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ABSTRACT

This work introduces Spark Transformer, an architectural variant of the Trans-
former model that drastically reduces the FLOPs count while maintaining com-
parable quality and an identical parameter count. This reduction is achieved by
introducing sparse activations in both the feedforward network (FFN) and the At-
tention mechanism. In the FFN, this sparsity engages only a subset of parame-
ters for each input. In the Attention mechanism, it limits the number of tokens
that each token attends to. We achieve this sparsity through statistical top-k, a
lightweight approximate algorithm that is well-suited for accelerator hardware and
minimizes training slowdown. Furthermore, Spark Transformer incorporates ded-
icated predictors to identify the activated entries. These predictors are formed
by allocating a portion of the model’s parameters and are trained jointly with the
rest of the model. This approach distinguishes Spark Transformer from existing
methods that introduce sparsity and predictors post-training, which often leads to
increased training costs, additional model parameters, and complex modifications
to the model architecture. Our Spark Transformer, pretrained using the Gemma
2 recipe, achieves competitive performance on standard benchmarks while ex-
hibiting significant sparsity. Specifically, it utilizes only 8% nonzeros in the FFN
activation and attends to a maximum of 256 tokens. This results in a 3.1× re-
duction in FLOPs, yielding a 1.70× speedup for prefill and a 1.79× speedup for
decoding on a 16-core CPU VM.

1 INTRODUCTION

The machine learning landscape has witnessed a surge in large-scale Transformer models (Anil
et al., 2023; Almazrouei et al., 2023; Dubey et al., 2024; Adler et al., 2024), pushing the boundaries
of language understanding and generation. However, the pursuit of scale is often constrained not by
limitations in model quality, but by the escalating computational costs (Sharir et al., 2020; Patterson
et al., 2021) associated with increasing parameter counts (Kaplan et al., 2020). This challenge
is further exacerbated by the development of models that handle increasingly long context inputs
(Reid et al., 2024), where computational demands grow proportionally with context length.

Sparse activation is a popular approach for addressing the computational challenges posed by both
large model size and long context length. To handle large models, sparse activation reduces costs
by engaging only a small subset of model parameters for each input. This approach has gained sig-
nificant interest following the discovery of an intriguing phenomenon: the feed-forward networks
(FFNs) in classic Transformers like T5 (Raffel et al., 2020) and ViT (Dosovitskiy, 2020) exhibit
natural activation sparsity (Zhang et al., 2022; Li et al., 2022). In other words, these models demon-
strate sparsity without explicit enforcement. This inherent sparsity, reaching remarkable levels like
3% nonzeros in T5, presents an opportunity for substantial efficiency gains with minimal modifica-
tions to the model architecture.

Unfortunately, this natural sparsity is absent in the latest generation of models (Jiang et al., 2023;
Gemma Team, 2024; Dubey et al., 2024), which have adopted gated non-ReLU activation func-
tions (Dauphin et al., 2017). To re-introduce sparsity, recent work has explored extra pretraining
steps, either by switching back to ReLU activations (Mirzadeh et al., 2023; Zhang et al., 2024) or
by adding top-k thresholding (Yerram et al., 2024; Song et al., 2024a;b). This is often combined
with training a low-cost predictor to identify activated parameters, a crucial step for maximizing ef-
ficiency gains (Liu et al., 2023; Zeng et al., 2023; Song et al., 2023; Yerram et al., 2024). However,
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Table 1: FLOPs per token comparison: Spark Transformer vs. standard Transformer. In a
standard Transformer with model dimension dmodel, we assume multi-head attention where the sum
of head dimensions equals dmodel, and an FFN with non-gated activation and width dff. Here, nctx
represents the context length for the target token. The computational cost is primarily determined
by the FFN (assuming dff � dmodel, which is typical) and the attention dot product (assuming a long
context length). Spark Transformers introduce sparsity parameters, kff and kattn, to reduce FLOPs.
Setting kff = 8%×dff and kattn = 256 achieves a 3.2× FLOPs reduction in the FFN, a 4× reduction
in the attention dot product, and a 3.1× reduction overall (assuming nctx = 8k) for Gemma-2B.

Operation FLOPs per Token1

Standard Transformer Spark Transformer (Ours)

FFN 2dmodeldff 0.5dmodeldff + 1.5dmodelkff
Attention dot product 2dmodelnctx 0.5dmodelnctx + 1.5dmodel min{kattn, nctx}
Attention linear projection 4d2

model 4d2
model

these approaches not only complicate the training procedure and incur extra training costs, but also
introduce additional parameters (for the predictor) and have yet to demonstrate high sparsity levels
without compromising model quality.

Sparse activation for attention, often called sparse attention, faces a similar challenge. Sparsity is
used to efficiently handle long context input by limiting the number of tokens each token attends to.
A straightforward approach is top-k attention (Gupta et al., 2021), which applies a top-k mask to
the attention coefficients. This can be combined with a low-cost predictor to maximize efficiency
(Ribar et al., 2023; Yang et al., 2024; Lee et al., 2024c). However, achieving high sparsity and a
predictor without complicated procedure and sacrificing quality remains a challenge.

Contributions. This work introduces Spark Transformer, an architectural variant of Transformer
that achieves both high activation sparsity and low-cost prediction in both the FFN and Attention
mechanisms. Notably, Spark Transformer can be trained in a single stage without requiring sepa-
rate post-processing and maintains quality without introducing additional parameters. This makes
it a suitable drop-in replacement for standard Transformer models. Because the FFN and atten-
tion components dominate the computational cost in large Transformers with long contexts, Spark
Transformer drastically reduces the overall FLOP count for decoding a token (see Table 1).

We pretrain a Spark Transformer using the Gemma-2 recipe (Gemma Team, 2024), resulting in
a model we call Spark Gemma-2. Evaluation on standard benchmarks demonstrates that Spark
Gemma-2 closely matches the quality of Gemma-2, even with a high degree of sparsity: only 8%
activated entries in the FFN and a maximum of 256 attended tokens in attention (see Table 2). This
sparsity leads to a 3.1× reduction in overall FLOPs compared to Gemma-2. Using this sparsity, we
evaluate model efficiency with gemma.cpp (Google Gemma.cpp, 2024), a C++ inference engine
optimized for serving Gemma models on CPUs, and observe a speedup of up to 1.79× (see Figure 3).
Notably, on a readily available 4-core cloud VM, Spark Gemma-2 achieves a decoding speed of 86
ms per token, surpassing typical human reading speed (Brysbaert, 2019). This increased efficiency
enables wider access to high-quality models for users with limited access to high-FLOP devices,
such as GPUs and TPUs.

Spark Transformer leverages the interpretation of both FFN and attention as key-value lookup tables
(Geva et al., 2021) to provide a unified solution for achieving sparsity and prediction. Specifically,
the predictor is obtained by repurposing a subset of the dimensions of the query and key vectors to
produce an importance score for each key-value pair (see Section 3). Top-k thresholding is applied
to these scores to identify the activated keys. In particular, standard top-k thresholding requires
performing a sorting, which is inefficient particularly on training accelerators. To address this, we
introduce statistical top-k, a linear complexity algorithm for approximate nearest neighbor search
(see Section 2) based on fitting a Gaussian distribution to the activation entries and estimating a
threshold that yields the top entries. While ideas similar to statistical top-k have been used (Shi
et al., 2019; M Abdelmoniem et al., 2021) for the problem of distributed training (Lin et al., 2018),
we are the first to introduce, adapt, and verify its effectiveness for activation sparsity.

1Please refer to Section 3.1 and Section 3.2 for the calculation of FLOPs for FFN and Attention, respectively.
We omit non-leading-order terms (e.g., those arising from embedding, normalization, and nonlinear layers) and
exclude the number of layers as a common multiplier.
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2 STATISTICAL TOP-K

This section introduces Statistical-Topk, an approximate algorithm for obtaining the k largest en-
tries of an input vector. Recall that the soft-thresholding operator is defined for an arbitrary vector
x ∈ Rd and a scalar threshold θ ∈ R as

Soft-Threshold(x, θ)
def
= max{x− θ · 1, 0} ∈ Rd, (1)

where 1 and 0 are d-dimensional vectors with all entries equal to 1 and 0, respectively. The soft-
thresholding operator shifts each entry of x to the left by θ and then thresholds the result at zero.

