
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116
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Abstract

Content feeds provided by platforms such as X (formerly Twitter)

and TikTok are consumed by users on a daily basis. In this paper,

we revisit the native advertising problem in content feeds, initiated

by Ieong et al. Given a sequence of organic items (e.g., videos or

posts) relevant to a user’s interests or information search, the goal

is to design an algorithm that maximizes the reward (e.g., clicks) by

placing advertisements interleaved with the organic content under

two considerations: (1) an advertisement can only be inserted after

a relevant content item; (2) the users’ attention decays after con-

suming content or advertisements. These considerations provide a

natural model for capturing both the advertisement effectiveness

and the user experience. In this paper, we design fast and practical

2-approximation greedy algorithms for the associated optimization

problem, in contrast to the best-known practical algorithm that

only achieves an approximation factor of 4. Our algorithms exploit

a counter-intuitive structure about the problem, that is, while top

items are seemingly more important due to the decaying attention

of the user, taking good care of the bottom items is key for ob-

taining improved approximation guarantees. We then provide the

first comprehensive empirical evaluation on the studied problem,

showing the strong empirical performance of our algorithms.
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1 Introduction

A significant share of the current web traffic originates from user-

generated content platforms, such as X (formerly Twitter), Face-

book, and TikTok [2]. These platforms primarily engage users

through their content feeds, which display a continuous stream

of organic content items, such as social updates or videos, arranged

in a carefully crafted order and formatted for infinite scrolling [22].

The main monetization strategy of major social-media platforms is

to insert sponsored content in between the content items, such as
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Figure 1: An illustration of the expected reward being non-

monotone with respect to the ad placement. Here 𝑎, 𝑣 and 𝑠

denote ads, videos, and slots respectively. In the first scenario

(a) an ad 𝑎2 with reward 2 is allocated to slot 𝑠2 after video 𝑣2,

and a user sees the ad 𝑎2 with probability 𝑝. In the second

scenario (b) an additional ad 𝑎1 with reward 1 is allocated to

slot 𝑠1 after video 𝑣1. Due to decaying user attention, in (b),

the user sees the ad 𝑎2 with a probability 𝑝′ < 𝑝. Thus, placing

an additional ad may lead to a smaller expected reward.

promoted posts, content seeking higher user engagement, or pay-

per-click ads. The sponsored content is often designed to provide a

well-integrated look and less intrusive user experience, which is

also known as native advertising [27]. Advertisers incur a charge
every time users interact with sponsored content, and native ad-

vertising has evolved into a huge business with a market of about

100 billion USD [19, 23], accounting for nearly two thirds of total

display ad spending in the US [8].

The placement of sponsored content within an infinite feed poses

a unique allocation challenge as it requires balancing two factors:

(a) prioritizing advertisements at the top of the feed, since users

will eventually stop scrolling further their feed; and (b) ensuring

contextual coherence [29], to boost interaction rates. For instance,

an airline advertisement is more attractive when displayed after

a travel-related post rather than after a political one. This setting

is significantly different from traditional online advertising [7, 20],

e.g., search advertising, where ads are sold through auctions for

each opportunity, and showing the winning ad is assumed to have

no influence on future revenue. In contrast, for native advertising

in content feeds, showing an ad reduces the number of items a user

will explore. Therefore, if no suitable advertisement fits a specific

content, the optimal approach would be to forgo immediate revenue

in favor of potential earnings later over the user session. For an

illustration, consider Example 1 and Fig. 1.

Example 1. As illustrated in Fig. 1, assume that there is a slot to
which an ad can be allocated to, after every organic video. Consider
two videos 𝑣1, 𝑣2 that are presented to a user in order. Suppose that an
ad 𝑎2 has been allocated to the slot after 𝑣2. The crucial observation
here is that placing a new ad 𝑎1 before 𝑣2 may lead to a loss in the total
expected reward over the user session, as it reduces the probability
that a user interacts with ad 𝑎2.
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Ieong et al. [13] initiated a mathematical formulation for na-

tive advertising in content feeds, denoted as the StrmAds prob-

lem, where in addition to given rewards for every feasible ad-item

pair (e.g., collected through an ad auction), users have decaying

attention [6], and may quit browsing with a fixed probability after

observing an item or an ad. Under such a model, the StrmAds

problem is to maximize the expected total reward over a user ses-

sion, by suitably deciding a strategy to display ads. Ieong et al. [13]

show that there exists a PTAS (i.e., an algorithm that returns nearly

optimal solutions) for the StrmAds problem. However, such an

algorithm relies on solving expensive combinatorial problems, mak-

ing it impractical. To the best of our knowledge, the state-of-the-art

practical algorithm only achieves a 4-approximation guarantee,

that solves the problem by finding a suitable maximum weighted

matching (MWM) with cardinality constraints [13].

In this paper, we develop practical and efficient 2-approximation

greedy algorithms for the StrmAds problem. To deal with decaying

attention, our algorithms exploit a counter-intuitive structure of

the problem, namely, while top items are seemingly more important

due to the decaying attention, finding a good position for the bot-

tom items is key to obtaining improved approximation guarantees.

In addition, to carefully account for the challenging constraints of

StrmAds, which requires to allocate rewarding ads while consid-

ering the decaying attention of a user, we devise a novel charging

scheme based on a non-trivial decomposition of StrmAds’s objec-

tive function. This result is then used to identify high-quality ad

allocation strategies, and leveraged in our proofs to obtain good

approximation guarantees.

In addition, to the best of our knowledge, we provide the first

comprehensive empirical study on the StrmAds problem. In which

we verify the strong empirical performance of our novel algorithms.

More specifically, our contributions are as follows.

• We provide an exact greedy algorithm for a special case

of the StrmAds problem, where each ad can be displayed

more than once.

• We provide two 2-approximation greedy algorithms for

the StrmAds problem. The first algorithm uses a greedy

criterion guided by the exact marginal gain in revenue, and

the second one leverages a lower bound of the marginal

gain. The second one is also particularly efficient.

• We provide the first comprehensive empirical study on the

StrmAds problem, showing the high-quality ad allocations

computed by our novel algorithms.

The rest of the paper is organized as follows. We formally define

the problem in Section 2. We characterize the structure of the prob-

lem in Section 3. We describe our novel algorithms and prove their

approximation guarantees in Section 4. Related work is discussed in

Section 5 and extensive experiments are in Section 6. We conclude

in Section 7. All the missing proofs are reported in Appendix A.

2 Problem definition

In this section, we first present the necessary preliminaries, and

then formally define the problems that are studied in this paper.

Preliminaries. A graph is bipartite if its vertices can be partitioned

into two disjoint parts, and edges connect only vertices from dif-

ferent parts. Given an undirected graph, a matching is a set of

edges so that each vertex appears in at most one edge of the set.

For a weighted graph, a maximum-weight matching (MWM) is a

matching in which the sum of its edge weights is maximized.

A set function 𝑓 : 2
𝐸 → R assigns a value to every subset of a

given set 𝐸. A set function 𝑓 is called monotonically non-decreasing
if 𝑓 (𝐶) ≤ 𝑓 (𝐷), for all 𝐶 ⊆ 𝐷 ⊆ 𝐸. Additionally, 𝑓 is called sub-
modular if 𝑓 (𝐶 + 𝑒) − 𝑓 (𝐶) ≥ 𝑓 (𝐷 + 𝑒) − 𝑓 (𝐷), for all 𝐶 ⊆ 𝐷 ⊆ 𝐸

and element 𝑒 ∈ 𝐸. Throughout this paper, we use the shorthands
𝐶 + 𝑒 for 𝐶 ∪ {𝑒} and 𝐶 − 𝑒 for 𝐶 \ {𝑒}.

An algorithm ALG is an 𝛼-approximation algorithm for a maxi-

mization problem, if for any instance I of the problem, the solution

ALG(I) returned by the algorithm has an objective value that is no

smaller than 1/𝛼 times the value of the optimal solution, denoted

withOPT(I) [26]. That is, let 𝑓 be the objective function of the prob-
lem, then it holds that 𝛼 𝑓 (ALG(I)) ≥ 𝑓 (OPT(I)), for all problem
instances I. A polynomial-time approximation scheme (PTAS) is an
(1 + 𝜀)-approximation algorithm, for any given 𝜀 > 0, with running

time polynomial in the input size, but possibly exponential in 1/𝜀.
Problem definition.We are given a sequence of𝑚 items (e.g., videos),

and we assume that there is one available slot for an ad placement

after each item. Suppose also that we are given 𝑛 ads𝐴. To improve

the efficacy of the ads, an ad 𝑎𝑖 can only be placed after a subset of

relevant items 𝑆𝑖 ⊆ 𝑉 . A reward 𝑟𝑖 𝑗 ≥ 0 is then obtained if ad 𝑎𝑖 is

shown to the user after the 𝑗-th item, with 𝑗 ∈ 𝑆𝑖 . Throughout the
paper, we fix 𝑖 (resp. 𝑗 ) to be the index of an ad (resp. a slot).

