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Abstract

Multidomain and multilingual machine trans-001
lation often rely on parameter sharing strate-002
gies, where large portions of the network are003
meant to capture the commonalities of the004
tasks at hand, while smaller parts are reserved005
to model the peculiarities of a language or a006
domain. In adapter-based approaches, these007
strategies are hardcoded in the network ar-008
chitecture, independent of the similarities be-009
tween tasks. In this work, we propose a new010
method to better take advantage of these sim-011
ilarities, using a latent-variable model. We012
also develop new techniques to train this013
model end-to-end and report experimental re-014
sults showing that the learned patterns are both015
meaningful and yield improved translation per-016
formance without any increase of the model017
size.018

1 Introduction019

Multidomain and multilingual machine translation020

aim to develop one single model to perform trans-021

lation for multiple domains and multiple language022

pairs, respectively.1 These paradigms are moti-023

vated by the compactness of the resulting transla-024

tion system (Chu and Dabre, 2018; Dabre et al.,025

2020), the hypothetical positive knowledge transfer026

between similar domains (Pham et al., 2021) or027

between languages in the same family (Tan et al.,028

2019). However, having all the tasks use exactly029

the same model parameters can cause negative in-030

terference between unrelated tasks (Conneau et al.,031

2020; Wang et al., 2020b). Hence, the recent devel-032

opment of approaches relying on a partial sharing033

of the parameters, eg. using adapter layers as stud-034

ied in (Houlsby et al., 2019; Bapna and Firat, 2019;035

Pham et al., 2020; Philip et al., 2020). If these tech-036

niques have proven effective for building strong037

baselines, they fail to fully take advantage of the038

1We will refer to these two situations as ’multi-task MT’
and refer to individual domains and languages as ’tasks’.

similarities that exist between domains and tasks, 039

as documented eg. in (Pham et al., 2021). This 040

is because the partition of the parameter space be- 041

tween generic or task-specific subparts, and their 042

allocation to each task, is hard-coded in the net- 043

work, irrespective of the actual commonalties and 044

differences in the data space. 045

In this work, we study and develop a new 046

method, multi-task group dropout, aimed to take 047

into account the similarity between tasks in a more 048

effective way, by learning the network organiza- 049

tion from the data. To this end, we introduce a set 050

of latent variables in the model, to account for the 051

unseen association between tasks and regions of 052

the representation space and show how training can 053

still be performed end-to-end using a variational 054

surrogate of the log-likelihood loss function. Our 055

experiments with multilingual and multidomain 056

machine translation confirm that this method can 057

automatically detect similarities in the data, mean- 058

ing that related tasks use the same subparts of the 059

network. Our results also show that this method 060

is comparable to using adapter layers in a number 061

of empirical comparisons; however, contrarily to 062

adapters, these performance are obtained without 063

any increase of the model size. Our contributions 064

are primarily methodological and can be summa- 065

rized as follows: 066

1. We introduce a novel, sound mathematical 067

formulation to the problem of jointly learning 068

task-dependent sub-networks and the parame- 069

ters of the underlying models using variational 070

probabilistic modeling techniques; 071

2. We present algorithms to train this model end- 072

to-end with very little extra parameters; 073

3. We report, using an extensive set of experi- 074

ments, gains for multidomain MT and very 075

low-resourced languages in multilingual MT; 076

4. We study how this method can actually ex- 077

ploit the similarities between tasks to learn 078

interpretable sub-networks. 079
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Figure 1: Latent group dropout. The set of nodes in
each layer is divided into equal-sized groups. For each
task, we only keep a fixed number of active groups of
nodes and nullify all the other nodes.

