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ABSTRACT

Estimating the parameters of a probabilistic directed graphical model from incomplete
data remains a long-standing challenge. This is because, in the presence of latent vari-
ables, both the likelihood function and posterior distribution are intractable without fur-
ther assumptions about structural dependencies or model classes. While existing learning
methods are fundamentally based on likelihood maximization, here we offer a new view
of the parameter learning problem through the lens of optimal transport. This perspec-
tive licenses a general framework that operates on any directed graphs without making
unrealistic assumptions on the posterior over the latent variables or resorting to black-box
variational approximations. We develop a theoretical framework and support it with ex-
tensive empirical evidence demonstrating the flexibility and versatility of our approach.
Across experiments, we show that not only can our method recover the ground-truth pa-
rameters but it also performs comparably or better on downstream applications, notably
the non-trivial task of discrete representation learning.

1 INTRODUCTION

Learning probabilistic directed graphical models (DGMs, also known as Bayesian networks) with latent
variables is an important ongoing challenge in machine learning and statistics. This paper focuses on pa-
rameter learning, i.e., estimating the parameters of a DGM given its known structure. Learning DGMs has a
long history, dating back to classical indirect likelihood-maximization approaches such as expectation max-
imization (EM, Dempster et al., 1977). However, despite all its success stories, EM is well-known to suffer
from local optima issues. More importantly, EM becomes inapplicable when the posterior distribution is
intractable, which arises fairly often in practice.
A large family of related methods based on variational inference (VI, Jordan et al., 1999; Hoffman et al.,
2013) have demonstrated tremendous potential in this case, where the evidence lower bound (ELBO) is not
only used for posterior approximation but also for point estimation of the model parameters. Such an ap-
proach has proved surprisingly effective and robust to overfitting, especially when having a small number
of parameters. From a high-level perspective, both EM and VI are based on likelihood maximization in
the presence of latent variables, which ultimately requires carrying out expectations over the commonly in-
tractable posterior. In order to address this challenge, a large spectrum of methods have been proposed in the
literature and we refer the reader to Ambrogioni et al. (2021) for an excellent discussion of these approaches.
Here we characterize them between two extremes. At one extreme, restrictive assumptions about the struc-
ture (e.g., as in mean-field approximations) or the model class (e.g., using conjugate exponential families)
must be made to simplify the task. At the other extreme, when no assumptions are made, most existing
black-box methods exploit very little information about the structure of the known probabilistic model (e.g.,
in black-box and stochastic VI (Ranganath et al., 2014; Hoffman et al., 2013), hierarchical approaches (Ran-
ganath et al., 2016) or normalizing flows (Papamakarios et al., 2021)). Recently, VI has taken a significant
leap forward by embracing amortized inference (Amos, 2022), which allows black-box optimization to be
done in a considerably more efficient way.
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Since the ultimate goal of VI is posterior inference, parameter estimation has been treated as a by-product
of the optimization process where the model parameters are jointly updated with the variational parameters.
As the complexity of the graph increases, despite the current advancements, parameter estimation in VI
becomes less straightforward and computationally challenging.
Bridging this gap, we propose a scalable framework dedicated to learning parameters of a general directed
graphical model. This alternative strategy inherits the flexibility of amortized optimization while eliminating
the need to estimate expectations over the posterior distribution. Concretely, parameter learning is now
viewed through the lens of optimal transport (Villani et al., 2009), where the data distribution is the source
and the true model distribution is the target. Instead of minimizing a Kullback–Leibler (KL) divergence
(which likelihood maximization methods are essentially doing), we aim to find a point estimate θ∗ that
minimizes the Wasserstein (WS) distance (Kantorovich, 1960) between these two distributions.
This perspective allows us to leverage desirable properties of WS distance in comparison with other metrics.
These properties have motivated the recent surge in generative models, e.g., Wasserstein GANs (Adler &
Lunz, 2018; Arjovsky et al., 2017) and Wasserstein Auto-encoders (WAE, Tolstikhin et al., 2017). Indeed,
WS distance is shown to be well-behaved in situations where standard metrics such as the KL or JS (Jensen-
Shannon) divergences are either infinite or undefined (Peyré et al., 2017; Ambrogioni et al., 2018). WS
distance thus characterizes a more meaningful distance, especially when the two distributions reside in low-
dimensional manifolds (Arjovsky et al., 2017).
Interestingly, akin to how Variational Auto-encoders (VAE, Kingma & Welling, 2013) is related to VI, our
framework can be viewed as an extension of WAE for learning the parameters of a directed graphical model
that can effectively exploit its structure. The parameter learning landscape is summarized in Figure 1.

Contributions. We present an entirely different view that casts parameter estimation as an optimal trans-
port problem (Villani et al., 2009), where the goal is to find the optimal plan transporting “mass” from
the data distribution to the model distribution. This permits a flexible framework applicable to any type of
variable and graphical structure. In summary, we make the following contributions:

• We introduce OTP-DAG - an Optimal Transport framework for Parameter Learning in Directed
Acyclic Graphical models1. OTP-DAG is an alternative line of thinking about parameter learning.
Diverging from the existing frameworks, the underlying idea is to find the parameter set associated
with the distribution that yields the lowest transportation cost from the data distribution.

• We present theoretical developments showing that minimizing the transport cost is equivalent to min-
imizing the reconstruction error between the observed data and the model generation. This renders a
tractable training objective to be solved efficiently with stochastic gradient descent.

• We provide empirical evidence demonstrating the versatility of our method on various graphical struc-
tures. OTP-DAG is shown to successfully recover the ground-truth parameters and achieve comparable
or better performance than competing methods across a range of downstream applications.

2 PRELIMINARIES

We first introduce the notations and basic concepts used throughout the paper. We reserve bold capital letters
(i.e., G) for notations related to graphs. We use calligraphic letters (i.e. X ) for spaces, italic capital letters
(i.e. X) for random variables, and lower case letters (i.e. x) for their values.
A directed graph G = (V,E) consists of a set of nodes V and an edge set E ⊆ V2 of ordered pairs of
nodes with (v, v) /∈ E for any v ∈ V (one without self-loops). For a pair of nodes i, j with (i, j) ∈ E, there
is an arrow pointing from i to j and we write i → j. Two nodes i and j are adjacent if either (i, j) ∈ E or
(j, i) ∈ E. If there is an arrow from i to j then i is a parent of j and j is a child of i. A Bayesian network
structure G = (V,E) is a directed acyclic graph (DAG), in which the nodes represent random variables

1Our code is anonymously published at https://anonymous.4open.science/r/OTP-7944/.
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Figure 1: Notable parameter learning methods along the two lines of approaches. OTP-DAG can be viewed
as an extension of WAE for learning parameters of a general directed graph, laying a foundation stone for a
new paradigm of learning and, potentially, inference of graphical models.

X = [Xi]
n
i=1 with index set V := {1, ..., n}. Let PAXi

denote the set of variables associated with parents
of node i in G. In this work, we tackle the classic yet important problem of learning the parameters of a
directed graph from partially observed data. Let O ⊆ V and XO = [Xi]i∈O be the set of observed nodes
and H := V\O be the set of hidden nodes. Let Pθ and Pd respectively denote the distribution induced
by the graphical model and the empirical one induced by the complete (yet unknown) data. Given a fixed
graphical structure G and some set of i.i.d data points, we aim to find the point estimate θ∗ that best fits
the observed data XO. The conventional approach is to minimize the KL divergence between the model
distribution and the empirical data distribution over observed data i.e., DKL(Pd(XO), Pθ(XO)), which is
equivalent to maximizing the likelihood Pθ(XO) w.r.t θ. In the presence of latent variables, the marginal
likelihood, given as Pθ(XO) =

∫
XH

Pθ(X)dXH, is generally intractable. Standard approaches then resort
to maximizing a bound on the marginal log-likelihood, known as the evidence lower bound (ELBO), which
is essentially the objective of EM (Moon, 1996) and VI (Jordan et al., 1999). Optimization of the ELBO for
parameter learning in practice requires many considerations. We refer readers to Appendix B for a review
of these intricacies.

3 OPTIMAL TRANSPORT FOR LEARNING DIRECTED GRAPHICAL MODELS

We begin by explaining how parameter learning can be reformulated into an optimal transport problem
Villani (2003) and thereafter introduce our novel theoretical contribution.
We consider a DAG G(V,E) over random variablesX = [Xi]

n
i=1 that represents the data generative process

of an underlying system. The system consists of X as the set of endogenous variables and U = {Ui}ni=1 as
the set of exogenous variables representing external factors affecting the system. Associated with every Xi

is an exogenous variable Ui whose values are sampled from a prior distribution P (U) independently from
the other exogenous variables. For the purpose of theoretical development, our framework operates on an
extended graph consisting of both endogenous and exogenous nodes (See Figure 2b). In the graph G, Ui
is represented by a node with no ancestors that has an outgoing arrow towards node i. Every distribution
Pθi

(
Xi|PAXi

)
henceforth can be reparameterized into a deterministic assignment

Xi = ψi
(
PAXi , Ui

)
, for i = 1, ..., n.