To model the decaying attention of the user, our model considers

that a user decides to quit browsing (i.e., terminates its session)

with probability 𝑞 after observing every item or ad. Our goal is

to decide the allocation of ads to the available slots to maximize

the expected reward over the specified model. We use the terms

reward and revenue interchangeably. For brevity, we may drop the

adjective “expected” if it is clear from the context. More formally,

the ad-placement problem is defined as follows.

Problem 1 (StrmAds-R). We are given a sequence of 𝑚 items
𝑉 with one available slot after each item, a set of 𝑛 ads 𝐴 = {𝑎𝑖 }
with associated slots {𝑆𝑖 }, rewards {𝑟𝑖 𝑗 } for 𝑗 ∈ 𝑆𝑖 , and a quitting
probability 𝑞 ∈ [0, 1). The goal is to find a mapping 𝑀 ⊆ 𝐸 :=⋃

𝑖∈[𝑛] ({𝑖} × 𝑆𝑖 ) such that every slot can admit at most one ad, i.e.,
|{𝑖 : (𝑖, 𝑗) ∈ 𝑀}| ≤ 1 for all 𝑗 , and𝑀 maximizes the expected reward

𝑓 (𝑀) :=
∑︁

𝑒=(𝑖, 𝑗 ) ∈𝑀
𝑟𝑒 (1 − 𝑞) 𝑗+𝑧 ( 𝑗 ) , (1)

where 𝑧 ( 𝑗) is the number of slots before slot 𝑗 containing an ad, i.e.,
𝑧 ( 𝑗) = |{ 𝑗 ′ < 𝑗 : (𝑖, 𝑗 ′) ∈ 𝑀 for some 𝑖}|.

The StrmAds-R problem explicitly disallows consecutive ads,

which helps to avoid ad fatigue and viewer zapping [24]. It is also

a common practice to design the ad-allocation strategy as a post-

processing operation [17, 28], so that the ranking of content items in

input to StrmAds can benefit from state-of-the-art recommenders.

The StrmAds-R problem allows an ad to be displayed multiple

times. However, there are scenarios where displaying an admultiple

times is undesirable. To prevent such over-exposure of ads, it is

possible to preprocess the slots 𝑆𝑖 of each ad 𝑎𝑖 and set a limit on

the number of slots |𝑆𝑖 |. However, such an approach is limited and

not always feasible. To provide a rigorous model for such cases, we

introduce the following problem variant.
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Figure 2: Representation of Example 2, where a natural on-

line greedy algorithm and maximum weighted matching

(MWM) perform poorly (𝑎 and 𝑠 represent ads and slots).

Problem 2 (StrmAds). Given the same input as in the StrmAds-R
problem, find a matching 𝑀 ⊆ 𝐸 :=

⋃
𝑖∈[𝑛] ({𝑖} × 𝑆𝑖 ) that maxi-

mizes the expected reward 𝑓 (𝑀) from Eq. (1).

Note that the StrmAds problem is significantly more general

than the previous StrmAds-R problem, as an ad can be displayed

multiple times also in StrmAds, by simply generating multiple

copies of such an ad. Besides, the StrmAds problem also generalizes

the classic maximum-weight matching problem (MWM), obtained

from StrmAds by setting the value 𝑞 = 0.

Finally, in Section 6.2 we also discuss how to adapt an algorithm

for StrmAds to enforce a limit on the total number of ads to be

displayed, which can be useful, for example, to avoid ad fatigue.

3 Problem structure and failed attempts

The StrmAds problemwas introduced by Ieong et al. [13], who also

devised a PTAS algorithm. However, their PTAS relies on exhaus-

tive enumeration of sub-sequences of slots, and flow computations,

which is impractical. In this section, we study the structural proper-

ties of the StrmAds problem aiming to design a practical algorithm

with provable quality guarantees.

Our first step is to view the StrmAds problem as a task of opti-

mizing a specific set function over a bipartite matching. However,

as shown in Proposition 1, this specific set function is neither mono-

tone nor submodular. Therefore, the problem cannot be approxi-

mated by existing methods for submodular maximization [4].

We then present an example showing that two simple and in-

tuitive heuristics may perform arbitrarily bad. The first heuristic

is a standard greedy strategy that prioritizes placing ads in the

top slots, i.e., the slots appearing at the beginning of the content

feed. The second heuristic is to address the problem leveraging the

maximum-weight matching (MWM) method. The failure of such

approaches, and the problem instance that causes the two heuris-

tics to perform badly inspire the design of our novel algorithms. In

the next section (Section 4) we propose a novel backwards greedy

strategy that carefully accounts for the placement of ads in bottom
slots, i.e., the slots appearing at the end of the content feed.

Proposition 1. The expected-reward function 𝑓 : 2
𝐸 → R in Eq. (1)

for the StrmAds problem is neither monotone nor submodular.

See proof in Appendix A.

Due to the exponentially-decaying attention in the model, a

reasonable strategy is to prioritize the top slots. Thus, a logical

choice is to employ a greedy algorithm that processes slots in a

sequentially increasing order and repeatedly matches the ad with

the highest reward to the processed slot. However, as we show

below, such a greedy algorithm has an unbounded approximation

ratio, even for the easier StrmAds-R problem.

Example 2 (Being myopic in top slots). See Fig. 2 for an illustration.
For each slot 𝑗 = 1, . . . ,𝑚 − 1, we create a dedicated ad 𝑎 𝑗 with
reward 1. For the final slot 𝑗 = 𝑚, we create an ad 𝑎 𝑗 with a large
reward 𝐶 . The greedy algorithm assigns each ad in its corresponding
slot, and it results in a total expected reward of

𝑚−1∑︁
𝑗=1

(1 − 𝑞)2𝑗−1 + (1 − 𝑞)2𝑚−1𝐶

≈ (1 − 𝑞)/(1 − (1 − 𝑞)2) + (1 − 𝑞)2𝑚−1𝐶,

while assigning only the last ad gives a reward of (1 − 𝑞)𝑚−1𝐶 .
According to the value of the parameters, the approximation ratio can
be arbitrarily bad. For example, with 𝑞 = 1/2 and 𝐶 = 2

2𝑚−1, the
approximation ratio is about 2𝑚/2.

The instance in Example 2 is also hard for another intuitive

algorithm based on maximum-weight matching (MWM). This al-

gorithm finds a MWM for the bipartite graph between ads and

slots with appropriately-defined edge weights. That is, every edge

(𝑖, 𝑗) connecting ad 𝑎𝑖 and slot 𝑗 has a position-biased weight of

𝑟𝑖 𝑗 (1 − 𝑞) 𝑗 . Unfortunately, theMWM algorithm fails to capture the

decaying-attention effect of the model. It is easy to see that, on the

instance from Example 2, the MWM algorithm selects all available

edges, like the aforementioned greedy algorithm.

By a careful examination of the bad instance in Example 2, it is

clear that to obtain solutions with high expected reward, we cannot

only focus on the top slots, or ignore the decaying-attention effect

of the model. However, it appears difficult to take care of both ends

of the slot sequence. We show in the next section, that both issues

can be handled properly by first considering bottom slots, through

our novel algorithms.

4 Algorithms

In this section, we introduce a novel backwards-greedy algorithm

(Algorithm 1, denoted as G-bwd) that carefully handles the bottom

slots for ad placement. The backwards-greedy approach addresses

the decaying-attention in the model, by iteratively considering

sub-problems over suffixes (of the form 𝑗, . . . ,𝑚, for decreasing 𝑗 )

of the slots. We show in Theorem 2 that the backwards-greedy

algorithm, perhaps surprisingly, finds an optimal solution for the

StrmAds-R problem.