2 Multi-task group dropout080

2.1 Network architecture, groups and layers081

Many architectures for multitask learning are based082

on a matching of subset of model parameters with083

tasks. Given the task and the input instance, only084

a subpart of the network will be involved in the085

computation of the output value, based on a prede-086

fined association between subnetworks and tasks.087

The adapter architecture of (Bapna and Firat, 2019)088

illustrates this strategy, where a task-dependent set089

of layers is activated for each task.090

In our approach, we also require to know the091

task d ∈ [0 . . .nd − 1] for each training and test092

instance. The structure of our Transformer net-093

works (Vaswani et al., 2017) is however based on094

the notion of groups of nodes in the computation095

graph. At the input of each Transformer layer096

l ∈ [1 . . .L], we partition all input state vectors into097

np groups of nodes, and zero-out a task-dependent098

subset of these groups. The assignment of tasks099

to groups will be learned from the data, under the100

constraint that each task only activates exactly k101

groups of active nodes, while the all the other val-102

ues are nullified, akin to a dropout process (see103

Figure 1). Formally, a group dropout mask md
l is a104

np-dimensional binary vector containing exactly k105

ones: group p (∈ [0, . . . ,np-1]) is retained for task106

d if md
l (p) = 1 and is dropped if md

l (p) = 0. We107

denote ∆
np
k = {m ∈ {0,1}np such that | m |L1= k}108

the set of all admissible masks, with | m |L1 the L1109

norm of vector m; #∆
np
k is the cardinal of ∆np .110

Given md
l , the mask rd

l for task d in layer l is111

then derived as: 112

rd
l (i) = md

l (p) if p× dk

np
6 i < (p+1)× dk

np
, 113

where dk is the dimension of the hidden state. The 114

propagation of information within the network then 115

depends on the current task value as follows: 116

∀l ∈ [0, · · · ,L−1] : h̃l = hl� rd
l , 117

hl+1 = LAYERl+1(h̃l), 118

where LAYERl() represents all the computations 119

in Transformer layer l, � is element-wise product. 120

It is applied at all positions of each layer in the 121

encoder and in the decoder. 122

2.2 Training with latent dropout masks 123

Assuming standard notation for our translation 124

model P(y|x,d;θ) where x, y and θ respectively 125

refer to the input, output, and parameter vector, the 126

latent variables md
l , l ∈ [0, . . . ,L],d ∈ [0, . . . ,nd−1] 127

are introduced as follows. We chose the prior distri- 128

bution for md
l as the uniform distribution over ∆

np
k : 129

P(md
l |x,d;θ) = Unif(∆np

k ); variables for each layer 130

are independent and collectively refered to as md . 131

For any (variational) distribution Q(m1 . . .mnd ;Φ) 132

with parameters Φ= {φ 1
l , ...,φ

nd
L }, it is well-known 133

that the log-likelihood is lower-bounded by the so- 134

called ELBO function (hereafter denoted `), made 135

of a summation of two terms: the distortion D and 136

the rate R defined as follows: 137

logP(y|x,d;θ)≥`(x,y,d;θ ,Φ) 138

`(x,y,d;θ ,Φ) =D(x,y,d;θ ,Φ)−R(x,y,d;θ ,Φ)
(1)

139

D(x,y,d;θ ,φ) =Emd∼Q(md |d,Φ) logP(y|md ,x,d;θ) 140

R(x,y,d;θ ,φ) =KL(Q(md |d,Φ)||P(md |x,d;θ)), 141

where KL is the Kullback-Leibler divergence. We 142

use −`(x,y,d;θ ,Φ) as our surrogate training loss, 143

as a tractable approximation of the likelihood, and 144

try to minimize this function in θ and Φ. 145

The variational distribution Q of md is defined 146

independently on a layerwise basis; this means that 147

each layer only involves a subset Φd
l of variational 148

parameters. Q is computed as follows: 149

Indd = {i1, · · · , ik} ∼ SRS(softmax(Φd
l ),k) 150

md
l (i) = I(i ∈ Indd), 151

where SRS(π,k) denotes the process of sampling 152

k times without replacement from the distribution 153

π , and I is the indicator function. This modeling 154

choice for the latent vector md
l is motivated by the 155

Gumbel Top-K trick of Kool et al. (2019) that we 156
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use below. Given our choices for the prior and the157

variational distributions, the two terms in Eq. (1)158

can be computed as:159

D(. . .) = Emd∼Q(md |d;Φ)logP(y|md ,x,d,θ)160

= Egd∼i.i.dG(0,1)
[

logP(y|m̃d ,x,d,θ ,)
]

161

where the generation process G(0,1) is a product162

of independent Gumbel distributions, yielding:163

∀d,gd = [gd
1 , . . . ,g

d
L], with gd

l ∈ Rnp164

∀p,gd
l (p)i.i.d∼ Gumbel(0,1)165

Indd = {i1, · · · , ik}= Top-k { gd
l (0)+Φ

d
l (0), · · · ,166

gd
l (np-1)+Φ

d
l (np-1) }

(2)
167

m̃d
l (p) = I(p ∈ Indd).168

For the second term, the derivation is the following:169

R = KL(Q(md |d,Φ)||P(md |x,d;θ)),170

=−
L

∑
l=1

(
H
[
Q(md

l |d,Φ)
]
− log(#∆

np
k )
)

171

=−
L

∑
l=1

(
H
[
Q(i1, · · · , ik|d,Φ)

]
− log(#∆

np
k )
)

172

6−
L

∑
l=1

(
H
[
Q(i1|d,Φd

l )
]
− log(#∆

np
k )
)
. (3)173

We prove inequality (3) in Appendix B. This174

inequality shows that an upperbound of R is175

∑
L
l=1(log(#∆

np
k )−H(softmax(Φd

l ))) since i1|Φd
l ∼176

softmax(Φd
l ). During training, we thus maximize177

a sum over layers of the entropy H(softmax(Φd
l ))178

which performs a regularization over the parame-179

ters Φd of the variational distribution.180

Thanks to the Gumbel Top-K trick, we can move181

the parameters Φ into the objective function and182

get rid of policy gradients, which have been re-183

ported to be very unstable (Kingma and Welling,184

2014). However, the operator Top-k, which serves185

to define m̃d
l in Equation (2), is not differentiable.186

Therefore, we approximate this function by the187

Soft-Top-K function defined as follows:188

m̂d
l (τ) = argmin

06mi61
∀06i6nd -1

1T .m=k

− (gd
l +Φ

d
l )