The ultimate goal is to estimate θ = {θi}ni=1 as the parameters of the set of deterministic functions ψ =
{ψi}ni=1. We will use the notation ψθ to emphasize this connection from now on. Given the empirical data
distribution Pd(XO) and the model distribution Pθ(XO) over the observed set O, the optimal transport
(OT) goal is to find the parameter set θ that minimizes the cost of transport between these two distributions.
The Kantorovich’s formulation of the problem is given by

Wc

(
Pd;Pθ

)
:= inf

Γ∼P(X∼Pd,Y∼Pθ)
E(X,Y )∼Γ

[
c(X,Y )

]
, (1)
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where P(X ∼ Pd, Y ∼ Pθ) is a set of all joint distributions of
(
Pd;Pθ

)
; c : XO × XO 7→ R+ is any

measurable cost function over XO (i.e., the product space of the spaces of observed variables) defined as
c(XO, YO) :=

∑
i∈O ci(Xi, Yi) where ci is a measurable cost function over a space of an observed variable.

Let Pθ(PAXi
, Ui) denote the joint distribution of PAXi

and Ui factorized according to the graphical model.
Let Ui denote the space over random variable Ui. The key ingredient of our theoretical development is local
backward mapping. For every observed node i ∈ O, we define a stochastic “backward” map ϕi : Xi 7→
Πk∈PAXi

Xk × Ui such that ϕi ∈ C(Xi) where C(Xi) is the constraint set given as

C(Xi) :=
{
ϕi : ϕi#Pd(Xi) = Pθ(PAXi

, Ui)
}
;

that is, every backward ϕi# defines a push forward operator such that the samples from ϕi(Xi) follow the
marginal distribution Pθ(PAXi

, Ui).
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Figure 2: (a) A DAG represents a system of 4 endogenous variables where X1, X3 are observed (black-
shaded) and X2, X4 are hidden variables (non-shaded). (b): The extended DAG includes an additional
set of independent exogenous variables U1, U2, U3, U4 (grey-shaded) acting on each endogenous variable.
U1, U2, U3, U4 ∼ P (U) where P (U) is a prior product distribution. (c) Visualization of our backward-
forward algorithm, where the dashed arcs represent the backward maps involved in optimization.

Theorem 1 presents the main theoretical contribution of our paper. Our OT problem seeks to find the optimal
set of deterministic “forward” maps ψθ and stochastic “backward” maps

{
ϕi ∈ C(Xi)

}
i∈O

that minimize
the cost of transporting the mass from Pd to Pθ over O. While the formulation in Eq. (1) is not trainable, we
show that the problem is reduced to minimizing the reconstruction error between the data generated from Pθ
and the observed data. To understand how reconstruction works, let us examine Figure 2c.
With a slight abuse of notations, for every Xi, we extend its parent set PAXi

to include an exogenous
variable and possibly some other endogenous variables. Given X1 and X3 as observed nodes, we first
sample X1 ∼ Pd(X1), X3 ∼ Pd(X3) and evaluate the local densities Pϕ1(PAX1 |X1), Pϕ3(PAX3 |X3)
where PAX1 = {X2, X4, U1} and PAX3 = {X4, U3}. The next step is to sample PAX1 ∼ Pϕ1(PAX1 |X1)

and PAX3 ∼ Pϕ3(PAX3 |X3), which are plugged back to the model ψθ to obtain the reconstructions X̃1 =

ψθ1(PAX1) and X̃3 = ψθ3(PAX3). We wish to learn θ such that X1 and X3 are reconstructed correctly. For
a general graphical model, this optimization objective is formalized as
Theorem 1. For every ϕi as defined above and fixed ψθ,

Wc

(
Pd(XO);Pθ(XO)

)
= inf[

ϕi∈C(Xi)
]
i∈O

EXO∼Pd(XO),PAXO
∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]
, (2)

where PAXO
:=

[
[Xij ]j∈PAXi

]
i∈O

.

The proof is provided in Appendix A. While Theorem 1 set ups a tractable form for our optimization so-
lution, the quality of the reconstruction hinges on how well the backward maps approximate the true local
densities. To ensure approximation fidelity, every backward function ϕi must satisfy its push-forward con-
straint defined by C. In the above example, the backward maps ϕi and ϕ3 must be constructed such that
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ϕ1#Pd(X1) = Pθ(X2, X4, U1) and ϕ3#Pd(X3) = Pθ(X4, U3). This results in a constraint optimization
problem, and we relax the constraints by adding a penalty to the above objective.
The final optimization objective is therefore given as

JWS = inf
ψ,ϕ

EXO∼Pd(XO),PAXO
∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]

+ η D
(
Pϕ, Pθ

)
, (3)

where D is any arbitrary divergence measure and η > 0 is a trade-off hyper-parameter. D
(
Pϕ, Pθ

)
is a

short-hand for divergence between all pairs of backward and forward distributions.

Connection with Auto-encoders. OTP-DAG is an optimization-based approach in which we leverage
reparameterization and amortized inference (Amos, 2022) for solving it efficiently via stochastic gradient
descent. This theoretical result provides us with two interesting properties: (1) all model parameters are
optimized simultaneously within a single framework whether the variables are continuous or discrete, and
(2) the computational process can be automated without the need for analytic lower bounds (as in EM and
traditional VI), specific graphical structures (as in mean-field VI), or priors over variational distributions on
latent variables (as in hierarchical VI). The flexibility our method exhibits is akin to VAE, and OTP-DAG
in fact serves as an extension of WAE for learning general directed graphical models. Our formulation
thus inherits a desirable characteristic from that of WAE, which specifically helps mitigate the posterior
collapse issue notoriously occurring to VAE. Appendix D explains this in more detail. Particularly, in the
next section, we will empirically show that OTP-DAG effectively alleviates the codebook collapse issue in
discrete representation learning. Details on our algorithm can be found in Appendix C.

4 APPLICATIONS

In this section, we illustrate the practical application of the OTP-DAG algorithm. Instead of achieving state-
of-the-art performance on specific applications, our key objective is to demonstrate the versatility of OTP-
DAG: our method can be harnessed for a wide range of purposes in a single learning procedure. In terms
of estimation accuracy, OTP-DAG is capable of recovering the ground-truth parameters while achieving the
comparable or better performance level of existing frameworks across downstream tasks.
Experimental setup. We consider various directed probabilistic models with either continuous or discrete
variables. We begin with (1) Latent Dirichlet Allocation Blei et al. (2003) for topic modeling and (2) Hidden
Markov Model (HMM) for sequential modeling. We conclude with a more challenging setting: (3) Dis-
crete Representation Learning (Discrete RepL) that cannot simply be solved by EM or MAP (maximum a
posteriori). It in fact invokes deep generative modeling via a pioneering development called Vector Quan-
tization Variational Auto-Encoder (VQ-VAE, Van Den Oord et al., 2017). We attempt to apply OTP-DAG
for learning discrete representations by grounding it into a parameter learning problem. Figure 3 illustrates
the empirical DAG structures of 3 applications. Unlike the standard visualization where the parameters are
considered hidden nodes, our graph separates model parameters from latent variables and only illustrates
random variables and their dependencies (except the special setting of Discrete RepL). We also omit the
exogenous variables associated with the hidden nodes for visibility, since only those acting on the observed
nodes are relevant for computation. There is also a noticeable difference between Figure 3 and Figure 2c:
the empirical version does not require learning the backward maps for the exogenous variables. It is ob-
served across our experiments that sampling the noise from an appropriate prior distribution suffices to yield
accurate estimation, which is in fact beneficial in that training time can be greatly reduced.
Baselines. We compare OTP-DAG with two groups of parameter learning methods towards the two ex-
tremes: (1) MAP, EM and SVI where analytic derivation is required; (2) variational auto-encoding frame-
works (the closest baseline to ours) where black-box optimization is permissible. For the latter, we here
report the performance of vanilla VAE-based models, while providing additional experiments with some
advances in Appendix E. We also leave the discussion of the formulation and technicalities in Appendix E.
In all tables, we report the average results over 5 random initializations and the best/second-best ones are
bold/underlined. In addition, ↑, ↓ indicate higher/lower performance is better, respectively.
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Figure 3: Empirical structures of (a) latent Dirichlet allocation model (in plate notation), (b) standard hidden
Markov model, and (c) discrete representation learning.

4.1 LATENT DIRICHLET ALLOCATION

Let us consider a corpus D of M independent documents where each document is a sequence of N words
denoted byW = (W1,W2, · · · ,WN ). Documents are represented as random mixtures overK latent topics,
each of which is characterized by a distribution over words. Let V be the size of a vocabulary indexed by
{1, · · · , V }. Latent Dirichlet Allocation (LDA) (Blei et al., 2003) dictates the following generative process
for every document in the corpus:

1. Sample θ ∼ Dir(α) with α < 1,
2. Sample γk ∼ Dir(β) where k ∈ {1, · · · ,K},
3. For each of the word positions n ∈ {1, · · · , N},

• Sample a topic Zn ∼ Multi-nominal(θ),
• Sample a word Wn ∼ Multi-nominal(γk),

where Dir(.) is a Dirichlet distribution. θ is a K−dimensional vector that lies in the (K − 1)−simplex and
γk is a V−dimensional vector represents the word distribution corresponding to topic k. In the standard
model, α, β,K are hyper-parameters and θ, γ are learnable parameters. Throughout the experiments, the
number of topics K is assumed known and fixed.

Parameter Estimation. To test whether OTP-DAG can recover the true parameters, we generate synthetic
data in the setting: the word probabilities are parameterized by a K × V matrix γ where γkn := P (Wn =
1|Zn = 1); γ is now a fixed quantity to be estimated. We set α = 1/K uniformly and generate small
datasets for different number of topics K and sample size N . Following Griffiths & Steyvers (2004), for
every topic k, the word distribution γk can be represented as a square grid where each cell, corresponding to
a word, is assigned an integer value of either 0 and 1, indicating whether a certain word is allocated to the
kth topic or not. As a result, each topic is associated with a specific pattern. For simplicity, we represent
topics using horizontal or vertical patterns (See Figure 4a). According to the above generative model, we
sample data w.r.t 3 sets of configuration triplets {K,M,N}. We compare OTP-DAG with Batch EM and
SVI and Prod LDA - a variational auto-encoding topic model (Srivastava & Sutton, 2017).

