
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Efficient and practical approximation algorithms for advertising
in content feeds
Anonymous Author(s)

∗

Abstract

Content feeds provided by platforms such as X (formerly Twitter)

and TikTok are consumed by users on a daily basis. In this paper,

we revisit the native advertising problem in content feeds, initiated

by Ieong et al. Given a sequence of organic items (e.g., videos or

posts) relevant to a user’s interests or information search, the goal

is to design an algorithm that maximizes the reward (e.g., clicks) by

placing advertisements interleaved with the organic content under

two considerations: (1) an advertisement can only be inserted after

a relevant content item; (2) the users’ attention decays after con-

suming content or advertisements. These considerations provide a

natural model for capturing both the advertisement effectiveness

and the user experience. In this paper, we design fast and practical

2-approximation greedy algorithms for the associated optimization

problem, in contrast to the best-known practical algorithm that

only achieves an approximation factor of 4. Our algorithms exploit

a counter-intuitive structure about the problem, that is, while top

items are seemingly more important due to the decaying attention

of the user, taking good care of the bottom items is key for ob-

taining improved approximation guarantees. We then provide the

first comprehensive empirical evaluation on the studied problem,

showing the strong empirical performance of our algorithms.

Keywords

Newsfeed Advertising, Ad Allocation, Approximation Algorithms,

Matching, Externalities

ACM Reference Format:

Anonymous Author(s). 2018. Efficient and practical approximation algo-

rithms for advertising in content feeds. In Proceedings of Make sure to enter
the correct conference title from your rights confirmation emai (WWW ’25).
ACM, New York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

A significant share of the current web traffic originates from user-

generated content platforms, such as X (formerly Twitter), Face-

book, and TikTok [2]. These platforms primarily engage users

through their content feeds, which display a continuous stream

of organic content items, such as social updates or videos, arranged

in a carefully crafted order and formatted for infinite scrolling [22].

The main monetization strategy of major social-media platforms is

to insert sponsored content in between the content items, such as

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’25, April 28 – May 2, 2025, Sydney, Australia
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

𝑣1

𝑠1

𝑣2

𝑠2 (𝑝)𝑎2
2

(a)

𝑣1

𝑠1

𝑣2

𝑠2 (𝑝′ < 𝑝)

𝑎1

𝑎2

1

2

(b)

Figure 1: An illustration of the expected reward being non-

monotone with respect to the ad placement. Here 𝑎, 𝑣 and 𝑠

denote ads, videos, and slots respectively. In the first scenario

(a) an ad 𝑎2 with reward 2 is allocated to slot 𝑠2 after video 𝑣2,

and a user sees the ad 𝑎2 with probability 𝑝. In the second

scenario (b) an additional ad 𝑎1 with reward 1 is allocated to

slot 𝑠1 after video 𝑣1. Due to decaying user attention, in (b),

the user sees the ad 𝑎2 with a probability 𝑝′ < 𝑝. Thus, placing

an additional ad may lead to a smaller expected reward.

promoted posts, content seeking higher user engagement, or pay-

per-click ads. The sponsored content is often designed to provide a

well-integrated look and less intrusive user experience, which is

also known as native advertising [27]. Advertisers incur a charge
every time users interact with sponsored content, and native ad-

vertising has evolved into a huge business with a market of about

100 billion USD [19, 23], accounting for nearly two thirds of total

display ad spending in the US [8].

The placement of sponsored content within an infinite feed poses

a unique allocation challenge as it requires balancing two factors:

(a) prioritizing advertisements at the top of the feed, since users

will eventually stop scrolling further their feed; and (b) ensuring

contextual coherence [29], to boost interaction rates. For instance,

an airline advertisement is more attractive when displayed after

a travel-related post rather than after a political one. This setting

is significantly different from traditional online advertising [7, 20],

e.g., search advertising, where ads are sold through auctions for

each opportunity, and showing the winning ad is assumed to have

no influence on future revenue. In contrast, for native advertising

in content feeds, showing an ad reduces the number of items a user

will explore. Therefore, if no suitable advertisement fits a specific

content, the optimal approach would be to forgo immediate revenue

in favor of potential earnings later over the user session. For an

illustration, consider Example 1 and Fig. 1.

Example 1. As illustrated in Fig. 1, assume that there is a slot to
which an ad can be allocated to, after every organic video. Consider
two videos 𝑣1, 𝑣2 that are presented to a user in order. Suppose that an
ad 𝑎2 has been allocated to the slot after 𝑣2. The crucial observation
here is that placing a new ad 𝑎1 before 𝑣2 may lead to a loss in the total
expected reward over the user session, as it reduces the probability
that a user interacts with ad 𝑎2.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Ieong et al. [13] initiated a mathematical formulation for na-

tive advertising in content feeds, denoted as the StrmAds prob-

lem, where in addition to given rewards for every feasible ad-item

pair (e.g., collected through an ad auction), users have decaying

attention [6], and may quit browsing with a fixed probability after

observing an item or an ad. Under such a model, the StrmAds

problem is to maximize the expected total reward over a user ses-

sion, by suitably deciding a strategy to display ads. Ieong et al. [13]

show that there exists a PTAS (i.e., an algorithm that returns nearly

optimal solutions) for the StrmAds problem. However, such an

algorithm relies on solving expensive combinatorial problems, mak-

ing it impractical. To the best of our knowledge, the state-of-the-art

practical algorithm only achieves a 4-approximation guarantee,

that solves the problem by finding a suitable maximum weighted

matching (MWM) with cardinality constraints [13].

In this paper, we develop practical and efficient 2-approximation

greedy algorithms for the StrmAds problem. To deal with decaying

attention, our algorithms exploit a counter-intuitive structure of

the problem, namely, while top items are seemingly more important

due to the decaying attention, finding a good position for the bot-

tom items is key to obtaining improved approximation guarantees.

In addition, to carefully account for the challenging constraints of

StrmAds, which requires to allocate rewarding ads while consid-

ering the decaying attention of a user, we devise a novel charging

scheme based on a non-trivial decomposition of StrmAds’s objec-

tive function. This result is then used to identify high-quality ad

allocation strategies, and leveraged in our proofs to obtain good

approximation guarantees.

In addition, to the best of our knowledge, we provide the first

comprehensive empirical study on the StrmAds problem. In which

we verify the strong empirical performance of our novel algorithms.

More specifically, our contributions are as follows.

• We provide an exact greedy algorithm for a special case

of the StrmAds problem, where each ad can be displayed

more than once.

• We provide two 2-approximation greedy algorithms for

the StrmAds problem. The first algorithm uses a greedy

criterion guided by the exact marginal gain in revenue, and

the second one leverages a lower bound of the marginal

gain. The second one is also particularly efficient.

• We provide the first comprehensive empirical study on the

StrmAds problem, showing the high-quality ad allocations

computed by our novel algorithms.

The rest of the paper is organized as follows. We formally define

the problem in Section 2. We characterize the structure of the prob-

lem in Section 3. We describe our novel algorithms and prove their

approximation guarantees in Section 4. Related work is discussed in

Section 5 and extensive experiments are in Section 6. We conclude

in Section 7. All the missing proofs are reported in Appendix A.

2 Problem definition

In this section, we first present the necessary preliminaries, and

then formally define the problems that are studied in this paper.

Preliminaries. A graph is bipartite if its vertices can be partitioned

into two disjoint parts, and edges connect only vertices from dif-

ferent parts. Given an undirected graph, a matching is a set of

edges so that each vertex appears in at most one edge of the set.

For a weighted graph, a maximum-weight matching (MWM) is a

matching in which the sum of its edge weights is maximized.

A set function 𝑓 : 2
𝐸 → R assigns a value to every subset of a

given set 𝐸. A set function 𝑓 is called monotonically non-decreasing
if 𝑓 (𝐶) ≤ 𝑓 (𝐷), for all 𝐶 ⊆ 𝐷 ⊆ 𝐸. Additionally, 𝑓 is called sub-
modular if 𝑓 (𝐶 + 𝑒) − 𝑓 (𝐶) ≥ 𝑓 (𝐷 + 𝑒) − 𝑓 (𝐷), for all 𝐶 ⊆ 𝐷 ⊆ 𝐸

and element 𝑒 ∈ 𝐸. Throughout this paper, we use the shorthands
𝐶 + 𝑒 for 𝐶 ∪ {𝑒} and 𝐶 − 𝑒 for 𝐶 \ {𝑒}.

An algorithm ALG is an 𝛼-approximation algorithm for a maxi-

mization problem, if for any instance I of the problem, the solution

ALG(I) returned by the algorithm has an objective value that is no

smaller than 1/𝛼 times the value of the optimal solution, denoted

withOPT(I) [26]. That is, let 𝑓 be the objective function of the prob-
lem, then it holds that 𝛼 𝑓 (ALG(I)) ≥ 𝑓 (OPT(I)), for all problem
instances I. A polynomial-time approximation scheme (PTAS) is an
(1 + 𝜀)-approximation algorithm, for any given 𝜀 > 0, with running

time polynomial in the input size, but possibly exponential in 1/𝜀.
Problem definition.We are given a sequence of𝑚 items (e.g., videos),

and we assume that there is one available slot for an ad placement

after each item. Suppose also that we are given 𝑛 ads𝐴. To improve

the efficacy of the ads, an ad 𝑎𝑖 can only be placed after a subset of

relevant items 𝑆𝑖 ⊆ 𝑉 . A reward 𝑟𝑖 𝑗 ≥ 0 is then obtained if ad 𝑎𝑖 is

shown to the user after the 𝑗-th item, with 𝑗 ∈ 𝑆𝑖 . Throughout the
paper, we fix 𝑖 (resp. 𝑗) to be the index of an ad (resp. a slot).