T .m− τHb(m)

(4)

189

in which190

Hb(m) =−∑
i

milog(mi)+(1−mi)log(1−mi).191

In Appendix A, we prove that limτ→0 m̂d
l (τ) =192

m̃d
l . Furthermore, we also provide the computation193

of m̂d
l (τ) and prove that m̂d

l (τ) is a differentiable194

function w.r.t Φd
l and that its gradients can be com- 195

puted using the implicit differentiation theorem. 196

During training, we approximate m̃d
l by m̂d

l (τ) by 197

gradually decaying the hyper-parameter τ to 0.2. 198

The gradient of D w.r.t Φd
l is computed using the 199

chain rule as follows: 200

∂D
∂Φd

l
=

∂D
∂ m̂d

l (τ)
×

∂ m̂d
l (τ)

∂Φd
l

201

The gradient ∂D
∂ m̂d

l (τ)
is computed via autograd algo- 202

rithm while ∂ m̂d
l (τ)

∂Φd
l

is computed via implicit differ- 203

entiation, as explained in Appendix A. 204

We jointly train the Transformer parameters θ 205

and the parameters of the variational distribution Φ 206

using the following multi-task loss. 207

L (θ ,Φ) =
nd

∑
d=1

Ex∼Dd
s ,y∼MT d(x)

[
− `(x,y,d;θ ,Φ)

]
208

in which Dd
s is distribution of task d over the 209

input space Ωd
s ; MTd : Ωd

s →Ωd
t is the translation 210

function for task d, which our multi-task model 211

needs to learn; −`(x,y,d,θ ,Φ) is the ELBO loss, 212

defined in Equation 1. 213

Finally, during inference, we define the dropout 214

mask for layer l and task d as follows: 215

Indd
l = Top-k(Φd

l ) 216

md
l = I(i ∈ Indd

l ) 217

meaning that we simply pick the k most likely pa- 218

rameter groups for the task at hand, and define the 219

state dropout mask accordingly. 220

3 Experimental settings 221

3.1 System design and configuration 222

3.1.1 Multidomain translation systems 223

Our systems for the multidomain experiments are 224

designed as follows: 225

• Transformer: The embedding dimension for 226

both encoder and decoder is set as 512, and 227

the feedforward dimension is 2048; the multi- 228

head attention mechanism contains 8 heads; 6 229

layers in the encoder; 6 layers in the decoder. 230

• Adapter-based Transformer: The intermediate 231

feedforward dimension is set to 2048; 232

• Transformer using Latent multi-task group 233

dropout (LaMGD Transformers): There is no 234

change in the architecture. We group the 512 235

nodes in each layer into 16 groups of 32 con- 236

secutive nodes. For each domain, only 12 out 237

of the 16 groups are selected. The number 238

of parameters of the variational distribution is 239
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L× k×L×nd , which is negligible in compar-240

