfy
1592 the following desiderata to yield meaningful predictions.

- 1593 • For *no aleatoric and no epistemic uncertainty*: the model should produce a distribution
1594 with all its mass concentrated at one of the corners of the simplex. This corresponds to a
1595 confident and sharp prediction (visualized in Figure 11(a)).
- 1596 • For *non-zero aleatoric uncertainty but zero epistemic uncertainty*: the model should produce a
1597 distribution concentrated at the center of the simplex. This corresponds to a sharp but
1598 uncertain prediction, indicating that the uncertainty is intrinsic to the data (visualized in
1599 Figure 11(b)).
- 1600 • For *zero aleatoric uncertainty but non-zero epistemic uncertainty*: the model should produce a
1601 distribution with mass spread across several corners of the simplex. This reflects uncertainty
1602 due to a lack of knowledge and results in a less sharp predictive distribution (visualized in
1603 Figure 11(c)).
- 1604 • For *non-zero aleatoric and non-zero epistemic uncertainty*: the model should produce a
1605 distribution that is spread broadly over the entire simplex, corresponding to high overall
1606 uncertainty and a flat predictive distribution (visualized in Figure 11(d)).

1609 Figure 12 demonstrates how our proposed method (see Appendix D.2) satisfies these desiderata in a
1610 binary classification task.

D.2 JUCAL

1613 To satisfy the desiderata outlined above and to provide high-quality, point-wise predictions along
1614 with calibrated uncertainty estimates, we introduce JUCAL, summarized in Algorithm 1. Note that
1615 our actual implementation of JUCAL (Algorithm 2) is slightly more advanced than Algorithm 1.
1616 Instead of the naive grid search, we first optimize over a coarse grid and then optimize over a finer
1617 grid locally around the winner of the first grid search.

1618 JUCAL takes as input a set of trained ensemble members $f_m \in \mathcal{E}$ and a validation set \mathcal{D}_{val} , and returns
1619 the optimal calibration hyperparameters (c_1^*, c_2^*) . The implementation presented in Algorithm 1 is

1620 based on grid search and additionally requires candidate values for the calibration hyperparameters
 1621 c_1 and c_2 .¹⁶
 1622

1623 For inference, JUCAL computes calibrated predictive probabilities using:

$$1624 \quad 1625 \quad 1626 \quad \bar{p}(y | x; c_1^*, c_2^*) = \frac{1}{M} \sum_{m=1}^M \text{Softmax} \left((1 - c_2^*) \cdot \frac{1}{M} \sum_{m'=1}^M \frac{f_{m'}(x)}{c_1^*} + c_2^* \cdot \frac{f_m(x)}{c_1^*} \right). \quad (15)$$

1627
 1628 See Figure 13 for more intuition on how JUCAL works.

1629 JUCAL (Algorithm 1) requires the outputs of a trained deep ensemble. If such members are not
 1630 already available, a DE can be trained following the procedure described by (Lakshminarayanan et al.,
 1631 2017). Optionally, ensemble member selection can be performed on the validation or calibration set,
 1632 as detailed in Algorithm 3. Notably, our joint calibration method does not require access to the model
 1633 parameters or training inputs, it only relies on the softmax outputs of the ensemble members and the
 1634 corresponding labels on the validation and test sets.

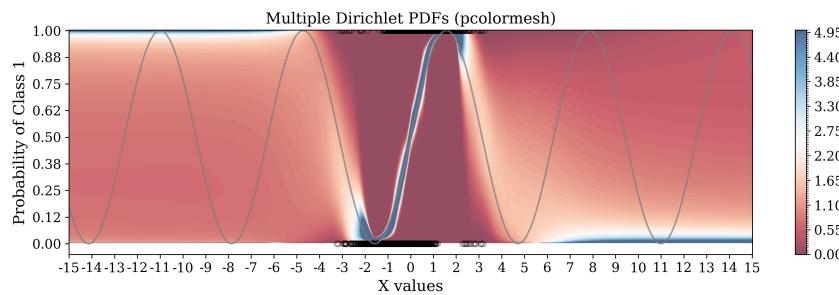
1635 Different values for the calibration parameters c_1 and c_2 affect the calibration in different ways.
 1636 When $c_1 = 1$ and $c_2 = 1$, the distribution remains unchanged. When $c_1 < 1$, the adjusted Dirichlet
 1637 distribution should concentrate more mass toward the corners of the simplex, thereby reducing
 1638 *aleatoric* uncertainty. In contrast, when $c_1 > 1$, the adjusted Dirichlet distribution should shift toward
 1639 the center of the simplex.

1640 The parameter c_2 models the variability across the ensemble members. When $c_2 > 1$ the adjusted
 1641 Dirichlet distribution should increase its variance spread mass across multiple corners of the simplex,
 1642 reflecting higher *epistemic* uncertainty. In contrast, when $c_2 < 1$ the *epistemic* uncertainty decreases.
 1643 There are cases where changing c_2 does not affect the higher-order distribution: When all ensemble
 1644 members produce identical logits, the output remains a Dirac delta.

1645 In Figure 14, we empirically compute the influence of c_1 and c_2 . In Figure 14, we see in the second
 1646 row of subplots that the (average) aleatoric uncertainty is monotonically increasing with c_1 and that
 1647 large values of c_2 can reduce the aleatoric uncertainty. In the third row of subplots, we can see that
 1648 the (average) epistemic uncertainty is monotonically increasing with c_2 and that large values of c_1
 1649 can reduce the epistemic uncertainty. In the fourth row of subplots, we can see that the (average) total
 1650 uncertainty is monotonically increasing in c_1 and c_2 . When jointly studying the last three rows of
 1651 subplots, we can see that we can change the ratio of epistemic and aleatoric uncertainty (even without
 1652 changing the total uncertainty) when increasing one of the two constants while decreasing the other
 1653 one.

1654

1655 ¹⁶While Algorithm 1 uses grid search for clarity and reproducibility, the parameters (c_1^*, c_2^*) can alterna-
 1656 tively be found via a two-stage grid search (Algorithm 2), gradient-based optimization methods, or any other
 1657 optimization algorithm.



1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670 Figure 12: **Illustrating the point-wise predicted Dirichlet distributions** in a 1D binary classification
 1671 task with class probabilities defined by $p(y = 1 | x) = 0.5 + 0.5 \sin(x)$, where $x \sim \mathcal{N}(0, 1)$
 1672 (visualized as green line) and $y \sim \text{Bernoulli}(p(y = 1 | x))$. For each value $x \in [-15, 15]$, we
 1673 visualize the density of the corresponding Dirichlet distribution over the interval $[0, 1]$, with black
 circles indicating the training data.

1674

1675

1676

1677

1678

1679

1680

1681

Algorithm 2: JUCAL (coarse-to-fine grid search). See Algorithm 1 for a simplified version.1682 **Input** :Ensemble $\mathcal{E} = (f_1, \dots, f_M)$, calibration set \mathcal{D}_{cal} (e.g., $\mathcal{D}_{\text{cal}} = \mathcal{D}_{\text{val}}$), **coarse grid**
1683 C^{coarse} for candidate values (c_1, c_2) , **fine grid size** K 1684 1 Initialize $\text{best_NLL}^{\text{coarse}} \leftarrow \infty$ and (\hat{c}_1, \hat{c}_2) arbitrarily1685 2 **foreach** $(c_1, c_2) \in C^{\text{coarse}}$ **do**1686 3 $\text{current_NLL} \leftarrow 0$ 1687 4 **foreach** $(x, y) \in \mathcal{D}_{\text{cal}}$ **do**1688 5 **foreach** $m = 1, \dots, M$ **do**1689 6 $f_m^{\text{TS}}(x) \leftarrow f_m(x)/c_1$

▷ Temperature scaling

1690 7 **foreach** $m = 1, \dots, M$ **do**1691 8 $f_m^{\text{JUCAL}}(x) \leftarrow (1 - c_2) \cdot \frac{1}{M} \sum_{m'=1}^M f_{m'}^{\text{TS}}(x) + c_2 \cdot f_m^{\text{TS}}(x)$

▷ Diversity adjustment

1692 9 $\bar{p}^{\text{JUCAL}}(x) \leftarrow \frac{1}{M} \sum_{m=1}^M \text{Softmax}(f_m^{\text{JUCAL}}(x))$ 1693 10 $\text{current_NLL} \leftarrow \text{current_NLL} + \text{NLL}(\bar{p}^{\text{JUCAL}}(x), y)$ 1694 11 **if** $\text{current_NLL} < \text{best_NLL}^{\text{coarse}}$ **then**1695 12 $\text{best_NLL}^{\text{coarse}} \leftarrow \text{current_NLL}$ 1696 13 $(\hat{c}_1, \hat{c}_2) \leftarrow (c_1, c_2)$

1697

1698 14 Let $c_{1,\min}$ be the minimum c_1 in C^{coarse} and $c_{2,\min}$ the minimum c_2 in C^{coarse} .1699 15 $c_1^{\text{low}} \leftarrow \max\{\hat{c}_1 - 0.2\hat{c}_1, c_{1,\min}\}$, $c_1^{\text{high}} \leftarrow \hat{c}_1 + 0.2\hat{c}_1$ 1700 16 $c_2^{\text{low}} \leftarrow \max\{\hat{c}_2 - 0.2\hat{c}_2, c_{2,\min}\}$, $c_2^{\text{high}} \leftarrow \hat{c}_2 + 0.2\hat{c}_2$ 1701 17 Define c_1^{fine} as K evenly spaced values in $[c_1^{\text{low}}, c_1^{\text{high}}]$ and c_2^{fine} as K evenly spaced values in $[c_2^{\text{low}}, c_2^{\text{high}}]$.1702 18 Initialize $\text{best_NLL} \leftarrow \infty$ and (c_1^*, c_2^*) arbitrarily1703 19 **foreach** $c_1 \in c_1^{\text{fine}}$ **do**1704 20 **foreach** $c_2 \in c_2^{\text{fine}}$ **do**1705 21 $\text{current_NLL} \leftarrow 0$ 1706 22 **foreach** $(x, y) \in \mathcal{D}_{\text{cal}}$ **do**1707 23 **foreach** $m = 1, \dots, M$ **do**1708 24 $f_m^{\text{TS}}(x) \leftarrow f_m(x)/c_1$ 1709 25 **foreach** $m = 1, \dots, M$ **do**1710 26 $f_m^{\text{JUCAL}}(x) \leftarrow (1 - c_2) \cdot \frac{1}{M} \sum_{m'=1}^M f_{m'}^{\text{TS}}(x) + c_2 \cdot f_m^{\text{TS}}(x)$ 1711 27 $\bar{p}^{\text{JUCAL}}(x) \leftarrow \frac{1}{M} \sum_{m=1}^M \text{Softmax}(f_m^{\text{JUCAL}}(x))$ 1712 28 $\text{current_NLL} \leftarrow \text{current_NLL} + \text{NLL}(\bar{p}^{\text{JUCAL}}(x), y)$ 1713 29 **if** $\text{current_NLL} < \text{best_NLL}$ **then**1714 30 $\text{best_NLL} \leftarrow \text{current_NLL}$ 1715 31 $(c_1^*, c_2^*) \leftarrow (c_1, c_2)$

1716

1717 **return** : (c_1^*, c_2^*)

