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Abstract

Despite growing interest in active inference for robotic control, its application to1

complex, long-horizon tasks remains untested. We address this gap by introducing2

a fully hierarchical active inference architecture for goal-directed behavior in real-3

istic robotic settings. Our model combines a high-level active inference model that4

selects among discrete skills realized via a whole-body active inference controller.5

This unified approach enables flexible skill composition, online adaptability, and6

recovery from task failures without requiring offline training. Evaluated on the7

Habitat Benchmark for mobile manipulation, our method outperforms state-of-8

the-art baselines across the three long-horizon tasks, demonstrating for the first9

time that active inference can scale to the complexity of modern robotics bench-10

marks.11

1 Introduction12

Active inference offers a principled framework for modeling the action-perception loop, unifying13

inference and control. Both continuous and discrete formulations have been developed to capture14

sensorimotor and cognitive processes (18; 26), and past works have explored hybrid schemes that15

integrate discrete decision-making with continuous control in the context of handwriting (19) and16

oculomotor tasks (16; 17).17

More recently, hybrid continuous-discrete approaches have shown promise in generating rich, goal-18

directed behavior in 2D simulated settings for reaching, grasping, and tool use (24; 21; 23). How-19

ever, active inference has yet to demonstrate scalability to the complexity and long time horizons20

required by modern robotics benchmarks. In particular, no prior work has convincingly shown that21

active inference alone can match or exceed the performance of state-of-the-art methods in realistic22

robotic tasks.23

In this paper, we address this gap by introducing a fully hierarchical hybrid architecture for ac-24

tive inference-based control in long-horizon mobile manipulation tasks. Fig. 1 provides a high-25

level overview. Our system combines a high-level active inference agent that reasons over task-26

relevant abstractions with a novel whole-body controller based on continuous hierarchical active27

inference (22; 20). This integration allows for flexible and robust skill execution, supports on-28

line adaptation, and eliminates the need for offline training. We evaluate our approach on three29

long-horizon mobile manipulation tasks from the Habitat Benchmark (28), namely TidyHouse,30

PrepareGroceries, and SetTable. These tasks require complex, multi-step interactions with31

articulated objects and constrained environments, such as retrieving items from drawers or refriger-32

ators, transporting them across rooms, and placing them on surfaces. Success demands both long-33

term planning and precise, reactive motor control. Our method outperforms state-of-the-art baselines34

across all three tasks, providing a compelling demonstration of active inference.35
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Figure 1: Solution overview. Overview of the proposed solution and the Habitat Tasks described in
detail in section 2.

1.1 Related work36

Long-Horizon mobile manipulation challenges that demand both navigation and manipulation abil-37

ities are well-suited to evaluating the effectiveness of embodied AI algorithms. Works like the38

Habitat Benchmark (28), ThreeDWorld (8), and ManipulaTHOR (5) require robots to navigate in39

indoor apartments and rearrange household objects. We chose to focus on the Habitat Benchmark40

because of its challenging nature: it requires continuous motor control (base and arm), interaction41

with articulated objects (opening drawers and fridges), and involves complicated scene layouts with42

clutter. In the literature, long-horizon problems have been tackled with task-and-motion-planning43

(TAMP) approaches (13; 12; 27; 9).44

Although effective, these methods often rely on accurate knowledge of the scene and objects, and45

are computationally expensive. Learning-based approaches have emerged in recent years as an46

alternative; however, monolithic end-to-end RL solutions to long-horizon tasks are shown to be47

prone to failure (28; 10). The main reasons for this are the high sample complexity, inefficient48

exploration, as well as complicated reward design.49

A common strategy for addressing long-horizon tasks in RL is to decompose them into shorter, more50

manageable subtasks. For instance, the authors of Habitat (28) propose a hierarchical framework51

for mobile manipulation. This integrates classical task planning to generate high-level symbolic52

goals, while individual low-level skills are trained using RL to achieve these goals. This method53

demonstrates superior performance compared to monolithic end-to-end RL policies and traditional54

sense-plan-act pipelines. However, naively chaining multiple skills can result in hand-off issues (28),55

where the terminal state of one skill falls outside the distribution of states encountered during train-56

ing by the subsequent skill, or leads to states that are infeasible for it to handle. This is especially57

an issue for stationary manipulation skills. Prior work often decouples the mobile base from the58

manipulator to simplify the inverse kinematics of redundant systems (25).59

In contrast, (10) highlights that mobile manipulation skills are inherently more robust to error accu-60

mulation during skill chaining. By leveraging the robot’s full embodiment, these skills enable more61

effective subtask execution by allowing the robot to reposition itself. Improved subtask formulation,62

skill composability, and reusability allowed (10) to reach state-of-the-art performance to date on63