ison to the size of the Transformer model.241

• Transformer using heuristic multi-task group242

dropout (HMGD Transformer): we share 320243

nodes for every task, and reserve 32 nodes for244

each task (totalling 320+32∗6 = 512 nodes).245

We set the dropout probability to 0.1. We train246

the multidomain Transformer model for 200k itera-247

tions with a batch size of 12k tokens using 4 V100248

GPUs. The convergence of the standard Trans-249

former is before 200K as its validation curve be-250

came flat near the 200K-th iteration. The LaMGD251

Transformer converged after 300k iterations with252

the same batch size. The convergence of LaMGD is253

controlled by its validation curve. Finally, we plug254

adapters to the multidomain Transformer model255

and finetune them for 25k iterations using the same256

batch size as the baseline.257

3.1.2 Multilingual translation systems258

The systems used in our multilingual experiments259

are implemented as follows:260

• Multilingual Transformer: the embedding di-261

mension for both encoder and decoder is set as262

512, and the feedforward dimension is 1024,263

each multi-head attentions contains 8 heads264

as in (Wang et al., 2020a).265

• Adapter based Transformer: the intermedi-266

ate feedforward dimension is set as 128 as in267

(Gong et al., 2021a).268

• LaMGD Transformer: There is no change in269

the architecture. We group 512 nodes in each270

layer into 16 groups of 32 consecutive nodes.271

For each language, we select 12 groups.272

We set the dropout probability to 0.3. We train273

the multilingual Transformer model for 40k itera-274

tions with a batch size of 9600 tokens on 16 V100275

GPUs as in Gong et al. (2021a). We train LaMGD276

Transformer for 50k iterations with the same batch277

size. The convergence of the models are controlled278

via their validation curves. Finally, we finetune the279

language-specific Adapters for 5k iterations.280

All the translation systems are implemented with281

OpenNMT-tf 2 (Klein et al., 2017).282

3.1.3 Hyper-parameters283

We choose nd = 16 so that the size of the dropout284

group is neither too small nor too large. The second285

important hyper-parameter in LaMGD is the number286

of selected groups in each layer, k, which we set287

to 12 in every experiments. By retaining 12/16288

2https://github.com/OpenNMT/OpenNMT-tf

groups, we share on average 75% active groups 289

between two domains or languages. This design 290

ensures that the percentage of sharing is in the same 291

ballpark as what we obtain with adapter modules. 292

In our future work, we intend to analyze how these 293

choices affect the final performance of the model. 294

The temperature parameter τ for the Soft-Top-K 295

operator is gradually decreased from 0.5 to 0.2 296

according to the following policy: 297

τ = min{0.2,0.5∗ exp−r∗step}, 298

in which r = 0.0001. While Gong et al. (2021b,a) 299

fixed τ to be 0.2, we select an anneal policy for τ 300

proposed by previous studies (Jang et al., 2017). 301

Finally, we set the weight of the entropy term to 302

0.0001 in the training loss in every experiments. 303

3.1.4 Latent variables initialization 304

We initialize the distribution of the latent variables 305

uniformly. More precisely, we set Φd
l , which gen- 306

erates the probability of the masks via the softmax 307

activation function, to 0nd . 308

3.2 Datasets and metrics 309

3.2.1 Multidomain translation 310

We use the same data as in the recent work of 311

Pham et al. (2021) on multidomain translation. The 312

datasets 3 for the multidomain translation experi- 313

ments are detailed in Table 1. For each domain, the 314

size of the dev set and the test set is 1 K. 315

3.2.2 Multilingual translation 316

We evaluate our model on both one-to-many (O2M) 317

and many-to-one (M2O) translation tasks borrow- 318

ing the multilingual translation datasets from past 319

studies. More precisely, we used: 320

• TED8-Related. Following the setting of Wang 321

et al. (2020a), we use a subset of translations 322

from Qi et al. (2018) between English and 323

eight related languages. 324

• TED8-Diverse. The dataset consists of par- 325

allel sentences between English and eight di- 326

verse languages as in Wang et al. (2020a). 327

The languages used in the multilingual experi- 328

ments are as follows (see statistics in Table 2): 329

• Diverse set: bos (Bosnian), Bulgarian (bul), 330

French (fra), ell (Greek), hin (Hindi), Korean 331

(kor) mkd (Macedonian), mar (Marathi); 332

• Related set: Azerbajiani (aze), Belarusian 333

(bel), Czech (ces), Galician (glg), Portuguese 334

3See https://github.com/qmpham/
experiments/tree/main/tacl20
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MED LAW BANK IT TALK REL

# lines 2609 (0.68) 501 (0.13) 190 (0.05) 270 (0.07) 160 (0.04) 130 (0.03)
# tokens 133 / 154 17.1 / 19.6 6.3 / 7.3 3.6 / 4.6 3.6 / 4.0 3.2 / 3.4
# types 771 / 720 52.7 / 63.1 92.3 / 94.7 75.8 / 91.4 61.5 / 73.3 22.4 / 10.5
# uniq 700 / 640 20.2 / 23.7 42.9 / 40.1 44.7 / 55.7 20.7 / 25.6 7.1 / 2.1

Table 1: Corpora statistics: number of parallel lines (×103) and proportion in the basic domain mixture (which
does not include the NEWS domain), number of tokens in English and French (×106), number of types in English
and French (×103), number of types that only appear in a given domain (×103).