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

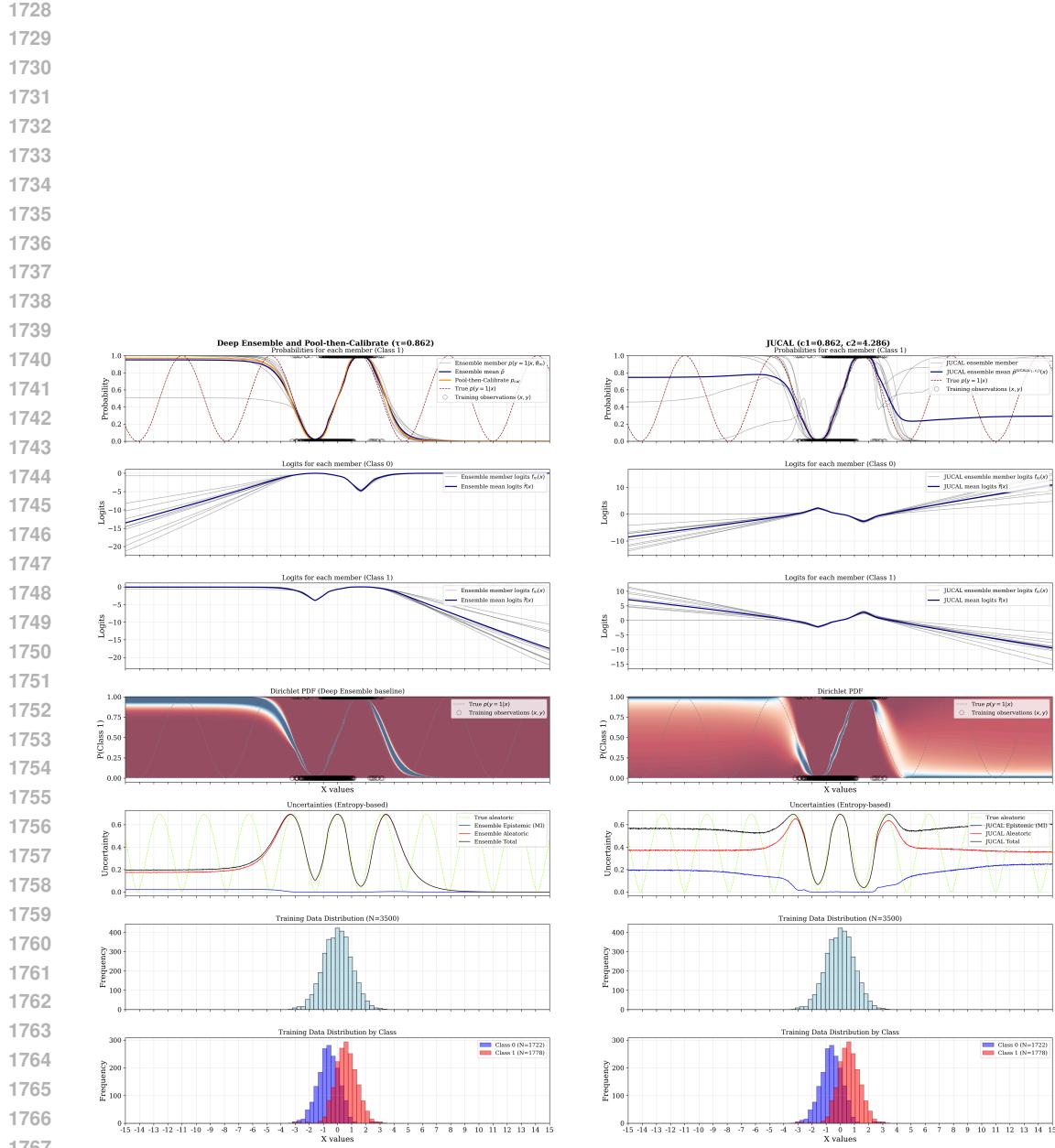


Figure 13: The same ensemble without and with JUCAL calibration. The logit diversity increases as you move further OOD, but the probability-diversity can simultaneously decrease if the logit diversity does not grow fast enough. JUCAL can scale the logit-diversity via c_2 to prevent this.

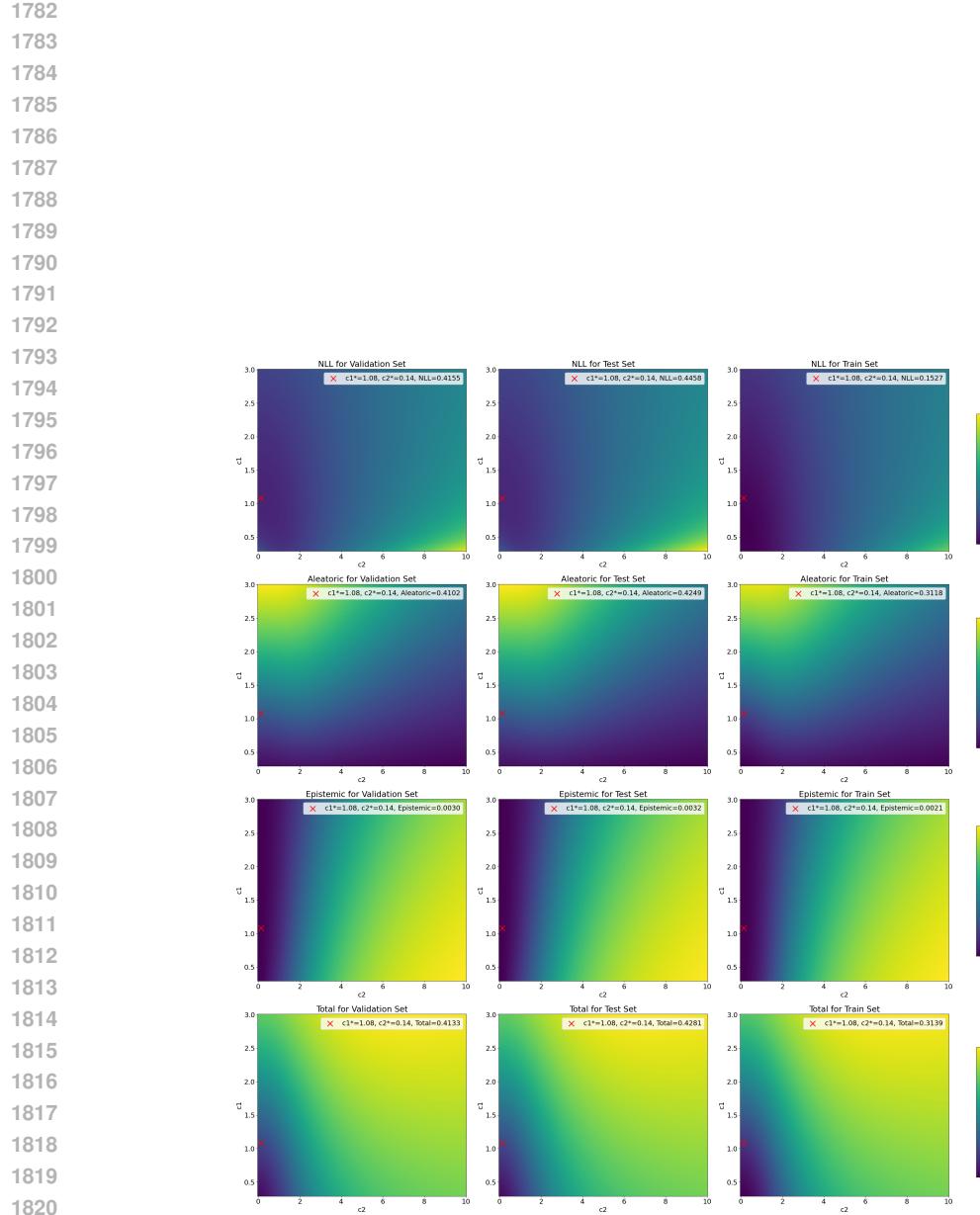


Figure 14: For an ensemble consisting of 5 CNNs trained on CIFAR-10, we compute multiple quantities on the training, validation, and test datasets for multiple different values of c_1 and c_2 . We used Equations (6) and (7) from Appendix A.2.1 to compute aleatoric, epistemic, and total uncertainty, while there would be other alternatives too (see Appendix A.2).

1836
1837

E EXTENDED VERSIONS OF METHOD

1838
1839

E.1 IMPLEMENTATION OF JUCAL WITH REDUCED COMPUTATIONAL COSTS

1840
1841
1842
1843
1844
1845

Since the computational costs of JUCAL are already almost negligible compared to the training costs (even compared to the LoRA-fine-tuning costs) (see Appendix H), one could simply implement JUCAL as suggested in Algorithm 1. However, we implemented a computationally even cheaper version of JUCAL in Algorithm 2, where we, in a first step, optimize c_1, c_2 on a coarse grid, and then, in a second step, locally refine c_1, c_2 by optimizing them again over a finer grid locally around the solution from the first step.

1846
1847

E.2 ENSEMBLE SLECTION

1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

Within the PCS framework (Yu, 2020; Yu & Barter, 2024), model selection techniques support the *Predictability* principle, serving as a statistical reality check to ensure that the selected ensemble is well-aligned with empirical results. It follows from common sense that we only want to add ensemble members who positively contribute to the repetitive performance of our ensemble. For example, Yu (2020); Yu & Barter (2024); Agarwal et al. (2025) suggest removing all the ensemble members with hyperparameters that result in poor predictive validation performance. Also, the experiments Arango et al. (2024) empirically suggest that using only the top M ensemble members from the validation dataset typically performs better on the test dataset than using all ensemble members or only the top 1 ensemble members. However, Arango et al. (2024) also empirically show that Greedy-50, as suggested by Caruana et al. (2004; 2006), achieves the best test-NLL across all 12 LLM-datasets among multiple considered ensembling strategies (Single-Best, Random-5, Random-50, Top-5, Top-50, Model Average, Greedy-5, and Greedy-50). Therefore, we used Greedy-50 and Greedy-5 for ensemble selection for the experiments in Section 5. In Section 5, we applied JUCAL directly on the ensembles selected by Greedy-50 and Greedy-5. In the following, we propose we propose three modifications of Greedy- M .

1863
1864
1865
1866
1867
1868
1869
1870
1871

Algorithm 3 presents a calibration-aware greedy ensemble selection strategy that incrementally constructs an ensemble to minimize the mean negative log-likelihood (NLL_{mean}). Starting from a temperature-scaled set of individually strong models, the algorithm selects an initial subset based on their individual validation-NLL performance, then applies the JUCAL procedure to jointly calibrate this subset by optimizing (c_1, c_2) . New members are greedily added based on their marginal improvement to ensemble-level NLL_{mean} , with optional recalibration after each addition when mode = “r.c.” is enabled. We call this algorithm *Greedy- M re-calibrate once* (GM r.c.o.) if mode = “r.c.o.” is selected and *Greedy- M re-calibrate* (GM r.c.) if mode = “r.c.” is selected. This process encourages the construction of a diverse yet sharp ensemble, with calibration tightly integrated into the selection loop.

1872
1873
1874
1875
1876
1877
1878
1879
1880
1881

We designed this ensembling strategy to improve upon our main implementation of JUCAL (Algorithm 1). The key motivation for Algorithm 3 is the following: Plain Greedy- M selects the ensemble such that it minimizes the validation-NLL for $c_1 = 1, c_2 = 1$, but JUCAL will change c_1, c_2 afterwards. Therefore Algorithm 3 attempts to approximately account already to some extent for the fact that c_1, c_2 can be different from one, when JUCAL is applied. In Appendix F we empirically compare both versions of Algorithm 3 to Greedy- M . Algorithm 3 can partially even further improve JUCAL’s results; however, the slightly refined ensemble selections seem rather negligible compared to the magnitude of improvement from JUCAL itself. It would be interesting future work to apply JUCAL also every time directly after Line 20 in Algorithm 3 to fully adjust the ensemble selection to JUCAL.

1882
1883
1884
1885
1886
1887
1888
1889

Furthermore, we also propose a simple yet slightly different selection strategy in comparison to Greedy-50 to select *Greedy-5 (unique)*. Algorithm 4 presents how *Greedy-5 (unique)* members are selected by first initializing an empty ensemble and then iteratively adding the model that yields the greatest reduction in mean negative log-likelihood (NLL) on the validation set. This process continues until five *unique* ensemble members have been selected, regardless of the total number of additions. In contrast to Greedy-50, which continues for a fixed total number of M^* selections, *Greedy-5 (unique)* terminates early once the target number of distinct models is reached, but we have not included it in our experiments.