Habitat.64

Active inference offers a distinct perspective on decision-making and control, framing both as as-65

pects of a unified inference process. The theory proposes that complex movements can emerge nat-66

urally from generative models that encode goals as prior beliefs and observation preferences (18).67

Within this framework, the nervous system is seen as maintaining a hierarchical generative model68

that continuously produces and refines perceptual hypotheses.69

Early work on hybrid active inference combining discrete and continuous processes focused on70

understanding systems such as oculomotion (7; 16; 17) and handwriting (19). For instance, (7) pro-71

posed linking discrete and continuous states by using Bayesian model averaging over discrete priors,72
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and converting the resulting continuous posterior into a discrete representation through Bayesian73

model comparison. These models typically use a discrete state-space to generate empirical priors,74

which then guide a continuous controller through sequences of attractive setpoints to achieve artic-75

ulated behavior.76

Hybrid active inference has been extended to dynamic tasks that demand flexible planning (24; 21;77

23). These scenarios require agents to infer object dynamics, decompose tasks into subgoals, and co-78

ordinate multiple degrees of freedom to execute composite actions. While such studies demonstrate79

the promise of hybrid active inference in complex motor control, no implementation has yet scaled80

to meet the complexity of established robotics benchmarks. In this work, we introduce a fully hier-81

archical hybrid active inference system that, for the first time, outperforms state-of-the-art baselines82

on the Habitat Benchmark, demonstrating its viability for long-horizon robotic manipulation.83

1.2 Habitat Benchmark84

The Habitat Benchmark (28) comprises three long-horizon mobile manipulation tasks visualized in85

Fig. 1: TidyHouse, PrepareGroceries, and SetTable.86

In TidyHouse, the robot is tasked with relocating five objects from an initial to a designated goal87

position. Both the start and goal locations are typically on open surfaces such as tables or kitchen88

counters. The PrepareGroceries task involves moving two objects from an already open refrig-89

erator to a countertop and returning one object from the counter back into the fridge. Finally, in90

SetTable, the agent must move a bowl from a closed drawer to a table, and then place an apple91

retrieved from a closed fridge on the same table. This scenario involves interacting with articu-92

lated objects and picking and placing items within confined containers. All tasks are specified as93

a sequence of subgoals. Each subgoal is a tuple (s1, s
∗), where s1 is the initial 3D center-of-mass94

position of an object and s∗ denotes its goal position. For instance, TidyHouse is defined by a set95

of five such tuples: {(si1, s∗i)}5i=1. The generated scenes for the tasks are built upon the Replica-96

CAD dataset, which provides a diverse set of 105 photorealistic indoor environments. Each episode97

instantiates a rearrangement task by randomly sampling rigid objects from the YCB dataset and98

placing them on annotated support surfaces, resulting in cluttered initial configurations.99

2 Methods100

2.1 Planning with Universal Generative Models101

To tackle the Habitat Benchmark, we propose an active inference agent, endowed with a hierarchy102

of generative models, each minimizing the Variational Free Energy. In this universal generative103

model (6) actions at one level become the preferences of the level below. As we traverse down104

the hierarchy, each model’s time horizon becomes shorter, and the planning becomes more fine-105

grained. Each component in the hierarchy has its own set of responsibilities. The high-level model106

orchestrates the sequence of logical actions to take, i.e., where to move and what to pick or place.107

The Navigation model manages the path planning through the environment, while the Pick & Place108

model coordinates how targets should be approached or released. Finally, at the bottom of the109

hierarchy lies the active inference whole-body controller, which calculates joint controls for the110

robot and performs obstacle avoidance. These models keep track of their surroundings using a111

Variational Bayes approach to Gaussian splatting (14; 15), which integrates RGBD observations112

into a probabilistic world map.113

2.1.1 High Level Model114

At the most abstract level, the agent consists of a partially observed Markov Decision Process115

(POMDP) capturing dynamics over possible states of the object that need to be collected. This116

allows for the formation of beliefs over these states and robust planning of the agent’s various skills.117