To model the decaying attention of the user, our model considers

that a user decides to quit browsing (i.e., terminates its session)

with probability 𝑞 after observing every item or ad. Our goal is

to decide the allocation of ads to the available slots to maximize

the expected reward over the specified model. We use the terms

reward and revenue interchangeably. For brevity, we may drop the

adjective “expected” if it is clear from the context. More formally,

the ad-placement problem is defined as follows.

Problem 1 (StrmAds-R). We are given a sequence of 𝑚 items
𝑉 with one available slot after each item, a set of 𝑛 ads 𝐴 = {𝑎𝑖 }
with associated slots {𝑆𝑖 }, rewards {𝑟𝑖 𝑗 } for 𝑗 ∈ 𝑆𝑖 , and a quitting
probability 𝑞 ∈ [0, 1). The goal is to find a mapping 𝑀 ⊆ 𝐸 :=⋃

𝑖∈[𝑛] ({𝑖} × 𝑆𝑖) such that every slot can admit at most one ad, i.e.,
|{𝑖 : (𝑖, 𝑗) ∈ 𝑀}| ≤ 1 for all 𝑗 , and𝑀 maximizes the expected reward

𝑓 (𝑀) :=
∑︁

𝑒=(𝑖, 𝑗) ∈𝑀
𝑟𝑒 (1 − 𝑞) 𝑗+𝑧 (𝑗) , (1)

where 𝑧 (𝑗) is the number of slots before slot 𝑗 containing an ad, i.e.,
𝑧 (𝑗) = |{ 𝑗 ′ < 𝑗 : (𝑖, 𝑗 ′) ∈ 𝑀 for some 𝑖}|.

The StrmAds-R problem explicitly disallows consecutive ads,

which helps to avoid ad fatigue and viewer zapping [24]. It is also

a common practice to design the ad-allocation strategy as a post-

processing operation [17, 28], so that the ranking of content items in

input to StrmAds can benefit from state-of-the-art recommenders.

The StrmAds-R problem allows an ad to be displayed multiple

times. However, there are scenarios where displaying an admultiple

times is undesirable. To prevent such over-exposure of ads, it is

possible to preprocess the slots 𝑆𝑖 of each ad 𝑎𝑖 and set a limit on

the number of slots |𝑆𝑖 |. However, such an approach is limited and

not always feasible. To provide a rigorous model for such cases, we

introduce the following problem variant.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Efficient and practical approximation algorithms for advertising in content feeds WWW ’25, April 28 – May 2, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

.

.

.

𝑎1

𝑎𝑚−1

.

.

.

𝑠1

𝑠𝑚−1

𝑎𝑚 𝑠𝑚

1

1

𝐶

Figure 2: Representation of Example 2, where a natural on-

line greedy algorithm and maximum weighted matching

(MWM) perform poorly (𝑎 and 𝑠 represent ads and slots).

Problem 2 (StrmAds). Given the same input as in the StrmAds-R
problem, find a matching 𝑀 ⊆ 𝐸 :=

⋃
𝑖∈[𝑛] ({𝑖} × 𝑆𝑖) that maxi-

mizes the expected reward 𝑓 (𝑀) from Eq. (1).

Note that the StrmAds problem is significantly more general

than the previous StrmAds-R problem, as an ad can be displayed

multiple times also in StrmAds, by simply generating multiple

copies of such an ad. Besides, the StrmAds problem also generalizes

the classic maximum-weight matching problem (MWM), obtained

from StrmAds by setting the value 𝑞 = 0.

Finally, in Section 6.2 we also discuss how to adapt an algorithm

for StrmAds to enforce a limit on the total number of ads to be

displayed, which can be useful, for example, to avoid ad fatigue.

3 Problem structure and failed attempts

The StrmAds problemwas introduced by Ieong et al. [13], who also

devised a PTAS algorithm. However, their PTAS relies on exhaus-

tive enumeration of sub-sequences of slots, and flow computations,

which is impractical. In this section, we study the structural proper-

ties of the StrmAds problem aiming to design a practical algorithm

with provable quality guarantees.

Our first step is to view the StrmAds problem as a task of opti-

mizing a specific set function over a bipartite matching. However,

as shown in Proposition 1, this specific set function is neither mono-

tone nor submodular. Therefore, the problem cannot be approxi-

mated by existing methods for submodular maximization [4].

We then present an example showing that two simple and in-

tuitive heuristics may perform arbitrarily bad. The first heuristic

is a standard greedy strategy that prioritizes placing ads in the

top slots, i.e., the slots appearing at the beginning of the content

feed. The second heuristic is to address the problem leveraging the

maximum-weight matching (MWM) method. The failure of such

approaches, and the problem instance that causes the two heuris-

tics to perform badly inspire the design of our novel algorithms. In

the next section (Section 4) we propose a novel backwards greedy

strategy that carefully accounts for the placement of ads in bottom
slots, i.e., the slots appearing at the end of the content feed.

Proposition 1. The expected-reward function 𝑓 : 2
𝐸 → R in Eq. (1)

for the StrmAds problem is neither monotone nor submodular.

See proof in Appendix A.

Due to the exponentially-decaying attention in the model, a

reasonable strategy is to prioritize the top slots. Thus, a logical

choice is to employ a greedy algorithm that processes slots in a

sequentially increasing order and repeatedly matches the ad with

the highest reward to the processed slot. However, as we show

below, such a greedy algorithm has an unbounded approximation

ratio, even for the easier StrmAds-R problem.

Example 2 (Being myopic in top slots). See Fig. 2 for an illustration.
For each slot 𝑗 = 1, . . . ,𝑚 − 1, we create a dedicated ad 𝑎 𝑗 with
reward 1. For the final slot 𝑗 = 𝑚, we create an ad 𝑎 𝑗 with a large
reward 𝐶 . The greedy algorithm assigns each ad in its corresponding
slot, and it results in a total expected reward of

𝑚−1∑︁
𝑗=1

(1 − 𝑞)2𝑗−1 + (1 − 𝑞)2𝑚−1𝐶

≈ (1 − 𝑞)/(1 − (1 − 𝑞)2) + (1 − 𝑞)2𝑚−1𝐶,

while assigning only the last ad gives a reward of (1 − 𝑞)𝑚−1𝐶 .
According to the value of the parameters, the approximation ratio can
be arbitrarily bad. For example, with 𝑞 = 1/2 and 𝐶 = 2

2𝑚−1, the
approximation ratio is about 2𝑚/2.

The instance in Example 2 is also hard for another intuitive

algorithm based on maximum-weight matching (MWM). This al-

gorithm finds a MWM for the bipartite graph between ads and

slots with appropriately-defined edge weights. That is, every edge

(𝑖, 𝑗) connecting ad 𝑎𝑖 and slot 𝑗 has a position-biased weight of

𝑟𝑖 𝑗 (1 − 𝑞) 𝑗 . Unfortunately, theMWM algorithm fails to capture the

decaying-attention effect of the model. It is easy to see that, on the

instance from Example 2, the MWM algorithm selects all available

edges, like the aforementioned greedy algorithm.

By a careful examination of the bad instance in Example 2, it is

clear that to obtain solutions with high expected reward, we cannot

only focus on the top slots, or ignore the decaying-attention effect

of the model. However, it appears difficult to take care of both ends

of the slot sequence. We show in the next section, that both issues

can be handled properly by first considering bottom slots, through

our novel algorithms.

4 Algorithms

In this section, we introduce a novel backwards-greedy algorithm

(Algorithm 1, denoted as G-bwd) that carefully handles the bottom

slots for ad placement. The backwards-greedy approach addresses

the decaying-attention in the model, by iteratively considering

sub-problems over suffixes (of the form 𝑗, . . . ,𝑚, for decreasing 𝑗)

of the slots. We show in Theorem 2 that the backwards-greedy

algorithm, perhaps surprisingly, finds an optimal solution for the

StrmAds-R problem.

On the other hand, it is not straightforward to analyze theG-bwd

algorithm for the more challenging StrmAds problem due to the

interplay between the decaying-attention effect and the additional

matching constraint. To address this issue, we prove a novel de-

composition of the expected reward over a matching, which we use

to obtain a non-oblivious backwards-greedy 2-approximation algo-

rithm (G-bpx in Algorithm 2) for the StrmAds problem, running

much faster than G-bwd. More specifically, the G-bpx algorithm

adopts a greedy criterion that deviates from the standard marginal-

gain greedy criterion (with respect to the underlying objective

value). Finally, by leveraging the structural lemmas for the G-bpx

algorithm, we provide an analysis for the G-bwd algorithm. We

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 1: Backwards greedy (G-bwd)

1 𝑀 ← ∅; 𝐴 𝑗 ← {𝑖 : 𝑗 ∈ 𝑆𝑖 } for all 𝑗 ∈ [𝑚];
2 for slot 𝑗 =𝑚, . . . , 1 (in a reverse order) do
3 for 𝑖 ∈ 𝐴 𝑗 do

4 𝑀𝑖 ← 𝑀 + (𝑖, 𝑗);
5 if 𝑀𝑖 is not a valid matching for StrmAds then
6 𝑀𝑖 ← (𝑀 \ {(𝑖, 𝑗 ′) : 𝑗 ′ ∈ [𝑚]}) + (𝑖, 𝑗) ;

7 𝑔𝑖 ← 𝑓𝑗−1 (𝑀𝑖)/(1 − 𝑞) − 𝑓𝑗 (𝑀) ;

8 𝑖∗ ← argmax𝑖∈𝐴 𝑗
{𝑔𝑖 };

9 if 𝑔𝑖∗ > 0 then𝑀 ← 𝑀𝑖∗ ;

10 return𝑀 ;

conclude by also presenting other practical algorithms that can be

used to solve StrmAds.

Before presenting our novel algorithms, we introduce a sub-

problem of StrmAds, which we refer to as StrmAds- 𝑗 , for a fixed

integer 𝑗 ∈ [𝑚]. In the StrmAds- 𝑗 sub-problem, the first 𝑗 items

and slots are not considered, i.e., we only consider slots 𝑗 + 1, . . . ,𝑚.