Algorithm 3: Greedy- M re-calibrated (once) ensemble selection based on JUCAL

Input : Ensemble $\mathcal{E} = \{f_1, \dots, f_M\}$, validation set \mathcal{D}_{val} , target size M^* , N_{init} , $\text{mode} \in \{\text{"r.c."}, \text{"r.c.o."}\}$

1 Initialize best NLL $\leftarrow \infty$ and $c_1'^* \leftarrow \text{arbitrary}$

▷ Temperature scaling

2 **foreach** c_1' in grid **do**

3 Set current NLL $\leftarrow 0$

4 **foreach** $(x, y) \in \mathcal{D}_{\text{val}}$ **do**

5 **foreach** $m = 1, \dots, M$ **do**

6 Compute $f_m^{\text{TS}}(x) \leftarrow f_m(x)/c_1'$

7 Compute $\bar{p}(x; c_1') \leftarrow \frac{1}{M} \sum_{m=1}^M \text{Softmax}(f_m^{\text{TS}}(x))$
8 current NLL \leftarrow current NLL + NLL($\bar{p}(x; c_1')$, y)

9 **if** current NLL $<$ best NLL **then**

10 Update best NLL \leftarrow current NLL and $c_1'^* \leftarrow c_1'$

11 Select top N_{init} models with lowest NLL to form $\mathcal{E}_{\text{init}}$

▷ Initial ensemble selection

12

13 Apply Algorithm 1 to $\mathcal{E}_{\text{init}}$ \rightarrow obtain (c_1^*, c_2^*)

▷ Run JUCAL on initial subset

14

15 Initialize $\mathcal{E} \leftarrow \mathcal{E}_{\text{init}}$ and best NLL $\leftarrow \text{NLL}_{\text{mean}}(\mathcal{E}; c_1^*, c_2^*)$

▷ Greedy forward selection

16 **while** $|\mathcal{E}| < M^*$ **do**

17 **foreach** $f_m \in \{f_1, \dots, f_M\} \setminus \mathcal{E}$ **do**

18 Let $\mathcal{E}' \leftarrow \mathcal{E} \cup \{f_m\}$

19 **foreach** $(x, y) \in \mathcal{D}_{\text{val}}$ **do**

20 **foreach** $f_m \in \mathcal{E}'$ **do**

21 Compute $f_m^{\text{TS}}(x) \leftarrow f_m(x)/c_1^*$

22 Compute $f_m^{\text{JUCAL}}(x) \leftarrow (1 - c_2^*) \cdot \frac{1}{|\mathcal{E}'|} \sum f_{m'}^{\text{TS}}(x) + c_2^* \cdot f_m^{\text{TS}}(x)$

23 Compute $\bar{p}(x; c_1^*, c_2^*) \leftarrow \frac{1}{|\mathcal{E}'|} \sum \text{Softmax}(f_m^{\text{JUCAL}}(x))$

24 Accumulate NLL($\bar{p}(x; c_1^*, c_2^*)$, y)

25 Store $\text{NLL}_{\text{mean}}(\mathcal{E}')$

26 Identify f_{m^*} giving lowest NLL_{mean}

27 **if** NLL improves **then**

28 $\mathcal{E} \leftarrow \mathcal{E} \cup \{f_{m^*}\}$

29 Update best NLL $\leftarrow \text{NLL}_{\text{mean}}(\mathcal{E}; c_1^*, c_2^*)$

30 **if** mode = "r.c." **then**

31 Apply Algorithm 1 to \mathcal{E} \rightarrow obtain (c_1^*, c_2^*)

▷ Run JUCAL on updated subset

32 **else**

33 **break**

▷ No further improvement

34 **return :** Ensemble set \mathcal{E}

35

36

37

38

39

40

41

42

43

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

Algorithm 4: Greedy-5 (unique) ensemble selection with unique members (simple extension of Greedy-M in (Arango et al., 2024)).

1963 **Input :** Ensemble $\mathcal{E} = \{f_1, \dots, f_M\}$, validation set \mathcal{D}_{val} , $m = 5$ 1964 1 Initialize $\mathcal{E} \leftarrow \emptyset$, $\text{NLL}_{\text{best}} \leftarrow \infty$ 2 **for** $t = 1$ to $T \gg t$ **do**3 **if** $|\mathcal{E}| \geq m$ **then**4 **break**5 $f_{\text{best}} \leftarrow \text{None}$ 6 **foreach** $f_j \in \mathcal{R}$ **do**7 $\mathcal{E}' \leftarrow \mathcal{E} \cup \{j\}$ 8 Compute $\bar{p}(x) \leftarrow \frac{1}{|\mathcal{E}'|} \sum_{j' \in \mathcal{E}'} \text{Softmax}(f_{j'}(x))$ 9 Compute $\text{NLL} \leftarrow -\frac{1}{|\mathcal{D}_{\text{val}}|} \sum_{(x,y) \in \mathcal{D}_{\text{val}}} \log \bar{p}_y(x)$ 10 **if** $\text{NLL} < \text{NLL}_{\text{best}}$ **then**11 $\text{NLL}_{\text{best}} \leftarrow \text{NLL}$, $f_{\text{best}} \leftarrow j$ 1979 **return :** Ensemble set \mathcal{E}

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998 F TABLES AND FIGURES

2000 F.1 TABLES WITH DETAILED RESULTS

2002 Tables 2, 4 to 6, 8 and 9 present the experimental results for JUCAL (Algorithm 1) and its extensions,
 2003 using Algorithms 3 and 4. Here, G5 denotes *Greedy-5* and G50 denotes *Greedy-50*. When an
 2004 ensemble strategy is followed by *t.s.*, it indicates temperature scaling via the *pool-then-calibrate*
 2005 approach. The abbreviation *r.c.o.* stands for *re-calibrated once*, where Algorithm 3 is applied
 2006 with mode = “*r.c.o.*”. In contrast, *r.c.* refers to *re-calibrated*, where Algorithm 3 is used with
 2007 mode = “*r.c.*”.

2008 Table 2: FTC-metadataset full: Negative log-likelihood (NLL_{mean} over data splits; mean \pm 95%
 2009 confidence interval half-width) on the full dataset (100%). The best mean is shown in bold, and
 2010 methods not significantly different from the best (paired test, $\alpha = 0.05$) are shaded.

2012 Ensemble Type	DBpedia	News	SST-2	SetFit	Tweet	IMDB
2013 G5	0.0376 \pm 0.0005	0.1682 \pm 0.0048	0.1359 \pm 0.0051	0.5465 \pm 0.0033	0.5095 \pm 0.0089	0.1171 \pm 0.0028
2014 G5 p.t.c.	0.0348 \pm 0.0007	0.1618 \pm 0.0052	0.1208 \pm 0.0040	0.5431 \pm 0.0019	0.5012 \pm 0.0052	0.1018 \pm 0.0022
2015 G5 JUCAL	0.0290 \pm 0.0004	0.1479 \pm 0.0023	0.1143 \pm 0.0032	0.4965 \pm 0.0013	0.4772 \pm 0.0028	0.1005 \pm 0.0018
2016 G50	0.0349 \pm 0.0005	0.1541 \pm 0.0043	0.1137 \pm 0.0039	0.531 \pm 0.0016	0.4763 \pm 0.0052	0.1050 \pm 0.0026
2017 G50 p.t.c.	0.0331 \pm 0.0003	0.1510 \pm 0.0037	0.1130 \pm 0.0035	0.5309 \pm 0.0016	0.4758 \pm 0.0049	0.1042 \pm 0.0019
2018 G50 JUCAL	0.0288 \pm 0.0004	0.1423 \pm 0.0024	0.1090 \pm 0.0032	0.4972 \pm 0.0018	0.4680 \pm 0.0045	0.0983 \pm 0.0017
2019 G50 r.c.o. JUCAL	0.0291 \pm 0.0004	0.1425 \pm 0.0032	0.1087 \pm 0.0031	0.4909 \pm 0.0012	0.4594 \pm 0.0051	0.0974 \pm 0.0017
2020 G50 r.c. JUCAL	0.0290 \pm 0.0005	0.1433 \pm 0.0029	0.1075 \pm 0.0035	0.4938 \pm 0.0014	0.4594 \pm 0.0051	0.0970 \pm 0.0013

2021 Table 3: FTC-metadataset full: Area Under the Rejection-Accuracy Curve (AURAC) over data splits;
 2022 mean \pm 95% confidence interval half-width) on the full dataset (100%). The best mean is shown in
 2023 bold, and methods not significantly different from the best (paired test, $\alpha = 0.05$) are shaded.

2024 Ensemble Type	DBpedia	News	SST-2	SetFit	Tweet	IMDB
2025 G5	0.9895 \pm 0.0	0.981 \pm 0.0011	0.984 \pm 0.0005	0.8915 \pm 0.0008	0.9103 \pm 0.0028	0.9859 \pm 0.0002
2026 G5 p.t.c.	0.9895 \pm 0.0	0.981 \pm 0.0011	0.984 \pm 0.0005	0.8915 \pm 0.0008	0.9103 \pm 0.0027	0.9859 \pm 0.0002
2027 G5 JUCAL	0.9897 \pm 0.0	0.9829 \pm 0.0005	0.9842 \pm 0.0005	0.924 \pm 0.0006	0.9211 \pm 0.0006	0.9858 \pm 0.0002
2028 G50	0.9895 \pm 0.0	0.981 \pm 0.0008	0.9833 \pm 0.0005	0.9023 \pm 0.0006	0.9157 \pm 0.0021	0.9838 \pm 0.0003
2029 G50 p.t.c.	0.9895 \pm 0.0	0.981 \pm 0.0008	0.9833 \pm 0.0005	0.9023 \pm 0.0006	0.9158 \pm 0.0021	0.9838 \pm 0.0003
2030 G50 JUCAL	0.9897 \pm 0.0	0.9835 \pm 0.0005	0.9849 \pm 0.0005	0.9237 \pm 0.0007	0.9236 \pm 0.0014	0.9855 \pm 0.0002
2031 G50 r.c.o. JUCAL	0.9897 \pm 0.0	0.9837 \pm 0.0005	0.985 \pm 0.0004	0.9252 \pm 0.0005	0.9249 \pm 0.0013	0.9859 \pm 0.0002
2032 G50 r.c. JUCAL	0.9897 \pm 0.0	0.9837 \pm 0.0005	0.985 \pm 0.0005	0.9226 \pm 0.0005	0.9244 \pm 0.0015	0.9859 \pm 0.0002

2033 Table 4: FTC-metadataset full: Area under the ROC (AUROC over data splits; mean \pm 95% confi-
 2034 dence interval half-width) on the full dataset (100%). The best mean is shown in bold, and methods
 2035 not significantly different from the best (paired test, $\alpha = 0.05$) are shaded.

2036 Ensemble Type	DBpedia	News	SST-2	SetFit	Tweet	IMDB
2037 G5	0.9998312 \pm 0.0	0.9929 \pm 0.0007	0.9907 \pm 0.0007	0.9144 \pm 0.0008	0.9316 \pm 0.0019	0.9934 \pm 0.0003
2038 G5 p.t.c.	0.9998311 \pm 0.0	0.9929 \pm 0.0007	0.9907 \pm 0.0007	0.9144 \pm 0.0008	0.9316 \pm 0.0018	0.9934 \pm 0.0003
2039 G5 JUCAL	0.9998758 \pm 0.0	0.9943 \pm 0.0003	0.9912 \pm 0.0006	0.9377 \pm 0.0004	0.9383 \pm 0.0010	0.9934 \pm 0.0002
2040 G50	0.9998198 \pm 0.0	0.9931 \pm 0.0005	0.9898 \pm 0.0007	0.9229 \pm 0.0005	0.9369 \pm 0.0014	0.9911 \pm 0.0003
2041 G50 p.t.c.	0.9998199 \pm 0.0	0.9931 \pm 0.0005	0.9898 \pm 0.0007	0.9229 \pm 0.0005	0.9369 \pm 0.0014	0.9911 \pm 0.0003
2042 G50 JUCAL	0.9998785 \pm 0.0	0.9948 \pm 0.0004	0.9917 \pm 0.0007	0.9371 \pm 0.0006	0.9405 \pm 0.0014	0.9930 \pm 0.0004
2043 G50 r.c.o. JUCAL	0.9998632 \pm 0.0	0.9947 \pm 0.0003	0.9918 \pm 0.0006	0.9386 \pm 0.0003	0.9408 \pm 0.0013	0.9934 \pm 0.0002
2044 G50 r.c. JUCAL	0.9998660 \pm 0.0	0.9947 \pm 0.0003	0.9919 \pm 0.0007	0.9362 \pm 0.0003	0.9405 \pm 0.0013	0.9933 \pm 0.0002

2045
 2046
 2047
 2048
 2049
 2050
 2051

2052
2053 Table 5: FTC-metadataset full: Set size over data splits; mean \pm 95% confidence interval half-width
2054 on the full dataset (100%). The best mean is shown in bold, and methods not significantly different
2055 from the best (paired test, $\alpha = 0.05$) are shaded. Here the coverage threshold is 99% for all but
2056 DBpedia where it is 99.9%