On the other hand, it is not straightforward to analyze theG-bwd

algorithm for the more challenging StrmAds problem due to the

interplay between the decaying-attention effect and the additional

matching constraint. To address this issue, we prove a novel de-

composition of the expected reward over a matching, which we use

to obtain a non-oblivious backwards-greedy 2-approximation algo-

rithm (G-bpx in Algorithm 2) for the StrmAds problem, running

much faster than G-bwd. More specifically, the G-bpx algorithm

adopts a greedy criterion that deviates from the standard marginal-

gain greedy criterion (with respect to the underlying objective

value). Finally, by leveraging the structural lemmas for the G-bpx

algorithm, we provide an analysis for the G-bwd algorithm. We

3
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Algorithm 1: Backwards greedy (G-bwd)

1 𝑀 ← ∅; 𝐴 𝑗 ← {𝑖 : 𝑗 ∈ 𝑆𝑖 } for all 𝑗 ∈ [𝑚];
2 for slot 𝑗 =𝑚, . . . , 1 (in a reverse order) do
3 for 𝑖 ∈ 𝐴 𝑗 do

4 𝑀𝑖 ← 𝑀 + (𝑖, 𝑗);
5 if 𝑀𝑖 is not a valid matching for StrmAds then
6 𝑀𝑖 ← (𝑀 \ {(𝑖, 𝑗 ′) : 𝑗 ′ ∈ [𝑚]}) + (𝑖, 𝑗) ;

7 𝑔𝑖 ← 𝑓𝑗−1 (𝑀𝑖 )/(1 − 𝑞) − 𝑓𝑗 (𝑀) ;

8 𝑖∗ ← argmax𝑖∈𝐴 𝑗
{𝑔𝑖 };

9 if 𝑔𝑖∗ > 0 then𝑀 ← 𝑀𝑖∗ ;

10 return𝑀 ;

conclude by also presenting other practical algorithms that can be

used to solve StrmAds.

Before presenting our novel algorithms, we introduce a sub-

problem of StrmAds, which we refer to as StrmAds- 𝑗 , for a fixed

integer 𝑗 ∈ [𝑚]. In the StrmAds- 𝑗 sub-problem, the first 𝑗 items

and slots are not considered, i.e., we only consider slots 𝑗 + 1, . . . ,𝑚.

The resulting objective function for StrmAds- 𝑗 is,

𝑓𝑗 (𝑀) :=
∑︁

𝑒=(𝑖, 𝑗 ′ ) ∈𝑀 :𝑗 ′> 𝑗

𝑟𝑒 (1 − 𝑞) 𝑗
′− 𝑗+𝑧 𝑗 ( 𝑗 ′ ) , (2)

where 𝑧 𝑗 ( 𝑗 ′) is the number of slots after slot 𝑗 and before slot 𝑗 ′ con-
taining an ad, i.e., 𝑧 𝑗 ( 𝑗 ′) = |{ 𝑗 < 𝑘 < 𝑗 ′ : (𝑖, 𝑘) ∈ 𝑀 for some 𝑖}|.
In particular, 𝑓0 = 𝑓 , while 𝑓𝑚 (·) = 0.

4.1 Solving StrmAds-R optimally

Our backwards-greedy algorithm (G-bwd) for both the StrmAds-R

and StrmAds problems is illustrated in Algorithm 1. The G-bwd

algorithm returns an optimal solution for the StrmAds-R problem,

as we prove in Theorem 2.

TheG-bwd algorithm processes the slots in a reverse order, start-

ing from the final slot. At each slot, G-bwd tries to (re-)assign an

ad by finding the ad that maximizes the marginal gain for the rev-

enue (defined in Line 7). The algorithm performs a (re-)assignment

if it results in a positive marginal gain (i.e., increasing the objec-

tive function). A matching (or a mapping for StrmAds-R) is then

returned after processing all slots.

Theorem 2. Algorithm 1 solves the StrmAds-R problem optimally.

See proof in Appendix A.

The time complexity for the G-bwd algorithm is O(|𝐸 |) for
StrmAds-R, and O(|𝐸 |𝛽) = O(|𝐸 |min{𝑚,𝑛}) for StrmAds, where
𝛽 = O(|𝑀 |) is the time used to compute 𝑓𝑗 (𝑀) for 𝑗 ∈ [𝑚].

4.2 Non-oblivious greedy for StrmAds

The StrmAds problem is more challenging due to the matching

constraint. A first idea to address such a problem would be to

leverage the G-bwd algorithm, and decompose the revenue of a

matching into a sum of marginal gains, one term for each slot. Then,

to provide approximation guarantees, we need to connect such

marginal revenues to those of an optimal solution for StrmAds.

However, such analysis quickly becomes challenging, as a single

Algorithm 2: Non-oblivious backwards greedy (G-bpx)

1 𝑀 ← ∅; 𝜏𝑖 ← 0 for all 𝑖; 𝐴 𝑗 ← {𝑖 : 𝑗 ∈ 𝑆𝑖 } for all 𝑗 ;
2 for slot 𝑗 =𝑚, . . . , 1 (in a reverse order) do
3 if it exists 𝑗 ′ s.t. (𝑖, 𝑗 ′) ∈ 𝑀 then 𝜎 (𝑖) ← 𝑗 ′;
4 else 𝜎 (𝑖) ← 𝑗 ;

5 𝑖∗ ← argmax𝑖∈𝐴 𝑗
{𝑟𝑖 𝑗 − 𝜏𝑖 (1 − 𝑞)𝜎 (𝑖 )− 𝑗 };

6 𝑔LB ← 𝑟𝑖∗ 𝑗 − 𝑞𝑓𝑗 (𝑀) − 𝜏𝑖∗ (1 − 𝑞)𝜎 (𝑖
∗ )− 𝑗

;

7 if 𝑔LB > 0 then

8 𝑀 ← (𝑀 \ {(𝑖∗, 𝑗 ′) : 𝑗 ′ ∈ [𝑚]}) + (𝑖∗, 𝑗); ⊲ (re-)assign 𝑎𝑖∗
9 𝜏𝑖∗ ← 𝑟𝑖∗ 𝑗 − 𝑞 𝑓𝑗 (𝑀);

10 if 𝑎𝑖∗ is re-assigned then

11 𝜏𝑖 ← 𝑟𝑖 𝑗 ′ − 𝑞 𝑓𝑗 ′ (𝑀) for every (𝑖, 𝑗 ′) ∈ 𝑀 ;

12 return𝑀 ;

re-assignment (in Line 6) may affect the marginal gain over multiple

slots due to the decaying-attention effect.

To avoid such issues, we relate the total revenue to a lower bound

of the marginal gains in the above decomposition, that we use to

develop a novel greedy algorithm. This results in a 2-approximation

non-oblivious backwards-greedy algorithm (G-bpx in Algorithm 2)

for the StrmAds problem, note that this approximation ratio is

tight for any greedy algorithm. The G-bpx algorithm is called “non-
oblivious” [16] since it does not select the next ad with respect to

the objective function 𝑓 of Eq. (1).

The G-bpx algorithm. The G-bpx algorithm is introduced in Algo-

rithm 2. Similar to the G-bwd algorithm, it processes the slots in

a reverse order, starting from the final slot. The key difference is

that, at every slot 𝑗 = 𝑚, . . . , 1, it seeks to (re-)assign an ad that

maximizes a lower bound of the marginal reward, which is

argmax

𝑖∈𝐴 𝑗

{
𝑟𝑖 𝑗 − 𝑞 𝑓𝑗 (𝑀) − 𝜏𝑖 (1 − 𝑞)𝜎 (𝑖 )− 𝑗

}
, (3)

where 𝜏𝑖 is defined below, 𝐴 𝑗 = {𝑖 : 𝑗 ∈ 𝑆𝑖 }, and 𝜎 (𝑖) = 𝑗 if 𝑎𝑖
is new to the matching𝑀 , otherwise 𝜎 (𝑖) corresponds to the slot

previously selected for 𝑎𝑖 . We prove shortly (in Lemma 4) that Eq. (3)

is a lower bound to the marginal reward obtained by assigning an

ad at slot 𝑗 .

The term 𝜏𝑖 represents an estimate of the total prior reward

provided by ad 𝑎𝑖 . At the beginning, 𝜏𝑖 is initialized to be 0 for all 𝑖 .

Every time an ad 𝑎𝑖 is (re-)assigned to the 𝑗-th slot, we update its

value according to the following rule:

𝜏𝑖 = 𝑟𝑖 𝑗 − 𝑞 𝑓𝑗 (𝑀) . (4)

It is easy to see that, the first time an ad 𝑎𝑖 is assigned to the slot 𝑗 ,

𝜏𝑖 represents its actual marginal reward gain. However, afterwards,

if the ad 𝑎𝑖 is re-assigned to a different slot 𝑗 ′ < 𝑗 , 𝜏𝑖 deviates from

its marginal gain as it does not consider the variation over 𝑓𝑗 ′ (𝑀),
caused by the withdrawal of 𝑎𝑖 from slot 𝑗 . During the execution

of G-bpx, it is important to maintain each 𝜏𝑖 , 𝑖 ∈ [𝑛] up-to-update
when re-assignments occur. We write 𝜏 𝑗 = 𝑟𝑒 𝑗 − 𝑞 𝑓𝑗 (𝑀) when it is

more convenient to use the slot index 𝑗 , where 𝑒 𝑗 denotes an edge

that is assigned to the slot 𝑗 .