Table 1: Fidelity of estimates of the topic-word distribution γ across 3 settings. Fidelity is measured by KL
divergence, Hellinger (HL) (Hellinger, 1909) and Wasserstein distance with the ground-truth distributions.

Metric ↓ K M N OTP-DAG (Ours) Batch EM SVI Prod LDA
HL 10 1,000 100 2.327 ± 0.009 2.807 ± 0.189 2.712 ± 0.087 2.353 ± 0.012
KL 10 1,000 100 1.701 ± 0.005 1.634 ± 0.022 1.602 ± 0.014 1.627 ± 0.027
WS 10 1,000 100 0.027 ± 0.004 0.058 ± 0.000 0.059 ± 0.000 0.052 ± 0.001

HL 20 5,000 200 3.800 ± 0.058 4.256 ± 0.084 4.259 ± 0.096 3.700 ± 0.012
KL 20 5,000 200 2.652 ± 0.080 2.304 ± 0.004 2.305 ± 0.003 2.316 ± 0.026
WS 20 5,000 200 0.010 ± 0.001 0.022 ± 0.000 0.022 ± 0.001 0.018 ± 0.000

HL 30 10,000 300 4.740 ± 0.029 5.262 ± 0.077 5.245 ± 0.035 4.723 ± 0.017
KL 30 10,000 300 2.959 ± 0.015 2.708 ± 0.002 2.709 ± 0.001 2.746 ± 0.034
WS 30 10,000 300 0.005 ± 0.001 0.012 ± 0.000 0.012 ± 0.000 0.009 ± 0.000
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Table 1 reports the fidelity of the estimation of γ. OTP-DAG consistently achieves high-quality estimates
by both Hellinger and Wasserstein distances. It is straightforward that the baselines are superior by the KL
metric, as it is what they implicitly minimize. While it is inconclusive from the numerical estimations, the
qualitative results complete the story. Figure 4a illustrates the distributions of individual words to the topics
from each method after 300 training epochs. OTP-DAG successfully recovers the true patterns and as well
as EM and SVI. More qualitative examples for the other settings are presented in Figures 7 and 8 where
OTP-DAG is shown to recover almost all true patterns.

Topic Inference. We now demonstrate the effectiveness of OTP-DAG on downstream applications. We
here use OTP-DAG to infer the topics of 3 real-world datasets:2 20 News Group, BBC News and DBLP.
We revert to the original generative process where the topic-word distribution follows a Dirichlet distribution
parameterized by the concentration parameters β, instead of having γ as a fixed quantity. β is now initialized
as a matrix of real values

(
β ∈ RK×V ) representing the log concentration values.

Table 5 reports the quality of the inferred topics, which is evaluated via the diversity and coherence of the
selected words. Diversity refers to the proportion of unique words, whereas Coherence is measured with
normalized pointwise mutual information (Aletras & Stevenson, 2013), reflecting the extent to which the
words in a topic are associated with a common theme. There exists a trade-off between Diversity and Co-
herence: words that are excessively diverse greatly reduce coherence, while a set of many duplicated words
yields higher coherence yet harms diversity. A well-performing topic model would strike a good balance
between these metrics. If we consider two metrics comprehensively, our method achieves comparable or
better performance than the other learning algorithms

4.2 HIDDEN MARKOV MODELS

This application deals with time-series data following a Poisson hidden Markov model (See Figure 3b).
Given a time series of T steps, the task is to segment the data stream into K different states, each of which
follows a Poisson distribution with rate λk. The observation at each step t is given as

P (Xt|Zt = k) = Poi(Xt|λk), for k = 1, · · · ,K.
Following Murphy (2023), we use a uniform prior over the initial state. The Markov chain stays in the
current state with probability p and otherwise transitions to one of the other K − 1 states uniformly at
random. The transition distribution is given as

Z1 ∼ Cat

({
1

4
,
1

4
,
1

4
,
1

4

})
, Zt|Zt−1 ∼ Cat

({
p if Zt = Zt−1
1−p
4−1 otherwise

})
Let P (Z1) and P (Zt|Zt−1) respectively denote these prior transition distributions. We generate a syn-
thetic dataset D of 200 observations at rates λ = {12, 87, 60, 33} with change points occurring at times
(40, 60, 55). We would like to learn the concentration parameters λ1:K = [λk]

K
k=1 through which segmen-

tation can be realized, assuming that the number of states K = 4 is known.
The true transition probabilities are generally unknown. The value p is treated as a hyper-parameter and we
fit HMM with 6 choices of p. Table 2 demonstrates the quality of our estimates, in comparison with MAP
estimates. Our estimation approaches the ground-truth values comparably to MAP. We note that the MAP
solution requires the analytical marginal likelihood of the model, which is not necessary for our method.
Figure 4b reports the most probable state for each observation, inferred from our backward distribution
ϕ(X1:T ). It can be seen that the partition overall aligns with the true generative process of the data.
By observing the data, one can assume p should be relatively high, 0.75− 0.95 seems most reasonable. This
explains why the MAP estimation at p = 0.05 is terrible. Meanwhile, for our OTP-DAG, the effect of p is
controlled by the trade-off coefficient η. We here fix η = 0.1. Since the effect is fairly minor, OTP-DAG
estimates across p are less variant. Table 7 additionally analyzes the model performance when η varies.

2https://github.com/MIND-Lab/OCTIS.
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Table 2: Estimates of λ1:4 at various transition probabilities p and mean absolute reconstruction error.

p λ1 = 12 λ2 = 87 λ3 = 60 λ4 = 33 λ1 = 12 λ2 = 87 λ3 = 60 λ4 = 33

OTP-DAG Estimates (Ours) MAP Estimates
0.05 11.83 87.20 60.61 33.40 14.88 85.22 71.42 40.39
0.15 11.62 87.04 59.69 32.85 12.31 87.11 61.86 33.90
0.35 11.77 86.76 60.01 33.26 12.08 87.28 60.44 33.17
0.55 11.76 86.98 60.15 33.38 12.05 87.12 60.12 33.01
0.75 11.63 86.46 60.04 33.57 12.05 86.96 59.98 32.94
0.95 11.57 86.92 60.36 33.06 12.05 86.92 59.94 32.93

MAE ↓ 0.30 0.19 0.25 0.30 0.57 0.40 2.32 1.43
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Figure 4: (a) The topic-word distributions recovered from each method after 300-epoch training. (b) Seg-
mentation of Poisson time series inferred from the backward distribution ϕ(X1:T ).

4.3 LEARNING DISCRETE REPRESENTATIONS

Many types of data exist in discrete symbols e.g., words in texts, or pixels in images. This motivates the
need to explore the latent discrete representations of the data, which can be useful for planning and symbolic
reasoning tasks. Viewing discrete representation learning as a parameter learning problem, we endow it with
a probabilistic generative process as illustrated in Figure 3c. The problem deals with a latent space C ∈
RK×D composed of K discrete latent sub-spaces of D dimensionality. The probability a data point belongs
to a discrete sub-space c ∈ {1, · · · ,K} follows a K−way categorical distribution π = [π1, · · · , πK ]. In the
language of VQ-VAE, each c is referred to as a codeword and the set of codewords is called a codebook. Let
Z ∈ RD denote the latent variable in a sub-space. On each sub-space, we impose a Gaussian distribution
parameterized by µc,Σc where Σc is diagonal. The data generative process is described as follows:

1. Sample c ∼ Cat(π) and Z ∼ N (µc,Σc)
2. Quantize µc = Q(Z),
3. Generate X = ψθ(Z, µc).

where ψ is a highly non-convex function with unknown parameters θ and often parameterized with a deep
neural network. Q refers to the quantization of Z to µc defined as µc = Q(Z) where c = argminc dz

(
Z;µc

)
and dz =

√
(Z − µc)TΣ

−1
c (Z − µc) is the Mahalanobis distance.

The goal is to learn the parameter set {π, µ,Σ, θ} with µ = [µk]
K
k=1,Σ = [Σk]

K
k=1 such that the learned

representation captures the key properties of the data. Following VQ-VAE, our practical implementation
considers Z as an M−component latent embedding. We experiment with images in this application and
compare OTP-DAG with VQ-VAE on CIFAR10, MNIST, SVHN and CELEBA datasets. Since the true pa-
rameters are unknown, we assess how well the latent space characterizes the input data through the quality

8
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of the reconstruction of the original images. Table 3 reports our superior performance in preserving high-
quality information of the input images. VQ-VAE suffers from poorer performance mainly due to codebook
collapse (Yu et al., 2021) where most of latent vectors are quantized to limited discrete codewords. Mean-
while, our framework allows for control over the number of latent representations, ensuring all codewords
are utilized. In Appendix E.3, we detail the formulation of our method and provide qualitative examples. We
also showcase therein our competitive performance against a recent advance called SQ-VAE (Takida et al.,
2022) without introducing any additional complexity.

Table 3: Quality of the image reconstructions (K = 512).