State and action inference in this POMDP is achieved by minimizing variational free energy accord-118

ing to the FEP (18). Crucially, this model tracks the robot’s position with respect to the pick/place119

location as well as the object’s relation to the robot, the pick, and the place location. This is then120

used to schedule either movement or manipulation skills. We present this model using generic active121

inference terms in Fig. 2a. In contrast to classical active inference models, the actions in our model122
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Figure 2: The Generative Model. (a) The high-level model sequences skills, each implemented
by a generative model interacting with the continuous controller. (b) Dynamics at the highest level.
The highest level models the robot location (top) and the object location (bottom). The robot can be
either at an other location – irrelevant to the task – a pick location, or a place location. The object
can be in the robot’s inventory or receptacle (location). (c) Dynamics at the pick & place level.
The model switches between various approach parameters based on feedback from the low-level
controller to increase robustness against failures.

are abstractions of the skills they represent. The joint controls are generated by the continuous123

lowest-level model.124

2.1.2 Pick & Place Model125

Every interaction with the environment can fail due to unforeseen circumstances or invalid prior126

beliefs. To accommodate this, the hierarchy maintains a retry model for the failure-prone skills127

such as picking and placing. As shown in Fig. 2c, this model maintains a set of possible approach128

directions and switches between them based on detected successes or failures of a pick or place.129

Each approach parameter represents a goal for the lower level controller that can be enacted from130

that location.131

2.1.3 Navigation Model132

Crucially, still missing from our description of the hierarchical model is a way to move from one133

point to another. Discrete active inference models are well suited for this as shown in (4). However,134

due to the static nature of the environment as well as the prior knowledge about the object location135

we opted to use A* pathfinding (11) to generate waypoints that act as extrinsic goals for the low136

level controller.137

2.2 Perception with Variational Bayes Gaussian Splatting138

The models need to infer the structure of the environment to keep track of obstacles and goals in139

the world. Following the Variational Bayesian approach used throughout the other models, we use140

a Variational Bayes Gaussian Splat (VBGS) (15) to build a 3D representation of the world from141

RGBD observations. In this model, the world is represented as a 6D Gaussian mixture over 3D142

points in space with corresponding 3D color information; the generative model is updated online143

from observations using Coordinate Ascent Variational Inference (CAVI) (1; 2; 3) without needing144
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Figure 3: Overview of the Hierarchical Active Inference approach for mobile manipulator control.
Intrinsic and extrinsic beliefs µi, µe are internal representations of joint angles and Cartesian poses,
respectively. They generate proprioceptive and visual predictions pp and pv at their level according
to the generative models gv , gp. They are also linked through a kinematic generative model ge. The
functions fi and fe describe the dynamics and are used to guide goal-directed behavior.

a replay buffer or observation queue. As with a normal 3D Gaussian Splat, the model effectively145

forms a radiance field that captures the room’s free and occupied space. This allows for easy obstacle146

avoidance further down the hierarchy. The parameters of the distributions of component k (i.e. µk,147

Σk) that generate s⃗ and c⃗ are random variables, z is the associated mixture component for a given148

data point, dependent on the categorical parameters π.149

2.3 Continuous control with Active Inference150

Recent works proposed Hierarchical Active Inference (HAIF) schemes for continuous control of151

kinematic chains (22; 20). In this section, we extend previous work (20) to whole-body control of152

differential drive mobile manipulators. Such robots are composed of a wheeled mobile base and153

one or more robot arms. We leverage the modularity of HAIF and define one generative model154

for base control and one for arm control, and then link them through top-down prediction errors155

and bottom-up predictions. This results in an overall control scheme that coordinates the whole156

body of the mobile manipulator at once. An overview of the HAIF approach is depicted in Fig. 3.157

Importantly, each block in the hierarchy has the same structure and follows the same update rules158

for state estimation and control. The difference for base and arm control lies in the definition of159

the generative model ge and the physical quantities the internal and external beliefs represent, as160

explained next. In general, the kinematic generative model ge computes the extrinsic beliefs at161

the current level j given the current intrinsic beliefs µj
i and the extrinsic beliefs from the level162

below µj−1
e , i.e. µj

e = ge(µ
j
i ,µ

j−1
e ). The goal is to obtain a set of equations to describe how the163

internal beliefs of active inference agents are generated and updated over time. Following (22), the164

biologically plausible belief update equations are:165

µ̇j
i =

[
µj′

i + πj
pε

j
p + ∂µi

g⊤
e π

j+1
e εj+1

e + ∂f j⊤
i πj

µi
εjµi

−πj
µi
εjµi

]
(1)