Ensemble Type	DBpedia	News	SST-2	SetFit	Tweet	IMDB
G5	1.2941 \pm 0.0395	1.3517 \pm 0.0385	1.1544 \pm 0.0097	2.6642 \pm 0.0228	2.3281 \pm 0.0963	1.0996 \pm 0.0065
G5 p.t.c.	1.3008 \pm 0.0484	1.3591 \pm 0.0424	1.1550 \pm 0.0107	2.6567 \pm 0.0209	2.3313 \pm 0.0993	1.1003 \pm 0.0062
G5 JUCAL	1.2270 \pm 0.0438	1.2490 \pm 0.0161	1.1459 \pm 0.0116	2.2368 \pm 0.0231	2.1286 \pm 0.0722	1.1004 \pm 0.0039
G50	1.3516 \pm 0.0428	1.3436 \pm 0.0313	1.1617 \pm 0.0148	2.6519 \pm 0.0237	2.2280 \pm 0.0507	1.1135 \pm 0.0070
G50 p.t.c.	1.3534 \pm 0.0398	1.3517 \pm 0.0226	1.1621 \pm 0.0175	2.6514 \pm 0.0490	2.2261 \pm 0.0476	1.1140 \pm 0.0092
G50 JUCAL	1.2072 \pm 0.0358	1.2228 \pm 0.0244	1.1385 \pm 0.0094	2.2334 \pm 0.0199	2.0633 \pm 0.0291	1.1005 \pm 0.0051
G50 r.c.o. JUCAL	1.2355 \pm 0.0554	1.2350 \pm 0.0213	1.1397 \pm 0.0112	2.2431 \pm 0.0200	2.0596 \pm 0.0411	1.0995 \pm 0.0020
G50 r.c. JUCAL	1.2259 \pm 0.0382	1.2429 \pm 0.0215	1.1317 \pm 0.0113	2.2766 \pm 0.0279	2.0475 \pm 0.0328	1.0988 \pm 0.0023

2065
2066
2067 Table 6: FTC-metadataset mini (10%): Negative log-likelihood (NLL_{mean} over data splits; mean \pm
2068 95% confidence interval half-width) on the full dataset (100%). The best mean is shown in bold, and
2069 methods not significantly different from the best (paired test, $\alpha = 0.05$) are shaded.

Ensemble Type	DBpedia	News	SST-2	SetFit	Tweet	IMDB
G5	0.0432 \pm 0.0012	0.2321 \pm 0.0031	0.1534 \pm 0.0044	0.4067 \pm 0.002	0.5311 \pm 0.0065	0.1334 \pm 0.0064
G5 p.t.c.	0.0341 \pm 0.0008	0.2050 \pm 0.0026	0.1472 \pm 0.0020	0.4051 \pm 0.0018	0.5294 \pm 0.0062	0.1314 \pm 0.0043
G5 JUCAL	0.0326 \pm 0.0008	0.1966 \pm 0.0026	0.1396 \pm 0.002	0.3684 \pm 0.0018	0.5205 \pm 0.0059	0.1303 \pm 0.0034
G50	0.0352 \pm 0.0009	0.1967 \pm 0.0032	0.1320 \pm 0.0035	0.3594 \pm 0.0014	0.4980 \pm 0.0063	0.1258 \pm 0.0020
G50 p.t.c.	0.0346 \pm 0.0004	0.1964 \pm 0.0031	0.1320 \pm 0.0034	0.3594 \pm 0.0014	0.4979 \pm 0.0061	0.1255 \pm 0.0014
G50 JUCAL	0.0305 \pm 0.0008	0.1899 \pm 0.0028	0.1309 \pm 0.0034	0.3480 \pm 0.0013	0.4979 \pm 0.0059	0.1257 \pm 0.0018
G50 r.c.o. JUCAL	0.0309 \pm 0.0007	0.1911 \pm 0.0035	0.1335 \pm 0.0025	0.3602 \pm 0.0023	0.5038 \pm 0.0048	0.1249 \pm 0.0020
G50 r.c. JUCAL	0.0308 \pm 0.0007	0.1904 \pm 0.0033	0.1345 \pm 0.0028	0.3516 \pm 0.0012	0.4997 \pm 0.0059	0.1248 \pm 0.0018

2078
2079
2080 Table 7: FTC-metadataset mini (10%): Area Under the Rejection-Accuracy Curve (AURAC) over
2081 data splits; mean \pm 95% confidence interval half-width) on the full dataset (100%). The best mean
2082 is shown in bold, and methods not significantly different from the best (paired test, $\alpha = 0.05$) are
2083 shaded.

Ensemble Type	DBpedia	News	SST-2	SetFit	Tweet	IMDB
G5	0.9895 \pm 0.0001	0.9769 \pm 0.0002	0.979 \pm 0.0008	0.9406 \pm 0.0005	0.8982 \pm 0.0026	0.9809 \pm 0.0006
G5 p.t.c.	0.9895 \pm 0.0001	0.9769 \pm 0.0003	0.979 \pm 0.0008	0.9407 \pm 0.0005	0.8981 \pm 0.0026	0.9809 \pm 0.0006
G5 JUCAL	0.9895 \pm 0.0001	0.9779 \pm 0.0003	0.9817 \pm 0.0004	0.95 \pm 0.0005	0.9025 \pm 0.0018	0.9819 \pm 0.0005
G50	0.9893 \pm 0.0001	0.9748 \pm 0.0005	0.9822 \pm 0.0005	0.9503 \pm 0.0003	0.9091 \pm 0.0018	0.9821 \pm 0.0004
G50 p.t.c.	0.9893 \pm 0.0001	0.9748 \pm 0.0005	0.9822 \pm 0.0005	0.9503 \pm 0.0003	0.9091 \pm 0.0018	0.9821 \pm 0.0004
G50 JUCAL	0.9896 \pm 0.0	0.978 \pm 0.0005	0.9828 \pm 0.0005	0.9554 \pm 0.0002	0.9099 \pm 0.0017	0.9822 \pm 0.0005
G50 r.c.o. JUCAL	0.9896 \pm 0.0001	0.9783 \pm 0.0006	0.982 \pm 0.0004	0.9531 \pm 0.0003	0.9094 \pm 0.002	0.9819 \pm 0.0003
G50 r.c. JUCAL	0.9896 \pm 0.0001	0.9781 \pm 0.0006	0.9821 \pm 0.0002	0.9544 \pm 0.0002	0.9097 \pm 0.0014	0.9815 \pm 0.0006

2092
2093
2094 Table 8: FTC-metadataset mini (10%): Are under the ROC (AUROC over data splits; mean \pm 95%
2095 confidence interval half-width) on the full dataset (100%). The best mean is shown in bold, and
2096 methods not significantly different from the best (paired test, $\alpha = 0.05$) are shaded.

Ensemble Type	DBpedia	News	SST-2	SetFit	Tweet	IMDB
G5	0.9998 \pm 0.0	0.9899 \pm 0.0002	0.9853 \pm 0.0007	0.9539 \pm 0.0004	0.9226 \pm 0.0015	0.9872 \pm 0.0007
G5 p.t.c.	0.9998 \pm 0.0	0.9899 \pm 0.0001	0.9853 \pm 0.0007	0.9539 \pm 0.0004	0.9225 \pm 0.0015	0.9872 \pm 0.0007
G5 JUCAL	0.9998 \pm 0.0	0.9905 \pm 0.0002	0.9874 \pm 0.0005	0.9620 \pm 0.0004	0.9253 \pm 0.0019	0.9883 \pm 0.0006
G50	0.9997 \pm 0.0	0.9889 \pm 0.0005	0.9878 \pm 0.0008	0.9632 \pm 0.0002	0.9302 \pm 0.0013	0.9886 \pm 0.0001
G50 p.t.c.	0.9997 \pm 0.0	0.9889 \pm 0.0005	0.9878 \pm 0.0008	0.9632 \pm 0.0002	0.9302 \pm 0.0013	0.9886 \pm 0.0001
G50 JUCAL	0.9998 \pm 0.0	0.9907 \pm 0.0003	0.9885 \pm 0.0008	0.9667 \pm 0.0001	0.9306 \pm 0.0012	0.9886 \pm 0.0002
G50 r.c.o. JUCAL	0.9999 \pm 0.0	0.9906 \pm 0.0004	0.9879 \pm 0.0005	0.9649 \pm 0.0007	0.9298 \pm 0.0007	0.9891 \pm 0.0005
G50 r.c. JUCAL	0.9998 \pm 0.0	0.9907 \pm 0.0003	0.9878 \pm 0.0005	0.9658 \pm 0.0002	0.9303 \pm 0.0011	0.9890 \pm 0.0005

2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126

2127
 2128 Table 9: FTC-metadataset mini (10%): Set size over data splits; mean \pm 95% confidence interval
 2129 half-width) on the full dataset (100%). The best mean is shown in bold, and methods not significantly
 2130 different from the best (paired test, $\alpha = 0.05$) are shaded. Here the coverage threshold is 99% for all
 but DBpedia where it is 99.9%

Ensemble Type	DBpedia	News	SST-2	SetFit	Tweet	IMDB
G5	1.3673 ± 0.0702	1.4414 ± 0.0167	1.2467 ± 0.0135	2.2989 ± 0.0027	2.2997 ± 0.0356	1.2392 ± 0.0099
G5 p.t.c.	1.4313 ± 0.0695	1.4475 ± 0.0184	1.2504 ± 0.0149	2.3124 ± 0.0136	2.3028 ± 0.0366	1.2347 ± 0.0158
G5 JUCAL	1.4522 ± 0.0567	1.4131 ± 0.0276	1.2091 ± 0.0115	1.9976 ± 0.0254	2.2110 ± 0.0277	1.2148 ± 0.0115
G50	1.6459 ± 0.0546	1.7193 ± 0.0952	1.1918 ± 0.0132	2.1899 ± 0.0061	2.1735 ± 0.0475	1.1821 ± 0.0043
G50 p.t.c.	1.6453 ± 0.0563	1.7274 ± 0.0792	1.1933 ± 0.0119	2.2008 ± 0.0059	2.1684 ± 0.0414	1.1831 ± 0.0092
G50 JUCAL	1.3105 ± 0.0232	1.4389 ± 0.0334	1.1862 ± 0.0120	1.8980 ± 0.0086	2.1470 ± 0.0444	1.1819 ± 0.0126
G50 r.c. JUCAL	1.3552 ± 0.0575	1.4243 ± 0.0345	1.1874 ± 0.0068	1.9958 ± 0.0303	2.2385 ± 0.0414	1.1698 ± 0.0045
G50 r.c. JUCAL	1.339 ± 0.0478	1.4384 ± 0.0154	1.1956 ± 0.0081	1.9198 ± 0.0240	2.2213 ± 0.0255	1.1677 ± 0.0064

2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

2160 **F.2 RESULTS ON EXPECTED CALIBRATION ERROR (ECE)**
 2161

2162 Note that the ECE suffers from severe limitations as an evaluation metric. In contrast to the NLL
 2163 and the Brier Score displayed in Figures 4 and 5, the ECE is not a strictly proper scoring rule (see
 2164 Appendix I.2 for more details on the theoretical properties of strictly proper scoring rules).

2165 The Expected Calibration Error (ECE) is calculated by partitioning the predictions into $M = 15$
 2166 equally spaced bins. Let B_m be the set of indices of samples whose prediction confidence falls into
 2167 the m -th bin. The ECE is defined as the weighted average of the absolute difference between the
 2168 accuracy and the confidence of each bin:

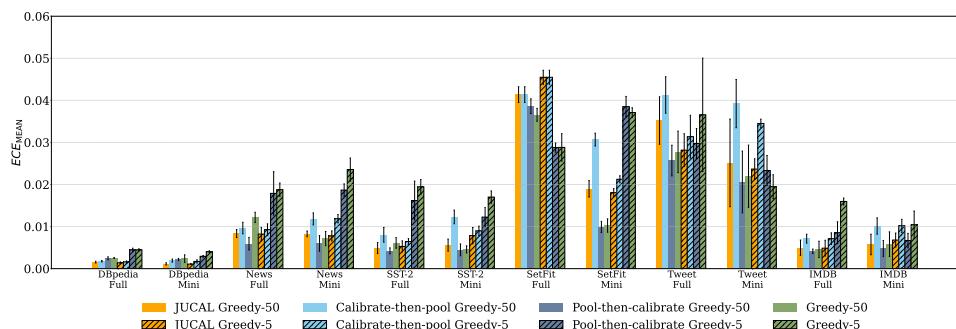
$$2169 \quad \text{ECE} = \sum_{m=1}^M \frac{|B_m|}{n} |\text{acc}(B_m) - \text{conf}(B_m)|, \quad (16)$$

2170 where n is the total number of samples, $\text{acc}(B_m)$ is the average accuracy, and $\text{conf}(B_m)$ is the
 2171 average confidence within bin B_m .

