
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Experimental Security Analyses of Access of Browser Extensions
Accessing Sensitive Input Fields

Anonymous Author(s)

ABSTRACT
Browser extensions offer a variety of valuable features and func-
tionalities. They also pose a significant security risk if not properly
designed or reviewed. Prior works have shown that browser ex-
tensions can access and manipulate data fields, including sensitive
data such as passwords, credit card numbers, and Social Security
numbers. In this paper, we present an empirical study of the secu-
rity risks posed by browser extensions. Specifically, we first build a
proof-of-concept extension that can steal sensitive user informa-
tion. We find that the extension passes the chrome webstore review
process. We then perform a measurement study on the top 10K
website login pages to check if the extension access to password
fields via JS. We find that none of the password fields are actively
protected, and can be accessed using JS. Moreover, we found that 1K
websites store passwords in plaintext in their page source, including
popular websites like Google.com and Cloudflare.com. We also
analyzed over 160K Chrome Web Store extensions for malicious
behavior, finding that 28K have permission to access sensitive fields
and 190 store password fields in variables. To analyze the behavioral
workflow of the potentially malicious extensions, we propose an
LLM-driven framework, Extension Reviewer. Finally, we discuss two
countermeasures to address these risks: a bolt-on JavaScript pack-
age for immediate adoption by website developers allowing them
to protect sensitive input fields, and a browser-level solution that
alerts users when an extension accesses sensitive input fields. Our
research highlights the urgent need for improved security measures
to protect sensitive user information online.

ACM Reference Format:
Anonymous Author(s). 2023. Experimental Security Analyses of Access
of Browser Extensions Accessing Sensitive Input Fields. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Browser extensions, while enhancing web browsers and user ex-
perience, pose significant security risks. The underlying cause of
the risk is the unfettered access of the HTML DOM tree to browser
extensions (or any JavaScript) loaded onto the webpage. Extensions
are loaded at the same context level as that of the DOM nodes. This
leads to a lack of security boundary between the extension and
the content of the webpage, including sensitive information that
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users may enter. This violates the users’ expectation of security
with respect to sensitive information such as passwords, credit card
information, and Social Security Numbers (SSNs). Guha et al [10]
first identified this issue in 2011 and proposed restricting access
to potentially sensitive DOM nodes. Subsequently, Liu et al [15]
proposed a new permission model by adding a sensitivity attribute
to HTML elements to manage access to sensitive elements. These
proposals did not become mainstream, possibly due to their impact
on the usability of extensions such as password managers. Pass-
word managers rely on accessing the password fields to save users’
passwords and provide autofill features that do not require users to
remember the passwords. Implementing these security measures
might impact the usability of the extensions like password man-
agers. As such, these vulnerabilities are still present in the browser
ecosystem.

Prior work has shown that it is possible to exploit these vulner-
abilities to read sensitive user data such as emails [15, 25], pass-
words [2, 25], and even perform phishing attacks [2, 20, 25]. These
attacks can either use: a) Static Code Injection where the attackers
add the malicious code in the extension; or b) Dynamic Code Injec-
tionwhere the code is loaded dynamically from a remote server and
executed at run time. Static code injection is impractical as they
can be detected by static code analysis [5, 6, 29, 34]. Dynamic code
injection bypasses the static security checks as the code is injected
at run time, and thus, is harder to detect [11, 24]. To address this
vulnerability posed by dynamic code injection, Google introduced
new regulations in Manifest V3 that disallowed the execution of
remotely injected code. However, as we show in Section 3.3, it is
possible to bypass the defense and execute malicious remote code
to steal sensitive information.

In this work, we conduct an empirical study to understand the
extent to which these vulnerabilities can be exploited. First, we
develop a proof-of-concept extension that extracts users’ passwords
while being disguised as a ChatGPT plugin (Section 3). We submit
the extension to ChromeWebStore and find that it passes the review
process, indicating the feasibility of such an attack. Next, we analyze
the login pages of the top 10K domains to see if the password values
can be extracted using our extension. Finally, we perform static and
dynamic analysis of 19K extensions on the WebStore to identify the
following: (1) extensions that have the necessary permissions to
carry out the attack; and (2) extensions that are actively accessing
and storing password values. With this analysis, we identify 190
potentially malicious extensions that access password fields.

To further understand the behavioral data flows of these ma-
licious extensions, we propose, Extension Reviewer, a novel LLM-
driven framework that helps review the extensions. We use LLMs
because, while static and dynamic analysis effectively analyze code
structures and patterns, they do not capture behavioral patterns
that emerge from high-level logic. LLMs have been shown to have
richer and more detailed high-level understanding, allowing them
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to complete tasks like generating unit tests for software [22, 27]
and reasoning about program invariants [19]. Furthermore, static
and dynamic analysis can be sensitive to code obfuscation [1].

In the Extension Reviewer framework, LLMs are tasked to analyze
the source code of the extensions and use chain-of-thought prompt-
ing to understand the behavioral flows of the extension. Performing
this analysis, we identify one extension that is accessing the pass-
word fields and sending the passwords over the network.We further
show that Extension Reviewer can identify potentially malicious ex-
tensions even when the malicious execution is dynamically loaded
at runtime. We plan to release the framework publicly.

Finally, we discuss two countermeasures to mitigate the security
risks from the observed vulnerabilities. In our Bolt-on solution, we
provide a JavaScript package that website developers can adopt
today to mitigate the attacks (Section 8.2). The package introduces a
new input type SecureInput that uses WeakMaps1 to store sensitive
values in private variables. We also discuss a more fundamental
browser-level solution (Section 8.2) by instrumenting chromium to
alert users when an extension accesses sensitive input fields. We
also discuss the impact of these solutions on password managers
and argue that the usability of password managers can be main-
tained without compromising on the security of the input fields.