The resulting objective function for StrmAds- 𝑗 is,

𝑓𝑗 (𝑀) :=
∑︁

𝑒=(𝑖, 𝑗 ′) ∈𝑀 :𝑗 ′> 𝑗

𝑟𝑒 (1 − 𝑞) 𝑗
′− 𝑗+𝑧 𝑗 (𝑗 ′) , (2)

where 𝑧 𝑗 (𝑗 ′) is the number of slots after slot 𝑗 and before slot 𝑗 ′ con-
taining an ad, i.e., 𝑧 𝑗 (𝑗 ′) = |{ 𝑗 < 𝑘 < 𝑗 ′ : (𝑖, 𝑘) ∈ 𝑀 for some 𝑖}|.
In particular, 𝑓0 = 𝑓 , while 𝑓𝑚 (·) = 0.

4.1 Solving StrmAds-R optimally

Our backwards-greedy algorithm (G-bwd) for both the StrmAds-R

and StrmAds problems is illustrated in Algorithm 1. The G-bwd

algorithm returns an optimal solution for the StrmAds-R problem,

as we prove in Theorem 2.

TheG-bwd algorithm processes the slots in a reverse order, start-

ing from the final slot. At each slot, G-bwd tries to (re-)assign an

ad by finding the ad that maximizes the marginal gain for the rev-

enue (defined in Line 7). The algorithm performs a (re-)assignment

if it results in a positive marginal gain (i.e., increasing the objec-

tive function). A matching (or a mapping for StrmAds-R) is then

returned after processing all slots.

Theorem 2. Algorithm 1 solves the StrmAds-R problem optimally.

See proof in Appendix A.

The time complexity for the G-bwd algorithm is O(|𝐸 |) for
StrmAds-R, and O(|𝐸 |𝛽) = O(|𝐸 |min{𝑚,𝑛}) for StrmAds, where
𝛽 = O(|𝑀 |) is the time used to compute 𝑓𝑗 (𝑀) for 𝑗 ∈ [𝑚].

4.2 Non-oblivious greedy for StrmAds

The StrmAds problem is more challenging due to the matching

constraint. A first idea to address such a problem would be to

leverage the G-bwd algorithm, and decompose the revenue of a

matching into a sum of marginal gains, one term for each slot. Then,

to provide approximation guarantees, we need to connect such

marginal revenues to those of an optimal solution for StrmAds.

However, such analysis quickly becomes challenging, as a single

Algorithm 2: Non-oblivious backwards greedy (G-bpx)

1 𝑀 ← ∅; 𝜏𝑖 ← 0 for all 𝑖; 𝐴 𝑗 ← {𝑖 : 𝑗 ∈ 𝑆𝑖 } for all 𝑗 ;
2 for slot 𝑗 =𝑚, . . . , 1 (in a reverse order) do
3 if it exists 𝑗 ′ s.t. (𝑖, 𝑗 ′) ∈ 𝑀 then 𝜎 (𝑖) ← 𝑗 ′;
4 else 𝜎 (𝑖) ← 𝑗 ;

5 𝑖∗ ← argmax𝑖∈𝐴 𝑗
{𝑟𝑖 𝑗 − 𝜏𝑖 (1 − 𝑞)𝜎 (𝑖)− 𝑗 };

6 𝑔LB ← 𝑟𝑖∗ 𝑗 − 𝑞𝑓𝑗 (𝑀) − 𝜏𝑖∗ (1 − 𝑞)𝜎 (𝑖
∗)− 𝑗

;

7 if 𝑔LB > 0 then

8 𝑀 ← (𝑀 \ {(𝑖∗, 𝑗 ′) : 𝑗 ′ ∈ [𝑚]}) + (𝑖∗, 𝑗); ⊲ (re-)assign 𝑎𝑖∗
9 𝜏𝑖∗ ← 𝑟𝑖∗ 𝑗 − 𝑞 𝑓𝑗 (𝑀);

10 if 𝑎𝑖∗ is re-assigned then

11 𝜏𝑖 ← 𝑟𝑖 𝑗 ′ − 𝑞 𝑓𝑗 ′ (𝑀) for every (𝑖, 𝑗 ′) ∈ 𝑀 ;

12 return𝑀 ;

re-assignment (in Line 6) may affect the marginal gain over multiple

slots due to the decaying-attention effect.

To avoid such issues, we relate the total revenue to a lower bound

of the marginal gains in the above decomposition, that we use to

develop a novel greedy algorithm. This results in a 2-approximation

non-oblivious backwards-greedy algorithm (G-bpx in Algorithm 2)

for the StrmAds problem, note that this approximation ratio is

tight for any greedy algorithm. The G-bpx algorithm is called “non-
oblivious” [16] since it does not select the next ad with respect to

the objective function 𝑓 of Eq. (1).

The G-bpx algorithm. The G-bpx algorithm is introduced in Algo-

rithm 2. Similar to the G-bwd algorithm, it processes the slots in

a reverse order, starting from the final slot. The key difference is

that, at every slot 𝑗 = 𝑚, . . . , 1, it seeks to (re-)assign an ad that

maximizes a lower bound of the marginal reward, which is

argmax

𝑖∈𝐴 𝑗

{
𝑟𝑖 𝑗 − 𝑞 𝑓𝑗 (𝑀) − 𝜏𝑖 (1 − 𝑞)𝜎 (𝑖)− 𝑗

}
, (3)

where 𝜏𝑖 is defined below, 𝐴 𝑗 = {𝑖 : 𝑗 ∈ 𝑆𝑖 }, and 𝜎 (𝑖) = 𝑗 if 𝑎𝑖
is new to the matching𝑀 , otherwise 𝜎 (𝑖) corresponds to the slot

previously selected for 𝑎𝑖 . We prove shortly (in Lemma 4) that Eq. (3)

is a lower bound to the marginal reward obtained by assigning an

ad at slot 𝑗 .

The term 𝜏𝑖 represents an estimate of the total prior reward

provided by ad 𝑎𝑖 . At the beginning, 𝜏𝑖 is initialized to be 0 for all 𝑖 .

Every time an ad 𝑎𝑖 is (re-)assigned to the 𝑗-th slot, we update its

value according to the following rule:

𝜏𝑖 = 𝑟𝑖 𝑗 − 𝑞 𝑓𝑗 (𝑀) . (4)

It is easy to see that, the first time an ad 𝑎𝑖 is assigned to the slot 𝑗 ,

𝜏𝑖 represents its actual marginal reward gain. However, afterwards,

if the ad 𝑎𝑖 is re-assigned to a different slot 𝑗 ′ < 𝑗 , 𝜏𝑖 deviates from

its marginal gain as it does not consider the variation over 𝑓𝑗 ′ (𝑀),
caused by the withdrawal of 𝑎𝑖 from slot 𝑗 . During the execution

of G-bpx, it is important to maintain each 𝜏𝑖 , 𝑖 ∈ [𝑛] up-to-update
when re-assignments occur. We write 𝜏 𝑗 = 𝑟𝑒 𝑗 − 𝑞 𝑓𝑗 (𝑀) when it is

more convenient to use the slot index 𝑗 , where 𝑒 𝑗 denotes an edge

that is assigned to the slot 𝑗 .

The G-bpx algorithm preforms an ad (re-)assignment if it re-

sults in a positive lower bound as from Eq. (3). A matching 𝑀 is

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Efficient and practical approximation algorithms for advertising in content feeds WWW ’25, April 28 – May 2, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

returned after processing all slots. We show in Theorem 5 that it

holds 2𝑓 (𝑀) ≥ 𝑓 (𝑀∗), where 𝑀∗ is the matching achieving the

optimal solution for 𝑓 , i.e., G-bpx is a 2-approximation algorithm.

Decomposition.We now introduce the novel decomposition of the

reward of a matching𝑀 . Let 𝑅 𝑗 := 𝑓𝑗 (𝑀) be the reward of a solution
𝑀 for the StrmAds- 𝑗 sub-problem (from Eq. (2)). We have

𝑅 𝑗 = (1 − 𝑞)
(
𝑅 𝑗+1 + 1[𝑒 𝑗+1 ∈ 𝑀] (𝑟𝑒 𝑗+1 − 𝑞𝑅 𝑗+1)

)
(5)

=

𝑚∑︁
𝑗 ′=𝑗+1

(1 − 𝑞) 𝑗
′− 𝑗1[𝑒 𝑗 ′ ∈ 𝑀] (𝑟𝑒 𝑗 ′ − 𝑞𝑅 𝑗 ′) (6)

=
∑︁

𝑒=(𝑖, 𝑗 ′) ∈𝑀 :𝑗 ′> 𝑗

(1 − 𝑞) 𝑗
′− 𝑗 (𝑟𝑒 − 𝑞𝑅 𝑗 ′),

where 1[𝑒 𝑗 ∈ 𝑀] is a 0–1 indicator function taking value 1 if the

edge 𝑒 𝑗 , incident to slot 𝑗 , is in the matching𝑀 . The first equality

expresses 𝑅 𝑗 as a sum of 𝑅 𝑗+1, and the marginal gain obtained by

allocating slot 𝑗 + 1 with edge 𝑒 𝑗+1. The second equality recursively
expands the term 𝑅 𝑗+1, while groups the other terms into a summa-

tion. The last equality follows a simple double-counting argument.

In summary, 𝑅 𝑗 is a cumulative sum of marginal gains, computed

backwards, of edges in𝑀 , when there are no re-assignments. Notice

the similarity between the components in the decomposition in

Eq. (6) and the values 𝜏𝑖 in Eq. (4) (recall that 𝑅 𝑗 = 𝑓𝑗 (𝑀)).
We next characterize the behaviour of 𝑅 𝑗 when a re-assignments

occurs in the backwards-greedy algorithm, and connect such results

to the greedy criterion in Eq. (3).