We define Statistical-Topk as the following mapping from Rd to Rd:

Statistical-Topk(x)
def
= Soft-Threshold(x, θ(x, k)),where θ(x, k)

def
= mean(x) + std(x) ·Q(1− k

d ) (2)

Here, mean(x)
def
= 1

d

∑d
i=1 xi and std(x)

def
=
√

1
d−1

∑d
i=1(xi −mean(x))2 compute the sample

mean and standard deviation of the entries of x, respectively, and Q(·) is the quantile function (i.e.,
inverse of the cumulative distribution function) of the standard Gaussian distribution.

Statistical-Topk in Eq. (2) operates by first computing a threshold θ(x, k) such that approximately
k entries of x exceed it, and then applying the soft-thresholding operator with this threshold to x to
obtain a sparse output. We discuss these two components in the next two subsections.

2.1 THRESHOLD ESTIMATION

The threshold θ(x, k) in Eq. (2) is designed such that, if the entries of x are drawn from a Gaussian
distribution, approximately k out of the d entries will exceed this threshold. To understand this, let
µ and σ denote the mean and standard deviation of the underlying Gaussian distribution. Its quantile
function is given by µ + σ · Q(p) for p ∈ (0, 1). Consequently, due to the properties of quantile
functions, we expect roughly p · d entries of x to exceed µ+σ ·Q(1− p). In practice, since µ and σ
are unknown, they are replaced with the sample mean mean(x) and the sample standard deviation
std(x), respectively.

The following theorem formalizes this argument.

Theorem 1. Let x ∈ Rd be a vector with entries drawn i.i.d. fromN (µ, σ2). For any 1 ≤ k ≤ d−1,
let θ(x, k) be a scalar defined in Eq. (2). Take any δ ∈ (0, 1) and assume d ≥ max{2, log 6

δ }.
With a probability of at least 1 − δ, the number of entries of x that are greater than θ(x, k), i.e.,
card ({i ∈ [d] | xi > θ(x, k)}), satisfies

|card ({i ∈ [d] | xi > θ(x, k)})− k|
d

≤ 4

√
log 6

δ

d

(
1 +

√
−2 log min

{
k

d
, 1− k

d

})
.

Theorem 1 provides a relative error bound between k and the true number of entries of x that
exceed k. This bound is maximized when k = 1 or k = d− 1. Consequently, the worst-case bound

isO
(√

log d·log 1
δ

d

)
which vanishes as d increases. Notably, the error bound becomesO

(√
log 1

δ

d

)
when k = Θ(d), demonstrating even faster convergence.

Computation cost. The computation of the threshold θ(x, k) is highly efficient, requiring only 2d
FLOPs to compute the mean and standard deviation of the samples. This contrasts sharply with a
naive sorting-based approach, which has O(d log d) complexity.

While the Gaussian quantile function Q(·) lacks a closed-form solution, high-precision piecewise
approximation algorithms with constant complexity are available in standard software packages like
SciPy (Virtanen et al., 2020), readily applicable to our needs.

2.2 SPARSIFICATION

Given the threshold θ(x, k), a straightforward approach to obtain a sparse vector is to set all entries
of x below the threshold to zero, preserving the remaining values. This operator, sometimes re-
ferred to as hard thresholding (Blumensath & Davies, 2008), suffers from discontinuity, potentially
hindering its suitability for gradient-descent-based training.
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To address this, Statistical-Topk employs the soft-thresholding operator defined in Eq. (1) (Beck &
Teboulle, 2009). This operator first shrinks all entries of x by the threshold θ(x, k) and then sets all
entries below 0 to 0. Soft thresholding offers the advantages of being continuous and differentiable
almost everywhere (except when entries of x coincide with θ(x, k)).

For complete differentiability, one can utilize a smoothing function like the Huber loss (Huber,
1992), defined element-wise on an input x as:

Huber(x; δ)
def
=

{
1
2x

2 for |x| < δ,

δ · (|x| − 1
2δ) otherwise.

(3)

The following theorem establishes the continuous differentiability of the mapping x 7→
Huber(Statistical-Topk(x); δ)/δ:

Theorem 2. For any δ > 0, the function Rd → Rd defined as
Huber(Statistical-Topk(x); δ) / δ (4)

is continuously differentiable.

Note that Eq. (4) converges to Statistical-Topk(x) as δ → 0, since Huber(x; δ)/δ → |x| and
Statistical-Topk(x) is always non-negative. In practice, however, we find that using a non-zero δ
does not improve model quality, and therefore we set δ = 0 for simplicity.

Finally, soft thresholding admits a variational form (see, e.g., Parikh et al. (2014)):

Soft-Threshold(x, θ) = arg min
z≥0

θ‖z‖1 +
1

2
‖x− z‖22. (5)

This formulation seeks a vector z that minimizes both its squared `2 distance to the input x and its
`1 norm, with the threshold θ balancing these terms. Given the sparsity-promoting nature of the `1
norm, soft thresholding effectively finds a sparse approximation of the input x.

2.3 COMPARISON WITH RELATED TOP-k OPERATORS

The variational form in Eq. (5) also reveals connections of Statistical-Topk with other top-k algo-
rithms in the literature. Specifically, Lei et al. (2023) defines a soft top-k as

arg min
z

− θ ·H(z)− 〈z,x〉, s.t. z>1 = k, 0 ≤ z ≤ 1, (6)

where H(z) is the entropy function. Another work (Lou et al., 2024) defines the SparseK operator

arg min
z

−HG(z)− 〈z,x〉, s.t. z>1 = k, 0 ≤ z ≤ 1, (7)

where HG(z) is the generalized Gini entropy.

Statistical-Topk in the form of Eq. (5), as well as Eq. (6) and Eq. (7), can all be interpreted as find-
ing an output that is close to the input subject to a sparsifying regularization. Their major difference
lies in the choice of the sparse regularization. That is, Statistical-Topk uses `1, whereas soft top-k
and SparseK uses entropy and Gini entropy, respectively. The choice of `1 makes Statistical-Topk
superior in that it has a closed form solution provided by soft-thresholding, which only requires d
FLOPs. In contrast, soft top-k and SparseK both do not have closed form solutions and require an
iterative algorithm with a FLOP count dependent on the number of iterations. In addition, there is
no guarantee that soft top-k and SparseK can obtain (approximately) k nonzero entries as output.

3 SPARK TRANSFORMER

This section describes Spark FFN and Spark Attention, the two components of Spark Transformer.

3.1 SPARK FFN

FFNs in a standard Transformer are two-layer multi-layer perceptrons that map an input token q ∈
Rdmodel to an output

FFN(q;K,V )
def
= V · σ

(
K>q

)
∈ Rdmodel . (8)

In above, {K,V } ⊆ Rdmodel×dff are trainable model parameters, and σ() is a nonlinear activation
function. We ignore the dependency on layer index to simplify the notations.

4
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Each of the matrix multiplication in Eq. (8) has dmodel ·dff FLOPs hence overall the computation cost
is 2dmodel · dff. However, previous work shows that when σ() is ReLU, the activation map σ(K>q)
is very sparse after model training. The sparsity can be used trivially to reduce the computation costs
in the calculation of its product with the second layer weight matrix V (Li et al., 2022), reducing the
overall FLOPs count of FFN to dmodel · (dff + k), where k � dff is the number of nonzero entries in
the activation. Note that the sparsity cannot be used to reduce the computation costs associated with
K, which constitute half of the total FLOPs in FFN.

In order to reduce FLOPs count in the first layer of FFN as well, we introduce Spark FFN as follows:

Spark-FFN(q;K,V , k, r)
def
= V ·

(
σ
(
Statistical-Topk(K>Pq)

)
�
(
K>(I − P )q

))
∈ Rdmodel .

(9)
In above, {K,V } ⊆ Rdmodel×dff are trainable parameters as in standard FFNs, and the activation
σ() is taken to be GELU (Hendrycks & Gimpel, 2016) following Gemma. The Statistical-Topk,
defined in Eq. (2), is introduced for obtaining sparsity, with k being a hyper-parameter specifying
the sparsity level. Finally, P is a fixed matrix P

def
= 1r

⊕
0dmodel−r ∈ Rdmodel×dmodel where

⊕
is

the direct sum operator and r is a hyper-parameter. It is introduced so that the term K>Pq serves
as a low-rank predictor of the location of the nonzero entries, which allows us to obtain efficiency
benefits in computing K>(I −P ) and the multiplication with V . This is discussed in detail below.