(por), Russian (rus), Slovak (slk), Turk-335

ish (tur).336

For all experiments, we report the BLEU score337

of Papineni et al. (2002) computed with SacreBleu338

(Post, 2018). Statistical significance is computed339

with compare-mt4 (Neubig et al., 2019). We report340

significant differences at the level of p = 0.05.341

4 Results and analyses342

4.1 Multidomain translation343

For these experiments, our main results are in Ta-344

ble 3, where we observe that the LaMGD Trans-345

former achieves a significant improvement (+2.78)346

over the generic Transformer system with zero347

extra parameters. Moreover, LaMGD Transformer348

achieves performance that are equivalent on aver-349

age to that of the Adapter sytems, which is fine-350

tuned and contains approximately 25M additional351

parameters per domain. Variational mask learned352

from data by LaMGD also outperforms heuristic353

dropout mask HMGD by 0.5 in average.354

4.1.1 Fuzzy domain separation355

For this experiment, we reuse proposal of Pham356

et al. (2021), who measure the efficiency of a mul-357

tidomain NMT system exploiting the proximity358

between domains. It uses the same data as in the359

previous experiment; however, the domain LAW is360

now randomly split into two pseudo-domains LAW1361

and LAW2 of equal size. A truly multidomain sys-362

tem should be able to automatically detect the prox-363

imity between LAW1 and LAW2, and there should be364

no significant difference between the performance365

of a system trained with the six original domains366

(including LAW) or with the seven domains (includ-367

ing LAW by LAW1 and LAW2). Pham et al. (2021)368

reported a large gap between the two settings when369

using residual adapters. We replicated this setting370

and report the results obtained with the LaMGD371

Transformer system in Table 4.372

4https://github.com/neulab/compare-mt

The results in Table 4 show a performance de- 373

crease for the adapter-based system when train- 374

ing with two pseudo-domains LAW1 and LAW2. In 375

contrast, the LaMGD model obtains very stable re- 376

sults. In Section 4.3, we show that our algorithm 377

in fact computes the same sub-network for LAW1 378

and LAW2, that allows a full sharing of information 379

between these two pseudo-domains. 380

4.2 Multilingual translation 381

Results for the multilingual experiments are in Ta- 382

ble 5. The LaMGD Transformer achieves an im- 383

provement of 0.42, 0.33, 0.32 in average over the 384

multilingual Transformer in the O2M-related, 385

M2O-related, M2O-diverse conditions, respec- 386

tively. Significant gains are observed for languages 387

BEL, GLG (both direction), HIN and BOS (O2M di- 388

rection) which are very low-resource languages in 389

our sets. However, LaMGD Transformer is outper- 390

formed by the multilingual Transformer and 391

language Adapters for the O2M-diverse condition. 392

4.3 Similarity between dropping masks 393

This section compares the sub-networks learnt for 394

each domain or language pair by computing the av- 395

erage similarity between the corresponding dropout 396

masks concatenated for all the layers of the under- 397

lying model. For the multidomain experiment, we 398

analyze the case of pseud-domain separation re- 399

ported in Section 4.1.1 in Figure 2a. We see that 400

the sub-networks for LAW1 and LAW2 are identical, 401

yielding a full sharing between the corresponding 402

training sets. Furthermore, we observe a large dis- 403

tance between REL and the other domains, which 404

is expected given that REL is quite distinct from 405

the other domains. REL only share around 75% its 406

active groups with other domains, as would be ob- 407

tained by chance in our setting (see Section 3.1.3). 408

In Figure 4, we visualize the domains using their 409

dropping masks concatenated and mapped to a 2d 410

space using Principal Component Analysis (PCA). 411

For multilingual (TED-related) experiments, 412

5
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Related Diverse
LANG TRAIN DEV TEST LANG TRAIN DEV TEST

Azerbaijani 5.94k 671 903 Bosnian 5.64k 474 463
Belarusian 4.51k 248 664 Marathi 9.84k 767 1090
Galician 10.0k 682 1007 Hindi 18.79k 854 1243
Slovak 61.5k 2271 2445 Macedonian 25.33k 640 438
Turkish 182k 4045 5029 Greek 134k 3344 4433
Russian 208k 4814 5483 Bulgarian 174k 4082 5060

Portuguese 185k 4035 4855 French 192k 4320 4866
Czech 103k 3462 3831 Korean 205k 4441 5637

Table 2: Data Statistics of TED8 Datasets

Model / Domain MED LAW BANK TALK IT REL AVG

Transformer [65m] 40.3 59.5 49.8 36.4 49.0 80.0 52.5
HMGD Transformer [+0m] 40.4 60.4 51.9 38.7 50.80 86.80 54.8
Adapter [+151m] 39.5 61.0 53.1 37.5 49.6 91.0 55.3
LaMGD Transformer [+0m] 40.3 60.4 52.4 39.0 52.4 87.5 55.3

Table 3: Multidomain translation experiment. Boldface denotes significant gains over Transformer (p = 0.05)

Model / Domain LAW LAW1 LAW2

Adapter [+151m] 61.0 60.4 (-0.6) 60.2 (-0.8)
LaMGD Transformer [+0m] 60.4 60.4 (=) 60.4 (=)

Table 4: Experiments with two similar pseudo-domains

O2M-related AZE BEL CES GLG POR RUS SLK TUR AVG

Transformer [91.6m] 4.8 7.3 20.8 21.1 39.7 19.8 22.6 15.2 18.9
Adapter [+13m] 4.3 6.8 21.1 22 39.7 20 23 15.2 19
LaMGD Transformer [+0m] 5.2 9.4 20.6 22.8 39.6 19.6 22.4 15.0 19.33
M2O-related AZE BEL CES GLG POR RUS SLK TUR AVG

Transformer [67.8m] 11.4 16.6 28.5 27.1 43.7 24.6 30.3 25.6 25.98
Adapter [+13m] 10.1 15.8 28.4 26.8 43.7 24.5 30.2 25.6 25.64
LaMGD Transformer [+0m] 11.3 17.4 28.6 28.7 43.7 24.5 30.7 25.6 26.31
O2M-diverse BOS MAR HIN MKD ELL BUL FRA KOR AVG

Transformer [96.9m] 10.2 4 12.7 22.2 31.8 34.0 38.3 8.3 20.19
Adapter [+13m] 10.2 4 13.3 21.9 32.2 34.1 38.5 8.3 20.31
LaMGD Transformer [+0m] 10.1 3.8 12.6 22.8 31.8 33.4 38.1 8.1 20.09
M2O-diverse BOS MAR HIN MKD ELL BUL FRA KOR AVG