The G-bpx algorithm preforms an ad (re-)assignment if it re-

sults in a positive lower bound as from Eq. (3). A matching 𝑀 is

4
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returned after processing all slots. We show in Theorem 5 that it

holds 2𝑓 (𝑀) ≥ 𝑓 (𝑀∗), where 𝑀∗ is the matching achieving the

optimal solution for 𝑓 , i.e., G-bpx is a 2-approximation algorithm.

Decomposition.We now introduce the novel decomposition of the

reward of a matching𝑀 . Let 𝑅 𝑗 := 𝑓𝑗 (𝑀) be the reward of a solution
𝑀 for the StrmAds- 𝑗 sub-problem (from Eq. (2)). We have

𝑅 𝑗 = (1 − 𝑞)
(
𝑅 𝑗+1 + 1[𝑒 𝑗+1 ∈ 𝑀] (𝑟𝑒 𝑗+1 − 𝑞𝑅 𝑗+1)

)
(5)

=

𝑚∑︁
𝑗 ′=𝑗+1

(1 − 𝑞) 𝑗
′− 𝑗1[𝑒 𝑗 ′ ∈ 𝑀] (𝑟𝑒 𝑗 ′ − 𝑞𝑅 𝑗 ′ ) (6)

=
∑︁

𝑒=(𝑖, 𝑗 ′ ) ∈𝑀 :𝑗 ′> 𝑗

(1 − 𝑞) 𝑗
′− 𝑗 (𝑟𝑒 − 𝑞𝑅 𝑗 ′ ),

where 1[𝑒 𝑗 ∈ 𝑀] is a 0–1 indicator function taking value 1 if the

edge 𝑒 𝑗 , incident to slot 𝑗 , is in the matching𝑀 . The first equality

expresses 𝑅 𝑗 as a sum of 𝑅 𝑗+1, and the marginal gain obtained by

allocating slot 𝑗 + 1 with edge 𝑒 𝑗+1. The second equality recursively
expands the term 𝑅 𝑗+1, while groups the other terms into a summa-

tion. The last equality follows a simple double-counting argument.

In summary, 𝑅 𝑗 is a cumulative sum of marginal gains, computed

backwards, of edges in𝑀 , when there are no re-assignments. Notice

the similarity between the components in the decomposition in

Eq. (6) and the values 𝜏𝑖 in Eq. (4) (recall that 𝑅 𝑗 = 𝑓𝑗 (𝑀)).
We next characterize the behaviour of 𝑅 𝑗 when a re-assignments

occurs in the backwards-greedy algorithm, and connect such results

to the greedy criterion in Eq. (3).

Lemma 3. During the execution of the main loop of Algorithm 2, for
any fixed 𝑗 ∈ [𝑚], the value 𝑅 𝑗 is non-increasing since the completion
of the sub-problem StrmAds- 𝑗 .

See proof in Appendix A.

Approximation guarantees. Next, we explain the novel lower bound

presented in Eq. (3). When re-assigning an ad, the exact marginal

gain in reward heavily depends on the allocation of all other slots

already allocated, due to the decaying attention, making the analy-

sis particularly challenging. Therefore, instead of considering the

actual marginal reward, G-bpx seeks a greedy choice that maxi-

mizes the non-oblivious lower bound, which simplifies our analysis.

We first prove that Eq. (3) (evaluated by G-bpx in Line 6) is a lower

bound to the actual marginal reward, provided that every 𝜏𝑖 in

Eq. (4) is maintained up-to-update.

Lemma 4. Denote by 𝑔 the marginal gain in reward of re-assigning
ad 𝑎𝑖 from slot 𝑗 to slot 𝑗 with 𝑗 > 𝑗 . Then,

𝑔 ≥ 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝜏𝑖 (1 − 𝑞) 𝑗− 𝑗 .

Finally, we are ready to show the approximation ratio for Algo-

rithm 2.

Theorem 5. Algorithm 2 returns a 2-approximation for the StrmAds
problem.

However, the 2-approximation is tight for both Algorithm 1 and

Algorithm 2, and this barrier exists also for the special case where

𝑞 = 0, that is, aMWM instance.

Proposition 6. Algorithm 1 and Algorithm 2 cannot do better than
2-approximation.

See proof in Appendix A.

The time complexity for the G-bpx algorithm is O(|𝐸 | +𝑚 |𝑀 |)
where |𝑀 | = min{𝑚,𝑛}. The second term is due to the fact that we

may need to compute 𝑓𝑗 (𝑀), 𝑗 ∈ [𝑚] if a re-assignment occurs.

4.3 Natural greedy for StrmAds

Algorithm 2 uses a non-oblivious greedy criterion, inspired by the

novel decomposition in Eq. (6). We now prove that Algorithm 1

guided by the exactmarginal reward of an ad is also a 2-approximation

algorithm. This seemingly complicated case is a direct consequence

of our proof for Algorithm 2.

Corollary 7. Algorithm 1 returns a 2-approximation for the StrmAds
problem.

See proof in Appendix A.

4.4 Other practical algorithms

In this section, we introduce various algorithms for the StrmAds

problem, including enhanced variants of existing algorithms (from

[13]), and multiple practical heuristics. We list all algorithms below,

and discuss their important design choices.

Flow- and matching-based algorithms. Ieong et al. [13] devised a

4-approximation algorithm Flow by finding a maximum weighted

matching with fixed weights. That is, the matching only considers

the decaying effects from items but not ads. The key idea is to

reduce the dynamic decaying effect of ad placement by limiting the

number of allocated ads (i.e., the matching size) via an additional

cardinality constraint. The Flow algorithm is implemented by a

minimum-cost flow, as depicted in its original paper.

We enhance the Flow algorithm with greedy assignments over

the slots not matched by the flow-based procedure, such an algo-

rithm is denoted by FlowG. We also introduce a natural heuristic

MWM, mentioned in Section 3. MWM does not enforce a cardi-

nality constraint to the matching size, and is implemented via a

standard maximum-weighted matching algorithm.

Global greedy algorithm.We introduce another natural algorithm

G-glb that repeatedly allocates an ad to a slot that maximizes the

marginal reward over all allocations, provided the reward being

positive. This requires computing the marginal reward of every

candidate allocation, with time complexity O(|𝐸 |2 |𝑀 |), which is

expensive. We improve such computation by noting that the mar-

ginal reward of any possible allocation is non-increasing over time.

This can be used to perform lazy evaluation of the marginal reward,

i.e., maintaining upper bounds to the actual rewards. That is, we

sort all candidate allocations by their rewards in a decreasing order

using a heap, and we complete a greedy step if the reward of the

top allocation is greater than the upper bounds of all other candi-

date allocations. Typically, only a few edges need updating every

greedy iteration.

Online greedy algorithm. In Section 3, we mention an online algo-

rithm G-fwd that allocates an ad in real-time as a user browses its

session. Such an algorithm greedily assigns the most rewarding ad

to the slot being processed.

Ieong et al. [13] also introduce an online algorithm, which we

denote as G-onl. The idea is to pre-determine a threshold𝐶
thr

, and

for each slot, allocate the most rewarding ad if its reward is greater

5
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than𝐶
thr

. In our experiments, we test some heuristics to determine

the value of 𝐶
thr

.

5 Related work

Native streaming advertising. The study of sequential ad alloca-

tions originates from simple cascade models [1, 15], for which a

dynamic-programming algorithm was developed. However, when

the reward of an ad depends on the slot position, more sophisti-

cated algorithms are needed [13]. After the work by Ieong et al.

[13], several approaches have been proposed, we discuss below.

Gamzu and Koutsopoulos [10] study a variant of native stream

advertising, taking into account the distance between consecutive

ads to avoid ad fatigue. Yan et al. [28] present a practical solution

with an industrial application, by maximizing the revenue while

requiring that the total user engagement from organic items exceeds

a given threshold. Liao et al. [18] adopt a RL-basedmodel to combine

a list of content items and a list of ads to produce a user feed.

However, none of these works consider dynamic decay in attention

caused by ads.