FLOPs per Token. Naive implementation of the Spark-FFN has the same number of FLOPs as the
vanilla FFN in Eq. (8), i.e.,

r · dff + (dmodel − r) · dff + dmodel · dff = 2dmodel × dff (10)
where the three terms are from K>Pq, K>(I −P )q, and the multiplication with V , respectively.
In Spark-FFN, one may first compute the term K>Pq as a low-rank predictor. After passing its out-
put through Statistical-Topk, which selects approximately the k most important entries, followed
by the activation function σ(), we obtain a sparse output. Importantly, after obtaining the sparse
output there is no need to perform the full computation of the other two matrix multiplications in
Eq. (9), i.e., K>(I −P )q and the multiplication with V . Instead, one can perform a sparse matrix
multiplication with a drastically reduced FLOPs count:

r · dff + (dmodel − r) · k + dmodel · k = (dff − k) · r + 2dmodel · k, (11)
which is an increasing function of r. In other words, r controls the computation cost. We provide
ablation study in the section to show that the best model quality is obtained when r ≈ dmodel

2 . In this
case, the total FLOP count of Spark FFN is approximately 0.5 · dmodel · dff + 1.5 · dmodel · k, which
is a 4-times reduction from Eq. (10) when k is very small.

Relation to gated activation. Many of the most recent Transformers, including Gemma 2, use a
variant of the standard FFN in Eq. (8) where the activation function is replaced with a gated one:

Gated-FFN(q;K1,K2,V ) = V ·
(
σ
(
K>1 q

)
�
(
K>2 q

))
. (12)

Note that when compared with the FFN in Eq. (8) for quality studies, d′ff is usually taken to be
2/3 · dff to be iso-parameter count (Shazeer, 2020).

Our Spark FFN in Eq. (9) bears some resemblance to Gated FFN in that both have two linear maps in
the first layer and one in the second layer. The difference lies in that 1) Spark FFN adds a statistical
top-k to obtain sparsity, and 2) the input to the first layers of Spark FFN are obtained from splitting
the dimensions of the input. The latter change has the benefit that it offers a convenient means of
controlling the number of FLOPs from tuning the choice of r (see Eq. (11)).

3.2 SPARK ATTENTION

In a standard multi-head attention layer, an input x ∈ Rdmodel is mapped to a query, a key, and a value
vector of dimension dattn as q(i) = W

(i)
Q x ∈ Rdattn ,k(i) = W

(i)
K x ∈ Rdattn ,v(i) = W

(i)
V x ∈ Rdattn

for each head i. Here, {W (i)
Q ,W

(i)
K ,W

(i)
V } ⊆ Rdattn×dmodel are trainable weights.

Collecting all the key and value vectors in the context of x into K(i) = [k
(i)
1 , . . . ,k

(i)
nctx ] ∈ Rdattn×nctx

and V (i) = [v
(i)
1 , . . . ,v

(i)
nctx ] ∈ Rdattn×nctx , attention conducts the following computation:

Attention(q;K,V )
def
= V · softmax

(
K>q

)
∈ Rdattn , (13)
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where we omit the dependency on i for simplicity. Note that computation cost associated with
Eq. (13) is 2dattn · nctx for each head. Finally, output from all heads are concatenated followed by a
linear map to project to dmodel.

Note that Eq. (13) has the same form as FFN in Eq. (8) except for the choice of nonlinearity. Hence,
following a similar strategy in obtaining Spark FFN, here we present Spark Attention as

Spark-Attention(q;K,V , k, r)
def
=

V ·
(

softmax
(

Statistical-Top
(−∞)
k (K>Pq)

)
� softplus

(
K>(I − P )q

))
(14)

In above, P def
= 1r

⊕
0dattn−r ∈ Rdattn×dattn is a fixed matrix. Statistical-Top

(−∞)
k is a slight variant

of Eq. (2) where the entries below the threshold θ(x, k) are set to −∞ instead of 0, so that such
entries become zero after passing through softmax. Specifically,

[Statistical-Top
(−∞)
k (x)]i

def
=

{
xi − θ(x, k) if xi > θ(x, k),

−∞ otherwise.
(15)

Finally, a softplus nonlinearity defined as the entrywise softplus function, i.e., log(1 + exp(x)), is
applied to the term K>(I − P )q as this is empirically observed to offer quality benefits.

FLOPs per Token. With a naive implementation the number of FLOPs in Eq. (14) is given by
2dattn · nctx, which is the same as the FLOPs for Eq. (13). However, by noting that the output of
the sofmax is expected to be sparse with approximately k nonzero entries, the computation costs
associated with K>(I − P )q and in the multiplication with V can be drastically reduced. In
particular, if we take r = dattn

2 then the FLOPs per token becomes
0.5dmodelnctx + 1.5dmodel min{kattn, nctx}, (16)

which is nearly a 4× reduction when kattn is much smaller than nctx.

4 EXPERIMENTS

In this section, we present an experimental evaluation of Spark Transformer using the Gemma-2
2B model. Gemma-2 2B is a decoder-only Transformer with 2 billion parameters, pretrained on
2 trillion tokens of primarily English text data (see Gemma Team (2024) for details). To evaluate
Spark Transformer, we train a Spark Gemma-2 2B model by substituting the standard FFN and At-
tention in Gemma-2 2B with their Spark Transformer counterparts (Spark FFN and Spark Attention,
respectively). This Spark Gemma-2 2B model is trained using the same procedure and data as the
original Gemma-2 2B model.

Implementation details. Gemma-2 uses a model dimension of dmodel = 2304. For FFN, Gemma-2
uses the Gated FFN in Eq. (12) with d′ff = 9216. We replace it with Spark FFN in Eq. (9) with
dff = 13824 so that the parameter count keeps the same. In addition, we take k = 1106, which gives
a sparsity level of 8%, and r = 1024 (due to sharding constraints, r can only be a multiple of 256).
For Attention, Gemma-2 alternates between a global attention that have a span of 8192 tokens,
and a local attention with a 4096 window size, both with dattn = 256. We replace both with Spark
Attention in Eq. (13) where for the latter we use the same 4096 window size. For hyper-parameters,
we use k = 256, i.e. each token attends to at most 256 tokens, and r = 128. Extra care need to be
taken for handling position embedding. Gemma-2 uses Rotary Position Embedding (Su et al., 2024)
which is applied to q and the columns of K in Eq. (13). For Spark Attention in Eq. (14), we apply
this position encoding to Pq, (I − P )q, the columns of PK, and the columns of (I − P )K.

4.1 QUALITY

We evaluate Spark Gemma-2 2B on a suite of benchmarks that are used in the Gemma-2 paper
(Gemma Team, 2024), and report the result in Table 2. We observe that Spark Gemma 2 matches
the quality of Gemma 2 while having a drastically reduced FLOP count per token.

Sparsity. To verify the effectiveness of statistical top-k, we report the level of sparsity measured in
terms of percentage of nonzeros in FFN and the number of nonzeros in Attention. At the beginning
of model training, we observe that statistical top-k produces close to 8% nonzeros in FFN (see Fig-
ure 1a), which aligns well with our hyper-parameter choice of using k/dff = 8% in Spark FFN. This

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Evaluation of Spark Transformer quality. We train a Spark Gemma-2 model, replacing
the standard FFN and Attention in Gemma-2 with Spark FFN and Spark Attention, respectively.
We compare Spark Gemma-2 with ProSparse and LLaMA ReGLU, two recent models employing
activation sparsity in their FFNs. Numbers in parentheses are taken from the respective original
papers. FLOPs per token are computed assuming a context length of 8k.