Dataset Method Latent Size SSIM ↑ PSNR ↑ LPIPS ↓ rFID ↓ Perplexity ↑
CIFAR10 VQ-VAE 8 × 8 0.70 23.14 0.35 77.3 69.8

OTP-DAG (Ours) 8 × 8 0.80 25.40 0.23 56.5 498.6
MNIST VQ-VAE 8 × 8 0.98 33.37 0.02 4.8 47.2

OTP-DAG (Ours) 8 × 8 0.98 33.62 0.01 3.3 474.6
SVHN VQ-VAE 8 × 8 0.88 26.94 0.17 38.5 114.6

OTP-DAG (Ours) 8 × 8 0.94 32.56 0.08 25.2 462.8
CELEBA VQ-VAE 16 × 16 0.82 27.48 0.19 19.4 48.9

OTP-DAG (Ours) 16 × 16 0.88 29.77 0.11 13.1 487.5

5 DISCUSSION AND CONCLUSION

The key message across our experiments is that OTP-DAG is a scalable and versatile framework readily
applicable to learning any directed graphs with latent variables. OTP-DAG is consistently shown to perform
comparably and in some cases better than MAP, EM and SVI which are well-known for yielding reliable
estimates. Similar to amortized VI, on one hand, our method employs amortized optimization and assumes
one can sample from the priors or more generally, the model marginals over latent parents. OTP-DAG
requires continuous relaxation through reparameterization of the underlying model distribution to ensure
the gradients can be back-propagated effectively. The specification is also not unique to OTP-DAG: VAE
also relies on reparameterization trick to compute the gradients w.r.t the variational parameters. For discrete
distributions and for some continuous ones (e.g., Gamma distribution), this is not easy to attain. To this
end, a proposal on Generalized Reparameterization Gradient (Ruiz et al., 2016) is a viable solution. On the
other hand, different from VI, our global OT cost minimization is achieved by characterizing local densities
through backward maps from the observed nodes to their parents. This localization strategy makes it easier
to find a good approximation compared to VI, where the variational distribution is defined over all hidden
variables and should ideally characterize the entire global dependencies in the graph. A popular method
called Semi-amortized VAE (SA-VAE, Kim et al., 2018) is proposed to tackle this sub-optimality issue of
the inference network in VI. In Appendix D, we compare OTP-DAG with this model on parameter estimation
task, where ours competes on par with SA-VAE under the usual OTP-DAG learning procedure that comes
with no extra overhead. To model the backward distributions, we utilize the expressitivity of deep neural
networks. Based on the universal approximation theorem (Hornik et al., 1989), the gap between the model
distribution and the true conditional can be assumed to be smaller than an arbitrary constant ϵ given enough
data, network complexity, and training time.

Future Research. The proposed algorithm lays the cornerstone for an exciting paradigm shift in the realm
of graphical learning and inference. Looking ahead, this fresh perspective unlocks a wealth of promising
avenues for future application of OTP-DAG to large-scale inference problems or other learning tasks such
as for undirected graphical models, or structural learning where edge existence and directionality can be
parameterized as part of the model parameters.

9
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A ALL PROOFS

We now present the proof of Theorem 1 which is the key theorem in our paper.
Theorem 1. . For every ϕi as defined above and fixed ψθ,

Wc

(
Pd(XO);Pθ(XO)

)
= inf[

ϕi∈C(Xi)
]
i∈O

EXO∼Pd(XO),PAXO
∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]
,

where PAXO
:=

[
[Xij ]j∈PAXi

]
i∈O

.

Proof. Let Γ ∈ P(Pd(XO), Pθ(XO)) be the optimal joint distribution over Pd(XO) and Pθ(XO) of the cor-
responding Wasserstein distance. We consider three distributions: Pd(XO) over A =

∏
i∈O Xi, Pθ(XO))

over C =
∏
i∈O Xi, and Pθ(PAXO

) = Pθ([PAXi ]i∈O) over B =
∏
i∈O

∏
k∈PAXi

Xk. Here we note that the
last distribution Pθ(PAXO

) = Pθ([PAXi ]i∈O) is the model distribution over the parent nodes of the observed
nodes.
It is evident that Γ ∈ P(Pd(XO), Pθ(XO)) is a joint distribution over Pd(XO) andPθ(XO); let β =
(id, ψθ)#Pθ([PAXi

]i∈O) be a deterministic coupling or joint distribution over Pθ([PAXi
]i∈O) and Pθ(XO).

Using the gluing lemma (see Lemma 5.5 in Santambrogio (2015)), there exists a joint distribution α over
A × B × C such that αAC = (πA, πC)#α = Γ and αBC = (πB , πC)#α = β where π is the projection
operation. Let us denote γ = (πA, πB)#α as a joint distribution over Pd(XO) and Pθ([PAXi

]i∈O).
Given i ∈ O, we denote γi as the projection of γ over Xi and

∏
k∈PAXi

Xk. We further denote ϕi(Xi) =

γi(· | Xi) as a stochastic map from Xi to
∏
k∈PAXi

Xk. It is worth noting that because γi is a joint distribution
over Pd(Xi) and Pθ(PAXi), ϕi ∈ C(Xi).

Wc (Pd (XO) , Pθ (XO)) = E(XO,X̃O)∼Γ

[
c
(
XO, X̃O

)]
= E(XO,PAXO

,X̃O)∼α

[
c
(
XO, X̃O

)]
=EXO∼Pd,[PAXi

∼γi(·|Xi)]
i∈O

,X̃O∼αBC(·|PAXo )

[
c
(
XO, X̃O

)]
(1)
=EXO∼Pd,[PAXi

=ϕi(Xi)]
i∈O

,X̃O=ψθ(PAXo )

[
c
(
XO, X̃O

)]
=EXO∼Pd,PAXO

=ϕ(XO),X̃O=ψθ(PAXO)

[
c
(
XO, X̃O

)]
(2)
=EXO∼Pd,PAXO

=ϕ(XO) [c (XO, ψθ (PAXO
))]

≥ inf
[ϕi∈C(Xi)]i∈O

EXO∼Pd,PAXO
=ϕ(XO) [c (XO, ψθ (PAXO

))] . (4)

Here we note that we have
(1)
= because αBC is a deterministic coupling and we have

(2)
= because the expec-

tation is preserved through a deterministic push-forward map.
Let [ϕi ∈ C(Xi)]i∈O be the optimal backward maps of the optimization problem (OP) in (6). We define
the joint distribution γ over Pd (XO) and Pθ(PAXO

) = Pθ([PAXi
]i∈O) as follows. We first sample XO ∼

Pd(XO) and for each i ∈ O, we sample PAXi
∼ ϕi(Xi), and finally gather (XO,PAXO

) ∼ γ where
PAXO

= [PAXi
]i∈O. Consider the joint distribution γ over Pd (XO) , Pθ(PAXO

) = Pθ([PAXi
]i∈O) and the

deterministic coupling or joint distribution β = (id, ψθ)#Pθ([PAXi
]i∈O) over Pθ([PAXi

]i∈O) and Pθ(XO),
the gluing lemma indicates the existence of the joint distribution α over A × C × B such that αAB =
(πA, πB)#α = γ and αBC = (πB , πC)#α = β. We further denote Γ = αAC = (πA, πC)#α which is a
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joint distribution over Pd(XO) and Pθ(XO). It follows that

inf
[ϕi∈C(Xi)]i∈O

EXO∼Pd,PAXO
=ϕ(XO) [c (XO, ψθ (PAXO

))]

=EXO∼Pd,PAXO
=ϕ(XO) [c (XO, ψθ (PAXO

))]

(1)
=EXO∼Pd,PAXO

∼ϕ(XO),X̃O=ψθ(PAXO)

[
c
(
XO, X̃O

)]
=EXO∼Pd,PAXO

∼γ(·|XO),X̃O∼αBC(·|PAXo )

[
c
(
XO, X̃O

)]
=E(XO,PAXO

,X̃O)∼α

[
c
(
XO, X̃O

)]
=E(XO,X̃O)∼Γ

[
c
(
XO, X̃O

)]
≥Wc (Pd (XO) , Pθ (XO)) . (5)

Here we note that we have
(1)
= because the expectation is preserved through a deterministic push-forward

map.
Finally, combining (4) and (5), we reach the conclusion.

It is worth noting that according to Theorem 1, we need to solve the following OP:

inf[
ϕi∈C(Xi)

]
i∈O

EXO∼Pd(XO),PAXO
∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]
, (6)

where C (Xi) = {ϕi : ϕi#Pd (Xi) = Pθ (PAXi
)} ,∀i ∈ O.

If we make some further assumptions including: (i) the family model distributions Pθ, θ ∈ Θ induced by
the graphical model is sufficiently rich to contain the data distribution, meaning that there exist θ∗ ∈ Θ such
that Pθ∗(XO) = Pd(XO) and (ii) the family of backward maps ϕi, i ∈ O has infinite capacity (i.e., they
include all measure functions), the infimum really peaks 0 at an optimal backward maps ϕ∗i , i ∈ O. We thus
can replace the infimum by a minimization as

min[
ϕi∈C(Xi)

]
i∈O

EXO∼Pd(XO),PAXO
∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]
. (7)

To make the OP in (7) tractable for training, we do relaxation as

min
ϕ

{
EXO∼Pd(XO),PAXO

∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]

+ ηD (Pϕ, Pθ (PAXO
))
}
, (8)

where η > 0, Pϕ is the distribution induced by the backward maps, and D represents a general divergence.
Here we note that D (Pϕ, Pθ (PAXO

)) can be decomposed into

D (Pϕ, Pθ (PAXO
)) =

∑
i∈O

Di (Pϕi , Pθ (PAXi
)) ,

which is the sum of the divergences between the specific backward map distributions and their corresponding
model distributions on the parent nodes (i.e., Pϕi

= ϕi#Pd (Xi)). Additionally, in practice, using the WS
distance for Di leads to the following OP

min
ϕ

{
EXO∼Pd(XO),PAXO

∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]

+ η
∑
i∈O

Wci (Pϕi
, Pθ (PAXi

))

}
. (9)

The following theorem characterizes the ability to search the optimal solutions for the OPs in (7), (8), and
(9).
Theorem 2. Assume that the family model distributions Pθ, θ ∈ Θ induced by the graphical model is
sufficiently rich to contain the data distribution, meaning that there exist θ∗ ∈ Θ such that Pθ∗(XO) =
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Pd(XO) and the family of backward maps ϕi, i ∈ O has infinite capacity (i.e., they include all measure
functions). The OPs in (7), (8), and (9) are equivalent and can obtain the common optimal solution.