Positive externalities in advertising. On a high level, the StrmAds

problem is based on a form of negative externalities, that is, the

presence of an ad has a negative effect on future ads. There has been

extensive research on the opposite, i.e., positive externalities, in

advertising. One notable example is word-of-mouth marketing [11,

14], where it is beneficial to offer products, even for free, to a small

group of influencers at the beginning of an ad campaign, to attract

more customers.

Online matching. There is a rich body of work if externalities are

not considered. For example, a standard model of position auctions

such as [25] is based on the separability assumption, i.e., the prob-

ability an ad receives a click if placed in a position is simply the

product of the quality scores associated to the ad and the position,

independent therefore of other ads. Under such assumptions, the

allocation problem can be treated as a matching problem, for which

various algorithms have been developed. We refer the readers to

some excellent surveys about matching for more details [7, 12, 21].

Our greedy algorithms are partly inspired by a related streaming

algorithm [9]; however, as already mentioned, more sophisticated

techniques are needed to handle externalities.

6 Experimental evaluation

Weprovide the first comprehensive empirical study on the StrmAds

problem. We do not consider the StrmAds-R problem, as it is a spe-

cial case of the StrmAds problem, and significantly less challenging

given that it can be solved optimally by our G-bwd algorithm.

Our evaluation investigates the following key questions.

(1) How do the algorithms perform by fixing the bipartite graph

structure, and varying the weights of the rewards? (Section 6.1)

(2) What is the impact of the problem parameters, such the

quitting probability𝑞, the number of ads𝑛, and slots𝑚? (Section 6.2)

(3) How do the algorithms perform for the task of native adver-

tising in content feeds in two realistic scenarios? (Section 6.3)

Our source code is made public for reproducibility and can be

found in an anonymous repository.
1

1
https://anonymous.4open.science/r/StreamAds-code-7351/README.md

We now describe the datasets, baselines, and runtime environ-

ment of the experimental evaluation. Note, that all reported results

are the average taken over three independent runs.

Datasets. To the best of our knowledge, high-quality public real

datasets for native advertising are scarce, and existing work mostly

uses proprietary data [5, 18, 28]. Hence, we explored two distinct

types of datasets for our evaluation. The first type considers random

weighted bipartite graphs. Such data is very general, and provides

a comprehensive benchmark for the various algorithms considered.

The second type of data is obtained by simulating a scenario of

native advertising based on real anonymized ad data; more details

are in Section 6.3.

Algorithms evaluated. We evaluate the performance of our algo-

rithms: the proposed greedy algorithms G-bwd (Algorithm 1) and

G-bpx (Algorithm 2), and the practical global greedy algorithm

G-glb. Other baselines consist of: two online greedy algorithms

G-fwd and G-onl, the flow-based algorithm Flow and its aug-

mented variant FlowG, and the matching-based algorithmMWM.

We set the threshold of G-onl to be the best reward at the first slot.

We refer the reader to Section 4.4 for a detailed description of the

above baselines.

Environment. All algorithms are implemented in Python. We adopt

a solver for maximum flow and maximum matching from the Net-

workX library. All algorithms are executed on a docker image of

Ubuntu 22.04. The server is hosted on a Linux system with 48 CPUs

of Intel(R) Xeon(R) Gold 6336Y CPU @ 2.40GHz, 125GB RAM.

6.1 Experiments on synthesized bipartite

graphs

In this setting, we first generate a fixed complete bipartite graph

over 𝑛 = 100 ads, and 𝑚 = 1000 slots. We evaluate the various

algorithmswhen the input instance has the following three different

weighting schemes for the rewards over the edges of the graph: 1)

symmetric random weighting, 2) asymmetric random weighting,

and 3) finely targeted weighting. Each setting is described in detail

below. We also fix 𝑞 = 0.1.

Symmetric random weighting. Each edge of the complete bipartite

graph has its weight drawn uniformly at random from 1 to 10.

Asymmetric random weighting. The random weighting scheme

above has symmetric edgeweights for different slot positions, which

rarely occurs in practice. We break such symmetry and introduce

dependencies with slot positions, by the following two methods.

In the first method, edges connecting a top slot have a larger

reward. More specifically, the reward 𝑟𝑖 𝑗 for assigning ad 𝑎𝑖 to slot

𝑗 is 𝑟𝑖 𝑗 = 𝑤 ·(𝑚 − 𝑗)/𝑚, with𝑤 a random real number in [1, 10], i.e.,
𝑟𝑖 𝑗 likely decreases over slot positions. In the second method, edges

connecting a bottom slot have a larger reward, that is, 𝑟𝑖 𝑗 = 𝑤 · 𝑗/𝑚.

Finely targeted weighting. In practice, an ad may be highly relevant

to just a few items. To simulate this scenario, for each ad 𝑎𝑖 we

select a random slot 𝑗 and set 𝑟𝑖 𝑗 = 10, while setting 𝑟𝑖 𝑗 ′ = 1 for all

other slots 𝑗 ′ ≠ 𝑗 .

Results. Results are reported in Fig. 3. We first note that the G-onl

algorithm has the worst performance, yielding zero reward on most

instances. This is likely caused by the fact that its performances

heavily depend on the threshold𝐶
thr

, a parameter that is often hard

6
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(c) Asymmetric random weight-

ing (heavy tops)
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Figure 3: Comparisons on synthesized bipartite graphs with

different weighting schemes. Error bars indicate the standard

deviation.

to optimize. In the current settings, a lower threshold seems to lead

to better solutions. The naïve G-fwd algorithm, as expected, does

not output good solutions if there are highly rewarding assignments

for bottom slots. In contrast, theMWM algorithm often outputs a

solution with reward close to the best observed one, despite not

accounting for decaying attention. The 4-approximation algorithm

Flow achieves significantly lower expected rewards compared to

the highest reward over all algorithms.

Our backwards greedy algorithmsG-bwd andG-bpx,G-glb, and

FlowG, consistently outperform all other methods and achieve the

highest expected reward over all settings, with the global greedy

algorithm G-glb providing slightly better solutions.

6.2 Ablation study

In this section, we investigate the effect of the various parameters,

that may affect the performance of the algorithms. We study the

scalability with respect to the size of the bipartite graph, sensitivity

to the decaying factor 𝑞, and to an additional cardinality constraint

on the total number of ads to be displayed. We use the symmetric

random weighting introduced previously for the edge weights.

Scalability. We fixed 𝑞 = 0.1. To test the scalability with respect

to the input size, we start with 𝑛 = 100 and𝑚 = 1000, and vary

the number of ads 𝑛 and the number of videos𝑚 separately. The

results are shown in Fig. 4a and Fig. 4b, respectively. We set a time

limit of one hour for each run. Flow and MWM clearly have the

largest running time, as they solve expensive optimization sub-

problems. Then, G-glb has also high running time, especially when
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Figure 4: Effects of parameters 𝑛,𝑚,𝑞, 𝑘 .

𝑛, the number of ads, grows, and is less sensitive to the number

𝑚 of slots due to the lazy evaluation of the rewards, a technique

we introduced in Section 4.4. Regarding, G-bpx and G-bwd, while

both are backwards-greedy algorithms, G-bpx is much faster than

G-bwd, since it uses a lower bound of the true marginal reward,

achieving remarkable speedups. The two online algorithms are the

fastest, at the expense of significantly lower rewarding solutions.

Effect of 𝑞. We fix the size of the complete bipartite graph, of ads

and slots, to be 𝑛 = 100 and𝑚 = 1000, and we vary the parameter

𝑞. The result is shown in Fig. 4c. Clearly the expected reward drops

as 𝑞 increases, as users are more likely to quit browsing early in

the session. We also note that the Flow algorithm, cannot output a

solution when 𝑞 > 0.5; more details are on the original paper [13],

making it not practical for general applications.

Effect of size limit on ads. Given an integer 𝑘 , we can adapt the

algorithms to produce a matching of size at most 𝑘 as follows.

We terminate the greedy G-glb and online algorithms after 𝑘 ad

allocations. We set the cardinality constraint of the Flow algorithm

to be exactly 𝑘 . While, for all the other algorithms, we iteratively

remove one ad at a time whose removal minimizes the loss in the

expected reward, if more than 𝑘 slots are matched in their solution.

We fix 𝑛 = 100,𝑚 = 1000 and 𝑞 = 0.1. The result are in Fig. 4d.

Overall, most algorithms obtain similar performance. Moreover, as

𝑘 exceeds 20, their revenue reaches a plateau, and further ads bring

unnoticeable benefit, in accordance with the value of 𝑞.
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Table 1: Datasets based on real advertisement. We report:

𝑛 number of ads to place, 𝑚 available slots, |𝐸 | number of

edges, the range of the rewards and the value of 𝑞 used in the

experiments.