Transformer [70.4m] 22.4 9.7 20.5 31.8 37.5 38.7 39.8 19.0 27.43
Adapter [+13m] 22.5 9.4 20.0 30.6 37.2 38.2 39.3 19.0 27.03
LaMGD Transformer [+0m] 23.5 9.6 21.5 32.2 37.7 38.6 40.0 18.9 27.75

Table 5: Multilingual Translation experiments. Boldface denotes significant gains over Transformer (p= 0.05).

the training data contains four language fam-413

ilies: (1) Turkic, with Azerbaijani and Turk-414

ish(AZE,TUR); (2) Slavic, with Belarusian and Rus-415

sian (BEL,RUS); (3) Romance, with Galician and416

Portuguese (GLG, POR); and (4) Czech-Slovak,417

with Slovak and Czech (CES, SLK). We provide in418

Figure 2b the heatmap of the similarities between 419

the dropout masks of our objective languages. We 420

observe that each pair of languages in the same 421

family correspond to brightest color except the di- 422

agonal in every column or every row. 423

We also plot the languages based on their 424
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(a) Multidomain

(b) Multilingual (Related)

Figure 2: Heatmap visualization of the similarities be-
tween dropout masks of domains(languages).

dropout masks in Figure 3 using a 2d PCA pro-425

jection.426

4.4 Ablation study427

We discuss here the choice of the hyper-parameters428

k, the number of activated nodes in each layer,429

and its impact on the sharing level between the430

tasks. Table 6 shows the variance of performance431

when the number of activated nodes is changed,432

and the sharing level between tasks decreases in433

consequence.

k AVG sharing rate
8 18.1 0.63
10 19.15 0.73
12 19.33 0.78
14 19.44 0.88

Table 6: Variation of the performance w.r.t k, while we
fix np = 16 (o2m-related experiment).

434

5 Related work435

Multidomain and multilingual translation systems436

have received considerable attention in the recent437

years, and a exhaustive survey is beyond the goal438

of this paper. Domain adaptation for neural MT is439

surveyed in (Chu et al., 2017), while multidomain440

MT systems are notably studied in (Saunders, 2021; 441

Pham et al., 2021); for multilingual MT, the reader 442

is referred eg. to (Chu and Dabre, 2018; Dabre 443

et al., 2020). We focus on the most relevant subset 444

of this literature below. 445

Language similarity The methods developed 446

by (Sen et al., 2019; Kong et al., 2021) use lan- 447

guage proximity to design parameter sharing strate- 448

gies. The authors propose a multi-decoder model 449

sharing the same encoder among languages and 450

routing languages in different families to different 451

decoders. These approaches share the same interest 452

in expressing the proximity between tasks in the se- 453

lection of task-specific parameters as our approach. 454

However, our method learn the selection from a 455

latent commonality in data instead of using a pre- 456

defined selection such as "One language family per 457

decoder" in (Kong et al., 2021). 458

Language-specific sub-networks. Frankle and 459

Carbin (2019); Liu et al. (2019) study techniques 460

to identify the most important parameters for the 461

current task, so that masking the less important pa- 462

rameters during training does not hurt performance. 463

Lin et al. (2021) adapts this idea for multilingual 464

NMT, trying to identify language dependent sub- 465

sets of parameters by pruning a fine-tuned model. 466

Our approach also aims to map sub-networks to 467

tasks: we do so by masking the output of each 468

layer, rather than masking parameters. Further- 469

more, Lin et al. (2021) computes the masks via a 470

heuristic selection; while our approach learns the 471

masks with variational techniques. 472

Sparse Transformer The idea of adaptive spar- 473

sity is studied in several works. For instance, Li 474

et al. (2020) propose to use a variable depth for dif- 475

ferent tasks. The authors aimed to match the depth 476

of the sub-network to the complexity of the task. 477

Gong et al. (2021b,a) also take an interest in the 478

adaptive sparse Transformers, in which differ each 479

task triggers the selection of specific heads in multi- 480

head attention, layers, and blocks in feedforward 481

matrices. Mixture-of-experts (MoE) constitute an- 482

other effective approach to achieve sparsity. Using 483

the Transformer architecture, the GShard model 484

replaces a single feedforward (FFN) sub-layer with 485

an MoE module consisting of multiple FFN sub- 486

layers (Lepikhin et al., 2021; Fedus et al., 2021). 487

Adapter modules Adapters have proven to be 488

very efficient for multi-task NLP (Houlsby et al., 489

2019; Bapna and Firat, 2019; Pham et al., 2020; 490

Pfeiffer et al., 2020). In a nutshell, this technique 491
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(a) TED-Related (b) TED-Diverse

Figure 3: Visualization of languages according to their dropout masks (a large vector concatenating the dropping
masks of all the layers of the model) constructed by PCA.