Proof. Let θ∗ ∈ Θ be the optimal solution such that Pθ∗(XO) = Pd(XO) and Wc (Pd (XO) , Pθ∗ (XO)) =
0. Let Γ∗ ∈ P(Pd(XO), Pθ(XO)) be the optimal joint distribution over Pd(XO) and Pθ(XO) of the
corresponding Wasserstein distance, meaning that if (XO, X̃O) ∼ Γ∗ then XO = X̃O. Using the glu-
ing lemma as in the previous theorem, there exists a joint distribution α∗ over A × B × C such that
α∗
AC = (πA, πC)#α

∗ = Γ∗ and α∗
BC = (πB , πC)#α

∗ = β∗ where β∗ = (id, ψθ)#P
∗
θ ([PAXi

]i∈O)
is a deterministic coupling or joint distribution over Pθ([PAXi

]i∈O) and P ∗
θ (XO). This follows that α∗

consists of the sample (XO,PAXO
, XO) where ψθ∗(PAXO

) = XO with XO ∼ Pd(XO) = P ∗
θ (XO).

Let us denote γ∗ = (πA, πB)#α
∗ as a joint distribution over Pd(XO) and P ∗

θ ([PAXi
]i∈O). Let γ∗i , i ∈ O

as the restriction of γ∗ over Pd(Xi) and P ∗
θ (PAXi

). Let ϕ∗i , i ∈ O be the functions in the family
of the backward functions that can well-approximate γ∗i , i ∈ O (i.e., ϕ∗i = γ∗i , i ∈ O). For any
XO ∼ Pd(XO), we have for all i ∈ O, PAXi = ϕ∗i (Xi) and ψθ∗(PAXi) = Xi. These imply that (i)
EXO∼Pd(XO),PAXO

∼ϕ∗(XO)

[
c
(
XO, ψθ∗(PAXO

)
)]

= 0 and (ii) Pϕ∗
i
= Pθ∗ (PAXi) ,∀i ∈ O, which fur-

ther indicate that the OPs in (7), (8), and (9) are minimized at 0 with the common optimal solution ϕ∗ and
θ∗.

B RELATED WORK

Optimization of the ELBO encounter many practical challenges. For vanilla EM, the algorithm only works
if the true posterior density can be computed exactly. Furthermore, EM is originally a batch algorithm,
thereby converging slowly on large datasets (Liang & Klein, 2009). Subsequently, researchers have tried
exploring other methods for scalability, including attempts to combine EM with approximate inference (Wei
& Tanner, 1990; Neal & Hinton, 1998; Delyon et al., 1999; Beal & Ghahramani, 2006; Cappé & Moulines,
2009; Liang & Klein, 2009; Neath et al., 2013).
When exact inference is infeasible, a variational approximation is the go-to solution. Along this line, re-
search efforts have concentrated on ensuring tractability of the ELBO via the mean-field assumption (Bishop
& Nasrabadi, 2006) and its relaxation known as structured mean field (Saul & Jordan, 1995). Scalability
has been one of the main challenges facing the early VI formulations since it is a batch algorithm. This has
triggered the development of stochastic variational inference(SVI, Hoffman et al., 2013; Hoffman & Blei,
2015; Foti et al., 2014; Johnson & Willsky, 2014; Anandkumar et al., 2012; 2014) which applies stochastic
optimization to solve VI objectives. Another line of work is collapsed VI that explicitly integrates out certain
model parameters or latent variables in an analytic manner (Hensman et al., 2012; King & Lawrence, 2006;
Teh et al., 2006; Lázaro-Gredilla et al., 2012). Without a closed form, one could resort to Markov chain
Monte Carlo (Gelfand & Smith, 1990; Gilks et al., 1995; Hammersley, 2013), which however tends to be
slow. More accurate variational posteriors also exist, namely, through hierarchical variational models (Ran-
ganath et al., 2016), implicit posteriors (Titsias & Ruiz, 2019; Yin & Zhou, 2018; Molchanov et al., 2019;
Titsias & Ruiz, 2019), normalizing flows (Kingma et al., 2016), or copula distribution (Tran et al., 2015). To
avoid computing the ELBO analytically, one can obtain an unbiased gradient estimator using Monte Carlo
and re-parameterization tricks (Ranganath et al., 2014; Xu et al., 2019). As mentioned in the introduction,
an excellent summary of these approaches is discussed in (Ambrogioni et al., 2021, §6). Extensions of VI
to other divergence measures than KL divergence e.g., α−divergence or f−divergence, also exist (Li &
Turner, 2016; Hernandez-Lobato et al., 2016; Wan et al., 2020). In the causal inference literature, a related
direction is to learn both the graphical structure and parameters of the corresponding structural equation
model (Yu et al., 2019; Geffner et al., 2022). These frameworks are often limited to additive noise models
while assuming no latent confounders.
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C TRAINING ALGORITHMS

Algorithm 1 provides the pseudo-code for OTP-DAG learning procedure. The simplicity of the learning
process is evident. Figure 5a visualizes our backward-forward algorithm in the empirical setting, where
learning the backward functions for the endogenous variables only is sufficient for estimation. Regardless of
the complexity of the graphical structure, a single learning procedure is applied. The first step is to identify
the observed nodes and their parent nodes; then, for each parent-child pair, define the appropriate backward
map and reparameterize the model distribution into a set of deterministic forward maps parameterized by
θ (i.e., model parameters to be learned). Finally, one only needs to plug in the suitable cost function and
divergence measure, and follow the backward-forward procedure to learn θ via stochastic gradient descent.

𝑼𝟒𝑼𝟐

𝑼𝟑

𝑼𝟏𝑿𝟏

𝑿𝟐

𝑿𝟑

𝑿𝟒

(a) Algorithmic DAG

𝒁

𝑿

(b) Standard Auto-Encoder

Figure 5

D CONNECTION WITH AUTO-ENCODERS

In this section, we elaborate on our discussion in Section 3. Figure 5b sheds light on an interesting connection
of our method with auto-encoding models. Considering a graphical model of only two nodes: the observed
node X and its latent parent Z, we define a backward map ϕ over X such that ϕ#Pd(X) = Pθ(Z) where
Pθ(Z) is the prior over Z. The backward map can be viewed as a (stochastic) encoder approximating
the poster Pθ(Z) with Pϕ(Z|X). OTP-DAG now reduces to Wasserstein auto-encoder WAE (Tolstikhin
et al., 2017), where the forward mapping ψ plays the role of the decoder. OTP-DAG therefore serves as a
generalization of WAE for learning a more complex structure where there is the interplay of more parameters
and hidden variables.
In this simplistic case, our training procedure is precisely as follows:

1. Draw X ∼ Pd(X).
2. Draw Z ∼ ϕ(X).

3. Draw X̃ ∼ Pθ(X|Z).
4. Evaluate the costs according to Eq. 3 and update θ.

Our cost function explicitly minimizes two terms: (1) the push-forward divergence D[Pϕ(Z|X), Pθ(Z)]
where D is an arbitrary divergence (we use the WS distance for D in our experiments), and (2) the recon-
struction loss between X and X̃ .

Posterior Collapse Relaxing the push-forward constraint into the divergence term means the backward ϕ
is forced to mimic the prior, which may lead to a situation similar to posterior collapse notoriously occurring
to VAE. We here detail why VAE is prone to this issue and how the OT-based objective mitigates it.
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Algorithm 1: OTP-DAG Algorithm
Input: Directed graph G with observed nodes O, noise distribution P (U), stochastic backward maps
ϕ = {ϕi(Xi)}i∈O, regularization coefficient η, reconstruction cost function c, and push-forward
divergence measure D.

Output: Point estimate θ.
Re-parameterize Pθ into a set of deterministic mappings ψθ = {ψθi}i∈O where Xi = ψθi(PAXi

, Ui)
and Ui ∼ P (U).