2172 Because it is not a proper scoring rule, it can be trivially minimized by non-informative models. For
 2173 example, a classifier that ignores the input features x and assigns the same marginal class probabilities
 2174 to every datapoint can achieve a perfect ECE of zero, despite having no discriminatory power.

2175 Furthermore, one can artificially minimize ECE without improving the model's utility. Consider
 2176 a method that replaces the top predicted probability for every datapoint with the model's overall
 2177 average accuracy, while assigning random, smaller probabilities to the remaining classes. This
 2178 "absurd" modification results in a perfectly calibrated model ($\text{ECE} = 0$) and maintains the original
 2179 accuracy, yet it completely discards the useful, instance-specific uncertainty quantification required
 2180 for safety-critical applications.

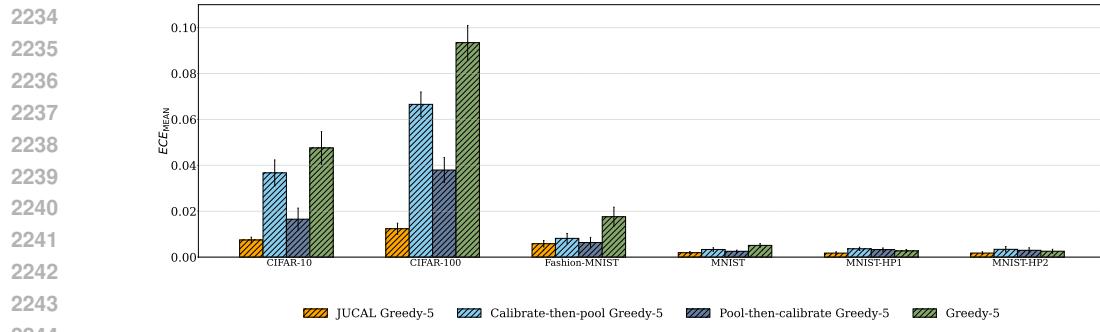
2181 However, very high values of ECE indicate inaccurate uncertainty quantification. See Figures 15
 2182 and 16 for our ECE results. Note that while *calibrate-then-pool* overall achieved the 2nd best
 2183 results after JUCAL in all metrics, *calibrate-then-pool* is one of the worst methods for ECE. JUCAL
 2184 performs as good or better than *calibrate-then-pool* on all 24 LLM experiments and on 6 CNN
 2185 experiments.



2186 **Figure 15: ECE Results for Text Classification.** For the ECE, lower values (displayed on the y-axis)
 2187 are better. On the x-axis, we list 12 text classification datasets (a 10%-mini and a 100%-full version
 2188 of 6 distinct datasets). The striped bars correspond to ensemble size $M = 5$, while the non-striped
 2189 bars correspond to $M = 50$. JUCAL's results are yellow. We show the average ECE and ± 1 standard
 2190 deviation across 5 random validation-test splits.

2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213

2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233



2245 **Figure 16: ECE Results for Image Classification.** For the ECE, lower values (displayed on the
 2246 y-axis) are better. On the x-axis, we list distinct image classification datasets (and two hyperparameter-
 2247 ablation studies for MNIST). JUCAL’s results are yellow. We show the average ECE and ± 1 standard
 2248 deviation across 10 random train-validation-test splits.

2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267

2268
2269

F.3 RESULTS ON CONFORMAL PREDICTION SETS

2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281

Note that JUCAL does not need a conformal unseen calibration dataset, as JUCAL only reuses the already seen validation dataset. JUCAL outputs predictive distributions that can be conformalized in a separate step using an unseen calibration dataset. In this subsection, we compare APS-conformalized JUCAL against APS-conformalized versions of its competitors, where we apply APS-conformalization on the same unseen calibration dataset for all competitors using the predictive probabilities of each competitor to compute their APS-conformity scores (Romano et al., 2020). JUCAL shows as good or better overall performance than all considered competitors across all considered conformal metrics (average set size and average logarithm of the set size; see Figures 17 to 22). For multiple datasets, JUCAL simultaneously achieves smaller set sizes and slightly higher coverage than its competitors. Due to conformal guarantees, all conformalized methods achieve approximately the same marginal coverage on the test dataset (see Figures 21 and 22). In Appendix I.1.1, we discuss multiple limitations of conformal guarantees.

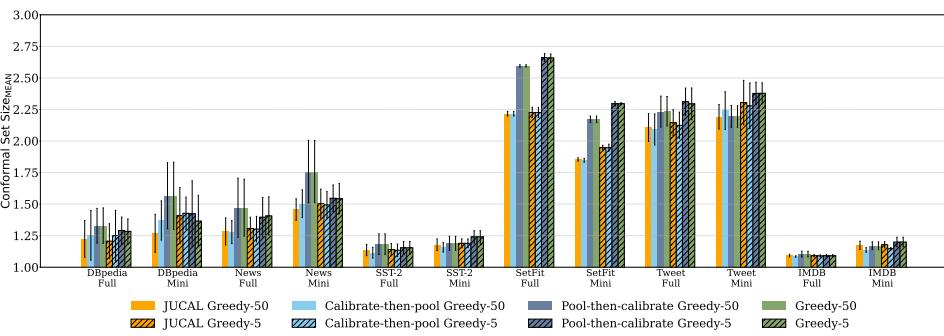
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
22922293
2294
2295
2296
2297
2298
2299
2300

Figure 17: **Conformal Set Size Results for Text Classification.** For the conformal set size, lower values (displayed on the y-axis) are better. On the x-axis, we list 12 text classification datasets (a 10%-mini and a 100%-full version of 6 distinct datasets). The striped bars correspond to ensemble size $M = 5$, while the non-striped bars correspond to $M = 50$. JUCAL’s results are yellow. We show the average conformal prediction set size (for the conformal target coverage threshold of 99.9% for *DBpedia* (Full and Mini) and 99% for all other datasets) and ± 1 standard deviation across 5 random validation-test splits.

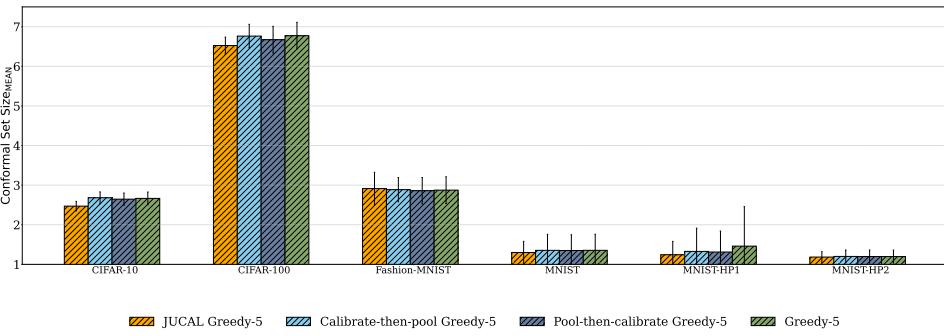
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
23112312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Figure 18: **Conformal Set Size Results for Image Classification.** For the conformal set size, lower values (displayed on the y-axis) are better. On the x-axis, we list distinct image classification datasets (and two hyperparameter-ablation studies for MNIST). JUCAL’s results are yellow. We show the average conformal prediction set size (for the conformal target coverage threshold of 99% for *CIFAR-10*, 90% for *CIFAR-100*, and 99.9% for all variants of *MNIST* and *Fashion-MNIST*) and ± 1 standard deviation across 10 random train-validation-test splits.

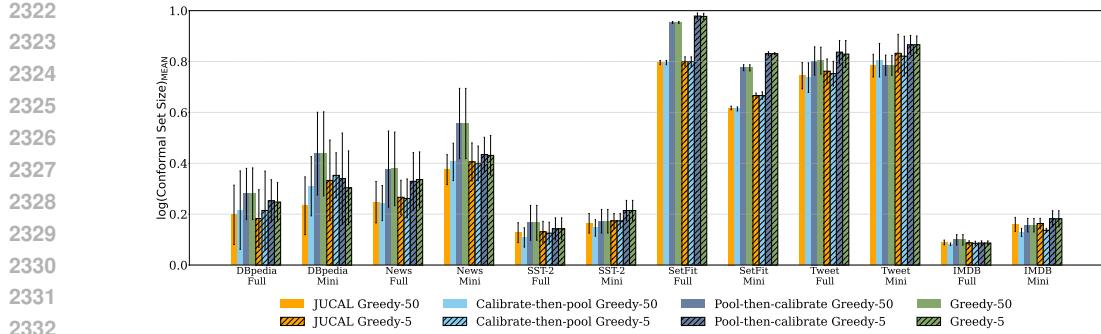


Figure 19: **Conformal Log Set Size Results for Text Classification.** For the conformal log set size, lower values (displayed on the y-axis) are better. On the x-axis, we list 12 text classification datasets (a 10%-mini and a 100%-full version of 6 distinct datasets). The striped bars correspond to ensemble size $M = 5$, while the non-striped bars correspond to $M = 50$. JUCAL’s results are yellow. We show the average of the logarithm of the conformal prediction set size (for the conformal target coverage threshold of 99.9% for *DBpedia* (Full and Mini) and 99% for all other datasets) and ± 1 standard deviation across 5 random validation-test splits.

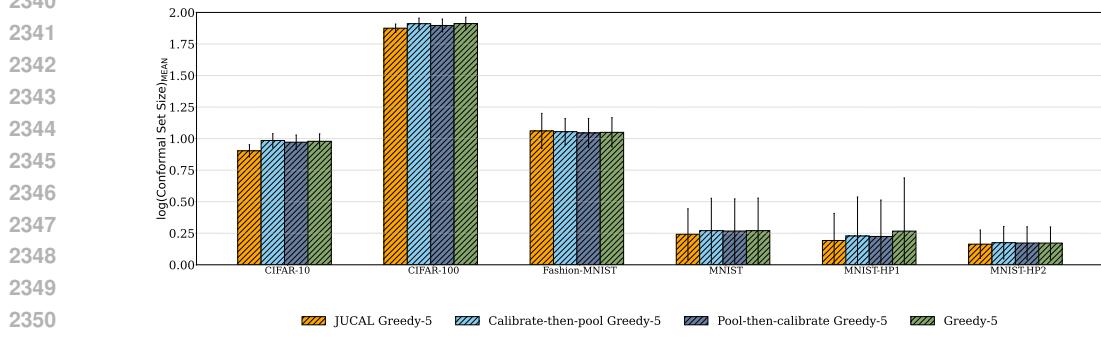


Figure 20: **Conformal Log Set Size Results for Image Classification.** For the conformal log set size, lower values (displayed on the y-axis) are better. On the x-axis, we list distinct image classification datasets (and two hyperparameter-ablation studies for *MNIST*). JUCAL’s results are yellow. We show the average logarithmic conformal prediction set size (for the conformal target coverage threshold of 99% for *CIFAR-10*, 90% for *CIFAR-100*, and 99.9% for all variants of *MNIST* and *Fashion-MNIST*) and ± 1 standard deviation across 10 random train-validation-test splits.

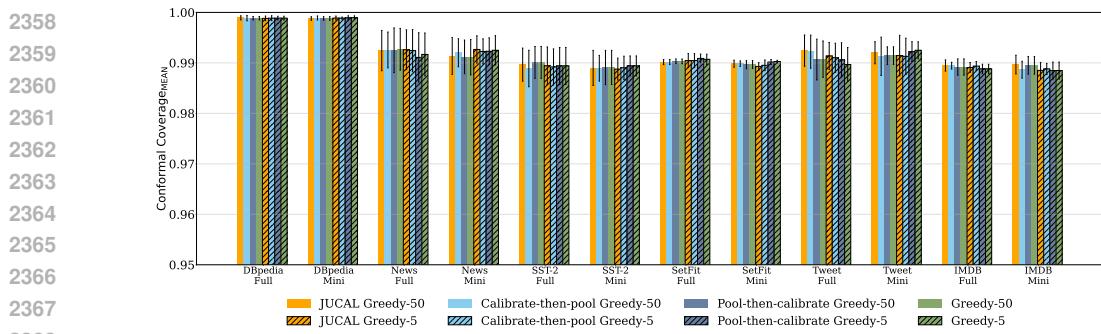


Figure 21: **Conformal Coverage Results for Text Classification.** For the conformal coverage, values near the target coverage indicate better calibration. Larger values of coverage are more desirable than smaller values of coverage (unless larger coverage leads to larger set sizes). On the x-axis, we list 12 text classification datasets (a 10%-mini and a 100%-full version of 6 distinct datasets). The striped bars correspond to ensemble size $M = 5$, while the non-striped bars correspond to $M = 50$. JUCAL’s results are yellow. We show the average test-coverage (for the conformal target coverage threshold of 99.9% for *DBpedia* (Full and Mini) and 99% for all other datasets), and ± 1 standard deviation across 5 random validation-test splits.