Lemma 3. During the execution of the main loop of Algorithm 2, for
any fixed 𝑗 ∈ [𝑚], the value 𝑅 𝑗 is non-increasing since the completion
of the sub-problem StrmAds- 𝑗 .

See proof in Appendix A.

Approximation guarantees. Next, we explain the novel lower bound

presented in Eq. (3). When re-assigning an ad, the exact marginal

gain in reward heavily depends on the allocation of all other slots

already allocated, due to the decaying attention, making the analy-

sis particularly challenging. Therefore, instead of considering the

actual marginal reward, G-bpx seeks a greedy choice that maxi-

mizes the non-oblivious lower bound, which simplifies our analysis.

We first prove that Eq. (3) (evaluated by G-bpx in Line 6) is a lower

bound to the actual marginal reward, provided that every 𝜏𝑖 in

Eq. (4) is maintained up-to-update.

Lemma 4. Denote by 𝑔 the marginal gain in reward of re-assigning
ad 𝑎𝑖 from slot 𝑗 to slot 𝑗 with 𝑗 > 𝑗 . Then,

𝑔 ≥ 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝜏𝑖 (1 − 𝑞) 𝑗− 𝑗 .

Finally, we are ready to show the approximation ratio for Algo-

rithm 2.

Theorem 5. Algorithm 2 returns a 2-approximation for the StrmAds
problem.

However, the 2-approximation is tight for both Algorithm 1 and

Algorithm 2, and this barrier exists also for the special case where

𝑞 = 0, that is, aMWM instance.

Proposition 6. Algorithm 1 and Algorithm 2 cannot do better than
2-approximation.

See proof in Appendix A.

The time complexity for the G-bpx algorithm is O(|𝐸 | +𝑚 |𝑀 |)
where |𝑀 | = min{𝑚,𝑛}. The second term is due to the fact that we

may need to compute 𝑓𝑗 (𝑀), 𝑗 ∈ [𝑚] if a re-assignment occurs.

4.3 Natural greedy for StrmAds

Algorithm 2 uses a non-oblivious greedy criterion, inspired by the

novel decomposition in Eq. (6). We now prove that Algorithm 1

guided by the exactmarginal reward of an ad is also a 2-approximation

algorithm. This seemingly complicated case is a direct consequence

of our proof for Algorithm 2.

Corollary 7. Algorithm 1 returns a 2-approximation for the StrmAds
problem.

See proof in Appendix A.

4.4 Other practical algorithms

In this section, we introduce various algorithms for the StrmAds

problem, including enhanced variants of existing algorithms (from

[13]), and multiple practical heuristics. We list all algorithms below,

and discuss their important design choices.

Flow- and matching-based algorithms. Ieong et al. [13] devised a

4-approximation algorithm Flow by finding a maximum weighted

matching with fixed weights. That is, the matching only considers

the decaying effects from items but not ads. The key idea is to

reduce the dynamic decaying effect of ad placement by limiting the

number of allocated ads (i.e., the matching size) via an additional

cardinality constraint. The Flow algorithm is implemented by a

minimum-cost flow, as depicted in its original paper.

We enhance the Flow algorithm with greedy assignments over

the slots not matched by the flow-based procedure, such an algo-

rithm is denoted by FlowG. We also introduce a natural heuristic

MWM, mentioned in Section 3. MWM does not enforce a cardi-

nality constraint to the matching size, and is implemented via a

standard maximum-weighted matching algorithm.

Global greedy algorithm.We introduce another natural algorithm

G-glb that repeatedly allocates an ad to a slot that maximizes the

marginal reward over all allocations, provided the reward being

positive. This requires computing the marginal reward of every

candidate allocation, with time complexity O(|𝐸 |2 |𝑀 |), which is

expensive. We improve such computation by noting that the mar-

ginal reward of any possible allocation is non-increasing over time.

This can be used to perform lazy evaluation of the marginal reward,

i.e., maintaining upper bounds to the actual rewards. That is, we

sort all candidate allocations by their rewards in a decreasing order

using a heap, and we complete a greedy step if the reward of the

top allocation is greater than the upper bounds of all other candi-

date allocations. Typically, only a few edges need updating every

greedy iteration.

Online greedy algorithm. In Section 3, we mention an online algo-

rithm G-fwd that allocates an ad in real-time as a user browses its

session. Such an algorithm greedily assigns the most rewarding ad

to the slot being processed.

Ieong et al. [13] also introduce an online algorithm, which we

denote as G-onl. The idea is to pre-determine a threshold𝐶
thr

, and

for each slot, allocate the most rewarding ad if its reward is greater

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

than𝐶
thr

. In our experiments, we test some heuristics to determine

the value of 𝐶
thr

.

5 Related work

Native streaming advertising. The study of sequential ad alloca-

tions originates from simple cascade models [1, 15], for which a

dynamic-programming algorithm was developed. However, when

the reward of an ad depends on the slot position, more sophisti-

cated algorithms are needed [13]. After the work by Ieong et al.

[13], several approaches have been proposed, we discuss below.

Gamzu and Koutsopoulos [10] study a variant of native stream

advertising, taking into account the distance between consecutive

ads to avoid ad fatigue. Yan et al. [28] present a practical solution

with an industrial application, by maximizing the revenue while

requiring that the total user engagement from organic items exceeds

a given threshold. Liao et al. [18] adopt a RL-basedmodel to combine

a list of content items and a list of ads to produce a user feed.

However, none of these works consider dynamic decay in attention

caused by ads.

Positive externalities in advertising. On a high level, the StrmAds

problem is based on a form of negative externalities, that is, the

presence of an ad has a negative effect on future ads. There has been

extensive research on the opposite, i.e., positive externalities, in

advertising. One notable example is word-of-mouth marketing [11,

14], where it is beneficial to offer products, even for free, to a small

group of influencers at the beginning of an ad campaign, to attract

more customers.

Online matching. There is a rich body of work if externalities are

not considered. For example, a standard model of position auctions

such as [25] is based on the separability assumption, i.e., the prob-

ability an ad receives a click if placed in a position is simply the

product of the quality scores associated to the ad and the position,

independent therefore of other ads. Under such assumptions, the

allocation problem can be treated as a matching problem, for which

various algorithms have been developed. We refer the readers to

some excellent surveys about matching for more details [7, 12, 21].

Our greedy algorithms are partly inspired by a related streaming

algorithm [9]; however, as already mentioned, more sophisticated

techniques are needed to handle externalities.

6 Experimental evaluation

Weprovide the first comprehensive empirical study on the StrmAds

problem. We do not consider the StrmAds-R problem, as it is a spe-

cial case of the StrmAds problem, and significantly less challenging

given that it can be solved optimally by our G-bwd algorithm.

Our evaluation investigates the following key questions.

(1) How do the algorithms perform by fixing the bipartite graph

structure, and varying the weights of the rewards? (Section 6.1)

(2) What is the impact of the problem parameters, such the

quitting probability𝑞, the number of ads𝑛, and slots𝑚? (Section 6.2)

(3) How do the algorithms perform for the task of native adver-

tising in content feeds in two realistic scenarios? (Section 6.3)

Our source code is made public for reproducibility and can be

found in an anonymous repository.
1

1
https://anonymous.4open.science/r/StreamAds-code-7351/README.md

We now describe the datasets, baselines, and runtime environ-

ment of the experimental evaluation. Note, that all reported results

are the average taken over three independent runs.

Datasets. To the best of our knowledge, high-quality public real

datasets for native advertising are scarce, and existing work mostly

uses proprietary data [5, 18, 28]. Hence, we explored two distinct

types of datasets for our evaluation. The first type considers random

weighted bipartite graphs. Such data is very general, and provides

a comprehensive benchmark for the various algorithms considered.

The second type of data is obtained by simulating a scenario of

native advertising based on real anonymized ad data; more details

are in Section 6.3.

Algorithms evaluated. We evaluate the performance of our algo-

rithms: the proposed greedy algorithms G-bwd (Algorithm 1) and

G-bpx (Algorithm 2), and the practical global greedy algorithm

G-glb. Other baselines consist of: two online greedy algorithms

G-fwd and G-onl, the flow-based algorithm Flow and its aug-

mented variant FlowG, and the matching-based algorithmMWM.

We set the threshold of G-onl to be the best reward at the first slot.

We refer the reader to Section 4.4 for a detailed description of the

above baselines.

Environment. All algorithms are implemented in Python. We adopt

a solver for maximum flow and maximum matching from the Net-

workX library. All algorithms are executed on a docker image of

Ubuntu 22.04. The server is hosted on a Linux system with 48 CPUs

of Intel(R) Xeon(R) Gold 6336Y CPU @ 2.40GHz, 125GB RAM.

6.1 Experiments on synthesized bipartite

graphs

In this setting, we first generate a fixed complete bipartite graph

over 𝑛 = 100 ads, and 𝑚 = 1000 slots. We evaluate the various

algorithmswhen the input instance has the following three different

weighting schemes for the rewards over the edges of the graph: 1)

symmetric random weighting, 2) asymmetric random weighting,

and 3) finely targeted weighting. Each setting is described in detail

below. We also fix 𝑞 = 0.1.

Symmetric random weighting. Each edge of the complete bipartite

graph has its weight drawn uniformly at random from 1 to 10.

Asymmetric random weighting. The random weighting scheme

above has symmetric edgeweights for different slot positions, which

rarely occurs in practice. We break such symmetry and introduce

dependencies with slot positions, by the following two methods.

In the first method, edges connecting a top slot have a larger

reward. More specifically, the reward 𝑟𝑖 𝑗 for assigning ad 𝑎𝑖 to slot

𝑗 is 𝑟𝑖 𝑗 = 𝑤 ·(𝑚 − 𝑗)/𝑚, with𝑤 a random real number in [1, 10], i.e.,
𝑟𝑖 𝑗 likely decreases over slot positions. In the second method, edges

connecting a bottom slot have a larger reward, that is, 𝑟𝑖 𝑗 = 𝑤 · 𝑗/𝑚.