Initialize the parameters of the forward ψθ and backward ϕ mapping functions.
while not converged do

for i ∈ O do
Sample batch XB

i = {x1i , ..., xBi };
Sample P̃AXB

i
from ϕi(X

B
i );

Sampling Ui from the prior P (U);
Evaluate X̃B

i = ψθi(P̃AXB
i
, Ui).

end
Update θ by descending

1

B

B∑
b=1

∑
i∈O

c
(
xbi , x̃

b
i

)
+ η D

[
Pϕi(PAXB

i
|XB

i ), Pθ(PAXB
i
)
]

end

Intuitively, our learning dynamic seeks to ensures ϕ#Pd(X) = Pϕ(Z|X) = Pθ(Z) so that Z ∼ Pϕ(Z|X)
follows the prior distribution Pθ(Z). However, such samples Z ∼ ϕ(X) cannot ignore information in the
input X due to minimizing the reconstruction term, that is, we need X ∼ Pd(X) and X̃ ∼ Pθ(X | Z) to
close and X̃ should follow the data distribution Pd(X).
1. The push-forward divergence
While the objectives of OTP-DAG/WAE and VAE entail the prior matching term. the two formulations are
different in nature.
Let Q denote the set of variational distributions. The VAE objective can be written as

inf
ϕ(Z|X)∈Q

EX∼P (X)[DKL(ϕ(Z|X), Pθ(Z))]− EZ∼ϕ(Z|X)[logPθ(X|Z)]. (10)

By minimizing the above KL divergence term, VAE basically tries to match the prior P (Z) for all different
examples drawn from Pd(X). Under the VAE objective, it is thus easier for ϕ to collapse into a distribution
independent of Pd(X), where specifically latent codes are close to each other and reconstructed samples are
concentrated around only few values.
For OTP-DAG/WAE, the regularizer in fact penalizes the discrepancy between Pθ(Z) and Pϕ :=
EP (X)[ϕ(X)], which can be optimized using GAN-based, MMD-based or Wasserstein distance. The la-
tent codes of different examples X ∼ Pd(X) can lie far away from each other, which allows the model
to maintain the dependency between the latent codes and the input. Therefore, it is more difficult for ϕ to
mimic the prior and trivially satisfy the push-forward constraint. We refer readers to Tolstikhin et al. (2017)
for extensive empirical evidence.
2. The reconstruction loss
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At some point of training, there is still a possibility to land at ϕ that yields samples Z independent of
input X . If this occurs, ϕ#δx(1)c = ϕ#δx

(2)
c = P (Z) for any points x(1)c , x

(2)
c ∼ Pd(X). This means

supp(ϕ(X1)) = supp(ϕ(X2)) = supp(Pθ(Z)), so it would result in a very large reconstruction loss because
it requires to map supp(P (Z)) to variousX1 andX2. Thus our reconstruction term would heavily penalizes
this. In other words, this term explicitly encourages the model to search for θ that reconstruct better, thus
preventing the model from converging to the backward ϕ that produces sub-optimal ancestral samples.
Meanwhile, for VAE, if the family Q contains all possible conditional distribution ϕ(Z|X), its objective
is essentially to maximize the marginal log-likelihood EP (X)[logPθ(X)], or minimize the KL divergence
KL(Pd, Pθ). It is shown in Dai et al. (2020) that under posterior collapse, VAE produces poor reconstructions
yet the loss can still decrease i.e achieve low negative log-likelihood scores and still able to assign high-
probability to the training data.
In summary, it is such construction and optimization of the backward that prevents OTP-DAG from posterior
collapse situation. We here search for ϕ within a family of measurable functions and in practice approximate
it with deep neural networks. It comes down to empirical decisions to select the architecture sufficiently
expressive to each application.

Additional Experiment We here study the capability of recovering the true parameters of semi-amortized
VAE (SA-VAE) in comparison with our OTP-DAG. We borrow the setting in Section 4.1 of the paper Kim
et al. (2018). We create a synthetic dataset from a generative model of discrete sequences according to an
oracle generative process as follows:

z ∼ N (0, I)

ht = LSTM(ht−1,xt)

xt+1 ∼ softmax(MLP([ht, z]))

The architecture is a 1-layer LSTM with 50 hidden units where the input embedding is also 50-dimensional.
The initial hidden/cell states are set to zero. We generate for T = 5 time steps for each example i.e., each
input x is a 5−dimensional vector. The MLP consists of a single affine transformation to project out to the
vocabulary space of size 100. The latent variable z is a 50-dimensional vector.
We here assume the architecture of the oracle is known and the task is simply to learn the parameters from
10, 000 examples. Table 4 reports how well the estimated parameters approximate the ground-truth in terms
of mean absolute error (MDE) and mean squared error (MSE). NLL reports the negative log-likelihood loss
of 50, 000 reconstructed samples from the generative model given the learned latent representations. We also
report the performance of a randomly initialized decoder to highlight the effect of learning. This empirical
evidence again substantiates our competitiveness with amortization inference methods.

Table 4: Fidelity of estimated parameters of the oracle generative model.

Model MDE ↓ MSE ↓ NLL ↓
OTP-DAG (Ours) 0.885 ± 0.000 1.790 ± 0.000 -0.951 ± 0.002
SA-VAE 0.878 ± 0.000 1.790 ± 0.000 -0.949 ± 0.001
VAE 0.890 ± 0.000 1.829 ± 0.000 -0.468 ± 0.001
Random 1.192 ± 0.040 3.772 ± 0.235 -0.020 ± 0.007

E EXPERIMENTAL SETUP

In the following, we explain how OTP-DAG algorithm is implemented in practical applications, including
how to reparameterize the model distribution, to design the backward mapping and to define the optimization
objective. We also here provide the training configurations for our method and the baselines. All models
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are run on 4 RTX 6000 GPU cores using Adam optimizer with a fixed learning rate of 1e − 3. Our code is
anonymously published at https://anonymous.4open.science/r/OTP-7944/.

E.1 LATENT DIRICHLET ALLOCATION

For completeness, let us recap the model generative process. We consider a corpus D of M independent
documents where each document is a sequence of N words denoted by W1:N = (W1,W2, · · · ,WN ).
Documents are represented as random mixtures over K latent topics, each of which is characterized by
a distribution over words. Let V be the size of a vocabulary indexed by {1, · · · , V }. Latent Dirichlet
Allocation (LDA) Blei et al. (2003) dictates the following generative process for every document in the
corpus:

1. Choose θ ∼ Dir(α),
2. Choose γk ∼ Dir(β) where k ∈ {1, · · · ,K},
3. For each of the word positions n ∈ {1, · · · , N},

• Choose a topic zn ∼ Multi-Nominal(θ),
• Choose a word wn ∼ Multi-Nominal(zn, γk),

where Dir(.) is a Dirichlet distribution, α < 1 and β is typically sparse. θ is aK−dimensional vector that lies
in the (K − 1)−simplex and γk is a V−dimensional vector represents the word distribution corresponding
to topic k. Throughout the experiments, K is fixed at 10.

Parameter Estimation. We consider the topic-word distribution γ as a fixed quantity to be estimated. γ
is a K × V matrix where γkn := P (Wn = 1|Zn = 1). The learnable parameters therefore consist of γ and
α. An input document is represented with a N × V matrix where a word Wi is represented with a one-hot
V−vector such that the value at the index i in the vocabulary is 1 and 0 otherwise. Given γ ∈ [0, 1]K×V and
a selected topic k, the deterministic forward mapping to generate a document W is defined as

W1:N = ψ(Z) = Cat-Concrete
(
softmax(Z ′γ)

)
,

where Z ∈ {0, 1}K is in the one-hot representation (i.e., Zk = 1 if state k is the selected and 0 otherwise)
and Z ′ is its transpose. By applying the Gumbel-Softmax trick Jang et al. (2016); Maddison et al. (2016), we
re-parameterize the Categorical distribution into a function Cat-Concrete(.) that takes the categorical proba-
bility vector (i.e., sum of all elements equals 1) and output a relaxed probability vector. To be more specific,
given a categorical variable ofK categories with probabilities

[
p1, p2, ..., pK

]
, for every the Cat-Concrete(.)

function is defined on each pk as

Cat-Concrete(pk) =
exp

{
(log pk +Gk)/τ

}∑K
k=1 exp

{
(log pk +Gk)/τ

} ,
with temperature τ , random noises Gk independently drawn from Gumbel distribution Gt =
− log(− log ut), ut ∼ Uniform(0, 1).
We next define a backward map that outputs for a document a distribution over K topics as follows

ϕ(W1:N ) = Cat(Z).

Given observationsW1:N , our learning procedure begins by sampling Z̃ ∼ Pϕ(Z|W1:N ) and pass Z̃ through
the generative process given by ψ to obtain the reconstruction. Notice here that we have a prior constraint
over the distribution of θ i.e., θ follows a Dirichlet distribution parameterized by α. This translates to a
push forward constraint in order to optimize for α. To facilitate differentiable training, we use softmax
Laplace approximation (MacKay, 1998; Srivastava & Sutton, 2017) to approximate a Dirichlet distribution
with a softmax Gaussian distribution. The relation between α and the Gaussian parameters

(
µk,Σk

)
w.r.t a

category k where Σk is a diagonal matrix is given as
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µk(α) = logαk −
1

K

K∑
i=1

logαi, Σk(α) =
1

αk

(
1− 2

K

)
+

1

K2

K∑
i=1

1

αi
. (11)

Let us denote Pα := N
(
µ(α),Σ(α)

)
≈ Dir(α) with µ = [µk]

K
k=1 and Σ = [Σk]

K
k=1 defined as above. We

learn α, γ by minimizing the following optimization objective

EW1:N ,Z̃

[
c
(
W1:N , ψ(Z̃)

)
+ η DWS

[
Pϕ(Z|W1:N ), θ

]]
,

whereW1:N ∼ D, Z̃ ∼ Pϕ(Z|W1:N ), θ ∼ Pα, c is cross-entropy loss function andDWS is exact Wasserstein
distance3. The sampling process θ ∼ Pα is also relaxed using standard Gaussian reparameterization trick
whereby θ = µ(α) + uΣ(α) with u ∼ N (0, 1).