Dataset 𝑛 𝑚 |𝐸 | 𝑟𝑒 ([min - max]) 𝑞

YouTube 120 14 999 1 799 880 2.9·10−5 - 3.92·105 0.1

Criteo 14 400 1 440 144 000 8.4·100 - 1.5·103 0.1
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(b) Criteo dataset

Figure 5: Comparisons on simulated native advertising using

real data.
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Figure 6: Distributions of the selected slot index.

6.3 Simulated native advertising

As mentioned previously, obtaining high-quality advertisement

data is particularly challenging (given its proprietary nature). In

this section we conduct experiments on two datasets built from

real anonymous advertisement data, publicly available.

Data generation. Details on how we build instances to our problem

based on two real-world datasets (videos from YouTube
2
and ads

from the Criteo AI Lab
3
) are in Appendix B. Our instances suc-

cessfully preserve the sequential and categorical distribution of

advertisement rewards in the data, when available. A summary of

the key data statistics is reported in Table 1.

2
https://www.kaggle.com/datasets/sidharth178/youtube-adview-dataset

3
https://go.criteo.net/criteo-research-kaggle-display-advertising-challenge-

dataset.tar.gz

Results. We now discuss the results obtained by the algorithms on

such data. First we report in Fig. 5 the results, in terms of expected

reward for the two datasets. We start by noting that on the YouTube

dataset, the best performing algorithms are G-bwd, G-bpx, G-glb,

and FlowG, with G-glb outperforming all the other algorithms by

a small margin. Surprisingly, the G-onl algorithm also performs

well. Results for the Criteo dataset confirm a similar trend for the

best performers, but this time together with G-fwd, G-onl per-

forms poorly compared to others, given by its very sensitive nature.

Such results are in line with what is observed on synthetic data,

confirming the high quality solutions in output to our techniques.

To further investigate the difference in the allocation strategies

produced by the algorithms, we analyzed how the various ads are

placed over the slots. To do this, we report a cumulative distribution

over the slot indices in output to each algorithm, More specifically,

suppose that an algorithm matches 𝑘 slots with indices 𝐽 ⊆ [𝑚],
then the cumulative value at index 𝑗 is |{ 𝑗 ′ ∈ 𝐽 : 𝑗 ′ ≤ 𝑗}|/𝑘 . The
results are reported in Fig. 6. On the YouTube dataset, we observe

very different allocation strategies. We first note that methods with

different ad allocation strategiesmay yield similar expected rewards,

for example G-glb allocates more slots with larger indices than

MWM despite achieving similar result on the Criteo dataset (see

Fig. 5b). Our backwards greedy methods are the only ones that

allocate ads to slots with large indices. This is due to the backwards

design, which may allocate ads in bottom positions as long as

they are beneficial, even though their utility may diminish later.

In other words, our backwards greedy algorithms achieve a high

recall rate of good allocations. Ads with a diminished reward can be

pruned with little loss, e.g., by the pruning strategy we introduce

in Section 6.2.

As a summary of our experiments, we observe that our proposed

methods report high quality solutions with provable approximation

guarantees (as captured by our analysis) on both synthetic and real

data, and solve the StrmAds problem much more efficiently than

existing techniques.

7 Conclusion

In this paper, we provide fast and practical 2-approximation greedy

algorithms for the problem of advertising in content feeds. Our algo-

rithms are faster and theoretically superior than previous methods.

Our analysis relies on a novel charging scheme, derived by care-

fully decomposing and lower bounding the objective function of

the problem. We then provide the first comprehensive empirical

study on the problem, showing the promising performance of our

approaches.

We conclude with a discussion on the limitations of the current

work, and potential future directions. Similar to existing algorithms,

our methods do not work online, which may be limiting for ad

allocation in real-time. Besides, our current work assumes a given

reward for each ad-item pair, and leaves the pricing challenge to

future work. Multiple aspects of the current formulation can be

further refined, for example, a more flexible decaying function, and

more explicit control on the gap between consecutive ads.
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A Missing proofs

Proposition 1. The expected-reward function 𝑓 : 2
𝐸 → R in Eq. (1)

for the StrmAds problem is neither monotone nor submodular.

Proof of Proposition 1. For simplicity, we consider a special

case where, for each ad 𝑎𝑖 , the rewards 𝑟𝑖 𝑗 are identical, i.e., 𝑟𝑖 𝑗 = 𝑟𝑖 ,

for all associated slots 𝑗 ∈ 𝑆𝑖 . We first show that the expected reward

is non-monotone. It is easy to see that assigning ads sequentially

by the order of the slots increases the expected reward. However,

assigning a new ad with a zero reward to an earlier slot decreases

the expected reward, as it reduces the probability of subsequent

ads of being seen.

We continue to show that the expected-reward function is non-

submodular. For any feasible subset 𝐶 ⊆ 𝐷 ⊆ 𝐸, the marginal gain

𝑔((𝑖, 𝑗) | 𝐶) = 𝑓 (𝐶 + (𝑖, 𝑗)) − 𝑓 (𝐶) of adding an edge (𝑖, 𝑗) into a

set of edges 𝐶 is

𝑔((𝑖, 𝑗) | 𝐶) = 𝑟𝑖 (1 − 𝑞) 𝑗+𝑧 ( 𝑗 ) − 𝑞
∑︁

(𝑖′, 𝑗 ′ ) ∈𝐶 :𝑗 ′> 𝑗

𝑟𝑖′ (1 − 𝑞) 𝑗
′+𝑧 ( 𝑗 ′ ) .

Compared with 𝑔((𝑖, 𝑗) | 𝐷), the first term is clearly non-increasing,

but the second term may increase. For example, we have 𝑔((𝑖, 𝑗) |
𝐶) < 𝑔((𝑖, 𝑗) | 𝐷) by letting 𝐷 \𝐶 be ads with zero rewards placed

after slot 𝑗 and before other subsequent items. On the other hand,

we also have 𝑔((𝑖, 𝑗) | 𝐶) ≥ 𝑔((𝑖, 𝑗) | 𝐷) when slot 𝑗 is ranked after

every occupied slot in 𝐷 . □

Theorem 2. Algorithm 1 solves the StrmAds-R problem optimally.

Proof of Theorem 2. The proof is similar to the one by Ieong

et al. [13] for finely targeted ads, i.e., |𝑆𝑖 | = 1, for all ads 𝑎𝑖 . The key

is to notice that by processing slots backwards, a decision at slot 𝑗

cannot affect any slot that has not yet been processed, i.e., slots in

positions 𝑗 ′ = 1, . . . , 𝑗−1. That is, the user attention for a slot 𝑗 ′ does
not depend on ads placed later (in slots 𝑗, . . . ,𝑚); additionally, every

ad can be re-used as there is no matching constraint. Thus, solv-

ing optimally the sequence of sub-problems on slots 𝑗, . . . ,𝑚 with

decreasing 𝑗 =𝑚, . . . , 1, yields an optimal solution to StrmAds-R.

The sub-problem for the final slot (i.e., 𝑗 = 𝑚) is trivial, and

G-bwd assigns to it the ad with the highest expected reward, if

available. Moving backwards to the next slot 𝑗 , G-bwd assigns an

ad with the highest reward to the slot 𝑗 only if it improves the total

reward, that clearly results in an optimal assignment for this new

sub-problem. The proof immediately follows by the above invariant

over the backward processing of the slots. □

Lemma 3. During the execution of the main loop of Algorithm 2, for
any fixed 𝑗 ∈ [𝑚], the value 𝑅 𝑗 is non-increasing since the completion
of the sub-problem StrmAds- 𝑗 .

Proof of Lemma 3. At each iteration, 𝑅 𝑗 remains unchanged

if no re-assignment occurs. Hence, consider when an ad 𝑎𝑖 is re-

assigned from slot 𝑗 to slot 𝑗 ′, and let �̃� 𝑗 be the revenue after such

a re-assignment. First note that our statement does not regard 𝑅 𝑗 ′ ,

because the sub-problem StrmAds- 𝑗 ′ is completed after the re-

assignment. Clearly, �̃� 𝑗 = 𝑅 𝑗 for any 𝑗 ≥ 𝑗 . Now let 𝑗 < 𝑗 . We

prove by induction that �̃� 𝑗 ≤ 𝑅 𝑗 . Recall that 𝜏 𝑗 = 𝑟𝑒 𝑗 − 𝑞𝑅 𝑗 , and by

design of the G-bpx algorithm it holds 𝜏 𝑗 > 0.