consists in plugging several so-called adapter mod-492

ules to the intermediate layers of a pretrained Trans-493

former and finetuning these adapters on the down-494

stream tasks. Adapters can also be trained with-495

out supervision for multilingual translation (Philip496

et al., 2020). However, the hard-coded separation497

between the domains of different tasks may lead498

to a catastrophic forgetting effect (Pfeiffer et al.,499

2021), which is a common problem in multi-task500

modeling using neural networks (McCloskey and501

Cohen, 1989). In multidomain translation, Pham502

et al. (2021) recently demonstrated the brittleness503

of adapters against fuzzy domain separations, out-504

of-domain distributions, and erroneous domain505

tags. Several subsequent studies have aimed to506

mitigate this weakness through a mixture of expert507

mechanism (e.g. (Pfeiffer et al., 2021)).508

Zhang et al. (2021) propose to learn to route509

between shared and language-specific representa-510

tions with a conditional language-specific routing511

while training the parameters of the underlying512

Transformer. This method is related to the Fusion-513

Adapters of Pfeiffer et al. (2021). Both approaches514

aim to select between shared and task-specific rep-515

resentations. The proximity between tasks is not516

taken into account in the routing mechanism. We517

propose a different approach to the problem of518

multi-task routing in the underlying network.519

6 Conclusions and outlook520

In this work, we have presented a novel method521

for multdomain and multilingual translation. It al-522

lows us to jointly search for an optimal assignment523

of sub-networks to tasks and to learn the param- 524

eters of the underlying network. Our method re- 525

lies on a sound mathematical framework and an 526

end-to-end optimization procedure; it only adds a 527

small number of extra parameters. The additional 528

training cost is also reasonable, amounting to 100k 529

iterations in the multidomain setting, given the ob- 530

served gains in performance. Experimentally, we 531

achieve a large improvement over a Transformer 532

baseline; our performance are also comparable to 533

that of a strong a multi-task baseline using residual 534

adapter modules which rely on a large number of 535

extra parameters. For multilingual translation, our 536

model outperforms multilingual Transformer and 537

Language Adapters in 3 our of 4 settings. Besides, 538

we provided an thorough analysis of the similari- 539

ties between learned sub-networks and demonstrate 540

a strong correlation between the learned similari- 541

ties and the proximity of the corresponding tasks 542

(domain or language). 543

There are several ways in which our methodol- 544

ogy can be improved. In future work, we would 545

first like to provide an complete variational frame- 546

work to model both the number of groups, k and 547

the selection of the dropout masks. Second, we 548

also intend to dispense with the domain informa- 549

tion during inference: this would mean replacing 550

the dependency on d in the variational distribution 551

by a dependency on the input x. Adressing these 552

two questions will allow to us replace heuristic 553

choices in the architecture design with an increased 554

dependency on the training data. 555
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A Appendix A787

This section explains how to compute m̂d
l (τ) by788

solving the optimization problem (4) and then how789

to compute the gradients ∂ m̂d
l (τ)

∂Φd
l

.790

First, to solve (4) we follow the same approach791

as in (Amos et al., 2019; Amos and Yarats, 2020)792

by applying the Karush–Kuhn–Tucker (KKT) con-793

ditions to (4). The solution of (4) will have the794

following form:795

m̂d
l (τ) = σ(

gd
l +Φd

l + ν̄

τ
) (5)796

in which σ(.) is the sigmoid function and ν̄ is the797

solution of the following equation:798
np

∑
i=1

σ(
gd

l (i)+Φd
l (i)+ν

τ
) = k (6)799

Because sigmoid is monotonically increasing,800

equation (6) has a unique solution. Further-801

more, because of the smoothness of g(ν ,Φd
l ) =802

np

∑
i=1

σ(
gd

l (i)+Φd
l (i)+ν

τ
) w.r.t ν and Φd

l , we can803

perform the implicit differentiation of its solution804

ν̄ w.r.t Φd
l as below, even though the solution of (6)805

does not have an explicit form.806

∂g
∂ ν̄
× ∂ ν̄

∂Φd
l
+

∂g
∂Φd

l
= 0807

⇒ ∂ ν̄

∂Φd
l
=−

( ∂g
∂ ν̄

)−1× ∂g
∂Φd

l
808

Because the differentiation of sigmoid has exact809

forms, ∂g
∂ν

and ∂g
∂Φd

l
also have exact form. Therefore,810

we do not need autograd to compute the implicit811

gradient ∂ν

∂Φd
l
. The gradient of m̂d

l (τ) w.r.t Φd
l is812

computed as follows:813

∂ m̂d
l (τ)

∂Φd
l

=
∂ m̂d

l (τ)

∂ν
× ∂ν

∂Φd
l
+

1
τ

exp(gd
l (i)+Φd

l (i)+ν

τ
)

(1+ exp(gd
l (i)+Φd

l (i)+ν

τ
))2

(7)