ProSparse
(Song et al., 2024a)

LLaMA ReGLU
(Zhang et al., 2024)

Gemma-2 Spark Gemma-2
(Ours)

Model size 7B 7B 2B 2B
FLOPs / token - - 4.2B 1.4B

MMLU (45.5) (44.8) 52.1 (52.2) 50.2
ARC-C - - 50.1 (55.7) 51.1
GSM8K (12.1) (10.6) 21.2 (24.3) 21.2
AGIEval (27.5) - 31.8 (31.5) 31.4
BBH (35.0) - 41.3 (41.9) 38.8
Winogrande - (69.4) 68.7 (71.3) 67.3
HellaSwag - (74.7) 73.9 (72.9) 73.2
MATH - - 16.4 (16.0) 15.6
ARC-e - - 80.6 (80.6) 81.3
PIQA - - 78.5 (78.4) 78.6
SIQA - - 51.6 (51.9) 51.3
Boolq - - 72.9 (72.7) 73.3
TriviaQA - - 60.4 (60.4) 59.4
NQ - - 17.1 (17.1) 17.1
HumanEval - - 4.3 (20.1) 6.1
MBPP - - 30.4 (30.2) 29.0

Avg. - - 47.0 46.6

(a) Spark FFN sparsity (b) Spark Attention sparsity

Figure 1: Sparsity in the intermediate activation of Spark FFN (i.e., output of GELU) and interme-
diate activation of Spark Attention (i.e., output of softmax) across all 26 layers at selected training
steps. For FFN we report the percentage of nonzero entries out of dff = 13824 entries. For Atten-
tion, we report the number of nonzero entries (i.e., attended tokens). Note that our hyper-parameter
choice is to have 8% nonzeros in Spark FFN and at most 256 nonzeros in Spark Attention.

is expected as the model parameters, particularly K in Spark FFN, are randomly initialized, hence
the entries of the activation maps are drawn from a Gaussian distribution which is in accordance with
the assumption of statistical top-k. The Gaussian assumption is no longer guaranteed after training,
but we empirically observe it to hold approximately (see Section D.1) and statistical top-k reliably
produce a sparsity level close to 8% until the end of training at 480k steps. Sparsity in attention is
reported in Figure 1b, which show that the number of attended tokens is below our hyper-parameter
choice of 256 in Spark Attention throughout training. In particular, the numbers are much smaller
because the results are from averaging over all tokens many of which have a context length of less
than 256. Finally, we observe comparable levels of sparsity during evaluation (see Section D.2).

4.2 EFFICIENCY

We evaluate the efficiency benefits of the Spark Gemma-2 2B over standard Gemma-2 2B using the
gemma.cpp (Google Gemma.cpp, 2024), a C++ inference engine optimized for the Gemma models
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q X K(I-P)

5   0   8   0

1   0   1   0 mask 

Red: skipped memory access /compute

(a) Vector-Masked Matrix Multiplication.

5   0   8   0 X

FFN output

V

(b) Sparse Vector-Matrix Multiplication.

Figure 2: Illustration of the matrix multiplication implementation using sparse activation. (a) Vector-
Masked Matrix Multiplication takes a dense vector q, a dense matrix K>(I −P ), and a mask from
statistical top-k on K>Pq to compute u := (K>(I − P )q)�mask. It skips memory loading
and compute associated with the masked columns. (b) Sparse Vector-Matrix Multiplication takes a
sparse activation vector u to compute weighted sum of rows in the dense matrix V . It skips loading
and computation of rows corresponding to 0’s in u. To optimize performance, we implement Sparse
Vector-Matrix Multiplication using tiling, which helps minimize cross-CPU core synchronization.

(a) 16 Core CPU VM. (b) 4 Core CPU VM.

Figure 3: Spark Gemma-2 2B decoding speedup on CPU relative to the original Gemma-2 2B for
varying prompt lengths. Speed is measured as the decoding time per token average over 128 tokens
after the prompt. We provide a breakdown of speedup from FFN and Attention by reporting results
of SparkGemma-FFN, which contains sparse optimization for FFN only, and SparkGemma-FFN
and Attention, which contains sparse optimization for both. We use decode batch size of one.

on CPUs. Our implementation uses sparse matrix multiplication operators, which exploit sparsity in
both FFN and Attention, as well as modern CPU vector SIMD operations (SIMD Wikipedia, 2024),
see Figure 2 for an illustration and Section C in Appendix for details. We show that Spark Gemma-
2 significantly improves the efficiency of transformer models, even in highly FLOP-constrained
environments such as CPUs.

Specifically, Figure 3 reports the decoding speed under varying prompt lengths on a 4-Core or a
16-Core CPU. We see that Spark Gemma-2 outperforms the original Gemma-2 model, achieving a
speedup that ranges from 1.35x to 1.79x on 16-Core CPU depending on the prompt length. For short
prompts (e.g., 256 tokens), the sparse FFN optimization provides most of the speedup, whereas the
sparse attention optimization provides the most speedup for longer prompts (e.g. 4096 tokens).

Table 3 further highlights the efficiency of Spark Gemma-2 in both prefill and decode phases. Dur-
ing the prefill, the prompt is usually chunked into batches since the process is bounded by memory
bandwidth. This may reduce the benefit of activation sparsity as different tokens in a chunk may
activate different subsets of parameters (in FFN) and attend to different subsets of tokens (in At-
tention). However, Table 3 shows that Spark Gemma-2 maintains strong performance with a chunk
size of 64 tokens, following the default setup in gemma.cpp. A more detailed performance anal-
ysis of batching/chunking is provided in the Appendix. In addition, Spark Gemma-2 significantly
outperforms the original Gemma-2 during decoding (with batch size=1). Notably, it achieves a de-
code speed of 86ms per token, which surpasses the average human reading speed (238 words per
minute) (Brysbaert, 2019), with a very accessible 4-Core CPU Cloud VM.
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Table 3: Prefill and decode speed of Spark Gemma-2 on 4-Core and 16-Core CPUs for prompts of
4096 tokens. During prefill phase, the prompt is chunked into batches of 64 tokens, following a
default setup of gemma.cpp. Speedups relative to Gemma-2 are shown in parentheses.

Prefill (ms / token) Decode (ms / token)
4 Core CPU VM 15 (1.86x) 86 (1.64x)
16 Core CPU VM 7 (1.7x) 33 (1.79x)

4.3 ABLATION

Figure 4: Comparison of training slow-
down from using our statistical top-k
vs the standard top-k (i.e., jax.lax.
approx_max_k (Chern et al., 2022))
relative to not using any top-k.

Statistical top-k. Adding a top-k operator is expected
to lead to a training slowdown due to the extra compu-
tation cost of computing top-k. In Figure 4 we report
the slowdown during training due to adding statistical
top-k. It can be observed that the slowdown is with a
very small amount, demonstrating the efficiency of sta-
tistical top-k. In particular, we compare the slowdown
with that of the top-k operator provided in JAX, namely
jax.lax.approx_max_k (Chern et al., 2022). This
operator is optimized to achieve TPU peak performance
and has a controllable recall target, which we vary on the
x-axis. Statistical top-k is significantly faster than the
JAX top-k even when the latter operates on a small re-
call of 50%. Finally, we do not provide the quality of
models trained with JAX top-k since such models take a
very long time to train.

Effect of r and k in Spark FFN. Spark FFN comes with
two hyper-parameters, namely r which controls the rank hence FLOP count of the low-cost predic-
tor, and k which controls sparsity of activation hence the FLOP count. In Figure 5 we provide an
ablation study on the effect of these two hyper-parameters, by reporting the training loss curves in
the first 25,000 training steps (which is around 5% of full training). From Figure 5a, the best choice
of r is 1024 which is nearly half of dmodel = 2304 (due to model sharding constraint, r cannot be
taken to be exactly a half of dmodel). From Figure 5b, we see that the model quality is insensitive
to choices of k that gives [5%, 10%] sparsity, but there is quality loss if we go sparser, e.g. 3%
nonzeros.

(a) Effect of r. (b) Effect of k.

Figure 5: Effect of hyper-parameters r and k in Spark FFN on training loss. A Gaussian filter of
σ = 200 is applied to smooth the loss curves.

5 DISCUSSION AND RELATED WORK

Returning to the question posed at the outset: How many FLOPs is a token worth? This paper offers
an answer through the Spark Transformer architecture, demonstrating at least a 3× overall FLOPs
reduction without sacrificing model quality. This reduction is realized by selectively activating only
part of the model parameters and limiting the attended context for each input. This principle of
sparse activation finds a compelling parallel in neuroscience, where studies reveal sparse activity
patterns in the brain as a key factor in its remarkable efficiency (Attwell & Laughlin, 2001; Barth &
Poulet, 2012; Lee et al., 2024a). While hardware limitations currently hinder the full exploitation of
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sparse activation in Transformers, particularly on GPUs and TPUs designed for dense computations,
our work with Spark Transformer on CPUs highlights its potential. We believe this opens avenues
for research into alternative hardware and platforms better suited for sparse computations, hence
circumvents the hardware lottery (Hooker, 2021) and potentially lead to greater efficiency gains in
the future.