Finely targeted weighting. In practice, an ad may be highly relevant

to just a few items. To simulate this scenario, for each ad 𝑎𝑖 we

select a random slot 𝑗 and set 𝑟𝑖 𝑗 = 10, while setting 𝑟𝑖 𝑗 ′ = 1 for all

other slots 𝑗 ′ ≠ 𝑗 .

Results. Results are reported in Fig. 3. We first note that the G-onl

algorithm has the worst performance, yielding zero reward on most

instances. This is likely caused by the fact that its performances

heavily depend on the threshold𝐶
thr

, a parameter that is often hard

6

https://anonymous.4open.science/r/StreamAds-code-7351/README.md

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Efficient and practical approximation algorithms for advertising in content feeds WWW ’25, April 28 – May 2, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

G
-b
w
d

G
-b
px

G
-g
lb

m
w
m

flo
w

flo
w
G

G
-fw

d
G
-o
nl

0

20

40

ex
pe

ct
ed

re
w
ar
d

(a) Symmetric random weighting

G
-b
w
d

G
-b
px

G
-g
lb

m
w
m

flo
w

flo
w
G

G
-fw

d
G
-o
nl

0.0

2.5

5.0

7.5

ex
pe

ct
ed

re
w
ar
d

(b) Finely targeted weighting

G
-b
w
d

G
-b
px

G
-g
lb

m
w
m

flo
w

flo
w
G

G
-fw

d
G
-o
nl

0

20

40

ex
pe

ct
ed

re
w
ar
d

(c) Asymmetric random weight-

ing (heavy tops)

G
-b
w
d

G
-b
px

G
-g
lb

m
w
m

flo
w

flo
w
G

G
-fw

d
G
-o
nl

0.0

0.1

0.2

ex
pe

ct
ed

re
w
ar
d

(d) Asymmetric random weight-

ing (heavy bottoms)

Figure 3: Comparisons on synthesized bipartite graphs with

different weighting schemes. Error bars indicate the standard

deviation.

to optimize. In the current settings, a lower threshold seems to lead

to better solutions. The naïve G-fwd algorithm, as expected, does

not output good solutions if there are highly rewarding assignments

for bottom slots. In contrast, theMWM algorithm often outputs a

solution with reward close to the best observed one, despite not

accounting for decaying attention. The 4-approximation algorithm

Flow achieves significantly lower expected rewards compared to

the highest reward over all algorithms.

Our backwards greedy algorithmsG-bwd andG-bpx,G-glb, and

FlowG, consistently outperform all other methods and achieve the

highest expected reward over all settings, with the global greedy

algorithm G-glb providing slightly better solutions.

6.2 Ablation study

In this section, we investigate the effect of the various parameters,

that may affect the performance of the algorithms. We study the

scalability with respect to the size of the bipartite graph, sensitivity

to the decaying factor 𝑞, and to an additional cardinality constraint

on the total number of ads to be displayed. We use the symmetric

random weighting introduced previously for the edge weights.

Scalability. We fixed 𝑞 = 0.1. To test the scalability with respect

to the input size, we start with 𝑛 = 100 and𝑚 = 1000, and vary

the number of ads 𝑛 and the number of videos𝑚 separately. The

results are shown in Fig. 4a and Fig. 4b, respectively. We set a time

limit of one hour for each run. Flow and MWM clearly have the

largest running time, as they solve expensive optimization sub-

problems. Then, G-glb has also high running time, especially when

G-bwd
G-bpx

G-glb
mwm

flow
flowG

G-fwd
G-onl

102 103 104

==#ads (log)

10−1

101

103

ru
nt
im

e
(s
,l
og

)

(a) Scaling the number of ads

103 104 105

<=#items (log)

10−1

101

103

ru
nt
im

e
(s
,l
og

)

(b) Scaling the number of items

0.25 0.50 0.75
decaying factor @

0

20

40

ex
pe

ct
ed

re
w
ar
d

(c) Revenue by varying 𝑞

3 10 20 50
matching size :

0

20

40

ex
pe

ct
ed

re
w
ar
d

(d) Revenue by varying 𝑘

Figure 4: Effects of parameters 𝑛,𝑚,𝑞, 𝑘 .

𝑛, the number of ads, grows, and is less sensitive to the number

𝑚 of slots due to the lazy evaluation of the rewards, a technique

we introduced in Section 4.4. Regarding, G-bpx and G-bwd, while

both are backwards-greedy algorithms, G-bpx is much faster than

G-bwd, since it uses a lower bound of the true marginal reward,

achieving remarkable speedups. The two online algorithms are the

fastest, at the expense of significantly lower rewarding solutions.

Effect of 𝑞. We fix the size of the complete bipartite graph, of ads

and slots, to be 𝑛 = 100 and𝑚 = 1000, and we vary the parameter

𝑞. The result is shown in Fig. 4c. Clearly the expected reward drops

as 𝑞 increases, as users are more likely to quit browsing early in

the session. We also note that the Flow algorithm, cannot output a

solution when 𝑞 > 0.5; more details are on the original paper [13],

making it not practical for general applications.

Effect of size limit on ads. Given an integer 𝑘 , we can adapt the

algorithms to produce a matching of size at most 𝑘 as follows.

We terminate the greedy G-glb and online algorithms after 𝑘 ad

allocations. We set the cardinality constraint of the Flow algorithm

to be exactly 𝑘 . While, for all the other algorithms, we iteratively

remove one ad at a time whose removal minimizes the loss in the

expected reward, if more than 𝑘 slots are matched in their solution.

We fix 𝑛 = 100,𝑚 = 1000 and 𝑞 = 0.1. The result are in Fig. 4d.

Overall, most algorithms obtain similar performance. Moreover, as

𝑘 exceeds 20, their revenue reaches a plateau, and further ads bring

unnoticeable benefit, in accordance with the value of 𝑞.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 1: Datasets based on real advertisement. We report:

𝑛 number of ads to place, 𝑚 available slots, |𝐸 | number of

edges, the range of the rewards and the value of 𝑞 used in the

experiments.

Dataset 𝑛 𝑚 |𝐸 | 𝑟𝑒 ([min - max]) 𝑞

YouTube 120 14 999 1 799 880 2.9·10−5 - 3.92·105 0.1

Criteo 14 400 1 440 144 000 8.4·100 - 1.5·103 0.1

G
-b
w
d

G
-b
px

G
-g
lb

m
w
m

flo
w

flo
w
G

G
-fw

d
G
-o
nl

0

2

4

ex
pe

ct
ed

re
w
ar
d

×105

(a) Youtube dataset

G
-b
w
d

G
-b
px

G
-g
lb

m
w
m

flo
w

flo
w
G

G
-fw

d
G
-o
nl

0

1

2

ex
pe

ct
ed

re
w
ar
d

×103

(b) Criteo dataset

Figure 5: Comparisons on simulated native advertising using

real data.

G-bwd
G-bpx

G-glb
mwm

flow
flowG

G-fwd
G-onl

0 2000
slot index

0.0

0.5

1.0

cu
m
ul
at
iv
e
se
le
ct
io
n

(a) YouTube dataset

0 1000
slot index

0.0

0.5

1.0

cu
m
ul
at
iv
e
se
le
ct
io
n

(b) Criteo dataset

Figure 6: Distributions of the selected slot index.

6.3 Simulated native advertising

As mentioned previously, obtaining high-quality advertisement

data is particularly challenging (given its proprietary nature). In

this section we conduct experiments on two datasets built from

real anonymous advertisement data, publicly available.

Data generation. Details on how we build instances to our problem

based on two real-world datasets (videos from YouTube
2
and ads

from the Criteo AI Lab
3
) are in Appendix B. Our instances suc-

cessfully preserve the sequential and categorical distribution of

advertisement rewards in the data, when available. A summary of

the key data statistics is reported in Table 1.

2
https://www.kaggle.com/datasets/sidharth178/youtube-adview-dataset

3
https://go.criteo.net/criteo-research-kaggle-display-advertising-challenge-

dataset.tar.gz

Results. We now discuss the results obtained by the algorithms on

such data. First we report in Fig. 5 the results, in terms of expected

reward for the two datasets. We start by noting that on the YouTube

dataset, the best performing algorithms are G-bwd, G-bpx, G-glb,

and FlowG, with G-glb outperforming all the other algorithms by

a small margin. Surprisingly, the G-onl algorithm also performs

well. Results for the Criteo dataset confirm a similar trend for the

best performers, but this time together with G-fwd, G-onl per-

forms poorly compared to others, given by its very sensitive nature.

Such results are in line with what is observed on synthetic data,

confirming the high quality solutions in output to our techniques.

To further investigate the difference in the allocation strategies

produced by the algorithms, we analyzed how the various ads are

placed over the slots. To do this, we report a cumulative distribution

over the slot indices in output to each algorithm, More specifically,

suppose that an algorithm matches 𝑘 slots with indices 𝐽 ⊆ [𝑚],
then the cumulative value at index 𝑗 is |{ 𝑗 ′ ∈ 𝐽 : 𝑗 ′ ≤ 𝑗}|/𝑘 . The
results are reported in Fig. 6. On the YouTube dataset, we observe

very different allocation strategies. We first note that methods with

different ad allocation strategiesmay yield similar expected rewards,

for example G-glb allocates more slots with larger indices than

MWM despite achieving similar result on the Criteo dataset (see

Fig. 5b). Our backwards greedy methods are the only ones that

allocate ads to slots with large indices. This is due to the backwards

design, which may allocate ads in bottom positions as long as

they are beneficial, even though their utility may diminish later.

In other words, our backwards greedy algorithms achieve a high

recall rate of good allocations. Ads with a diminished reward can be

pruned with little loss, e.g., by the pruning strategy we introduce

in Section 6.2.

As a summary of our experiments, we observe that our proposed

methods report high quality solutions with provable approximation

guarantees (as captured by our analysis) on both synthetic and real

data, and solve the StrmAds problem much more efficiently than

existing techniques.