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

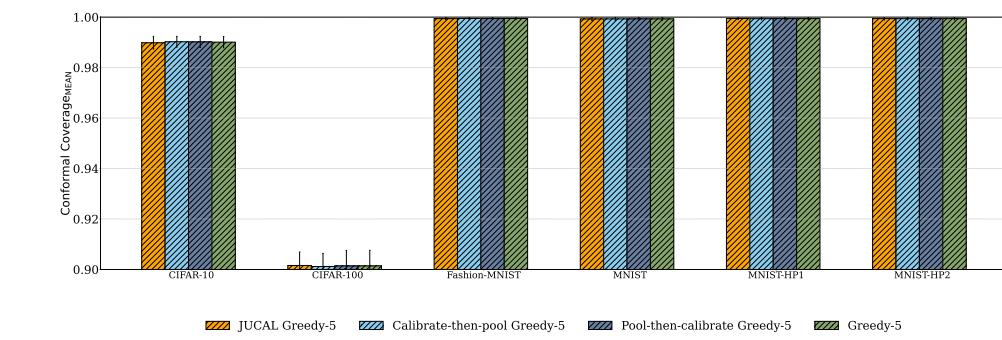


Figure 22: **Conformal Coverage Results for Image Classification.** For the conformal coverage, values near the target coverage indicate better calibration. Larger values of coverage are more desirable than smaller values of coverage (unless larger coverage leads to larger set sizes). On the x-axis, we list distinct image classification datasets (and two hyperparameter-ablation studies for MNIST). JUCAL’s results are yellow. We show the average test-coverage (for the conformal target coverage threshold of 99% for *CIFAR-10*, 90% for *CIFAR-100*, and 99.9% for all variants of *MNIST* and *Fashion-MNIST*) and ± 1 standard deviation across 10 random train-validation-test splits.

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

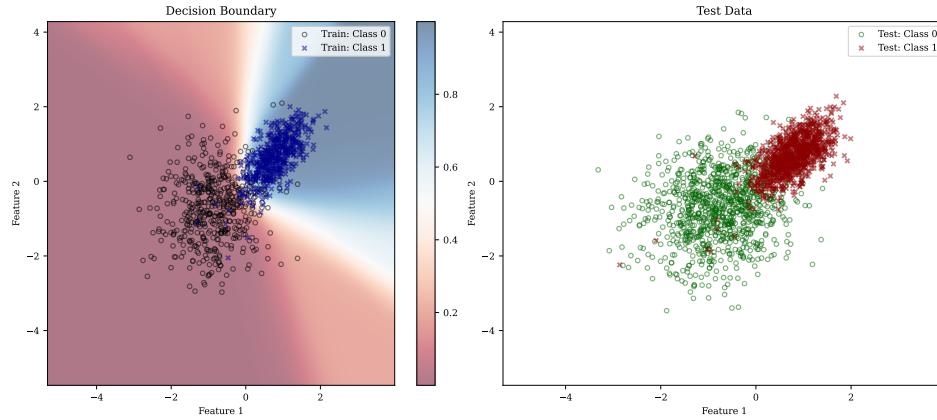
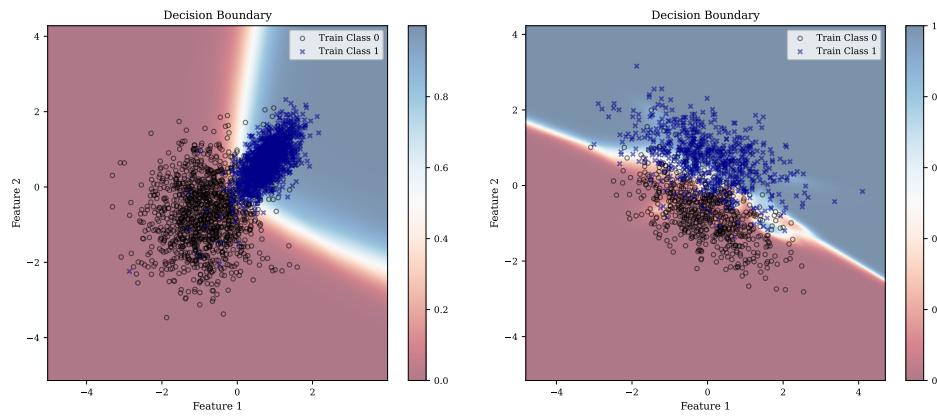
2425

2426

2427

2428

2429

2430
2431 F.4 FURTHER INTUITIVE LOW-DIMENSIONAL PLOTS
24322446
2447 Figure 23: Softmax outputs visualizing the estimated predictive probabilities calibrated by JUCAL
2448 for a synthetic 2D binary classification task.
24492463
2464 Figure 24: Softmax outputs visualizing the estimated predictive probabilities from a single neural
2465 network trained on two dataset configurations for a synthetic 2D binary classification task.
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

2484 G DETAILED DESCRIPTION OF METADATASET 2485

2486 The metadataset presented by Arango et al. (2024) and used in our study is designed to support
 2487 analysis of uncertainty and calibration methods in text classification. It comprises model predictions
 2488 across six diverse datasets, covering domains such as movie reviews, tweets, encyclopedic content,
 2489 and news. Each dataset involves classification tasks with varying numbers of classes (details provided
 2490 in Table 10).

2491 The datasets include IMDB for sentiment analysis (Maas et al., 2011), Tweet Sentiment Extraction
 2492 (Maggie & Culliton), AG News and DBpedia (Zhang et al., 2015), SST-2 (Socher et al., 2013), and
 2493 SetFit (Tunstall et al., 2021). For each dataset, Arango et al. (2024) construct two versions: one
 2494 trained with the full training split (100%), and another trained on a smaller subset comprising 10% of
 2495 the original training data. All models are fine-tuned separately for each configuration.

2496 Predictions are saved on validation and test splits to enable controlled evaluation of ensemble and
 2497 calibration strategies. The validation split corresponds to 20% of the training data. For SST-2 and
 2498 SetFit, where either test labels are not publicly released or are partially hidden, Arango et al. (2024)
 2499 instead allocate 20% of the remaining training data to simulate a test set.

2500 This setup allows for consistent comparison across tasks and supervision levels, facilitating the study
 2501 of uncertainty estimation under varying domain and data conditions.

2503 Dataset	2504 Classes	2505 Members	2506 Train Size	2507 Valid Size	2508 Test Size
2505 DBpedia Full	2506 14	2507 25	2508 448,000	2509 112,000	2510 70,000
2506 DBpedia Mini	2507 14	2508 65	2509 44,800	2510 112,000	2511 70,000
2507 News Full	2508 4	2509 99	2510 96,000	2511 24,000	2512 7,600
2508 News Mini	2509 4	2510 120	2511 9,600	2512 24,000	2513 7,600
2509 SST-2 Full	2510 2	2511 125	2512 43,103	2513 13,470	2514 10,776
2510 SST-2 Mini	2511 2	2512 125	2513 4,310	2514 13,470	2515 10,776
2511 SetFit Full	2512 3	2513 25	2514 393,116	2515 78,541	2516 62,833
2512 SetFit Mini	2513 3	2514 100	2515 39,312	2516 78,541	2517 62,833
2513 Tweet Full	2514 3	2515 100	2516 27,485	2517 5,497	2518 3,534
2514 Tweet Mini	2515 3	2516 100	2517 2,748	2518 5,497	2519 3,534
2515 IMDB Full	2516 2	2517 125	2518 20,000	2519 5,000	2520 25,000
2516 IMDB Mini	2517 2	2518 125	2519 2,000	2520 5,000	2521 25,000

2513 Table 10: Summary of the underlying datasets from which the FTC-metadataset is constructed by
 2514 (Arango et al., 2024).

2515 H COMPUTATIONAL COSTS

2516 The computational costs of applying JUCAL to an already trained ensemble of classifiers are
 2517 negligible: While training the ensemble members costs hundreds of GPU-hours (Arango et al., 2024,
 2518 Table 6), the computational costs of JUCAL are only hundreds of CPU-seconds (see Table 11).

2519 Note that our actual implementation of JCUAL (Algorithm 2) is slightly more advanced than
 2520 Algorithm 1. Instead of the naive grid search, we first optimize over a coarse grid and then optimize
 2521 over a finer grid locally around the winner of the first grid search.

2522 We want to emphasize that JUCAL is highly scalable and parallelizable. Since the computational costs
 2523 are already below 13 CPU-minutes even for the largest datasets we considered (112,000 validation
 2524 datapoints), we did not use parallelization to obtain the computational times in Table 11. However,
 2525 for even larger calibration datasets or in settings where one does not want to wait for 13 minutes, it
 2526 would be very straightforward to parallelize over multiple CPUs, or even over multiple distributed
 2527 servers (across grid points), or to use GPU acceleration (vectorizing across validation data points).

2528 For these reasons, the computational costs of JUCAL are practically negligible, if one already
 2529 has access to an already trained ensemble. However, training (or fine-tuning) an ensemble can be
 2530 computationally very expensive, but there are multiple techniques to reduce these costs (Kendall &
 2531 Gal, 2017; Gal & Ghahramani, 2015; Wen et al., 2020; Havasi et al., 2021; Rossellini et al., 2024;
 2532 Chan et al., 2025; Agarwal et al., 2025). In many practical settings, one has to train multiple models
 2533 for hyperparameter optimization anyway. Then methods such as Greedy-5 can be used to obtain an
 2534 ensemble from these different candidate models, as in our paper, basically for free.

2538	Dataset	Ensemble Method	Ensemble Selection Time (s)	Calibration Time (s)
2539	DBpedia Full	JUCAL Greedy-50	17.6798 \pm 0.5566	680.2392 \pm 9.9481
2540	DBpedia Full	JUCAL Greedy-5	0.6779 \pm 0.5347	92.5821 \pm 7.4349
2541	DBpedia Mini	JUCAL Greedy-50	51.0481 \pm 5.3242	764.0273 \pm 26.3293
2542	DBpedia Mini	JUCAL Greedy-5	0.8412 \pm 0.0215	99.8790 \pm 12.2445
2543	News Full	JUCAL Greedy-50	8.8411 \pm 0.2699	78.3229 \pm 0.8914
2544	News Full	JUCAL Greedy-5	0.6653 \pm 0.5407	11.2228 \pm 0.3444
2545	News Mini	JUCAL Greedy-50	5.8553 \pm 0.0659	78.2003 \pm 2.4816
2546	News Mini	JUCAL Greedy-5	0.2189 \pm 0.0079	8.3616 \pm 0.4244
2547	SST-2 Full	JUCAL Greedy-50	4.1086 \pm 0.0714	28.3639 \pm 0.3088
2548	SST-2 Full	JUCAL Greedy-5	1.0158 \pm 1.9079	5.2648 \pm 0.3565
2549	SST-2 Mini	JUCAL Greedy-50	2.3958 \pm 0.0370	21.9965 \pm 0.0998
2550	SST-2 Mini	JUCAL Greedy-5	0.1430 \pm 0.0531	3.7017 \pm 0.0385
2551	SetFit Full	JUCAL Greedy-50	4.0146 \pm 0.2551	211.6587 \pm 1.5352
2552	SetFit Full	JUCAL Greedy-5	0.1287 \pm 0.0044	26.0378 \pm 0.7412
2553	SetFit Mini	JUCAL Greedy-50	14.0813 \pm 1.9794	206.9967 \pm 12.2427
2554	SetFit Mini	JUCAL Greedy-5	0.4324 \pm 0.2804	20.2981 \pm 0.8983
2555	Tweet Full	JUCAL Greedy-50	2.1564 \pm 0.0246	16.4324 \pm 1.4845
2556	Tweet Full	JUCAL Greedy-5	1.2017 \pm 2.4726	3.7575 \pm 0.2718
2557	Tweet Mini	JUCAL Greedy-50	1.5102 \pm 0.4339	12.1769 \pm 0.1192
2558	Tweet Mini	JUCAL Greedy-5	0.0996 \pm 0.0660	3.0343 \pm 1.3491
2559	IMDB Full	JUCAL Greedy-50	1.8614 \pm 0.2478	11.6475 \pm 0.3522
2560	IMDB Full	JUCAL Greedy-5	0.5458 \pm 1.1910	2.4718 \pm 0.4158
2561	IMDB Mini	JUCAL Greedy-50	1.3032 \pm 0.0351	9.4108 \pm 0.5836
2562	IMDB Mini	JUCAL Greedy-5	0.0827 \pm 0.0119	1.9897 \pm 0.1802

Table 11: Ensemble selection and calibration time (mean \pm std in seconds) for JUCAL on Greedy-50 and Greedy-5 across all datasets (Full vs Mini).