First, as a base case, when 𝑗 = 𝑗 − 1, we have
�̃� 𝑗 = (1 − 𝑞)𝑅 𝑗 ≤ (1 − 𝑞) (𝑅 𝑗 + 𝜏 𝑗 ) = 𝑅 𝑗 .

In the inductive step, for 𝑗 < 𝑗 − 1, we have
�̃� 𝑗 = (1 − 𝑞) (�̃� 𝑗+1 + 1[𝑒 𝑗+1 ∈ 𝑀 − (𝑖, 𝑗)]𝜏 𝑗+1)
≤ (1 − 𝑞) (𝑅 𝑗+1 + 1[𝑒 𝑗+1 ∈ 𝑀]𝜏 𝑗+1) = 𝑅 𝑗 ,

where 𝜏 𝑗 = 𝑟𝑒 𝑗 −𝑞�̃� 𝑗 . The inequality follows since �̃� 𝑗+1 ≤ 𝑅 𝑗+1 holds
regardless of 𝑒 𝑗+1 being in𝑀 or not. This completes the proof. □

Lemma 4. Denote by 𝑔 the marginal gain in reward of re-assigning
ad 𝑎𝑖 from slot 𝑗 to slot 𝑗 with 𝑗 > 𝑗 . Then,

𝑔 ≥ 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝜏𝑖 (1 − 𝑞) 𝑗− 𝑗 .

Proof of Lemma 4. The marginal gain 𝑔 of re-assigning ad 𝑎𝑖
from slot 𝑗 to slot 𝑗 is a sum of two terms. The first term is the loss

of removing edge 𝑒 = (𝑖, 𝑗), and the second term is the marginal

reward of adding the new edge (𝑖, 𝑗). By Eq. (6), we have that

𝑅 𝑗 − �̃� 𝑗 =

𝑚∑︁
𝑗 ′=𝑗+1

(1 − 𝑞) 𝑗
′− 𝑗 (1[𝑒 𝑗 ′ ∈ 𝑀]𝜏 𝑗 ′ − 1[𝑒 𝑗 ′ ∈ 𝑀 − 𝑒]𝜏 𝑗 ′

)
= 𝜏𝑖 (1 − 𝑞) 𝑗− 𝑗 +

𝑗−1∑︁
𝑗 ′=𝑗+1

(1 − 𝑞) 𝑗
′− 𝑗 (1[𝑒 𝑗 ′ ∈ 𝑀] (𝜏 𝑗 ′ − 𝜏 𝑗 ′ ))

≤ 𝜏𝑖 (1 − 𝑞) 𝑗− 𝑗 ,

where �̃� 𝑗 is the reward after the removal, and 𝜏 𝑗 = 𝑟𝑒 𝑗 − 𝑞�̃� 𝑗 . The

last two steps follow from Lemma 3. The claim follows,

𝑔 = �̃� 𝑗 − 𝑅 𝑗 + 𝑟𝑖 𝑗 − 𝑞�̃� 𝑗 = (1 − 𝑞) (�̃� 𝑗 − 𝑅 𝑗 ) + 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗

≥ 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝜏𝑖 (1 − 𝑞) 𝑗− 𝑗+1 ≥ 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝜏𝑖 (1 − 𝑞) 𝑗− 𝑗

□

Theorem 5. Algorithm 2 returns a 2-approximation for the StrmAds
problem.

Proof of Theorem 5. We prove the claim by induction on slots

𝑗 ∈ [𝑚] following the same backward ordering (i.e., 𝑗 =𝑚, . . . , 1, 0)

adopted by Algorithm 2. Let ALG𝑗 be the solution of Algorithm 2

before performing the 𝑗-th iteration (i.e., having only processed the

slots in positions𝑚, . . . , 𝑗 + 1)4, and OPT𝑗 be the optimal solution

to StrmAds (i.e., OPT) ignoring the first 𝑗 slots. Let their objective

values for the sub-problem StrmAds- 𝑗 be 𝑅 𝑗 := 𝑓𝑗 (ALG𝑗 ) and
𝑅∗
𝑗
:= 𝑓𝑗 (OPT𝑗 ), respectively. And also let the marginal revenue in

𝑅 be 𝑔 𝑗 = 𝑅 𝑗−1/(1 − 𝑞) − 𝑅 𝑗 at the 𝑗-th slot, and similarly in 𝑅∗,
𝑔∗
𝑗
= 𝑅∗

𝑗−1/(1 − 𝑞) − 𝑅
∗
𝑗
. We then write Γ𝑖 := 𝜏𝑖 (1 − 𝑞)𝜎 (𝑖 )− 𝑗 , for

each ad 𝑎𝑖 matched in ALG𝑗 .

Let 𝑗 be smallest 𝑗 such that it holds 𝑅 𝑗 ≥ 𝑅∗
𝑗
. Note that 𝑗 exists,

as 𝑅𝑚 = 𝑅∗𝑚 = 0. If 𝑗 = 0, the statement trivially follows. Otherwise,

we assume the following hypothesis: for every 𝑗 < 𝑗 , we can charge

marginal revenue 𝑔∗
𝑗
of OPT𝑗 to both 𝑔 𝑗 and {Γ𝑖 } in ALG𝑗 , while

maintaining the invariant that every Γ𝑖 (corresponding to ad 𝑎𝑖 ) in

ALG𝑗 is used at most once among all iterations. This immediately

implies

2𝑓𝑗 (ALG𝑗 ) =
∑︁
𝑗 ′> 𝑗

𝑔 𝑗 ′ (1 − 𝑞) 𝑗
′− 𝑗 +

∑︁
𝑒=(𝑖, 𝑗 ′ ) ∈ALG𝑗

Γ𝑖

4
for 𝑗 =𝑚 there are no such processed slots, while if 𝑗 = 0 then ALG𝑗 corresponds

to the output of Algorithm 2.
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≥
∑︁
𝑗 ′> 𝑗

𝑔∗𝑗 ′ (1 − 𝑞)
𝑗 ′− 𝑗 = 𝑓𝑗 (OPT𝑗 )

by the decomposition in Eq. (6).

For 𝑗 = 𝑗 , since 𝑅 𝑗 ≥ 𝑅∗
𝑗
, it is sufficient to consider only the

marginal gains {𝑔 𝑗 }, as it holds 𝑅 𝑗 ≥ 𝑅∗
𝑗
. Now, for the next smaller

𝑗 in an inductive step, we have the following cases.

Case 1. OPT𝑗−1 = OPT𝑗 , that is, OPT does not include any new

ad for its 𝑗-th slot. If our ALG also does not select any item for the

𝑗-th slot, then the inductive step clearly holds.

Otherwise, notice that Algorithm 2 (re-)assigns an ad only if

𝑔𝐿𝐵 > 0 by Lemma 4. Hence, the overall revenue (i.e., 𝑅 𝑗−1/(1−𝑞))
only increases, and therefore our hypothesis holds also for this case.

Case 2. OPT𝑗−1 = OPT𝑗 + 𝑒∗, where 𝑒∗ = (𝑖∗, 𝑗), that is the
optimal solution assigns ad 𝑖∗ to the 𝑗-th slot.

Case 2.1. If our ALG (re-)assigns ad 𝑖 to slot 𝑗 , i.e., matching the

edge 𝑒 = (𝑖, 𝑗), then by the greedy criterion (Eq. (3)), we have

𝑟𝑒 − Γ𝑖 ≥ 𝑟𝑒∗ − Γ𝑖∗ .
Therefore, we can use both Γ𝑖∗ and 𝑔 𝑗 to charge for 𝑟𝑒∗ . That is,

𝑔 𝑗 + Γ𝑖∗ ≥ 𝑟𝑒 − Γ𝑖 − 𝑞𝑅 𝑗 + Γ𝑖∗ ≥ 𝑟𝑒∗ − 𝑞𝑅∗𝑗 = 𝑔∗𝑗 ,

where the first inequality follows by Lemma 4, and the second

follows by the greedy rule and the fact that 𝑅 𝑗 < 𝑅∗
𝑗
(as 𝑗 < 𝑗 ). Note

that if ad 𝑎𝑖∗ was not matched in ALG𝑗 then Γ𝑖∗ = 0, or otherwise,

we increase the number of charges on Γ𝑖∗ by one.