7 Conclusion

In this paper, we provide fast and practical 2-approximation greedy

algorithms for the problem of advertising in content feeds. Our algo-

rithms are faster and theoretically superior than previous methods.

Our analysis relies on a novel charging scheme, derived by care-

fully decomposing and lower bounding the objective function of

the problem. We then provide the first comprehensive empirical

study on the problem, showing the promising performance of our

approaches.

We conclude with a discussion on the limitations of the current

work, and potential future directions. Similar to existing algorithms,

our methods do not work online, which may be limiting for ad

allocation in real-time. Besides, our current work assumes a given

reward for each ad-item pair, and leaves the pricing challenge to

future work. Multiple aspects of the current formulation can be

further refined, for example, a more flexible decaying function, and

more explicit control on the gap between consecutive ads.

8

https://www.kaggle.com/datasets/sidharth178/youtube-adview-dataset
https://go.criteo.net/criteo-research-kaggle-display-advertising-challenge-dataset.tar.gz
https://go.criteo.net/criteo-research-kaggle-display-advertising-challenge-dataset.tar.gz

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Efficient and practical approximation algorithms for advertising in content feeds WWW ’25, April 28 – May 2, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Gagan Aggarwal, Jon Feldman, Shanmugavelayutham Muthukrishnan, and Mar-

tin Pál. 2008. Sponsored search auctions with markovian users. In International
Workshop on Internet and Network Economics. Springer, 621–628.

[2] Saleem Alhabash and Mengyan Ma. 2017. A Tale of Four Platforms: Moti-

vations and Uses of Facebook, Twitter, Instagram, and Snapchat Among Col-

lege Students? Social Media + Society 3, 1 (Jan. 2017). https://doi.org/10.1177/

2056305117691544

[3] Anon. 2024. Full Paper. In WWW. https://drive.google.com/drive/folders/

18wEJ96Y-0XVO4RT2qE5KE8AeGSii4q6R?usp=sharing

[4] Niv Buchbinder and Moran Feldman. 2018. Submodular functions maximization

problems. InHandbook of approximation algorithms and metaheuristics. Chapman

and Hall/CRC, 753–788.

[5] Carlos Carrion, Zenan Wang, Harikesh Nair, Xianghong Luo, Yulin Lei, Xiliang

Lin,Wenlong Chen, Qiyu Hu, Changping Peng, Yongjun Bao, et al. 2021. Blending

advertising with organic content in e-commerce: A virtual bids optimization

approach. arXiv preprint arXiv:2105.13556 (2021).
[6] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An ex-

perimental comparison of click position-bias models. In Proceedings of the 2008
international conference on web search and data mining. 87–94.

[7] Nikhil Devanur and Aranyak Mehta. 2022. Online matching in advertisement

auctions.

[8] eMarketer. 2024. US Native Advertising 2019. https://www.emarketer.com/

content/us-native-advertising-2019 Accessed: Oct. 2024.

[9] Jon Feldman, Nitish Korula, Vahab Mirrokni, Shanmugavelayutham Muthukr-

ishnan, and Martin Pál. 2009. Online ad assignment with free disposal. In

International workshop on internet and network economics. Springer, 374–385.
[10] Iftah Gamzu and Iordanis Koutsopoulos. 2019. Advertisement allocation and

mechanism design in native stream advertising. In Complex Networks and Their
Applications VII: Volume 2 Proceedings The 7th International Conference on Complex
Networks and Their Applications COMPLEX NETWORKS 2018 7. Springer, 197–
210.

[11] Jason Hartline, Vahab Mirrokni, and Mukund Sundararajan. 2008. Optimal

marketing strategies over social networks. In Proceedings of the 17th international
conference on World Wide Web. 189–198.

[12] Zhiyi Huang, Zhihao Gavin Tang, and David Wajc. 2024. Online matching: A

brief survey. arXiv preprint arXiv:2407.05381 (2024).
[13] Samuel Ieong, Mohammad Mahdian, and Sergei Vassilvitskii. 2014. Advertising

in a stream. In Proceedings of the 23rd international conference on World wide web.
29–38.

[14] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining. 137–146.
[15] David Kempe and Mohammad Mahdian. 2008. A cascade model for externalities

in sponsored search. In InternationalWorkshop on Internet and Network Economics.
Springer, 585–596.

[16] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh Vazirani. 1998. On

syntactic versus computational views of approximability. SIAM J. Comput. 28, 1
(1998), 164–191.

[17] Xuejian Li, Ze Wang, Bingqi Zhu, Fei He, Yongkang Wang, and Xingxing Wang.

2024. Deep automated mechanism design for integrating ad auction and alloca-

tion in feed. In Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 1211–1220.

[18] Guogang Liao, Ze Wang, Xiaoxu Wu, Xiaowen Shi, Chuheng Zhang, Yongkang

Wang, Xingxing Wang, and Dong Wang. 2022. Cross dqn: Cross deep q network

for ads allocation in feed. In Proceedings of the ACM Web Conference 2022. 401–
409.

[19] Meetanshi. 2024. 10 Native Advertising Statistics You Need to Know. https:

//meetanshi.com/blog/native-advertising-statistics/ Accessed: Oct. 2024.

[20] Aranyak Mehta et al. 2013. Online matching and ad allocation. Foundations and
Trends® in Theoretical Computer Science 8, 4 (2013), 265–368.

[21] AranyakMehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. 2007. Adwords

and generalized online matching. Journal of the ACM (JACM) 54, 5 (2007), 22–es.
[22] Silvia Milano, Mariarosaria Taddeo, and Luciano Floridi. 2020. Recommender

systems and their ethical challenges. AI & SOCIETY 35, 4 (Feb. 2020), 957–967.

https://doi.org/10.1007/s00146-020-00950-y

[23] Outbrain. 2022. Top Native Advertising Statistics for 2022. https://www.outbrain.

com/blog/native-advertising-statistics Accessed: Oct. 2024.

[24] Yang Shi, Jun B Kim, and Ying Zhao. 2023. How much does ad sequence matter?

Economic implications of consumer zapping and the zapping-induced externality

in the television advertising market. Journal of Advertising 52, 2 (2023), 229–246.
[25] Hal R Varian. 2007. Position auctions. international Journal of industrial Organi-

zation 25, 6 (2007), 1163–1178.

[26] David P Williamson and David B Shmoys. 2011. The design of approximation
algorithms. Cambridge university press.

[27] Bartosz W Wojdynski and Guy J Golan. 2016. Native advertising and the future

of mass communication. American Behavioral Scientist 60, 12 (2016), 1403–1407.
[28] Jinyun Yan, Zhiyuan Xu, Birjodh Tiwana, and Shaunak Chatterjee. 2020. Ads

allocation in feed via constrained optimization. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 3386–
3394.

[29] Hye Jin Yoon, Yan Huang, and Mark Yi-Cheon Yim. 2023. Native advertising

relevance effects and the moderating role of attitudes toward social networking

sites. Journal of Research in Interactive Marketing 17, 2 (2023), 215–231.

9

https://doi.org/10.1177/2056305117691544
https://doi.org/10.1177/2056305117691544
https://drive.google.com/drive/folders/18wEJ96Y-0XVO4RT2qE5KE8AeGSii4q6R?usp=sharing
https://drive.google.com/drive/folders/18wEJ96Y-0XVO4RT2qE5KE8AeGSii4q6R?usp=sharing
https://www.emarketer.com/content/us-native-advertising-2019
https://www.emarketer.com/content/us-native-advertising-2019
https://meetanshi.com/blog/native-advertising-statistics/
https://meetanshi.com/blog/native-advertising-statistics/
https://doi.org/10.1007/s00146-020-00950-y
https://www.outbrain.com/blog/native-advertising-statistics
https://www.outbrain.com/blog/native-advertising-statistics

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A Missing proofs

Proposition 1. The expected-reward function 𝑓 : 2
𝐸 → R in Eq. (1)

for the StrmAds problem is neither monotone nor submodular.

Proof of Proposition 1. For simplicity, we consider a special

case where, for each ad 𝑎𝑖 , the rewards 𝑟𝑖 𝑗 are identical, i.e., 𝑟𝑖 𝑗 = 𝑟𝑖 ,

for all associated slots 𝑗 ∈ 𝑆𝑖 . We first show that the expected reward

is non-monotone. It is easy to see that assigning ads sequentially

by the order of the slots increases the expected reward. However,

assigning a new ad with a zero reward to an earlier slot decreases

the expected reward, as it reduces the probability of subsequent

ads of being seen.

We continue to show that the expected-reward function is non-

submodular. For any feasible subset 𝐶 ⊆ 𝐷 ⊆ 𝐸, the marginal gain

𝑔((𝑖, 𝑗) | 𝐶) = 𝑓 (𝐶 + (𝑖, 𝑗)) − 𝑓 (𝐶) of adding an edge (𝑖, 𝑗) into a

set of edges 𝐶 is

𝑔((𝑖, 𝑗) | 𝐶) = 𝑟𝑖 (1 − 𝑞) 𝑗+𝑧 (𝑗) − 𝑞
∑︁

(𝑖′, 𝑗 ′) ∈𝐶 :𝑗 ′> 𝑗

𝑟𝑖′ (1 − 𝑞) 𝑗
′+𝑧 (𝑗 ′) .

Compared with 𝑔((𝑖, 𝑗) | 𝐷), the first term is clearly non-increasing,

but the second term may increase. For example, we have 𝑔((𝑖, 𝑗) |
𝐶) < 𝑔((𝑖, 𝑗) | 𝐷) by letting 𝐷 \𝐶 be ads with zero rewards placed

after slot 𝑗 and before other subsequent items. On the other hand,

we also have 𝑔((𝑖, 𝑗) | 𝐶) ≥ 𝑔((𝑖, 𝑗) | 𝐷) when slot 𝑗 is ranked after

every occupied slot in 𝐷 . □

Theorem 2. Algorithm 1 solves the StrmAds-R problem optimally.