While the training of models is a one-time investment, in some applications, reducing the prediction costs (i.e., forward passes through the model) for new test observations is more relevant. These costs are linear in the number of ensemble members M . The experiments of Arango et al. (2024) (which we reproduced) show clearly that Greedy-50 has a significantly better performance than Greedy-5, while being approximately 10 times more expensive (in terms of forward passes). However, applying JUCAL to Greedy-5 often results in even better performance than standard Greedy-50 (and sometimes even almost as good as applying JUCAL to Greedy-50). At the same time, Greedy-5 (JUCAL) requires approximately 10 times fewer forward passes than Greedy-50 (JUCAL). This makes Greedy-5 (JUCAL) a very powerful choice for real-time applications such as self-driving cars or robotics, where minimizing the number of forward passes is crucial for enabling efficient on-device inference on resource-constrained edge devices.

I THEORY

I.1 FINITE-SAMPLE CONFORMAL MARGINAL COVERAGE GUARANTEE

If a conformal marginal coverage guarantee under the exchangeability assumption is desired, one can use conformal methods, such as APS, with an unseen exchangeable calibration dataset on top of JUCAL. Note that plain JUCAL does not require any new calibration dataset, as we have reused the validation dataset (already used for ensemble selection) as JUCAL’s calibration dataset, which was already sufficient to outperform the baselines. However, for conformalizing JUCAL, a new unseen calibration dataset is required, as for any other conformal method.

I.1.1 LIMITATIONS OF CONFORMAL MARGINAL COVERAGE GUARANTEES

The conformal theory heavily relies on the assumption of **exchangeability**. Exchangeability means that the joint distribution of calibration and test observations is invariant to permutations (e.g., i.i.d. observations satisfy this assumption).

While exchangeability is theoretically convenient, it is unrealistic in many real-world settings. Models are typically trained on past data and deployed in the future, where the distribution of X_{new} usually shifts, i.e., $\mathbb{P}[X_{\text{new}}] \neq \mathbb{P}[X]$. Even if the conditional distribution $\mathbb{P}[Y_{\text{new}}|X_{\text{new}}] = \mathbb{P}[Y|X]$ remains fixed, such marginal shifts in X_{new} can cause conformal methods to catastrophically fail to

provide valid marginal coverage. In situations such as Figure 3, **JUCAL** intuitively remains more robust, while standard (Conformal) Prediction that do not explicitly model epistemic uncertainty sufficiently well can fail more severely under distribution shifts in X_{new} . E.g., Figure 3, suggests $\mathbb{P}[Y_{\text{new}} \in C_{\text{APS-DE}}(X_{\text{new}}) \mid |X_{\text{new}}| < 7] \ll 99\% = 1 - \alpha$, as $C_{\text{APS-DE}}(X_{\text{new}}) = \{1\}$ would be a singleton in the situation of Figure 3, thus a marginal distribution shift of X_{new} that strongly increases the probability of $|X_{\text{new}}| < 7$, would lead to a large drop of marginal coverage for $(X_{\text{new}}, Y_{\text{new}})$. **JUCAL** likewise lacks formal guarantees under extreme shifts, but good estimates of epistemic uncertainty should at least prevent you from being extremely overconfident in out-of-sample regions. Caution is required when trusting conformal guarantees, as the assumption of exchangeability is often not met in practice, and some conformal methods catastrophically fail for slight deviations from this assumption.

Even under the assumption of exchangeability, conformal guarantees have further weaknesses:

1. The conformal marginal coverage guarantee

$$\mathbb{P}[Y_{\text{new}} \in C(X_{\text{new}})] = \mathbb{E}_{\mathcal{D}_{\text{train}}, \mathcal{D}_{\text{cal}}} [\mathbb{P}[Y_{\text{new}} \in C(X_{\text{new}}) \mid \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{cal}}]] \geq 1 - \alpha$$

does not imply that $\mathbb{P}[Y_{\text{new}} \in C(X_{\text{new}}) \mid \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{cal}}] \geq 1 - \alpha$ for a fixed realization of the calibration set \mathcal{D}_{cal} . If the calibration non-conformity scores are small by chance, conformal prediction sets may be too small (i.e., contain too few classes), especially with small calibration datasets. Reliable calibration is generally unattainable with small calibration datasets: Even if the exchangeability assumption is satisfied, even methods with conformal guarantees often strongly undercover, i.e., $\mathbb{P}_{\mathcal{D}_{\text{train}}, \mathcal{D}_{\text{cal}}} [\mathbb{P}[Y_{\text{new}} \in C_{\text{conformal}}(X_{\text{new}}) \mid \mathcal{D}_{\text{train}}, \mathcal{D}_{\text{cal}}]] \ll 1 - \alpha \gg 0$.

2. Beyond marginal coverage, **JUCAL** is designed to improve *conditional calibration*: $\mathbb{P}[Y_{\text{new}} \in C(X_{\text{new}}) \mid X_{\text{new}}] \approx 1 - \alpha$. This is crucial in human-in-the-loop settings, where interventions are prioritized based on an accurate *ranking* of predictive uncertainty across data points (see Appendix B). Marginal coverage guarantees offer no assurances for such rankings nor for conditional coverage. A method could have perfect marginal coverage but rank uncertainties arbitrarily. In other words, marginal coverage guarantees address only one specific metric (marginal coverage), while ignoring many other metrics that are often more important in practice.

To summarize, conformal marginal coverage guarantees say very little about the overall quality of an uncertainty quantification method. Conformal marginal coverage guarantees only shed light on a very specific aspect of uncertainty quantification and only under the quite unrealistic assumption of exchangeability.

I.2 PROPERTIES OF THE NEGATIVE LOG-LIKELIHOOD

We define the $\text{NLL}(\mathcal{D}, \hat{p}) := \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} [-\log \hat{p}(y|x)]$ (where y is the true class, and $\hat{p}(y|x)$ denotes the model’s predicted probability mass for the true class y). The NLL is a standard and widely accepted metric, also known as the *log-loss* or *Cross-Entropy loss*.

We use the NLL for three different purposes in this paper:

1. Most classification methods use the NLL to train or fine-tune their models.
2. **JUCAL** minimize the NLL on the calibration dataset to determine c_1^* and c_2^* .
3. We use the NLL as an evaluation metric on the test dataset $\mathcal{D}_{\text{test}}$.

I.2.1 INTUITION BEHIND THE NEGATIVE LOG-LIKELIHOOD

Traditional classification metrics, such as accuracy or coverage, treat outcomes as binary (correct/incorrect or covered/not-covered). The NLL, however, offers a more nuanced evaluation by penalizing the magnitude of the model’s confidence in its incorrect predictions. Specifically, since $-\log \hat{p}(y|x)$, the penalty for a misprediction is not simply a constant (as in 0/1 loss) but scales with the model’s confidence in the true class y :

- **Severe Penalty for Overconfidence in Error:** The NLL applies a harsh penalty if the model assigns a very low probability $\hat{p}(y|x)$ to the true class y .

2646 • **Incentive for Conditional Mass Accuracy:** This structure incentivizes the predicted
 2647 distribution $\hat{p}(\cdot|x)$ to accurately reflect the conditional probability mass function $\mathbb{P}(Y|x)$.
 2648

2649 This property simultaneously encourages good conditional calibration (i.e., that \hat{p} closely approxi-
 2650 mates \mathbb{P}) and thus also encourages marginal calibration.

2651 2652 I.2.2 THE NEGATIVE LOG-LIKELIHOOD MEASURES INPUT-CONDITIONAL CALIBRATION

2653 The NLL is a *strictly proper scoring rule* for a predictive probability distribution \hat{p} relative to the true
 2654 conditional distribution $\mathbb{P}[Y|X]$ (Gneiting & Raftery, 2007). This means that the true conditional
 2655 distribution $\mathbb{P}[Y|X]$ minimizes the expected NLL:

$$2657 \mathbb{P}[Y|X] \in \arg \min_{\hat{p}} \mathbb{E}_{(X_{\text{new}}, Y_{\text{new}})} [\text{NLL}(\{(X_{\text{new}}, Y_{\text{new}})\}, \hat{p})]. \quad (17)$$

2659 The expected NLL is minimized uniquely (a.s.) when $\hat{p}(y|x) = \mathbb{P}(Y = y|x)$. Any deviation from
 2660 the true conditional distribution is penalized. In practice, evaluating the NLL on a finite dataset \mathcal{D}
 2661 provides a Monte-Carlo estimate of the expected NLL in (17).

2662 Furthermore, unlike evaluating methods based on achieving marginal coverage and then minimizing
 2663 a secondary metric like *Mean Set Size (MSS)*, the NLL is not susceptible to incentivizing deviations
 2664 from conditional calibration. While MSS can prefer models that over-cover low-uncertainty regions
 2665 and under-cover high-uncertainty ones (to reduce average size under a marginal coverage constraint),
 2666 the NLL is minimized exclusively when the model reports the true conditional distribution $\mathbb{P}[Y|X]$,
 2667 thereby naturally prioritizing conditional calibration. For more intuition, see Example I.1.

2668 *Example I.1 (Classification with Unbalanced Groups).* Let the set of classes be $Y \in \{0, 1, \dots, 99\} = \mathcal{Y}$.
 2669 Let the input be $X \in \{1, 2\}$, with the low-uncertainty group being much more common:
 2670 $\mathbb{P}[X = 1] = 0.8$ and $\mathbb{P}[X = 2] = 0.2$.

2671 The true conditional probabilities $\mathbb{P}[Y|X]$ are:

- 2673 • $X = 1$ (Low Uncertainty): $\mathbb{P}(Y = 0|X = 1) = 0.9$, $\mathbb{P}(Y = 1|X = 1) = 0.1$, and
 $\mathbb{P}(Y = k|X = 1) = 0$ for $k > 1$.
- 2675 • $X = 2$ (High Uncertainty): $\mathbb{P}(Y = k|X = 2) = 0.02$ for $k = 0, \dots, 44$ (i.e., the first 45
 2676 classes together cover 90%), and $\mathbb{P}(Y = k|X = 2) = \frac{0.1}{55} \approx 0.0018$ for $k = 45, \dots, 99$.

2678 Let $\hat{p}_{\text{true}}(y|x) = \mathbb{P}[Y = y|X = x]$. For a target coverage of $1 - \alpha = 0.9$, the *conditionally calibrated*
 2679 method (which reports the smallest sets $C(x)$ based on \hat{p}_{true} such that $\mathbb{P}[Y \in C(x)|X = x] \geq 0.9$)
 2680 would produce:

- 2681 • When $X = 1$: $C(1) = \{0\}$ (Set Size=1, Coverage=0.9)
- 2682 • When $X = 2$: $C(2) = \{0, \dots, 44\}$ (Set Size=45, Coverage=0.9)

2684 The marginal coverage is $\mathbb{P}[\text{covered}] = 0.8 \times 0.9 + 0.2 \times 0.9 = 0.9$. The Mean Set Size (MSS) is
 2685 $\mathbb{E}[\text{size}] = 0.8 \times 1 + 0.2 \times 45 = 0.8 + 9.0 = 9.8$. The expected NLL of the true model is

$$2687 \mathbb{E}[\text{NLL}(\hat{p}_{\text{true}})] = 0.8 \times (-0.9 \ln 0.9 - 0.1 \ln 0.1) + 0.2 \times (-0.9 \ln 0.02 - 0.1 \ln (0.1/55)) \approx 1.09.$$

2688 Now, consider an *alternative method* that sacrifices conditional calibration to minimize MSS, while
 2689 ensuring the *marginal* coverage is still exactly 0.9. This method could report:

- 2691 • When $X = 1$: $C'(1) = \{0, 1\}$ (Set Size=2, Coverage=1.0)
- 2693 • When $X = 2$: $C'(2) = \{0, \dots, 24\}$ (Set Size=25, Coverage=0.5)

2694 The marginal coverage of this method is $\mathbb{P}[\text{covered}] = 0.8 \times 1.0 + 0.2 \times 0.5 = 0.9$. The Mean Set
 2695 Size (MSS) is $\mathbb{E}[\text{size}] = 1.6 + 5.0 = 6.6$.