Remark. Our framework in fact learns both α and γ at the same time. Our estimates for α (averaged over
K) are nearly 100% faithful at 0.10, 0.049, 0.033 (recall that the ground-truth α is uniform over K where
K = 10, 20, 30 respectively). Figure 6 shows the convergence behavior of OTP-DAG during training where
our model converges to the ground-truth patterns relatively quickly.
Figures 7 and 8 additionally present the topic distributions of each method for the second and third synthetic
sets. We use horizontal and vertical patterns in different colors to distinguish topics from one another. Red
circles indicate erroneous patterns. Note that these configurations are increasingly more complex, so it may
require more training time for all methods to achieve better performance. Regardless, it is seen that although
our method may exhibit some inconsistencies in recovering accurate word distributions for each topic, these
discrepancies are comparatively less pronounced when compared to the baseline methods. This observation
indicates a certain level of robustness in our approach.

Topic Inference. In this experiment, we apply OTP-DAG on real-world topic modeling tasks. We here
revert to the original generative process where the topic-word distribution follows a Dirichlet distribution
parameterized by the concentration parameters β, instead of having γ as a fixed quantity. In this case, β is
initialized as a matrix of real values i.e., β ∈ RK×V representing the log concentration values. The forward
process is given as

W1:N = ψ(Z) = Cat-Concrete
(
softmax(Z ′γ)

)
,

where γk = µk
(
exp(βk)

)
+ ukΣk

(
exp(βk)

)
and uk ∼ N (0, 1) is a Gaussian noise. This is realized by

using softmax Gaussian trick as in Eq. (11), then applying standard Gaussian reparameterization trick. The
optimization procedure follows the previous application.

Remark. The datasets and the implementation of Prod LDA are provided in the OCTIS library at https:
//github.com/MIND-Lab/OCTIS. We also use OCTIS to standardize evaluation for all models on the
topic inference task. Note that the computation of topic coherence score using normalized pointwise mutual
information in OCTIS is different than in Srivastava & Sutton (2017).
For every topic k, we select top 10 most related words according to γk to represent it. This task assesses
the quality of the inferred topics on real-world datasets. Topic quality is evaluated via the diversity and
coherence of the selected words. Diversity refers to the proportion of unique words, whereas Coherence is
measured with normalized pointwise mutual information (Aletras & Stevenson, 2013), reflecting the extent
to which the words in a topic are associated with a common theme.
Tables 5 and 6 respectively present the quantitative and qualitative results. Due to the trade-off between
Coherence and Diversity, model performance should be judged comprehensively. In this regard, OTP-DAG
scores competitively high on both metrics and consistently across different settings.

3https://pythonot.github.io/index.html
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Figure 6: Converging patterns of 10 random topics from our OTP-DAG after 100, 200, 300 iterations.
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Figure 7: Topic-word distributions inferred by OTP-DAG from the second set of synthetic data after 300
training epochs.
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Figure 8: Topic-word distributions inferred by OTP-DAG from the third set of synthetic data after 300
training epochs.

Training Configuration. The underlying architecture of the backward maps consists of an LSTM and one
or more linear layers. We train all models for 300 and 1, 000 epochs with batch size of 50 respectively for
the 2 applications. We also set τ = 1.0, 2.0 and η = 1e− 4, 1e− 1 respectively.
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Table 5: Coherence and Diversity of the inferred topics for the 3 real-world datasets (K = 10)

Metric (%) ↑ OTP-DAG (Ours) Batch EM SVI Prod LDA
Coherence 10.46 ± 0.13 6.71 ± 0.16 5.90 ± 0.51 4.78 ± 2.64
Diversity 93.33 ± 4.62 72.33 ± 1.15 85.33 ± 5.51 92.67 ± 4.51

Coherence 9.03 ± 1.00 8.67 ± 0.62 7.84 ± 0.49 2.17 ± 2.36
Diversity 84.33 ± 2.08 86.00 ± 1.00 92.33 ± 2.31 87.67 ± 3.79

Coherence 4.63 ± 0.22 4.52 ± 0.53 1.47 ± 0.39 2.91 ± 1.70
Diversity 98.73 ± 1.15 81.33 ± 1.15 92.67 ± 2.52 98.67 ± 1.53

Table 6: Topics inferred for 3 real-world datasets.

20 News Group

Topic 1 car, bike, front, engine, mile, ride, drive, owner, road, buy
Topic 2 game, play, team, player, season, fan, win, hit, year, score
Topic 3 government, public, key, clipper, security, encryption, law, agency, private, technology
Topic 4 religion, christian, belief, church, argument, faith, truth, evidence, human, life
Topic 5 window, file, program, software, application, graphic, display, user, screen, format
Topic 6 mail, sell, price, email, interested, sale, offer, reply, info, send
Topic 7 card, drive, disk, monitor, chip, video, speed, memory, system, board
Topic 8 kill, gun, government, war, child, law, country, crime, weapon, death
Topic 9 make, time, good, people, find, thing, give, work, problem, call
Topic 10 fire, day, hour, night, burn, doctor, woman, water, food, body

BBC News

Topic 1 rise, growth, market, fall, month, high, economy, expect, economic, price
Topic 2 win, play, game, player, good, back, match, team, final, side
Topic 3 user, firm, website, computer, net, information, software, internet, system, technology
Topic 4 technology, market, digital, high, video, player, company, launch, mobile, phone
Topic 5 election, government, party, labour, leader, plan, story, general, public, minister
Topic 6 film, include, star, award, good, win, show, top, play, actor
Topic 7 charge, case, face, claim, court, ban, lawyer, guilty, drug, trial
Topic 8 thing, work, part, life, find, idea, give, world, real, good
Topic 9 company, firm, deal, share, buy, business, market, executive, pay, group
Topic 10 government, law, issue, spokesman, call, minister, public, give, rule, plan

DBLP

Topic 1 learning, algorithm, time, rule, temporal, logic, framework, real, performance, function
Topic 2 efficient, classification, semantic, multiple, constraint, optimization, probabilistic, domain, process, inference
Topic 3 search, structure, pattern, large, language, web, problem, representation, support, machine
Topic 4 object, detection, application, information, method, estimation, multi, dynamic, tree, motion
Topic 5 system, database, query, knowledge, processing, management, orient, relational, expert, transaction
Topic 6 model, markov, mixture, variable, gaussian, topic, hide, latent, graphical, appearance
Topic 7 network, approach, recognition, neural, face, bayesian, belief, speech, sensor, artificial
Topic 8 base, video, content, code, coding, scalable, rate, streaming, frame, distortion
Topic 9 datum, analysis, feature, mining, cluster, selection, high, stream, dimensional, component
Topic 10 image, learn, segmentation, retrieval, color, wavelet, region, texture, transform, compression
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E.2 HIDDEN MARKOV MODELS

We here attempt to learn a Poisson hidden Markov model underlying a data stream. Given a time series D
of T steps, the task is to segment the data stream into K different states, each of which is associated with a
Poisson observation model with rate λk. The observation at each step t is given as

P (Xt|Zt = k) = Poi(Xt|λk), for k = 1, · · · ,K.

The Markov chain stays in the current state with probability p and otherwise transitions to one of the other
K − 1 states uniformly at random. The transition distribution is given as

Z1 ∼ Cat

({
1

4
,
1

4
,
1

4
,
1

4

})
, Zt|Zt−1 ∼ Cat

({
p if Zt = Zt−1
1−p
4−1 otherwise

})
Let P (Z1) and P (Zt|Zt−1) respectively denote these prior transition distributions. We first apply Gaussian
reparameterization on each Poisson distribution, giving rise to a deterministic forward mapping

Xt = ψt(Zt) = Z ′
t exp(λ) + ut

√
Zt exp(λ),

where λ ∈ RK is the learnable parameter vector representing log rates, uk ∼ N (0, 1) is a Gaussian noise,
Zt ∈ {0, 1}K is in the one-hot representation and Z ′

t is its transpose. We define a global backward map ϕ
that outputs the distributions for individual Zt as ϕ(Xt) := Cat(Zt).

The first term in the optimization object is the reconstruction error given by a cost function c. The push
forward constraint ensures the backward probabilities for the state variables align with the prior transition
distributions. Putting everything together, we learn λ1:K by minimizing the following empirical objective

EX1:T ,Z̃1:T

[
c
(
X1:T , ψ(Z̃1:T )

)
+ η DWS

[
Pϕ(Z1|X1), P (Z1)

]
+ η

T∑
t=2

DWS
[
Pϕ(Zt|Xt), P (Zt|Zt−1)

]]
,

where X1:T ∼ D, Z̃1:T ∼ Pϕ(Z1:T |X1:T ) and ψ = [ψt]
T
t=1.

In this application, T = 200 and smooth L1 loss (Girshick, 2015) is chosen as the cost function. DWS
is exact Wasserstein distance with KL divergence as the ground cost. We compute MAP estimates of the
Poisson rates using stochastic gradient descent, using a log −Normal(5, 5) prior for p(λ).

Training Configuration. The underlying architecture of the backward map is a 3− layer fully connected
perceptron. The Poisson HMM is trained for 20, 000 epochs with η = 0.1 and τ = 0.1.