Proof of Theorem 2. The proof is similar to the one by Ieong

et al. [13] for finely targeted ads, i.e., |𝑆𝑖 | = 1, for all ads 𝑎𝑖 . The key

is to notice that by processing slots backwards, a decision at slot 𝑗

cannot affect any slot that has not yet been processed, i.e., slots in

positions 𝑗 ′ = 1, . . . , 𝑗−1. That is, the user attention for a slot 𝑗 ′ does
not depend on ads placed later (in slots 𝑗, . . . ,𝑚); additionally, every

ad can be re-used as there is no matching constraint. Thus, solv-

ing optimally the sequence of sub-problems on slots 𝑗, . . . ,𝑚 with

decreasing 𝑗 =𝑚, . . . , 1, yields an optimal solution to StrmAds-R.

The sub-problem for the final slot (i.e., 𝑗 = 𝑚) is trivial, and

G-bwd assigns to it the ad with the highest expected reward, if

available. Moving backwards to the next slot 𝑗 , G-bwd assigns an

ad with the highest reward to the slot 𝑗 only if it improves the total

reward, that clearly results in an optimal assignment for this new

sub-problem. The proof immediately follows by the above invariant

over the backward processing of the slots. □

Lemma 3. During the execution of the main loop of Algorithm 2, for
any fixed 𝑗 ∈ [𝑚], the value 𝑅 𝑗 is non-increasing since the completion
of the sub-problem StrmAds- 𝑗 .

Proof of Lemma 3. At each iteration, 𝑅 𝑗 remains unchanged

if no re-assignment occurs. Hence, consider when an ad 𝑎𝑖 is re-

assigned from slot 𝑗 to slot 𝑗 ′, and let �̃� 𝑗 be the revenue after such

a re-assignment. First note that our statement does not regard 𝑅 𝑗 ′ ,

because the sub-problem StrmAds- 𝑗 ′ is completed after the re-

assignment. Clearly, �̃� 𝑗 = 𝑅 𝑗 for any 𝑗 ≥ 𝑗 . Now let 𝑗 < 𝑗 . We

prove by induction that �̃� 𝑗 ≤ 𝑅 𝑗 . Recall that 𝜏 𝑗 = 𝑟𝑒 𝑗 − 𝑞𝑅 𝑗 , and by

design of the G-bpx algorithm it holds 𝜏 𝑗 > 0.

First, as a base case, when 𝑗 = 𝑗 − 1, we have
�̃� 𝑗 = (1 − 𝑞)𝑅 𝑗 ≤ (1 − 𝑞) (𝑅 𝑗 + 𝜏 𝑗) = 𝑅 𝑗 .

In the inductive step, for 𝑗 < 𝑗 − 1, we have
�̃� 𝑗 = (1 − 𝑞) (�̃� 𝑗+1 + 1[𝑒 𝑗+1 ∈ 𝑀 − (𝑖, 𝑗)]𝜏 𝑗+1)
≤ (1 − 𝑞) (𝑅 𝑗+1 + 1[𝑒 𝑗+1 ∈ 𝑀]𝜏 𝑗+1) = 𝑅 𝑗 ,

where 𝜏 𝑗 = 𝑟𝑒 𝑗 −𝑞�̃� 𝑗 . The inequality follows since �̃� 𝑗+1 ≤ 𝑅 𝑗+1 holds
regardless of 𝑒 𝑗+1 being in𝑀 or not. This completes the proof. □

Lemma 4. Denote by 𝑔 the marginal gain in reward of re-assigning
ad 𝑎𝑖 from slot 𝑗 to slot 𝑗 with 𝑗 > 𝑗 . Then,

𝑔 ≥ 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝜏𝑖 (1 − 𝑞) 𝑗− 𝑗 .

Proof of Lemma 4. The marginal gain 𝑔 of re-assigning ad 𝑎𝑖
from slot 𝑗 to slot 𝑗 is a sum of two terms. The first term is the loss

of removing edge 𝑒 = (𝑖, 𝑗), and the second term is the marginal

reward of adding the new edge (𝑖, 𝑗). By Eq. (6), we have that

𝑅 𝑗 − �̃� 𝑗 =

𝑚∑︁
𝑗 ′=𝑗+1

(1 − 𝑞) 𝑗
′− 𝑗 (1[𝑒 𝑗 ′ ∈ 𝑀]𝜏 𝑗 ′ − 1[𝑒 𝑗 ′ ∈ 𝑀 − 𝑒]𝜏 𝑗 ′

)
= 𝜏𝑖 (1 − 𝑞) 𝑗− 𝑗 +

𝑗−1∑︁
𝑗 ′=𝑗+1

(1 − 𝑞) 𝑗
′− 𝑗 (1[𝑒 𝑗 ′ ∈ 𝑀] (𝜏 𝑗 ′ − 𝜏 𝑗 ′))

≤ 𝜏𝑖 (1 − 𝑞) 𝑗− 𝑗 ,

where �̃� 𝑗 is the reward after the removal, and 𝜏 𝑗 = 𝑟𝑒 𝑗 − 𝑞�̃� 𝑗 . The

last two steps follow from Lemma 3. The claim follows,

𝑔 = �̃� 𝑗 − 𝑅 𝑗 + 𝑟𝑖 𝑗 − 𝑞�̃� 𝑗 = (1 − 𝑞) (�̃� 𝑗 − 𝑅 𝑗) + 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗

≥ 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝜏𝑖 (1 − 𝑞) 𝑗− 𝑗+1 ≥ 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝜏𝑖 (1 − 𝑞) 𝑗− 𝑗

□

Theorem 5. Algorithm 2 returns a 2-approximation for the StrmAds
problem.

Proof of Theorem 5. We prove the claim by induction on slots

𝑗 ∈ [𝑚] following the same backward ordering (i.e., 𝑗 =𝑚, . . . , 1, 0)

adopted by Algorithm 2. Let ALG𝑗 be the solution of Algorithm 2

before performing the 𝑗-th iteration (i.e., having only processed the

slots in positions𝑚, . . . , 𝑗 + 1)4, and OPT𝑗 be the optimal solution

to StrmAds (i.e., OPT) ignoring the first 𝑗 slots. Let their objective

values for the sub-problem StrmAds- 𝑗 be 𝑅 𝑗 := 𝑓𝑗 (ALG𝑗) and
𝑅∗
𝑗
:= 𝑓𝑗 (OPT𝑗), respectively. And also let the marginal revenue in

𝑅 be 𝑔 𝑗 = 𝑅 𝑗−1/(1 − 𝑞) − 𝑅 𝑗 at the 𝑗-th slot, and similarly in 𝑅∗,
𝑔∗
𝑗
= 𝑅∗

𝑗−1/(1 − 𝑞) − 𝑅
∗
𝑗
. We then write Γ𝑖 := 𝜏𝑖 (1 − 𝑞)𝜎 (𝑖)− 𝑗 , for

each ad 𝑎𝑖 matched in ALG𝑗 .

Let 𝑗 be smallest 𝑗 such that it holds 𝑅 𝑗 ≥ 𝑅∗
𝑗
. Note that 𝑗 exists,

as 𝑅𝑚 = 𝑅∗𝑚 = 0. If 𝑗 = 0, the statement trivially follows. Otherwise,

we assume the following hypothesis: for every 𝑗 < 𝑗 , we can charge

marginal revenue 𝑔∗
𝑗
of OPT𝑗 to both 𝑔 𝑗 and {Γ𝑖 } in ALG𝑗 , while

maintaining the invariant that every Γ𝑖 (corresponding to ad 𝑎𝑖) in

ALG𝑗 is used at most once among all iterations. This immediately

implies

2𝑓𝑗 (ALG𝑗) =
∑︁
𝑗 ′> 𝑗

𝑔 𝑗 ′ (1 − 𝑞) 𝑗
′− 𝑗 +

∑︁
𝑒=(𝑖, 𝑗 ′) ∈ALG𝑗

Γ𝑖

4
for 𝑗 =𝑚 there are no such processed slots, while if 𝑗 = 0 then ALG𝑗 corresponds

to the output of Algorithm 2.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Efficient and practical approximation algorithms for advertising in content feeds WWW ’25, April 28 – May 2, 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

≥
∑︁
𝑗 ′> 𝑗

𝑔∗𝑗 ′ (1 − 𝑞)
𝑗 ′− 𝑗 = 𝑓𝑗 (OPT𝑗)

by the decomposition in Eq. (6).

For 𝑗 = 𝑗 , since 𝑅 𝑗 ≥ 𝑅∗
𝑗
, it is sufficient to consider only the

marginal gains {𝑔 𝑗 }, as it holds 𝑅 𝑗 ≥ 𝑅∗
𝑗
. Now, for the next smaller

𝑗 in an inductive step, we have the following cases.

Case 1. OPT𝑗−1 = OPT𝑗 , that is, OPT does not include any new

ad for its 𝑗-th slot. If our ALG also does not select any item for the

𝑗-th slot, then the inductive step clearly holds.

Otherwise, notice that Algorithm 2 (re-)assigns an ad only if

𝑔𝐿𝐵 > 0 by Lemma 4. Hence, the overall revenue (i.e., 𝑅 𝑗−1/(1−𝑞))
only increases, and therefore our hypothesis holds also for this case.

Case 2. OPT𝑗−1 = OPT𝑗 + 𝑒∗, where 𝑒∗ = (𝑖∗, 𝑗), that is the
optimal solution assigns ad 𝑖∗ to the 𝑗-th slot.