Case 2.2. ALG𝑗−1 = ALG𝑗 . The greedy choice and its inequali-

ties from Case 2.1 still apply, but fail to produce a positive lower

bound. That is, 𝑔𝐿𝐵 = 𝑟𝑒 −Γ𝑖 −𝑞𝑅 𝑗 ≤ 0 for each 𝑒 = (𝑖, 𝑗). Therefore,
it is sufficient to only pay Γ𝑖∗ for this case.

In Case 2, we use each Γ𝑖 at most once because OPT contains

at most one edge incident to ad 𝑎𝑖 , given the matching constraint.

Furthermore, 𝜏𝑖 is non-decreasing after re-assigning either ad 𝑎𝑖 (by

design of G-bpx), or other ads 𝑎𝑖′ (by Lemma 3), so the payments

in prior iterations remain valid, completing the proof. □

Proposition 6. Algorithm 1 and Algorithm 2 cannot do better than
2-approximation.

Proof of Proposition 6. Fix 𝑞 = 0, and then StrmAds is re-

duced to a maximumweighted matching problem (MWM). It is well

known that a greedy algorithm cannot do better than 2-approximation

for MWM. Concretely, let𝑚 = 2. Create two ads 𝑎1, 𝑎2 with slots

𝑆1 = {1, 2} and 𝑆2 = {2}, respectively. Set rewards 𝑟11 = 𝑟22 = 1 and

𝑟12 = 1+𝜖 . Thus, a backwards-greedy algorithm yields a revenue of

1+𝜖 by assigning 𝑎1 to the 2-nd slot, while the optimum assignment

yields 2. The ratio approaches 2 for an arbitrary small 𝜖 . □

Corollary 7. Algorithm 1 returns a 2-approximation for the StrmAds
problem.

Proof of Corollary 7. The proof is similar to Theorem 5, ex-

cept that we need a different inequality for the Case 2 therein.

Though Algorithm 1 does not use the values 𝜏𝑖 , we use such values

here only for the analysis, and assume that Algorithm 1 updates

the values 𝜏𝑖 as from Theorem 5. Recall that Γ𝑖 := 𝜏𝑖 (1 − 𝑞)𝜎 (𝑖 )− 𝑗 .
Suppose that at slot 𝑗 , OPT𝑗−1 = OPT𝑗 + 𝑒∗, where 𝑒∗ = (𝑖∗, 𝑗).

If our ALG (re-)assigns edge 𝑒 = (𝑖, 𝑗), then by the greedy criterion,

𝑔𝑖 ≥ 𝑔𝑖∗

𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝜅𝑖 𝑗 ≥ 𝑟𝑖∗ 𝑗 − 𝑞𝑅 𝑗 − 𝜅𝑖∗ 𝑗 ,
where 𝑔𝑖 denotes the marginal reward of (re-)assigning ad 𝑎𝑖 , and

𝜅𝑖 𝑗 := 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝑔𝑖 . By Lemma 4, we have for any 𝑖 ,

𝑔𝑖 ≥ 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − Γ𝑖 =⇒ Γ𝑖 ≥ 𝜅𝑖 𝑗 .

Therefore, we can use both Γ𝑖∗ and 𝑔 𝑗 to charge for 𝑟𝑖∗ 𝑗 . That is,

𝑔 𝑗 + Γ𝑖∗ = 𝑟𝑖 𝑗 − 𝑞𝑅 𝑗 − 𝜅𝑖 𝑗 + Γ𝑖∗
≥ 𝑟𝑖∗ 𝑗 − 𝑞𝑅 𝑗 − 𝜅𝑖∗ 𝑗 + Γ𝑖∗
≥ 𝑟𝑖∗ 𝑗 − 𝑞𝑅∗𝑗 − 𝜅𝑖∗ 𝑗 + Γ𝑖∗
≥ 𝑟𝑖∗ 𝑗 − 𝑞𝑅∗𝑗 = 𝑔∗𝑗 ,

where the inequalities follow by the greedy rule, the fact that 𝑅 𝑗 <

𝑅∗
𝑗
, and Lemma 4, respectively.

The claim follows by charging every𝑔∗
𝑗
to𝑔 𝑗 and {Γ𝑖 }, and noting

that every Γ𝑖 is used at most once among all iterations. We omit the

details for the other cases, as they follow from Theorem 5. □

B Native advertisement data

In this section we describe how we built data used for our ex-

perimental evaluation on native advertisement, i.e., the setting in

Section 6.3.

YouTube data. The YouTube data we considered is formed by a

set of videos {𝑣1, . . . , 𝑣𝑚}, characterized by: (1) the video category,

i.e., 𝐶 (𝑣𝑖 ) ∈ {𝐶1, . . . ,𝐶ℓ }, where ℓ = 8; and (2) the number of “ad

views” for each video, which we use as a proxy for the reward.

To generate the data, we first obtain a random browsing session,

i.e., a permutation 𝑣 ′
1
, . . . , 𝑣 ′𝑚 of the videos, through the following

browsing model. A user starts from a randomly-chosen video 𝑣 ′
1
.

With probability 𝑝 = 0.5, the user selects another randomly chosen

video of the same category 𝐶 (𝑣 ′
1
), or otherwise the user randomly

selects a previously unseen video from a different category. The

process is iterated until a permutation of all videos is obtained.

We assume that there are 𝑟 = 15 advertisers, providing 1, . . . , ℓ

ads, i.e., one for each category 𝑘 ∈ [ℓ]. We compute the reward

𝑟𝑖 𝑗 for ad 𝑎𝑖 after video 𝑣 𝑗 , where 𝑖 ∈ [𝑟 ℓ] and 𝑗 ∈ [𝑚], as follows.
First, for each different category 𝐶𝑘 with 𝑘 ∈ [ℓ], over all the
videos belonging to𝐶𝑘 , we compute the average “ad views” 𝜇𝑘 and

its standard deviation 𝜎𝑘 . We then assume that the rewards are

normally distributed, i.e., 𝑟𝑖 𝑗 ∼ 𝛼𝑘 |N (𝜇𝑘 , 𝜎𝑘 ) |, where 𝑘 = 𝐶 (𝑣 𝑗 ),
and parameter 𝛼𝑘 = 0.8 if the ad and the video share the same

category, i.e.,𝐶 (𝑎𝑖 ) = 𝐶 (𝑣 𝑗 ), or𝛼𝑘 = 0.01 otherwise, which captures

a higher reward for ads targeted to related videos. Hence in the

final data each ad 𝑎𝑖 , 𝑖 ∈ [𝑟 ℓ] can be placed after each video 𝑣 ′
𝑗
, with

the reward 𝑟𝑖 𝑗 computed as above.

Criteo data. The data consists of a chronologically ordered sequence
of displayed ads collected over one day. Each of the 48 millions

ads recorded has 13 numerical features (capturing the engagement

of users with each displayed ad), that we clustered into 𝑘 = 100

categories using the 𝑘-means algorithm. Besides, a reward can

be computed for each ad, as a linear function of its features. We

simulate the following browsing session over a full day: a user

is browsing a website and an ad can be displayed to its session

after one minute of content observed on the website, that is there

are exactly𝑚 = 1440 slots to which ads can be assigned. We then

create 𝑏 = 144 blocks of ads (which may correspond to different
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advertisers), and for each block, we assume 𝑘 (non-existential) ads,

i.e., one for each cluster. We then associate ads in each block to

10 random slots among𝑚. Then, for each block-slot assignment

we add connecting edges, that is, suppose the ads in block ℎ ∈ [𝑏],
with indices 𝑎 (ℎ−1)𝑘+1, . . . , 𝑎ℎ𝑘 are associated to slot 𝑗 then we add

edges of the form (𝑎 (ℎ−1)𝑘+𝑖 , 𝑗) for 𝑖 ∈ [𝑘]. Then, if there exists an
edge between 𝑎𝑖 with 𝑖 ∈ [𝑏𝑘] and slot 𝑗 ∈ [𝑚], then the reward 𝑟𝑖 𝑗

is assumed to be the average reward5 of all ads (from the original

data) of the same category as 𝑎𝑖
6
displayed over the 𝑗-th minute;

otherwise, 𝑟𝑖 𝑗 = 0. In this way, we capture the reward distribution

over both clusters and time, in real-world data.

5
More formally let 𝑎𝑖 = (𝑎1𝑖 , . . . , 𝑎13𝑖 ) be ad 𝑎𝑖 with its features. Then we compute,

for each ad it maximum engagement maxℎ=1,...,13 { |𝑎ℎ𝑖 | }, which we further multiply

by a factor 10 if the ad was clicked by a user. Such value is then averaged to compute

the actual average reward.

6
among the 𝑘 categories obtained trough 𝑘-means.
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