166

µ̇j
e =

[
µj′

e − πj
eε

j
e + ∂µe

g⊤
e π

j+1
e εj+1

e + πj
vε

j
v + ∂f j⊤

e πj
µe
εjµe

−πj
µe
εjµe

]
, (2)

where πp, πe, πv are precision parameters for proprioceptive, extrinsic, and visual models, and167

εp, εe and εv are the proprioceptive, extrinsic, and visual prediction errors, respectively. Finally,168

εjµi
= µj′

i − f j
i (µ

j
i ) and εjµe

= µj′

e − f j
e (µ

j
i ) are dynamics prediction errors, with precision πµi169

and πµe . These are used to achieve goal-directed behavior and collision avoidance, as explained170

later. In the equations above, we assumed to be able to observe joint positions, velocities, and link171

positions such that gp and gv are identity mappings. Link positions can be computed from joint172

positions via forward kinematics or estimated via visual input. We now have to find a suitable form173

for ge to easily compute the gradients with respect to intrinsic and extrinsic beliefs for both the arm174

and the base.175
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2.3.1 Arm generative model176

Similarly to (20), the generative model for the HAIF agent comprises an intrinsic belief µi about177

joint angles and links’ lengths, as well as an extrinsic belief µe about a link’s absolute Cartesian178

position and orientation, for each joint j:179

µj
i =

[
θj , lj

]⊤
µj

e =
[
xj , yj , zj , qjw, qjx, qjy, qjz

]⊤
=

[
tj qj

]⊤
. (3)

The function ge describes the 3D position and orientation of the subsequent link of a kinematic180

chain given the pose of the previous one. We can define the generative model ge as in (20) (see A.1181

for more details):182

ge(µ
j
i ,µ

j−1
e ) =

[
tj−1 + h(qj−1 · [0 tj ] · qj−1∗)

qj−1 · qj

]
, (4)

where qj−1∗ is the conjugate quaternion, ′′·′′ represents the Hamilton product, and h(·) is a function183

that returns the imaginary coefficients of a quaternion. In our HAIF agent, the translation tj−1 and184

quaternion qj−1 are given by the extrinsic beliefs µj−1
e . The translation vector tj and rotation qj185

are instead dependent on the kinematic properties of the current link j and the joint angle and length186

θj , lj . The generative model can then be fully specified as a function of the intrinsic and extrinsic187

beliefs, and the gradients can be computed in closed:188

∂ge
∂µi

=

[
∂θge
∂lge

]
∈ R2×7,

∂ge
∂µe

=

[
∂x,y,zge
∂qge

]
∈ R7×7 (5)

Thanks to the choice of using quaternions as singularity-free orientation representation, these gradi-189

ents are easy to compute since the terms in the generative model are either linear or quadratic in the190

parameters, or they appear as arguments of sine and cosine functions.191

2.3.2 Differential drive generative model192

We now extend the HAIF for robot arm control to a differential drive robot. To do so, we write a193

simple kinematic model based on Euler’s updates where the robot base position and orientation with194

respect to a world frame are expressed as:195 
xt+1 = xt + Vt cos(θt)δt

yt+1 = yt + Vt sin(θt)δt

θt+1 = θt + ωtδt,

(6)

where V, ω are respectively forward and rotational velocities. By considering small wheel incre-196

ments ∆ϕR,L = ϕ{R,L}t
− ϕ{R,L}t−1

in between timesteps where ϕ{R,L} are the right and left197

wheel rotations, the expressions for forward and angular velocities result:198

Vt =
r

2δt
(∆ϕR +∆ϕL) (7)

199

ωt =
r

lδt
(∆ϕR −∆ϕL) (8)

The terms r, l are the wheel radius and distance respectively. The generative model for the differen-200

tial drive HAIF is defined as a one-level hierarchical model where there are two controllable states,201

the wheel rotations:202

ge(µ
j
i ,µ

j−1
e ) =

xt−1 +
r
2 (∆ϕR +∆ϕL) cos(θt−1)

yt−1 +
r
2 (∆ϕR +∆ϕL) sin(θt−1)

θt−1 +
r
l (∆ϕR −∆ϕL)

 , (9)

We set the intrinsic beliefs to be wheel rotations and extrinsic beliefs to be position x − y and203

orientation θ with respect to a world frame:204

µi = [ϕR, ϕL]
⊤

µe = [x, y, θ]
⊤
. (10)

The internal and external beliefs are then updated through the gradient of the generative model:205

∂ge
∂µi

=

[
∂ϕR

ge
∂ϕL

ge

]
∈ R2×3,

∂ge
∂µe

=

[
∂xge
∂yge
∂θge

]
∈ R3×3 (11)
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2.3.3 Whole-body generative model206