Case 2.1. If our ALG (re-)assigns ad 𝑖 to slot 𝑗 , i.e., matching the

edge 𝑒 = (𝑖, 𝑗), then by the greedy criterion (Eq. (3)), we have

𝑟𝑒 − Γ𝑖 ≥ 𝑟𝑒∗ − Γ𝑖∗ .
Therefore, we can use both Γ𝑖∗ and 𝑔 𝑗 to charge for 𝑟𝑒∗ . That is,

𝑔 𝑗 + Γ𝑖∗ ≥ 𝑟𝑒 − Γ𝑖 − 𝑞𝑅 𝑗 + Γ𝑖∗ ≥ 𝑟𝑒∗ − 𝑞𝑅∗𝑗 = 𝑔∗𝑗 ,

where the first inequality follows by Lemma 4, and the second

follows by the greedy rule and the fact that 𝑅 𝑗 < 𝑅∗
𝑗
(as 𝑗 < 𝑗). Note

that if ad 𝑎𝑖∗ was not matched in ALG𝑗 then Γ𝑖∗ = 0, or otherwise,

we increase the number of charges on Γ𝑖∗ by one.

Case 2.2. ALG𝑗−1 = ALG𝑗 . The greedy choice and its inequali-

ties from Case 2.1 still apply, but fail to produce a positive lower

bound. That is, 𝑔𝐿𝐵 = 𝑟𝑒 −Γ𝑖 −𝑞𝑅 𝑗 ≤ 0 for each 𝑒 = (𝑖, 𝑗). Therefore,
it is sufficient to only pay Γ𝑖∗ for this case.

In Case 2, we use each Γ𝑖 at most once because OPT contains

at most one edge incident to ad 𝑎𝑖 , given the matching constraint.

Furthermore, 𝜏𝑖 is non-decreasing after re-assigning either ad 𝑎𝑖 (by

design of G-bpx), or other ads 𝑎𝑖′ (by Lemma 3), so the payments

in prior iterations remain valid, completing the proof. □

Proposition 6. Algorithm 1 and Algorithm 2 cannot do better than
2-approximation.

Proof of Proposition 6. Fix 𝑞 = 0, and then StrmAds is re-

duced to a maximumweighted matching problem (MWM). It is well

known that a greedy algorithm cannot do better than 2-approximation

for MWM. Concretely, let𝑚 = 2. Create two ads 𝑎1, 𝑎2 with slots

𝑆1 = {1, 2} and 𝑆2 = {2}, respectively. Set rewards 𝑟11 = 𝑟22 = 1 and

𝑟12 = 1+𝜖 . Thus, a backwards-greedy algorithm yields a revenue of

1+𝜖 by assigning 𝑎1 to the 2-nd slot, while the optimum assignment

yields 2. The ratio approaches 2 for an arbitrary small 𝜖 . □

Corollary 7. Algorithm 1 returns a 2-approximation for the StrmAds
problem.

Proof of Corollary 7. The proof is similar to Theorem 5, ex-

cept that we need a different inequality for the Case 2 therein.

Though Algorithm 1 does not use the values 𝜏𝑖 , we use such values

here only for the analysis, and assume that Algorithm 1 updates

the values 𝜏𝑖 as from Theorem 5. Recall that Γ𝑖 := 𝜏𝑖 (1 − 𝑞)𝜎 (𝑖)− 𝑗 .
Suppose that at slot 𝑗 , OPT𝑗−1 = OPT𝑗 + 𝑒∗, where 𝑒∗ = (𝑖∗, 𝑗).

If our ALG (re-)assigns edge 𝑒 = (𝑖, 𝑗), then by the greedy criterion,

𝑔𝑖 ≥ 𝑔𝑖∗

𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝜅𝑖 𝑗 ≥ 𝑟𝑖∗ 𝑗 − 𝑞𝑅 𝑗 − 𝜅𝑖∗ 𝑗 ,
where 𝑔𝑖 denotes the marginal reward of (re-)assigning ad 𝑎𝑖 , and

𝜅𝑖 𝑗 := 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝑔𝑖 . By Lemma 4, we have for any 𝑖 ,

𝑔𝑖 ≥ 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − Γ𝑖 =⇒ Γ𝑖 ≥ 𝜅𝑖 𝑗 .

Therefore, we can use both Γ𝑖∗ and 𝑔 𝑗 to charge for 𝑟𝑖∗ 𝑗 . That is,

𝑔 𝑗 + Γ𝑖∗ = 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝜅𝑖 𝑗 + Γ𝑖∗
≥ 𝑟𝑖∗ 𝑗 − 𝑞𝑅 𝑗 − 𝜅𝑖∗ 𝑗 + Γ𝑖∗
≥ 𝑟𝑖∗ 𝑗 − 𝑞𝑅∗𝑗 − 𝜅𝑖∗ 𝑗 + Γ𝑖∗
≥ 𝑟𝑖∗ 𝑗 − 𝑞𝑅∗𝑗 = 𝑔∗𝑗 ,

where the inequalities follow by the greedy rule, the fact that 𝑅 𝑗 <

𝑅∗
𝑗
, and Lemma 4, respectively.

The claim follows by charging every𝑔∗
𝑗
to𝑔 𝑗 and {Γ𝑖 }, and noting

that every Γ𝑖 is used at most once among all iterations. We omit the

details for the other cases, as they follow from Theorem 5. □

B Native advertisement data

In this section we describe how we built data used for our ex-

perimental evaluation on native advertisement, i.e., the setting in

Section 6.3.

YouTube data. The YouTube data we considered is formed by a

set of videos {𝑣1, . . . , 𝑣𝑚}, characterized by: (1) the video category,

i.e., 𝐶 (𝑣𝑖) ∈ {𝐶1, . . . ,𝐶ℓ }, where ℓ = 8; and (2) the number of “ad

views” for each video, which we use as a proxy for the reward.

To generate the data, we first obtain a random browsing session,

i.e., a permutation 𝑣 ′
1
, . . . , 𝑣 ′𝑚 of the videos, through the following

browsing model. A user starts from a randomly-chosen video 𝑣 ′
1
.

With probability 𝑝 = 0.5, the user selects another randomly chosen

video of the same category 𝐶 (𝑣 ′
1
), or otherwise the user randomly

selects a previously unseen video from a different category. The

process is iterated until a permutation of all videos is obtained.

We assume that there are 𝑟 = 15 advertisers, providing 1, . . . , ℓ

ads, i.e., one for each category 𝑘 ∈ [ℓ]. We compute the reward

𝑟𝑖 𝑗 for ad 𝑎𝑖 after video 𝑣 𝑗 , where 𝑖 ∈ [𝑟 ℓ] and 𝑗 ∈ [𝑚], as follows.
First, for each different category 𝐶𝑘 with 𝑘 ∈ [ℓ], over all the
videos belonging to𝐶𝑘 , we compute the average “ad views” 𝜇𝑘 and

its standard deviation 𝜎𝑘 . We then assume that the rewards are

normally distributed, i.e., 𝑟𝑖 𝑗 ∼ 𝛼𝑘 |N (𝜇𝑘 , 𝜎𝑘) |, where 𝑘 = 𝐶 (𝑣 𝑗),
and parameter 𝛼𝑘 = 0.8 if the ad and the video share the same

category, i.e.,𝐶 (𝑎𝑖) = 𝐶 (𝑣 𝑗), or𝛼𝑘 = 0.01 otherwise, which captures

a higher reward for ads targeted to related videos. Hence in the

final data each ad 𝑎𝑖 , 𝑖 ∈ [𝑟 ℓ] can be placed after each video 𝑣 ′
𝑗
, with

the reward 𝑟𝑖 𝑗 computed as above.

Criteo data. The data consists of a chronologically ordered sequence
of displayed ads collected over one day. Each of the 48 millions

ads recorded has 13 numerical features (capturing the engagement

of users with each displayed ad), that we clustered into 𝑘 = 100

categories using the 𝑘-means algorithm. Besides, a reward can

be computed for each ad, as a linear function of its features. We

simulate the following browsing session over a full day: a user

is browsing a website and an ad can be displayed to its session

after one minute of content observed on the website, that is there

are exactly𝑚 = 1440 slots to which ads can be assigned. We then

create 𝑏 = 144 blocks of ads (which may correspond to different

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, April 28 – May 2, 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

advertisers), and for each block, we assume 𝑘 (non-existential) ads,

i.e., one for each cluster. We then associate ads in each block to

10 random slots among𝑚. Then, for each block-slot assignment

we add connecting edges, that is, suppose the ads in block ℎ ∈ [𝑏],
with indices 𝑎 (ℎ−1)𝑘+1, . . . , 𝑎ℎ𝑘 are associated to slot 𝑗 then we add

edges of the form (𝑎 (ℎ−1)𝑘+𝑖 , 𝑗) for 𝑖 ∈ [𝑘]. Then, if there exists an
edge between 𝑎𝑖 with 𝑖 ∈ [𝑏𝑘] and slot 𝑗 ∈ [𝑚], then the reward 𝑟𝑖 𝑗

is assumed to be the average reward5 of all ads (from the original

data) of the same category as 𝑎𝑖
6
displayed over the 𝑗-th minute;

otherwise, 𝑟𝑖 𝑗 = 0. In this way, we capture the reward distribution

over both clusters and time, in real-world data.

5
More formally let 𝑎𝑖 = (𝑎1𝑖 , . . . , 𝑎13𝑖) be ad 𝑎𝑖 with its features. Then we compute,

for each ad it maximum engagement maxℎ=1,...,13 { |𝑎ℎ𝑖 | }, which we further multiply

by a factor 10 if the ad was clicked by a user. Such value is then averaged to compute

the actual average reward.

6
among the 𝑘 categories obtained trough 𝑘-means.

12

	Abstract
	1 Introduction
	2 Problem definition
	3 Problem structure and failed attempts
	4 Algorithms
	4.1 Solving StrmAds-R optimally
	4.2 Non-oblivious greedy for StrmAds
	4.3 Natural greedy for StrmAds
	4.4 Other practical algorithms

	5 Related work
	6 Experimental evaluation
	6.1 Experiments on synthesized bipartite graphs
	6.2 Ablation study
	6.3 Simulated native advertising

	7 Conclusion
	References
	A Missing proofs
	B Native advertisement data