814

In our algorithm, we solve (6) by binary search.815

The convergence of binary search is extremely816

fast and assured by the monotonicity of g(ν ,Φd
l ).817

In our experiments, we set the search range to818

[−100,100].819

Finally, we need prove that limτ→0 m̂d
l (τ) = m̃d

l .820

We assume gd
l (i1) + Φd

l (i1) > gd
l (i2) + Φd

l (i2) > 821

· · ·> gd
l (inp)+Φd

l (inp). 822

Because: 823

lim
τ→0

σ(
gd

l (i)+Φd
l (i)+ν

τ
) =


1, if τ >−(gd

l (i)+Φd
l (i)),

0, if τ <−(gd
l (i)+Φd

l (i)),
1
2 otherwise

824

and 825

np

∑
i=1

σ(
gd

l (i)+Φd
l (i)+ν

τ
) = k 826

there exist ε such that ∀τ < ε , the solution ν̄ of (6) 827

satisfies−(gd
l (ik+1)+Φd

l (ik+1))> ν̄ >−(gd
l (ik)+ 828

Φd
l (ik)). Furthermore, because sigmoid is mono- 829

tonically increasing, 830

σ(
gd

l (i)+Φd
l (i)− (gd

l (ik)+Φd
l (ik))

τ
)< m̂d

l (τ)(i) 831

< σ(
gd

l (i)+Φd
l (i)− (gd

l (ik+1)+Φd
l (ik+1))

τ
) 832

By taking the limit on both sides, we get the 833

following results: 834

lim
τ→0

m̂d
l (τ)(iu) =

{
1, if u > k
0, if u < k

835

And, because
np

∑
u=1

m̂d
l (τ)(iu) = k, by tak- 836

ing the limit on both sides, we will have 837

limτ→0 m̂d
l (τ)(ik) = 1. Finally, we have 838

lim
τ→0

m̂d
l (τ)(iu) =

{
1, if u > k
0, if u < k

839

which is equivalent to limτ→0 m̂d
l (τ) = m̃d

l . 840

B Appendix B 841

In this section, we give a simple proof of in- 842

equality (3). In fact, we only need to prove 843

H
[
P(i1, · · · , ik|Φd

l )
]
> H

[
P(i1|Φd

l )
]
. The proof is 844

as follows: 845

H
[
P(i1, · · · , ik|Φd

l )
]
=− E

i1,··· ,ik|Φd
l

[
logP(i1, · · · , ik|Φd

l )
]

846

=− E
i1,··· ,ik|Φd

l

[ k

∑
j=2

logP(i j|i1, · · · , j j−1,Φ
d
l )+ logP(i1|Φd

l )
]

847

>− E
i1,··· ,ik|Φd

l

[
logP(i1|Φd

l )
]

848

=− E
i1|Φd

l

[
logP(i1|Φd

l )
]
=H

[
P(i1|Φd

l )
]

849
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C Appendix C850

Figure 4: Visualization of domains according to their
dropout masks (a large vector concatenating the drop-
ping masks of all the layers of the model) constructed
by PCA.

D Appendix D851

Algorithm 1 Training LaMGD852

Require:853

• nd corpora Cd ,d ∈ [1, . . . ,nd ] for nd do-854

mains equiped by an empirical distribu-855

tion Dd(x)856

• number of groups: np; number of retained857

groups: k858

• i = 0; iter_num859

1: repeat860

2: Pick a batch from domain d861

3: Sample ∀l,∀p : gd
l (p)i.i.d∼ Gumbel(0,1)862

4: Solve the equation ∀l863
np

∑
i=1

σ(
gd

l (i)+Φd
l (i)+ν

τ
) = k864

using binary search865

5: Compute mask of each layer866

∀l, m̂d
l (τ) = σ(

gd
l +Φd

l + ν̄

τ
)867

868

6: Apply masks to their corresponding layer869

∀l ∈ [0, · · · ,L−1] : h̃l = hl� rd
l ,870

hl+1 = LAYERl+1(h̃l),871

872

7: Compute gradient of training loss over the
underlying Transformer

∆θ =
∂L
∂θ

873

8: Compute gradient over the Soft-Top-K
masks

∂D
∂ m̂d

l (τ)
874

9: Compute implicit gradient of the
Soft-Top-K masks over Φd

l

∂ ν̄

∂Φd
l
=−

( ∂g
∂ ν̄

)−1× ∂g
∂Φd

l

∂ m̂d
l (τ)

∂Φd
l

=
∂ m̂d

l (τ)

∂ν
× ∂ν

∂Φd
l
+

1
τ

exp(gd
l (i)+Φd

l (i)+ν

τ
)

(1+ exp(gd
l (i)+Φd

l (i)+ν

τ
))2

875

10: Compute the gradient the training over Φd
l

∆
Φd

l
=

∂D
∂ m̂d

l (τ)
×

∂ m̂d
l (τ)

∂Φd
l

+
∂H
[

softmax(Φd
l )
]

∂Φd
l 876

11: Update θ and Φd
l with their gradients 877

12: i = i+1 878

13: until i > iter_num 879
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