The arm and base models can be combined into a single whole-body model by defining an overall207

hierarchical structure that combines the two. From eqs. (1) and (2), one can notice how the prediction208

errors at the level above εj+1
e influence the beliefs at the current level µ̇j

i and µ̇j
e. By this logic, the209

extrinsic prediction errors of the first level of the hierarchy will not have any influence since there210

is no level left below in the chain. However, we can propagate these errors back to the top level211

of the hierarchy of the mobile base kinematic model. By doing so, the base can further minimize212

free energy by moving its wheels. In turn, we can propagate up from the base kinematic model213

the predictions about the first link’s position and orientation of the robot arm, closing the loop.214

Mathematically, all equations remain the same apart from the one corresponding to the update of215

internal beliefs µ̇j
i for the base, which becomes:216

µ̇0
i =

[
µ0′

i + π0
pε

0
p + ∂µi

g⊤
e π

1
e(κbaseε

1
e,base + κarmε2e,arm) + ∂f0⊤

i π0
µi
ε0µi

−π0
µi
ε0µi

]
(12)

where κbase and κarm are tuning parameters to weight the effect of arm and base prediction errors.217

By tuning these parameters, one can shape robot behavior, for instance, to allow more or less base218

response due to the arm’s extrinsic prediction errors. The equation for µ̇0
e remains the same since219

the gradient with respect to extrinsic beliefs is zero. This is because the values xt−1, yt−1, θt−1 are220

simply constants from the previous time step and not beliefs from the level below.221

This simple change allows using the base motion to minimize the arm’s prediction errors, extending222

the arm’s reachability beyond its stationary workspace. This is crucial for the successful completion223

of the Habitat Benchmark. Additionally, we still preserve the ability to send individual goals to the224

base as explained below.225

2.3.4 Goals, obstacles, and control226

To realize goal-directed behavior, we can define attractive goals and repulsive forces as in (22; 20).227

Goals can be both intrinsic (joint positions) or extrinsic (Cartesian poses) for the arm and base, and228

they can be combined to define future desired states µ∗. Goals act as attractors, forming dynamic229

functions fa = κa(µ
∗ − µ) that linearly minimize the distance between the desired and current230

states. The desired states can be defined flexibly in terms of the current beliefs as231

µ∗ = Nµ+ n∗, (13)
where N achieves dynamic behaviors, such as keeping a limb vertical by imposing the x, y co-232

ordinates of a link to be the same as the previous one, while n∗ imposes an attractor to a static233

configuration. Some examples of basic goals that can be given to the mobile manipulator in the234

Habitat Benchmark are 1) End-effector goal: the robot will use its whole body to reach a target235

(x∗, y∗, z∗) position, 2) Base goal: the robot will move its base to reach a goal (x∗, y∗, θ∗), where236

θ∗ can be updated over time such that the robot faces the goal θ∗t = arctan 2(y∗ − yt, x
∗ − xt),237

3) Arm joint goal: the robot will reach a specific joint configuration, 4) Combinations of the238

above: the user can mix goals for example making the base move while keeping the arm in a certain239

joint configuration. The same idea of attractive forces can be used for collision avoidance through240

repulsive forces, where a repulsive state µ! has to be avoided (see appendix A.2).241

Given a goal, the control action is computed by minimizing the proprioceptive component of the242

free energy with respect to the control signals (22):243

ȧ = −∂aFp = −∂as̃pπpε̃p (14)
where −∂as̃p is the partial derivative of proprioceptive observations with respect to the control, and244

ε̃p = s̃p − gp(µ) are the generalized proprioceptive prediction errors.245

2.4 Whole-body high-level skills for objects rearrangement246

Similarly to the chosen Habitat Baseline (10), we define a set of abstract high-level skills that the247

high-level planner can sequence at runtime. These skills are implemented with the whole-body248

controller, and are divided into Pick, Place, Move, PickFromFridge, PickFromDrawer. The249

skills are defined as a fixed sequence of goals given to the whole-body controller to realize an250

overall behavior. Every skill computes a whole-body control action for the robot. Details about the251

skills can be found in appendix A.3.252
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3 Experiments253