In the following, we review a few lines of work closely related to ours.

Mixture of Experts (MoEs) may be considered as a particular case of sparsely activated mod-
els which group the neurons in FFN and activate all neutrons in selected groups (Shazeer et al.,
2017; Lepikhin et al., 2020). Neuron grouping has the benefit of being better suited for training
accelerators compared to unstructured activation sparsity. However, training of MoEs incurs extra
complexities in algorithmic design and requires special hardware support (Fedus et al., 2022). More-
over, the structured nature of sparsity limits the model’s flexibility and expressiveness, and recent
work advocates the use of a larger number of smaller experts (Dai et al., 2024; He, 2024). On the
other hand, the discovery of the naturally emerging unstructured activation sparsity has motivated
the new perspective of naturally emerging experts (Zhang et al., 2022; Dong et al., 2023; Csordás
et al., 2023; Qiu et al., 2023; Szatkowski et al., 2024; Zheng et al., 2024).

Sparse activation is common approach to improve the efficiency of large models and many tech-
niques for a low-cost activation prediction have been developed over the years, such as low-rank
factorization (Davis & Arel, 2013), quantization (Cao et al., 2019), product keys (Lample et al.,
2019), hashing (Chen et al., 2020), etc. With the popularity of modern large Transformer models,
these techniques become natural choices (Jaszczur et al., 2021; Zeng et al., 2023; Liu et al., 2023;
Song et al., 2023) for reducing their high computation costs. In particular, a lot of the excitement
comes from the discovery that the activations in FFNs are naturally sparse (Zhang et al., 2022; Li
et al., 2022) and hence efficiency with activation sparsity are obtained without a quality toll.

Our work falls into the category of the latest work in this direction that aim to bring the benefits to the
latest generation large language models that do not have natural sparsity. Early attempts (Mirzadeh
et al., 2023; Peng et al., 2023; Zhang et al., 2024) seek to bring back sparsity by switching back to
ReLU variants, but it usually incurs a quality loss. The quality gap may be largely bridged by more
careful tuning, but the activation becomes less sparse (e.g. 25% nonzeros in LLAMA 7B (Song
et al., 2024a)). Top-k becomes a more popular choice for obtaining sparsity recently (Song et al.,
2024b) and is able to maintain neutral quality while offering strong sparsity, but only in selected
layers (Yerram et al., 2024). Moreover, such methods require finetuning to bring sparsity and also
obtain a predictor. Without doing finetuning, Lee et al. (2024b); Liu et al. (2024a) obtained at most
50% nonzeros under neutral quality. In contrast to these works, our work not only obtains 8%
nonzeros in activation of all FFN layers, but also a predictor, all with a single-stage training. We
provide a summary of comparison to these methods in Table 4 in the Appendix.

Finally, the usefulness of activation sparsity goes beyond efficiency. For example, theoretical studies
show its benefits for model generalizability and learnability (Muthukumar & Sulam, 2023; Awasthi
et al., 2024). Moreover, activated neurons may be associated with semantic concepts, which of-
fers understanding of the working mechanism and enables manipulating the output of Transformer
models (Cuadros et al., 2022; Luo et al., 2024).

Sparse attention broadly refers to the approach of attending to a selected subset of tokens in the con-
text as a means of reducing computation cost (Deng et al., 2024; Jiang et al., 2024). Work on sparse
attention include those that use handcrafted attention patterns (Child et al., 2019; Beltagy et al.,
2020; Ainslie et al., 2023; Ding et al., 2023), which feature simplicity, and learned attention patterns
(Kitaev et al., 2020; Roy et al., 2021) which feature better modeling capacity. However, learning
attention patterns often involve learning, e.g., a hash table or k-means centers, which significantly
complicates modeling. Closely related to our Spark Attention is the top-k attention (Gupta et al.,
2021), which obtains data-adaptive attention simply from top-k thresholding. Our work improves
upon top-k attention by introducing a low cost predictor which enables an increased computational
benefits from sparsity. Finally, KV pruning approaches drop selected tokens permanently as decod-
ing proceeds (Zhang et al., 2023; Liu et al., 2024b), and cannot achieve as high compression ratio as
Top-k based approaches.
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Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. Approximating two-layer feedforward net-
works for efficient transformers. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 674–692, 2023.

Xavier Suau Cuadros, Luca Zappella, and Nicholas Apostoloff. Self-conditioning pre-trained lan-
guage models. In International Conference on Machine Learning, pp. 4455–4473. PMLR, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Andrew Davis and Itamar Arel. Low-rank approximations for conditional feedforward computation
in deep neural networks. arXiv preprint arXiv:1312.4461, 2013.

Yichuan Deng, Zhao Song, and Chiwun Yang. Attention is naturally sparse with gaussian distributed
input. arXiv preprint arXiv:2404.02690, 2024.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui Wang, Nanning
Zheng, and Furu Wei. Longnet: Scaling transformers to 1,000,000,000 tokens. arXiv preprint
arXiv:2307.02486, 2023.

Harry Dong, Beidi Chen, and Yuejie Chi. Towards structured sparsity in transformers for efficient
inference. In Workshop on Efficient Systems for Foundation Models@ ICML2023, 2023.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of the sample
distribution function and of the classical multinomial estimator. The Annals of Mathematical
Statistics, pp. 642–669, 1956.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Gemma Team. Gemma 2: Improving open language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 5484–5495, 2021.

Google Gemma.cpp. Google/gemma.cpp: lightweight, standalone c++ inference engine for google’s
gemma models. https://github.com/google/gemma.cpp, 2024.

Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut, and Jonathan Berant. Memory-efficient
transformers via top-k attention. arXiv preprint arXiv:2106.06899, 2021.

Xu Owen He. Mixture of a million experts. arXiv preprint arXiv:2407.04153, 2024.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Sara Hooker. The hardware lottery. Communications of the ACM, 64(12):58–65, 2021.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodol-
ogy and distribution, pp. 492–518. Springer, 1992.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, Lukasz Kaiser, Wojciech Gajewski,
Henryk Michalewski, and Jonni Kanerva. Sparse is enough in scaling transformers. Advances in
Neural Information Processing Systems, 34:9895–9907, 2021.

12

https://github.com/google/gemma.cpp


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Huiqiang Jiang, YUCHENG LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhen-
hua Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating pre-
filling for long-context llms via dynamic sparse attention. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2020.

Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé
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A PROOF TO THEOREM 1

Proof. In this proof we write x̄ def
= mean(x) and s def

= std(x) for brevity.

We first establish the concentration bounds that the empirical mean and standard deviation, i.e., x̄
and s are close to the true mean and true standard deviation, i.e., µ and σ of the underlying Gaussian,
respectively. Recall from the definition of the chi-squared distribution that (d− 1) s

2

σ2 ∼ χ2(d− 1).
Using the Laurent-Massart bound on the tail probability of the chi-squared distribution (Laurent &
Massart, 2000, Corollary of Lemma 1), we have

Pr

(∣∣∣∣(d− 1)
s2

σ2
− (d− 1)

∣∣∣∣ ≥ 2
√

(d− 1)t+ 2t

)
≤ 2e−t

for every t > 0. We set t = log 6
δ . Then, with a probability of at least 1− δ/3, we have

(d− 1)

∣∣∣∣ s2

σ2
− 1

∣∣∣∣ < 2

√
(d− 1) log

6

δ
+ 2 log

6

δ
,

which implies ∣∣∣∣ s2

σ2
− 1

∣∣∣∣ < 2

√
log 6

δ

d− 1
+ 2

log 6
δ

d− 1
≤ 4

√
log 6

δ

d
+ 4

log 6
δ

d
≤ 8

√
log 6

δ

d
,

where the last inequality uses the assumption that d ≥ max{2, log 6
δ }. By rearranging the terms, we

get

σ

1− 8

√
log 6

δ

d

 ≤ σ
√√√√√max

1− 8

√
log 6

δ

d
, 0

 ≤ s ≤ σ
√√√√

1 + 8

√
log 6

δ

d
≤ σ

1 + 8

√
log 6

δ

d

 ,

which simplifies to

|s− σ| ≤ 8σ

√
log 6

δ

d
. (17)

Eq. (17) provides a concentration bound for s. We now proceed to deriving a bound for µ. Towards
that, notice that x̄−µ

σ/
√
d
∼ N (0, 1). By using the Mill’s inequality that upper bounds the tail proba-

bility of a standard normal distribution (i.e., if Z ∼ N (0, 1) and t > 0, then Pr(|Z| > t) ≤ e−t
2/2

t ),
we have

Pr

(∣∣∣∣ x̄− µσ/
√
d

∣∣∣∣ >
√

2 log
3

δ

)
≤ δ/3√

2 log 3
δ

≤ δ/3 .