Additional Experiment. As discussed in Section 4.2, p = 0.05 is evidently a poor choice of transition
probability to fit the model. With η = 0.1, the regularization effect of the push-forward divergence is
relatively weak. Thus, our model can still effectively converge to the true values.
However, if we increase the η weight and strongly force the model to fit p = 0.05, the model performance
degrades, in terms of both estimation and reconstruction quality. Table 7 provides empirical evidence for
this claim, where we report OTP-DAG estimates and reconstruction losses at each η value. It can be seen
that the model poorly fits the data if strongly forced to fit the wrong prior probabilities.

E.3 LEARNING DISCRETE REPRESENTATIONS

To understand vector quantized models, let us briefly review Quantization Variational Auto-Encoder (VQ-
VAE) Van Den Oord et al. (2017). The practical setting of VQ-VAE in fact considers a M−dimensional
discrete latent space CM ∈ RM×D that is the M−ary Cartesian power of C with C = {ck}Kk=1 ∈ RK×D

i.e., C here is the set of learnable latent embedding vectors ck. The latent variable Z = [Zm]Mm=1 is an
M−component vector where each component Zm ∈ C. VQ-VAE is an encoder-decoder, in which the
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Table 7: Estimates of λ1:4 and mean absolute reconstruction error at p = 0.05 and various η values.

η λ1 = 12 λ2 = 87 λ3 = 60 λ4 = 33 MAE ↓
0.1 11.83 87.20 60.61 33.40 7.11
0.5 11.65 87.48 61.17 33.11 7.96
0.8 11.74 86.29 60.51 33.30 8.08
1.0 11.66 86.62 60.30 33.20 8.88
2.0 12.21 86.55 60.31 33.20 9.04
5.0 13.37 84.19 60.23 34.38 15.32

encoder fe : X 7→ RM×D maps the input data X to the latent representation Z and the decoder fd :
RM×D 7→ X reconstructs the input from the latent representation. However, different from standard VAE,
the latent representation used for reconstruction is discrete, which is the projection of Z onto CM via the
quantization process Q. Let Z̄ denote the discrete representation. The quantization process is modeled as a
deterministic categorical posterior distribution such that

Z̄m = Q(Zm) = ck,
where k = argmin

k
d
(
Zm, ck

)
, Zm = fme (X) and d is a metric on the latent space.

In our language, each vector ck can be viewed as the centroid representing each latent sub-space (or cluster).
The quantization operation essentially searches for the closet cluster for every component latent representa-
tion zm. VQ-VAE minimizes the following objective function:

Ex∼D

[
dx

[
fd
(
Q(fe(x))

)
, x

]
+ dz

[
sg
(
fe(x)

)
, z̄
]
+ βdz

[
fe(x), sg

(
z̄
)]]

,

where D is the empirical data, sg is the stop gradient operation for continuous training, dx, dz are respectively
the distances on the data and latent space and β is set between 0.1 and 2.0 in the original proposal (Van
Den Oord et al., 2017).
In our work, we explore a different model to learning discrete representations. Following VQ-VAE, we also
consider Z as a M−component latent embedding. On a kth sub-space (for k ∈ {1, · · · ,K}), we impose a
Gaussian distribution parameterized by µk,Σk where Σk is diagonal. We also endow M discrete distribu-
tions over C1, . . . ,CM , sharing a common support set as the set of sub-spaces induced by {(µk,Σk)}Kk=1:

Pk,πm =

K∑
k=1

πmk δµk
, for m = 1, . . . ,M.

with the Dirac delta function δ and the weights πm ∈ ∆K−1 = {α ≥ 0 : ∥α∥1 = 1} in the (K − 1)-
simplex. The probability a data point zm belongs to a discrete kth sub-space follows a K−way categorical
distribution πm = [πm1 , · · · , πmK ]. In such a practical setting, the generative process is detailed as follows

1. For m ∈ {1, · · · ,M},
• Sample k ∼ Cat(πm),
• Sample zm ∼ N (µk,Σk),
• Quantize µmk = Q(zm),

2. x = ψθ([z
m]Mm=1, [µ

m
k ]Mm=1).

where ψ is a highly non-convex function with unknown parameters θ. Q refers to the quantiza-
tion of [zm]Mm=1 to [µmk ]Mm=1 defined as µmk = Q(zm) where k = argmink dz

(
zm;µk

)
and dz =√

(zm − µk)TΣ
−1
k (zm − µk) is the Mahalanobis distance.
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The backward map is defined via an encoder function fe and quantization process Q as

ϕ(x) =
[
fe(x), Q(fe(x))

]
, z = [zm]Mm=1 = fe(x), [µmk ]Mm=1 = Q(z).

The learnable parameters are {π, µ,Σ, θ} with π = [[πmk ]Mm=1]
K
k=1, µ = [µk]

K
k=1,Σ = [Σk]

K
k=1.

Applying OTP-DAG to the above generative model yields the following optimization objective:

min
π,µ,Σ,θ

EX∼D

[
c
[
X,ψθ(Z, µk)

]]
+

η

M

M∑
m=1

[
DWS

(
Pϕ(Z

m), P (Z̃m)
)
+DWS

(
Pϕ(Z

m),Pk,πm

)]
+ ηr

M∑
m=1

DKL
(
πm,UK

)
,

where Pϕ(Zm) := fme #P (X) given by the backward ϕ, P (Z̃m) =
∑K
k=1 π

m
k N (Z̃m|µk,Σk) is the mix-

ture of Gaussian distributions. The copy gradient trick (Van Den Oord et al., 2017) is applied throughout to
facilitate backpropagation.
The first term is the conventional reconstruction loss where c is chosen to be mean squared error. Minimizing
the second termDWS

(
Pϕ(Z

m), P (Z̃m)
)

forces the latent representations to follow the Gaussian distribution
N (µmk ,Σ

m
k ). Minimizing the third term DWS

(
Pϕ(Z

m),Pk,πm

)
encourages every µk to become the clus-

tering centroid of the set of latent representations Zm associated with it. Additionally, the number of latent
representations associated with the clustering centroids are proportional to πmk , k = 1, ...,K. Therefore, we
use the fourth term

∑M
m=1DKL

(
πm,UK

)
to guarantee every centroid is utilized.

Training Configuration. We use the same experiment setting on all datasets. The models have an encoder
with two convolutional layers of stride 2 and filter size of 4×4 with ReLU activation, followed by 2 residual
blocks, which contained a 3 × 3, stride 1 convolutional layer with ReLU activation followed by a 1 × 1
convolution. The decoder was similar, with two of these residual blocks followed by two de-convolutional
layers. The hyperparameters are: D = M = 64,K = 512, η = 1e− 3, ηr = 1.0, batch size of 32 and 100
training epochs.

Evaluation Metrics. The evaluation metrics used include (1) SSIM: the patch-level structure similarity
index, which evaluates the similarity between patches of the two images; (2) PSNR: the pixel-level peak
signal-to-noise ratio, which measures the similarity between the original and generated image at the pixel
level; (3) feature-level LPIPS (Zhang et al., 2018), which calculates the distance between the feature repre-
sentations of the two images; (4) the dataset-level Fr’echlet Inception Distance (FID) (Heusel et al., 2017),
which measures the difference between the distributions of real and generated images in a high-dimensional
feature space; and (5) Perplexity: the degree to which the latent representations Z spread uniformly over K
sub-spaces i.e., all K regions are occupied.

Qualitative Examples. We first present the generated samples from the CelebA dataset using Image trans-
former (Parmar et al., 2018) as the generative model. From Figure 9, it can be seen that the discrete repre-
sentation from the our method can be effectively utilized for image generation with acceptable quality.
We additionally show the reconstructed samples from CIFAR10 dataset for qualitative evaluation. Figure 10
illustrate that the reconstructions from OTP-DAG have higher visual quality than VQ-VAE. The high-level
semantic features of the input image and colors are better preserved with OTP-DAG than VQ-VAE from
which some reconstructed images are much more blurry.

Additional Experiment. We additionally investigate a recent model called SQ-VAE (Takida et al., 2022)
proposed to tackle the issue of codebook utilization. Table 8 reports the performance of SQ-VAE in com-
parison with our OTP-DAG. We significantly outperform SQ-VAE on Perplexity, showing that our model
mitigates codebook collapse issue more effectively, while compete on par with this SOTA model across the
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Figure 9: Generated images from the discrete representations of OTP-DAG on CelebA dataset.

other metrics. It is worth noting that our goal here is not to propose any SOTA model to discrete representa-
tion learning, but rather to demonstrate the applicability of OTP-DAG on various tasks, particular problems
where traditional methods such as EM, MAP or mean-field VI cannot simply tackle.

Table 8: Quality of image reconstructions

Dataset Method Latent Size SSIM ↑ PSNR ↑ LPIPS ↓ rFID ↓ Perplexity ↑
CIFAR10 SQ-VAE 8 × 8 0.80 26.11 0.23 55.4 434.8

OTP-DAG (Ours) 8 × 8 0.80 25.40 0.23 56.5 498.6
MNIST SQ-VAE 8 × 8 0.99 36.25 0.01 3.2 301.8

OTP-DAG (Ours) 8 × 8 0.98 33.62 0.01 3.3 474.6
SVHN SQ-VAE 8 × 8 0.96 35.35 0.06 24.8 389.8

OTP-DAG (Ours) 8 × 8 0.94 32.56 0.08 25.2 462.8
CELEBA SQ-VAE 16 × 16 0.88 31.05 0.12 14.8 427.8

OTP-DAG (Ours) 16 × 16 0.88 29.77 0.11 13.1 487.5
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(a) Original images.

(b) VQ-VAE.

(c) OTP-DAG.

Figure 10: Random reconstructed images from CIFAR10 dataset.
.
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