3.1 Experiments setup254

Agent embodiment: The Habitat Benchmark employs a Fetch robot that features a mobile wheeled255

base, a 7DoF robotic arm, and a parallel-jaw gripper. It is equipped with two RGB-D cameras with256

a resolution of 128× 128 pixels on both the arm and the head. The robot perceives its state through257

proprioceptive sensing, which includes joint angles of the arm and the Cartesian coordinates of the258

end-effector. The robot can also sense the goal positions (3DoF), as well as a scalar to indicate259

whether an object is held. Obstacle positions are sensed by querying the map model.260

Action space: The action space is a 10DoF continuous space, for whole-body control. It is com-261

posed of forward and angular base velocities, a 7DoF arm velocity action, and a 1DoF gripper action.262

Grasping is abstract as in previous work (28; 10), such that if the gripper action is positive, the object263

closest to the end-effector within 15cm will be snapped to the gripper. An object is instead released264

by a negative action.265

Evaluation metrics Each task in the Habitat Benchmark is composed of a sequence of subtasks that266

must be completed. As in previous work (28; 10), we measure performance by reporting the com-267

pletion rate at each subtask stage, with the success rate of the final subtask representing the overall268

task success. Notably, if the previous subtask has failed, the current subtask is also considered a269

failure independently of its outcome. At the start of each evaluation episode, the robot’s base is270

placed at a random position and orientation, ensuring no collisions, while the arm begins in a resting271

configuration.272

Baselines We compare our model against methods in (10), namely a Monolithic RL approach and273

a Multi-skill RL Mobile manipulation (MM). The latter had the best performance among several274

learning-based and classical task and motion planning approaches. The Monolithic RL is an end-275

to-end RL policy for each complete task (TidyHouse, PrepareGroceries, and SetTable). Dif-276

ferent reward functions are selected according to oracle knowledge about the current subtask being277

executed, such as picking or placing, to train a single policy for such long-horizon tasks. The Multi-278

skill RL Mobile manipulation approach, instead, trains different mobile manipulation policies that279

are then chained by an oracle task planner executed in open loop. For details about the baselines,280

we refer the reader to (10).281

3.2 Results282

We report the benchmark results in Fig. 4. Our approach outperforms the baselines in all three tasks,283

averaging 72.5% completion rate in TidyHouse, 77% completion rate in PrepareGroceries, and284

50% completion rate in SetTable over five seeds. The best performing baseline, MM, instead,285

averages 71%, 64%, and 29% respectively. Considering all three tasks combined, we achieved a286

66.5% success rate compared to the 54.7% of the MM baseline. Notably, the MM baseline requires287

extensive offline training. That is 6400 episodes per task across varied layouts and configurations in288

the Habitat environments, and 100 million steps per skill across a total of 7 skills. In contrast, our289

method relies on hand-tuning each skill over just a handful of episodes and is evaluated directly on290

unseen layouts and configurations, demonstrating strong generalization without the need for data-291

intensive training. However, we still rely on privileged information, such as the floor map for path292

planning and articulated object states. These assumptions will be removed in future work.293

4 Discussion and Conclusion294

In this work, we proposed a hierarchical active inference model to address the Habitat Benchmark,295

surpassing state-of-the-art performance across all three benchmark tasks. Our system is composed296

of two key components: a high-level model that selects appropriate low-level skills based on discrete297

observations, and a set of low-level skills defined through goals for a novel whole-body controller298

using hierarchical active inference. This architecture enables the system to flexibly adapt to task299

failures and dynamically adjust behavior in response to environmental changes. Importantly, our300

method operates online, without requiring offline training, and supports real-time adaptation of the301

high-level plan. While our current implementation still relies on certain privileged information302

(such as access to a global map for path planning), our future work will focus on enabling the303
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Figure 4: Evaluation results on the Habitat Benchmark, averaged over 100 episodes. Each task is
evaluated on different apartment layouts and divided into stages. For a stage to be successful, all
previous stages must also be successful. TidyHouse: Evaluated over five pick-and-place stages,
from Pick obj. 1 to Place obj. 5. PrepareGroceries: Measured from Pick obj. 1 to
Place obj. 3. SetTable: Involves a more complex sequence including Open drawer → Pick
bowl→ Place bowl→ Close drawer, and similarly for the fridge and apple.

agent to actively explore and construct maps in real-time. Additionally, knowledge of the state304

of articulated objects, such as drawers and refrigerators, will be inferred directly from raw RGBD305

sensory input. Moreover, while low-level skills are currently composed of a fixed sequence of goals306

for the continuous whole-body controller, one could add an intermediate hierarchical level as in (21)307

to smoothly transition between subgoals. Another interesting direction to explore would be learning308

skills directly from demonstration. In summary, our hierarchical hybrid active inference model309

demonstrates promising results in goal-directed robotic control within complex environments. With310

further enhancements in perception, exploration, and skill acquisition, we believe this framework311

could serve as a foundation for more generalized and scalable robotic agents.312
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A Appendix388