Therefore, with probability at least 1− δ/3, we have∣∣∣∣ x̄− µσ/
√
d

∣∣∣∣ ≤
√

2 log
3

δ
,

which yields

|x̄− µ| ≤ σ

√
2 log 3

δ

d
. (18)

Combining Eq. (17) and Eq. (18), with probability at least 1− 2δ/3, we have∣∣∣∣θ(x, k)− (µ+ σQ(1− k

d
))

∣∣∣∣ (19)

≤ |x̄− µ|+ |s− σ|
∣∣∣∣Q(1− k

d
)

∣∣∣∣ (20)

≤σ

√
2 log 3

δ

d
+ 8σ

√
log 6

δ

d

∣∣∣∣Q(1− k

d
)

∣∣∣∣ . (21)
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We define the empirical cumulative distribution function (ECDF) of x1, x2, . . . , xd as

F̂d(x) =
1

d

∑
i∈[d]

1{xi≤x}.

Then, the number of the entries of x that are greater than θ(x, k) may be written as

card ({i ∈ [d] | xi > θ(x, k)}) =
∑
i∈[d]

1{xi>θ(x,k)} = d
(

1− F̂d(θ(x, k))
)

.

Let F denote the cumulative distribution function (CDF) of N (µ, σ2). By the Dvoretzky-Kiefer-
Wolfowitz inequality (Dvoretzky et al., 1956; Massart, 1990), we have

Pr

(
sup
u∈R

∣∣∣F̂d(u)− F (u)
∣∣∣ > t

)
≤ 2e−2dt2 .

Taking t =
√

1
2d log 6

δ and u = θ(x, k), we obtain

Pr

(∣∣∣F̂d(θ(x, k))− F (θ(x, k))
∣∣∣ >√ 1

2d
log

6

δ

)
≤ δ

3
. (22)

Applying the union bound on Eq. (19) and Eq. (22), we obtain that the following holds with proba-
bility at least 1− δ:∣∣∣∣F̂d(θ(x, k))− (1− k

d
)

∣∣∣∣ (23)

=

∣∣∣∣F̂d(θ(x, k))− F (µ+ σQ(1− k

d
))

∣∣∣∣ (24)

≤
∣∣∣F̂d(θ(x, k))− F (θ(x, k))

∣∣∣+

∣∣∣∣F (θ(x, k))− F (µ+ σQ(1− k

d
))

∣∣∣∣ (25)

≤
√

1

2d
log

6

δ
+

1√
2πσ

∣∣∣∣θ(x, k)− (µ+ σQ(1− k

d
))

∣∣∣∣ (26)

≤
√

1

2d
log

6

δ
+

1√
2π

√2 log 3
δ

d
+ 8

√
log 6

δ

d

∣∣∣∣Q(1− k

d
)
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 (27)

≤4

√
log 6

δ

d

(
1 +

∣∣∣∣Q(1− k

d
)

∣∣∣∣) . (28)

In the above expression, the first equality stems directly from the definitions of F (·) andQ(·), which
gives

F (θ(x, k)) = F (µ+ σQ(1− k

d
)) = Φ(Q(1− k

d
)) = 1− k

d
,

where Φ denotes the CDF of the standard normal distribution.

To simplify Eq. (23), we consider two cases:

• If k ≤ d/2, by Mill’s inequality, we have

1− Φ(

√
2 log

d

k
) ≤ e−(

√
2 log d

k )2/2√
2 log d

k

=
e−(
√

2 log d
k )2/2√

2 log d
k

=
k/d√
2 log d

k

≤ k

d
,

where the last inequality is because 2 log d
k ≥ 1. Therefore

1− k

d
≤ Φ(

√
2 log

d

k
) ,

which gives

Q(1− k

d
) ≤

√
2 log

d

k
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√
−2 log
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d
.
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• If k > d/2, we have ∣∣∣∣Q(1− k

d
)

∣∣∣∣ =

∣∣∣∣Q(1− d− k
d

)

∣∣∣∣ ≤
√
−2 log

d− k
d

.

Combining the two cases, we get∣∣∣∣Q(1− k

d
)

∣∣∣∣ ≤
√
−2 log min

{
k

d
, 1− k

d

}
.

Plugging this into Eq. (23), we obtain∣∣∣∣F̂d(θ(x, k))− (1− k

d
)

∣∣∣∣ ≤ 4

√
log 6

δ

d

(
1 +

√
−2 log min

{
k

d
, 1− k

d

})
.

Recall card ({i ∈ [d] | xi > θ(x, k)}) = d
(

1− F̂d(θ(x, k))
)
. We conclude that with probability

at least 1− δ, we have

|card ({i ∈ [d] | xi > θ(x, k)})− k| ≤ 4

√
d log

6

δ

(
1 +

√
−2 log min

{
k

d
, 1− k

d

})
.

B PROOF TO THEOREM 2

Proof. The Huber statistical top-k in Eq. (4) may be written as
Huber(Statistical-Topk(x); δ)/δ = Huber(Soft-Threshold(x, θ(x, k)))/δ, (29)

where θ(x, k) is defined in Eq. (2). This function is the (multivariate) composition of two functions,
namely, θ = θ(x, k) and Huber(Soft-Threshold(x, θ)). In particular, the former is continuously
differentiable (i.e., C1) in x, since it is simply a linear combination of sample mean and sample
standard deviation both of which are C1 functions. To establish the theorem, we only need to show
that Huber(Soft-Threshold(x, θ)) is also a C1 function in (x, θ).

By definition, Huber(Soft-Threshold(x, θ)) is defined entry-wise on x as

Huber(Soft-Threshold(x, θ)) =


δx− δθ − 1

2δ, if x > θ + δ;
1
2 (x− θ)2, if θ ≤ x ≤ θ + δ;

0, if x < θ.

(30)

From here it is easy to check that Huber(Soft-Threshold(x, θ)) is continuous in (x, θ). Its gradient
with respect to (x, θ) is given by

∂Huber(Soft-Threshold(x, θ))

∂(x, θ)
=


(δ,−δ), if x > θ + δ;

(x− θ, θ − x) if θ ≤ x ≤ θ + δ;

(0, 0), if x < θ,

(31)

which is also continuous. This concludes the proof.

C IMPLEMENTATION DETAILS ON SPARSE MATRIX MULTIPLICATIONS

We describe how we implement sparse matrix multiplications for Spark FFN and Attention in
gemma.cpp. We start by focusing on a batch size of one for decoding before expanding our
discussion to larger batch sizes and prefill.

With batch size of 1, both Spark FFN and Spark Attention utilize two types of sparse vector-matrix
multiplication: vector-masked matrix multiplication and sparse vector-matrix multiplication (Fig-
ure 2). Given a vector q and a matrix w, vector-masked matrix multiplication multiplies q with the
non-masked columns of w based on a masking vector m. Masked columns yield a zero output.
Sparse vector-matrix multiplication, on the other hand, involves a vector that contains many zeroes
being multiplied by a dense matrix.
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(a) Layer 0 (b) Layer 8 (c) Layer 16 (d) Layer 24

(e) Layer 0 (f) Layer 8 (g) Layer 16 (h) Layer 24

Figure 6: Distribution of the entries of the input activation to statistical top-k in Spark FFN (see
Figure 7 for result of Spark Attention). The two rows correspond to activation at two positions
0 and 1000 of an input, and the columns correspond to activation at four different depth levels
{0, 8, 16, 24} of the 26-layer pretrained Spark Gemma-2. The input is the first 1000 tokens of
the first essay from https://paulgraham.com/articles.html prepended with the BOS
token. We compare the empirical distribution (Empirical) with the Gaussian distribution whose
mean and standard deviation (std) are computed as the sample mean and std of the input (Fitted).
We see that the Gaussian closely approximates the empirical distribution. We also compare the
cutoff value estimated from the Gaussian, i.e., θ(x, k) used in Eq. (2) with k/d = 5% (Cutoff for
fitted), with the cutoff value for obtaining 8% nonzeros on the empirical distribution (Cutoff for
empirical). It can be seen that these two cutoff values are close.