2697 Since $6.6 < 9.8$, this second method is strongly preferred by the (Marginal Coverage, MSS) metric.
 2698 It achieves this by over-covering the common group ($X = 1$) and severely under-covering the rare,
 2699 high-uncertainty group ($X = 2$). This alternative sets C' can be obtained from a model that reports
untruthful predicted probabilities, $\hat{p}'(y|x)$. For example, such a model might report:

- $\hat{p}'(0|X=1) = 0.5$, $\hat{p}'(1|X=1) = 0.4$, $\hat{p}'(2|X=1) = 0.1$. (This is *under-confident*).
- $\hat{p}'(k|X=2) = \frac{0.9}{25} = 0.036$ for $k = 0, \dots, 24$, and $\hat{p}'(k|X=2) = \frac{0.1}{75} \approx 0.00133$ for $k = 25, \dots, 99$. (This is *wildly over-confident* on the first 25 classes).

Note that this untruthful \hat{p}' has the same top-1 accuracy as the true conditional probabilities, and yields predictive sets $C'(x) = \arg \min_{S \subseteq 2^{\mathcal{Y}}: \sum_{y \in S} \hat{p}'(y|X=x) \geq 0.9} |S|$ with the same marginal coverage and smaller average set size than $C(x) = \arg \min_{S \subseteq 2^{\mathcal{Y}}: \mathbb{P}[Y \in S | X=x] \geq 0.9} |S|$. However, the NLL, being a strictly proper scoring rule, is minimized *only* by the true distribution $\mathbb{P}[Y|X]$ (Gneiting & Raftery, 2007). This untruthful \hat{p}' would incur a very high NLL

$\mathbb{E}[\text{NLL}(\hat{p}')] = 0.8 \times (-0.9 \ln 0.5 - 0.1 \ln 0.4) + 0.2 \times (-0.5 \ln 0.036 - 0.5 \ln(0.1/75)) \approx 1.57$, as it severely deviates from the true distribution. Since $1.57 \gg 1.09$, the NLL metric correctly and heavily penalizes the untruthful model \hat{p}' that enables this failure of conditional calibration. This demonstrates that, unlike marginal metrics, the NLL inherently aligns the optimization objective with conditional calibration.

I.2.3 THE NLL INCENTIVIZES TRUTHFULNESS EVEN UNDER INCOMPLETE INFORMATION (FROM A BAYESIAN POINT OF VIEW)

As a strictly proper scoring rule, the NLL is guaranteed to incentivize reporting the true distribution when the true distribution is known (Gneiting & Raftery, 2007; Buchweitz et al., 2025). However, Buchweitz et al. (2025) emphasize that even strictly proper scoring rules can asymmetrically penalize deviations from the truth when the true distribution is unknown, which might induces biases. When training data $\mathcal{D}_{\text{train}}$ is finite and model parameters θ are unknown, one's belief over possible parameters can be expressed via a posterior $\mathbb{P}[\theta | \mathcal{D}_{\text{train}}, \pi]$ in a Bayesian framework. The corresponding *posterior predictive distribution*

$$\mathbb{P}[Y_{\text{new}} | X_{\text{new}}, \mathcal{D}_{\text{train}}, \pi] = \mathbb{E} [\mathbb{P}[Y_{\text{new}} | X_{\text{new}}, \theta] | \mathcal{D}_{\text{train}}, \pi]$$

captures total predictive uncertainty, integrating both aleatoric uncertainty $\mathbb{P}[Y_{\text{new}} | X_{\text{new}}, \theta]$ (inherent noise) and epistemic uncertainty $\mathbb{P}[\theta | \mathcal{D}_{\text{train}}, \pi]$ (parameter uncertainty).

From a Bayesian perspective, the posterior predictive distribution uniquely minimizes the expected NLL:

$$\mathbb{E} [\text{NLL}(\{(X_{\text{new}}, Y_{\text{new}})\}, \hat{p}) | \mathcal{D}_{\text{train}}, \pi].$$

Minimizing the NLL thus leads to a model that incorporates total predictive uncertainty. Averaging over the posterior increases predictive entropy relative to the expected entropy under the parameter posterior, i.e.,

$$H [\mathbb{E} [\mathbb{P}[Y_{\text{new}} | X_{\text{new}}, \theta] | \mathcal{D}_{\text{train}}, \pi]] > \mathbb{E} [H [\mathbb{P}[Y_{\text{new}} | X_{\text{new}}, \theta]] | \mathcal{D}_{\text{train}}, \pi].$$

This inequality expresses that the NLL-optimal predictor—the posterior predictive distribution—has higher entropy (more uncertainty) than the expected entropy. One might view this as a bias towards overestimating uncertainty, yet this “bias” precisely encodes epistemic uncertainty: when the true distribution is unknown, the predictive distribution must honestly represent uncertainty over parameters, resulting in a higher-entropy, more uncertain prediction. Thus, minimizing the NLL naturally yields a model that accounts for both aleatoric and epistemic uncertainty.

Therefore, the NLL serves as a principled scoring rule for evaluating models such as JUCAL, which explicitly aim to represent total predictive uncertainty and thereby achieve improved input-conditional calibration. This justifies its use both in the calibration step and as an evaluation metric on the unseen test dataset $\mathcal{D}_{\text{test}}$.

I.3 THEORETICAL JUSTIFICATION OF DEEP ENSEMBLE

Our method builds on the deep ensemble (DE) framework; hence, it draws on similar theoretical justifications. Empirically, DEs have been shown to reduce predictive variance while maintaining low bias, as demonstrated by (Lakshminarayanan et al., 2017). Even without sub-sampling or bootstrapping, this idea is similar to bagging, for which Bühlmann & Yu (2002) provided a theoretical justification.

Moreover, DEs can also be mathematically justified: since NLL is a strictly convex function, Jensen's inequality implies that the NLL of a DE is always as good or better than the average NLL of individual ensemble members, i.e.,

$$\text{NLL}(\bar{p}, y_i) = -\log \left(\frac{1}{M} \sum_{m=1}^M p(y_i | \mathbf{x}_i, \theta_m) \right) \leq \frac{1}{M} \sum_{m=1}^M [-\log p(y_i | \mathbf{x}_i, \theta_m)]$$

where $p_m = \text{Softmax}(f_m)$. Overall, there are many intuitive, theoretical, and empirical justifications for DEs.

I.4 INDEPENDENCE OF JUCAL TO THE CHOICE OF RIGHT-VERSE OF SOFTMAX

In this subsection, we rigorously demonstrate that the calibrated probabilities produced by JUCAL are invariant to the specific choice of a right-inverse Softmax^{-1} of the Softmax function. This property is crucial when JUCAL is applied to models where only the predictive probabilities p are accessible (e.g., tree-based models), requiring the reconstruction of logits.

Non-uniqueness of Inverse Softmax. Because Softmax is invariant to translation by a scalar vector, it is not injective and therefore does not possess a unique two-sided inverse. Instead, it admits a class of right-inverses. Specifically, for any logit vector $\mathbf{z} \in \mathbb{R}^K$ and scalar $k \in \mathbb{R}$, $\text{Softmax}(\mathbf{z} + k\mathbf{1}) = \text{Softmax}(\mathbf{z})$, where $\mathbf{1} \in \mathbb{R}^K$ denotes the vector of all ones. Consequently, the set of all valid logit vectors consistent with a probability vector p is given by:

$$\mathcal{Z}(p) = \{\log(p) + C\mathbf{1} \mid C \in \mathbb{R}\}, \quad (18)$$

where \log is applied element-wise. When recovering logits from probabilities, one must select a specific representative from $\mathcal{Z}(p)$ (i.e., choose a specific right-inverse), typically by imposing a constraint such as $\sum z_k = 0$ or by simply setting $C = 0$. For example, in our implementation, we use $C = 0$, i.e., we define $\text{Softmax}^{-1}(p) = \log(p)$. In the remainder of this subsection, we prove that any other choice of right-inverse would result in exactly the same predictive distributions when applying JUCAL.

Proof of Invariance. Let f_m be any logits corresponding to probabilities p_m . Consider an arbitrary alternative choice of a right-inverse for Softmax where each member's logit vector is shifted by a scalar constant $k_m \in \mathbb{R}$. The shifted logits are $\tilde{f}_m = f_m + k_m \mathbf{1}$.¹⁷

First, we consider the effect on the temperature-scaled logits. The shifted temperature-scaled logits $\widetilde{f}_m^{\text{TS}(c_1)}$ are:

$$\widetilde{f}_m^{\text{TS}(c_1)} = \frac{\tilde{f}_m}{c_1} = \frac{f_m + k_m \mathbf{1}}{c_1} = f_m^{\text{TS}(c_1)} + \frac{k_m}{c_1} \mathbf{1}. \quad (19)$$

Next, we calculate the shifted ensemble mean of the temperature-scaled logits, $\widetilde{f}^{\text{TS}(c_1)}$:

$$\widetilde{f}^{\text{TS}(c_1)} = \frac{1}{M} \sum_{j=1}^M \widetilde{f}_j^{\text{TS}(c_1)} = \frac{1}{M} \sum_{j=1}^M \left(f_j^{\text{TS}(c_1)} + \frac{k_j}{c_1} \mathbf{1} \right) = \bar{f}^{\text{TS}(c_1)} + \frac{\bar{k}}{c_1} \mathbf{1}, \quad (20)$$

where $\bar{k} = \frac{1}{M} \sum_{j=1}^M k_j$ is the average shift.

¹⁷Note that this proof also works if k_m depends on x and even if one would use different right-inverses for different ensemble members.

2808
 2809 Substituting these into the JUCAL transformation definition, we obtain the shifted calibrated logits
 2810 $\widetilde{f}_m^{\text{JUCAL}(c_1, c_2)}$:

$$\begin{aligned}
 2811 \quad \widetilde{f}_m^{\text{JUCAL}(c_1, c_2)} &= (1 - c_2) \widetilde{f}^{\text{TS}(c_1)} + c_2 \widetilde{f}_m^{\text{TS}(c_1)} \\
 2812 &= (1 - c_2) \left(\widetilde{f}^{\text{TS}(c_1)} + \frac{\bar{k}}{c_1} \mathbf{1} \right) + c_2 \left(f_m^{\text{TS}(c_1)} + \frac{k_m}{c_1} \mathbf{1} \right) \\
 2813 &= \left((1 - c_2) \widetilde{f}^{\text{TS}(c_1)} + c_2 f_m^{\text{TS}(c_1)} \right) + \left((1 - c_2) \frac{\bar{k}}{c_1} + c_2 \frac{k_m}{c_1} \right) \mathbf{1} \\
 2814 &= f_m^{\text{JUCAL}(c_1, c_2)} + \gamma_m \mathbf{1},
 \end{aligned}$$

2815
 2816 where $\gamma_m = \frac{1}{c_1}((1 - c_2)\bar{k} + c_2 k_m)$ is a scalar quantity specific to member m .
 2817

2818 Since the Softmax function is shift-invariant, $\text{Softmax}(\widetilde{f}_m^{\text{JUCAL}(c_1, c_2)}) = \text{Softmax}(f_m^{\text{JUCAL}(c_1, c_2)} +$
 2819 $\gamma_m \mathbf{1}) = \text{Softmax}(f_m^{\text{JUCAL}(c_1, c_2)})$. Consequently, $\widetilde{p}_m^{\text{JUCAL}(c_1, c_2)} = p_m^{\text{JUCAL}(c_1, c_2)}$, and the final calibrated
 2820 predictive distribution $\bar{p}^{\text{JUCAL}(c_1, c_2)}$ remains identical regardless of the arbitrary constants k_m chosen
 2821 during the inverse operation. This proves that JUCAL is well-defined for probability-only models,
 2822 i.e., models (such as decision trees, random forests, or XGBoost) that directly output probabilities
 2823 instead of logits.

2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861