A.1 Kinematic generative model389

To generative model in eq. (4) is defined from generic transformation matrices. To compute the390

absolute position and orientation of the current link j given the absolute position and orientation of391

the previous one, we can write:392

wTj =

[
Rj−1Rj tj−1 +Rj−1tj

0 1

]
, (15)

where w indicates the world frame as an absolute reference, R represents a rotation matrix, and393

t a translation vector. The world frame can be the base link of a robot arm. From eq. (15), we394

note that the resulting absolute rotation of a link is the multiplication of two rotation matrices.395

However, we can express this as a quaternion multiplication qj−1 · qj . Similarly, we can rotate a396

vector tj by a quaternion qj−1 corresponding to Rj−1, leading to eq. (4). Considering a generic397

Denavit–Hartenberg (DH) transformation matrix398  cos θj − sin θj cosαj sin θj sinαj lj cos θj

sin θj cos θj cosαj − cos θj sinαj lj sin θj

0 sinαj cosαj dj

0 0 0 1

 , (16)

we note that the translation vector is simply tj = [lj cos θj , lj sin θj , dj ]. According to the DH399

convention, the rotational part of the transformation matrix is the composition of a rotation θj about400

the previous z-axis and a rotation of αj around the x-axis. We can then write:401

qj =
[
cos θj

2 cos αj

2 , cos θj

2 cos αj

2 , cos θj

2 cos αj

2 , cos θj

2 cos αj

2

]
. (17)

The generic kinematic model in eq. (4) can be expressed as402

ge(µ
j
i ,µ

j−1
e ) =

[
tj−1 + h(qj−1 · [0 tj ] · qj−1∗)

qj−1 · qj

]
,=



xj−1 + xtf

yj−1 + ytf
zj−1 + ztf

qw, tf

qx, tf
qy, tf
qz, tf


, (18)

where xtf , ytf , ztf and q∗, tf are the transformed translations and rotation. Computing the Hamilton403

products yields the following expressions for the transformed positions404

xtf = qj−1
w

2
lj cos θj + qj−1

x

2
lj cos θj − qj−1

y

2
lj cos θj − qj−1

z

2
lj cos θj

+2qj−1
x qj−1

y lj sin θj + 2qj−1
x qj−1

z dj + 2qj−1
w qj−1

y dj − 2qj−1
w qj−1

z lj sin θj ,

ytf = qj−1
w

2
lj sin θj − qj−1

x

2
lj sin θj + qj−1

y

2
lj sin θj − qj−1

z

2
lj sin θj

+2qj−1
x qj−1

y lj cos θj + 2qj−1
y qj−1

z dj − 2qj−1
w qj−1

x dj + 2qj−1
w qj−1

z lj cos θj ,

ztf = qj−1
w

2
dj − qj−1

x

2
dj − qj−1

y

2
dj + qj−1

z

2
dj

+2qj−1
x qj−1

z lj cos θj + 2qj−1
y qj−1

z lj sin θj − 2qj−1
w qj−1

y lj cos θj + 2qj−1
w qj−1

x lj sin θj ,

and orientation:405

qw, tf = qj−1
w cos

θj

2
cos

αj

2
− qj−1

x cos
θj

2
sin

αj

2
− qj−1

y sin
θj

2
sin

αj

2
− qj−1

z sin
θj

2
cos

αj

2
,

qx, tf = qj−1
w cos

θj

2
sin

αj

2
+ qj−1

x cos
θj

2
cos

αj

2
+ qj−1

y sin
θj

2
cos

αj

2
− qj−1

z sin
θj

2
sin

αj

2
,

qy, tf = qj−1
w sin

θj

2
sin

αj

2
− qj−1

x sin
θj

2
cos

αj

2
+ qj−1

y cos
θj

2
cos

αj

2
+ qj−1

z cos
θj

2
sin

αj

2
,

qz, tf = qj−1
w sin

θj

2
cos

αj

2
+ qj−1

x sin
θj

2
sin

αj

2
− qj−1

y cos
θj

2
sin

αj

2
+ qj−1

z cos
θj

2
cos

αj

2
.
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A.2 Collision avoidance in HAIF406

A repulsive state µ! can be imposed on intrinsic beliefs, to realize joint limit avoidance, or extrinsic407

beliefs for collision avoidance with the environment. We define joint limit avoidance as:408

fr,θ(µ) =

{
0, if ||eθ|| > γθ
kr,θζ(1/γθ − 1/||eθ||), otherwise

, (19)

where eθ = µ!
θ − µθ, µθ is the slice of beliefs about joint angles, µ!