In Spark FFN, we perform vector-masked matrix multiplication for K>(I − P )q (Figure 2a). The
masking vector is generated from the output of Statistical-Topk(K>Pq). In the CPU implemen-
tation, the columns of w are loaded from DRAM one at a time. Based on the mask, Spark FFN skips
loading the masked columns of w from DRAM and the associated computations. Spark FFN uti-
lizes SIMD operations (as in the original Gemma implementation). To further enhance perforamnce,
Spark FFN utilizes software CPU prefetching (builtin prefetch) to overlap loading from DRAM
to the CPU cache with computations.

The same masking vector also identifies the zero entries in the intermediate vector that is multiplied
by matrix V (Figure 2b). For this sparse vector-matrix multiplication, we store the matrix in row
format. Each CPU thread processes a tile of the matrix while skipping the loading and computation
of the masked rows. Prefetching and SIMD operations are applied similarly in this context.

Spark Attention utilizes these two types of sparse matrix multiplication operators to accelerate qkv
computations for each head.

When extending to decoding with batch sizes greater than one or prefill, we continue to use indi-
vidual masks to skip computations while using a union of masks from each vector within the batch
to create unified masks for memory loading. With larger batches, Spark transformer is expected to
save less memory loading (vs. original Gemma), unless there is significant overlap in top-k positions
within the same batch. Nonetheless, the Spark transformer consistently reduces FLOP by skipping
computations based on individual masks within the batch.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 DISTRIBUTION OF INPUTS TO STATISTICAL TOP-k

The underlying assumption for statistical top-k is that the activation vector upon which it is applied
to, namely, the pre-GELU activation in Spark FFN and the pre-softmax activation in Spark Attention,
can be modeled as being drawn from an i.i.d. Gaussian distribution. Here we provide empirical
evaluation on the distribution of these activation vectors for Spark Gemma2. Results for Spark FFN
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(a) Layer 0 (b) Layer 8 (c) Layer 16 (d) Layer 24

(e) Layer 0 (f) Layer 8 (g) Layer 16 (h) Layer 24

Figure 7: Distribution of the entries of the input activation to statistical top-k in Spark Attention
(see Figure 6 for result of Spark FFN). The two rows correspond to activation for two different
attention heads, and the columns correspond to activation at four different depth levels {0, 8, 16, 24}
of the 26-layer pretrained Spark Gemma-2. Model input is the first 1000 tokens of the first essay
from https://paulgraham.com/articles.html prepended with the BOS token, and we
examine activation of the last token (i.e., inner product between the query embedding of the 1001st
token and all 1001 key embeddings). We compare the empirical distribution (Empirical) with the
Gaussian distribution whose mean and standard deviation (std) are computed as the sample mean and
std of the input (Fitted). We see that the Gaussian closely approximates the empirical distribution.
We also compare the cutoff value estimated from the Gaussian, i.e., θ(x, k) used in Eq. (2) with
k = 256 (Cutoff for fitted), with the cutoff value for obtaining top 256 entries on the empirical
distribution (Cutoff for empirical). It can be seen that these two cutoff values are close.

(a) Spark FFN sparsity (b) Spark Attention sparsity

Figure 8: Sparsity in the intermediate activation of Spark FFN and Spark Attention during evaluation
(see Figure 1 for results during training). For FFN, we use a simple prompt “test” and report the
percentage of nonzero entries in generating the 5th, 10th, and 15th token. For Attention, we report
the nuber of nonzero entries at the 512th, 1024th, and 2048th token during prefill.

and Spark Attention are provided in Figure 6 and Figure 7, respectively. The results show that the
distribution holds close proximity to a Gaussian, hence justifying the use of statistical top-k.

D.2 SPARSITY LEVEL DURING EVALUATION

Complementing Figure 1 which reports sparsity level during pretraining, here we report the sparsity
level during evaluation to confirm that statistical top-k produces the same level of sparsity during
test time. The results are presented in Figure 8 for some arbitrarily selected tokens. For Attention,
in particular, we select tokens at the positions 512, 1024, and 2048 which are all above our choice
of k = 256 for Spark Attention.
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D.3 BATCHING ANALYSIS

Figure 9: Spark Gemma-2 vs.Gemma-2 Prefill To-
ken/Sec with Varying Chunk Sizes. We use a prompt
length of 4096 tokens on a 16 core CPU VM.

Figure 9 provides the performance compari-
son between Spark Gemma 2 and Gemma 2,
measured in prefill throughput (tokens/sec)
across varying chunk sizes. We use a 4096-
token prompt on a 16-core CPU VM. A sim-
ilar trend is expected during the decoding
phase with varying batch sizes.

Our analysis shows that Spark Gemma-2
provides the highest speedup at batch size
1, and again at large batch sizes (e.g. >8),
where the compute FLOP becomes the pri-
mary bottleneck.

For Gemma-2, as seen in the figure, increas-
ing batch/chunk size leads to a significant
improvement in prefill throughput until the batch size reaches 8. This improvement occurs be-
cause batching reduces memory access by reusing weights across multiple tokens in the CPU cache.
Once the computation becomes the bottleneck (i.e. batch = 8), further batching provides diminishing
returns.

In contrast, Spark Gemma-2 behaves differently. When the batch size increases from 1 to 2, we
observe minimal throughput change. This is due to the lack of overlap in top-k positions between
the tokens, resulting from the high sparsity. However, as the batch size increases beyond 4, Spark
Gemma-2 starts benefiting from weight reuse, similar to Gemma-2. Spark Gemma-2 continues to
show improvements in throughput until the batch size reaches approximately 64, where it eventually
becomes FLOP-bound, much later than Gemma-2 due to the reduced FLOP requirements.

Overall, Spark Gemma demonstrates the most significant gains in two scenarios: when the batch
size is 1, a common setting for desktop or mobile devices decoding, and when the batch size is large
enough that FLOP becomes the dominant bottleneck.

D.4 ADDITIONAL ABLATION STUDIES

Figure 10: Ablation study in terms of train-
ing loss in the first 80k training steps (out of
500k total steps).

In this section, we provide ablation studies for under-
standing the effect of the individual components of
Spark Transformer. Towards that, we plot the train-
ing loss curves for Gemma-2 and Spark Gemma-2,
see Figure 10. Here, we restrict to the first 80k train-
ing steps out of the 500k total steps since it is costly
to fully train all ablation models, and that 80k steps is
sufficient for seeing the trend. We can see that Spark
Gemma-2 slightly lags behind Gemma-2. However,
as demonstrated in Table 2, that small difference in
training loss does not lead to a substantial difference
in evaluation quality.

In our ablation studies below, we add a single compo-
nent at a time to Gemma-2 and see the quality impact.

Spark FFN vs Spark Attention. To understand the effect of Spark FFN vs Spark Attention, we
conduct an experiment where only attention is switched from a standard one to Spark Attention,
whereas the FFN remains the standard one. The result is illustrated as Gemma-2 + Spark Attention
in Figure 10. It can be seen that Spark Attention provides a minor quality gain over Gemma-2. In
comparing Gemma-2 + Spark Attention with Spark Gemma-2, this also shows that further adding
Spark FFN slightly hurts model quality. As noted above, such a small difference does not lead to
substantial quality impact on the evaluation tasks. Hence, we conclude here that none of Spark FFN
and Spark Attention has significant quality impact.
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Sparsity enforcing vs Low-cost predictor. Sparsity enforcing via statistical top-k and low-cost
activation predictor are two relatively independent components of Spark Transformer. This means
that, upon the standard Gated FFN (see Eq. (12)) that is used in Gemma-2, which we rewrite here
for convenience:

Gated-FFN(q;K1,K2,V ) = V ·
(
σ
(
K>1 q

)
�
(
K>2 q

))
, (32)

we may choose to only apply statistical top-k for enforcing sparsity, i.e.,

Topk-Gated-FFN(q;K1,K2,V ) = V ·
(
σ
(
Statistical-Topk(K>1 q)

)
�
(
K>2 q

))
. (33)