θ are the joint limits, and γθ409

is a chosen threshold. The variable ζ ∈ {−1, 1} is negative for lower limits and positive for upper410

limits. The collision avoidance strategy is instead the same as (22):411

fr,obst(µ) =

{
0, if ||eobst|| > γobst
kr,obst(1/γobst − 1/||eobst||)eobst/||eobst||3, otherwise

, (20)

where eobst = µ!
pos−µpos, µpos is the slice of beliefs about link positions, and µ!

pos is the position412

of an obstacle given by the VBGS module. Goal attractors and repulsive forces for joint limits and413

collision avoidance are then summed together to form the dynamics function of a single level. This414

allows one to achieve behaviors such as reaching a target while avoiding an obstacle. Parameters415

are manually chosen to achieve sufficient performance in the test cases, but could be automatically416

optimized.417

A.3 Whole-body Skills418

The routines for the different skills for the mobile manipulator are defined as follows:419

• Pick: The robot unfolds its arm (joint goal), moves to a pre-grasp position above the target420

object (end-effector + joint goal), and then proceeds to the grasp pose to perform the grasp421

once close enough (end-effector goal). After grasping, it retreats to the post-grasp pose422

(end-effector goal) and folds the arm back into a compact configuration (joint goal) (see423

Fig. 5).

Unfold and reach pre-grasp Proceed to grasp Lift to post-grasp Retreat arm Fold arm for navigation

Figure 5: Evolution of the Pick skill over time.

424

• Place: It mirrors the Pick sequence, but targets a specified place location.425

• PickFromDrawer: The end-effector is moved in front of the drawer hinge and grasps the426

handle once close enough (end-effector + joint goal). Then, the robot executes a linear427

backward trajectory to pull the drawer open (end-effector goal). The object is picked as in428

Pick. Finally, the robot end-effector is placed in front of the handle again (end-effector429

goal), and the drawer is pushed close following a linear trajectory (end-effector goal) (see430

Fig. 6).431

• PickFromFridge: The robot unfolds its arm (joint goal), moves in front of the fridge432

handle, and grasps it once close enough (end-effector goal). It then follows a circular433

trajectory to partially open the door (end-effector goal). After that, the arm retreats (joint434

goal), and finally, the arm starts a linear trajectory from behind the half-opened door to435

push it to fully open (end-effector goal). The object is picked as in Pick, and then the436

robot first moves to the left of the fridge door (base + joint goal), and after it follows a437

linear trajectory to push the door closed (end-effector goal) (see Fig. 7).438

• Move: The NavModel computes a global path towards a final goal and orientation, and439

provides the move skill with the current active subgoal (x∗, y∗), along with the final desired440

position and orientation. At each step, the heading θ∗ toward the subgoal is computed. A441

predefined joint configuration (joint goal) for the arm is set to avoid collisions. The skill442
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Unfold and reach handle Proceed to grasp Pull the drawer Retreat arm 

Retreat arm 

Pick bowl 

Go in front of the handle Push the drawer 
Figure 6: Evolution of the PickFromDrawer skill over time.

Unfold and reach handle Pull the door (circular motion) Push the door (linear motion) Retreat arm Pick the apple 

Move behind the door Push the door (linear motion) Reach handle Retreat arm Retreat arm 
Figure 7: Evolution of the PickFromFridge skill over time.

terminates when the robot is within a threshold distance of the target pose. See Fig. 8) for an443

example. The reach threshold for the position is kept at 0.8m while the one for orientation444

to 0.3rad. These are particularly loose since we rely on whole-body manipulation skills and445

are not required to precisely position the base before executing them.

Figure 8: Top view of the Move skill where the robot moves through subgoals following the global
path.

446

A.4 Example evolution of a probabilistic map447

In Fig. 9 we present an example of how a probabilistic map can evolve through time using VBGS.448
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t=0 t=50

t=100 t=150

Figure 9: An example of the probabilistic map evolution with VBGS in one Habitat apartment. The
left side of each panel shows the location of the robot on the ground truth floor plan. The right side
overlays the Gaussian components over the obstacles projected onto the floor.
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