Note that applying a sparsifying function on the input to the nonlinear function σ() as in Eq. (33)
is a common choice in the literature of sparse activations, e.g., Mirzadeh et al. (2023); Song et al.
(2024a); Lee et al. (2024b); the main difference between these works lies in the specific sparsity
enforcing technique, see Table 4 for a summary. In addition to the sparsifying function, Spark FFN
also has another architectural change for the purpose of introducing a low-cost predictor. Here, we
rewrite Spark FFN for ease of comparison with Eq. (33):

Spark-FFN(q;K,V , k, r)
def
= V ·

(
σ
(
Statistical-Topk(K>Pq)

)
�
(
K>(I − P )q

))
. (34)

Analogous to FFN, we may also only add statistical top-k to attention without the low-cost predictor,
i.e., by switching from standard Attention in Eq. (13) to the following:

Topk-Attention(q;K,V )
def
= V · softmax

(
Statistical-Topk(K>q)

)
. (35)

Here, we aim to understand the effect of introducing statistical top-k without the low-cost predictor.
Towards that, we conduct an experiment where FFN and Attention in Gemma-2 are replaced with
Eq. (33) and Eq. (35), respectively. The result is illustrated as Gemma-2 + Top-k in Figure 10. It can
be seen that the training loss becomes notably larger and the gap compared to Gemma-2 is further
increasing with more training steps. This result demonstrates that while the low-cost predictor is
introduced to Spark Transformer for reducing the cost in predicting the nonzero entries, it also helps
in bridging the gap from the introduction of statistical top-k. In other words, Transformer with low-
rank predictors in FFN and Attention is more amenable to activation sparsification without quality
loss.

E COMPARISON WITH RELATED WORK ON ACTIVATION SPARSITY IN FFN

In Table 4, we provide a summary of recent work on enabling sparse activation in the latest LLMs.

We can see that our Spark Transformer leads to a FLOPs reduction of -72%, which is more than all
the other methods. This comes at a cost of -0.9% quality loss, which is lower than most of the other
methods (i.e., ReLUification and ProSparse) and is on par with the best alternative, i.e., HiRE.

F ADDITIONAL DISCUSSION ON STATISTICAL TOP-k

F.1 NOVELTY UPON EXISTING WORK

We note that ideas similar to our statistical top-k have appeared in the literature. In particular, Shi
et al. (2019) introduced the idea of fitting a Gaussian distribution to the entries of an input vector

2Total training cost relative to the base model. For finetuning based approaches, such as ReLUification (on
Falcon and Llama) and ProSparse, the total training cost includes both the pretraining cost and the finetuning
cost.

3Quality loss relative to the base model. Here the numbers are based on the results reported in their respec-
tive papers. Note that a different set of evaluation benchmarks is used in each paper. For ReLUification, this
set contains ARC-Easy, HellaSwag, Lambada (for OPT) and Arc-E, Arc-C, Hellaswag, BoolQ, PIQA, LAM-
BADA, TriviaQA, WinoGrande, SciQ (for Falcon and Llama). For ProSparse, this set contains HumanEval,
MBPP, PIQA, SIQA, HellaSwag, WinoGrande, COPA, BoolQ, LAMBADA, and TyDiQA. For HiRE, this set
contains WMT14/WMT22, SuperGLUE, Multiple QA datasets, and multiple discriminative tasks datasets. For
CATS, this set contains OpenBookQA, ARC Easy, Winogrande, HellaSwag, ARC Challenge, PIQA, BoolQ,
and SCI-Q. For Spark Transformer, the datasets are those reported in Table 2.

4Results reported here are for the stage 1 training of their paper.
5Specifically, -80% on odd layers only, and -60% on average.
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Table 4: Comparison with related work on enforcing activation sparsity in FFN of LLMs. Spark
Transformer has the largest FLOPs reduction with one of the smallest quality loss.

Main Techniques Main Results

Enforce
sparsity

Predict
support

Base model Training
cost2

Sparsity
(%zeros)

Quality3 FFN
FLOPs

ReLUification4

(Mirzadeh et al., 2023)

ReLU None OPT 1.3B +0% 93% -2% -62%

ReLU None Falcon 7B
Llama 7B

+2%
+3%

94%
62%

-2.5%
-1.9%

-62%
-42%

ProSparse
(Song et al., 2024a)

ReLU +
‖ · ‖1

None Llama2 7B
Llama2 13B

+1.8%
+6.7%

88%
88%

-1.1%
-1.4%

-59%
-59%

2-layer FFN Llama2 7B
Llama2 13B

NA
NA

75%
78%

NA
NA

NA
NA

HiRE
(Yerram et al., 2024)

Group topk +
commonpath

Low-rank /
quantization

PALM2 1B +0% 80% -0.8% -60%5

CATS
(Lee et al., 2024b)

Thresholding None Mistral 7B
Llama2 7B

+0% 50%
50%

-1.5%
-2.4%

-33%
-33%

Spark
Transformer

Statistical-
topk

Partial
dimensions

Gemma 2B +0% 92% -0.9% -72%

and estimating a threshold from quantile functions. Then, M Abdelmoniem et al. (2021) extended
the approach to additional distributions. In both cases, the method is used for solving the problem
of distributed training. Here, we summarize our contribution upon these works:

• We are the first to use statistical top-k for enforcing activation sparsity in Transformers. Improv-
ing Transformer efficiency via activation sparsity has become a very popular research topic (see
Section 5), but may have been suffering from a lack of efficient top-k algorithms for enforcing
sparsity. Hence, the introduction of statistical top-k may facilitate the development of this area.

• Synergizing statistical top-k into Transformers is nontrivial. Since the method of statistical top-k
is based on fitting a statistical distribution to the activation vector, there is the need to understand
the distributions of different activations in order to determine which particular activation vector
is suited for the application of statistical top-k and the associated choice of the distribution. In
our case, we decide that statistical top-k should be applied to the activation before the nonlinear
function (for FFN) and before softmax (for Attention) since entries of this vector provably follows
a Gaussian distribution at random initialization. We also verify empirically that statistical top-k
is still reliable even after initialization.

• We extended statistical top-k from using the hard-thresholding operator with the estimated statis-
tical threshold to the soft-thresholding operator. This leads to a continuous optimization landscape
that may have facilitated the optimization. Empirically, we found this choice to provide quality
benefits for Spark Transformer.

• We provide the first theoretical justification for the correctness of statistical top-k, see Theorem 1.

• We reveal the conceptual connection between statistical top-k and several related top-k opera-
tors in the literature, see Section 2.3. Such connections may motivate the development of more
powerful top-k algorithms in the future.

F.2 HANDLING CASES WHEN THE ACTIVATION IS SHARDED

The training of modern large Transformer models usually requires sharding certain model weights
and activations across multiple computation devices, due to physical limitations on each device’s
memory. In particular, if sharding is used for the activations upon which the statistical top-k is
applied to, i.e., the pre-GELU activation in FFN and the pre-softmax activation in attention, extra
care needs to be taken so that statistical top-k is applied correctly. While this has not been the case
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for our experiment on Gemma-2 2B, here we discuss possible solutions if this case arises, e.g., when
training a larger Spark Transformer for which sharding relevant activations may become necessary.

Assume that an activation vector of length N is sharded over m devices, and we are interested in
finding approximately the top-k entries of N with the largest value. There are two ways of applying
statistical top-k for this purpose.

• Global statistical top-k. Here we require each device to compute the mean and variance for entries
on itself, then communicate them to all other devices. In this case, each device receives m − 1
mean and variance values, which can be combined with mean and variance on its own to obtain
global mean and global variance. Then, the rest of the steps in statistical top-k can be carried out
on individual devices. In this method, the output is exactly the same as if applying statistical top-k
without activation sharding. In terms of cost, there is extra computation coming from aggregating
mean and variance from all devices, but the cost is very low as it requires only O(k) FLOPs.
The method also introduces a communication cost, but the cost is again small as each device only
needs to send / receive 2k − 2 floating point numbers.

• Local statistical top-k. Here we simply apply statistical top-k′ to entries on its own device with
k′ = k/m. The method is sub-optimal in the sense that it does not necessarily produce the same
output as applying the global statistical top-k. However, it has the benefit of not adding any
computation and communication cost.

In cases where k � N , the global statistical top-k above is cheap enough and hence could be a
natural choice.
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