Contributions. In this work, we make the following contributions:

• We develop a proof-of-concept browser extension disguised
as a ChatGPT plugin, demonstrating that it can bypass the
Chrome WebStore review process, thereby highlighting
potential weaknesses in the current review mechanisms.

• We analyze the login pages of the top 10K domains, reveal-
ing that many websites are susceptible to potential attacks
from malicious extensions. Our analysis of 19K extensions
on the Chrome WebStore further identified that a signif-
icant number have the necessary permissions to exploit
these vulnerabilities.

• We introduce Extension Reviewer, a novel LLM-driven frame-
work designed for in-depth browser extension source code
analysis. This tool, enhanced by chain-of-thought prompt-
ing, can effectively identify extensions that access sensitive
user data and detect dynamically loaded malicious code.

2 BACKGROUND AND RELATEDWORKS
2.1 HTML Fundamentals
HTML Input Elements: Input fields, marked by the <input> tag,
serve as themost basic avenue for users to input data into awebpage.
Password fields, generally used for sensitive content, obfuscates
the text written in the input field. We note that ensuring that input
fields cannot be accessed by malicious actors is crucial, as exposed
sensitive data can be harvested by automated scripts or bots.

DOM Tree: While rendering a webpage, the browser constructs a
Document Object Model (DOM) of the page. This DOM, composed
of nodes and objects, replicates the webpage as a tree structure,
known as the DOM Tree. The tree’s root initiates with the <html>

1https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_
Objects/WeakMap

element. The nodes of the tree can be accessed, and manipulated
by any JavaScript (JS) loaded on the page via the DOM API.

Dynamic Code Injection: JavaScript allows the execution of
strings as JavaScript code using the eval() function. While eval
can be legitimately used to generate code based on specific con-
ditions dynamically, its use is generally viewed as a security risk
due to its potent nature. Extensions have been known to use eval
statements to inject code into webpages dynamically. Kapravelos
et al. [11] found more than 400 Chrome extensions using eval
statements with inputs exceeding 128 characters in length. Sim-
ilarly, Wang et al. [28] discovered 145 extensions on the Firefox
add-on store that contain the eval statement. Subsequently, Google
introduced Manifest V3 removing the usage of eval statements.

Browser Architecture: Prior research has investigated how modi-
fications to browsers’ underlying structure can enhance user pri-
vacy and security. Louw et al. [16] suggested incorporating a new
runtime monitoring framework to observe an extension’s access
to sensitive APIs, such as adding an event listener to secure fields
like passwords. Guha et al. [10], and Liu et al. [15] recommended
adding new permissions to access specific DOM elements. Bauer et
al. [2] explored how extensions could bypass the existing Chrome
permission structure to execute a range of attacks.

2.2 Browser Extensions
Permission Models: Browser extensions request permissions for
the resources they require for their functionality via the mani-
fest file. Permissions can be of two types: Host permissions and
API permissions. Host permissions enable extensions to inform
the browser about the websites they need to access, allowing ex-
tensions to access content from these specified sites. API permis-
sions, on the other hand, provide extensions with the capability
to interact with WebExtension APIs, such as browser.storage or
browser.cookies.

Content Scripts and Background Pages: Extensions consists
of two main components: content scripts and background pages
(or service workers). Content scripts are static JavaScript files that
are automatically loaded with a webpage. These scripts run in the
webpage context as an extension to the DOM tree. Background
pages, in contrast, are not loaded with each website; they react
to browser events or carry out WebExtension API-based actions.
Although content scripts have access to certain WebExtension API
functions, their access is limited in scope. To leverage the full extent
of the APIs, content scripts communicate with the background page
via message passing2.

While extensions can load static JavaScript as content scripts,
they can also use a mix of host permissions and browser APIs to
inject JavaScript into webpages programmatically. For example,
an extension can request no websites under content scripts but
then request scripting and host permissions on all websites to
inject content scripts on websites dynamically. Furthermore, con-
tent scripts, without host permissions, must comply with website-
defined cross-origin restrictions, unlike scripts injected via host
permissions and API. This compliance limits their interaction with

2https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

2
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external entities, although they can still send and receive messages
from the extension’s background script.
Attacks involving Extension: Prior studies [7, 16, 17, 28] have
detailed various techniques by which malicious extensions could
leak sensitive information. Bauer et al. [2] developed an iframe-
based attack to stealthily steal user credentials by leveraging the
autofill functionality of password managers. Similarly, Perrorra
et al. [20] crafted an extension that performed an iframe-based
phishing attack where their extensions would fetch dynamic codes
from a server and execute them. They managed to bypass and
publish their extension to the Chrome web store. We note that
these attacks are no longer viable due to Chrome’s ban on dynamic
remote code execution.

In this work, we build a proof-of-concept extension to extract
sensitive information, submit the extension to Chrome web store
and find that it bypasses the security checks, showing the practi-
cality of the attack (see Section 3.3).
Detection of Malicious Extensions: Several previous studies
have devised tools and frameworks for the detection of malicious
extensions. Research conducted in [29, 34] combined both static
and dynamic analyses to identify and flag extensions. While Zhao et
al. [34] focused on the detection of information leaks via extensions,
Wang et al. [29] emphasized tracking DOM changes to identify ma-
licious extensions. Varshney et al. [25] also introduced a static anal-
ysis framework for detecting malicious code within an extension.
DeKoven et al. [6] identified malicious extensions by flagging users
who behave suspiciously on websites, subsequently scanning all
loaded extensions for specific threat indicators. Shahriar et al. [23]
utilized a Hidden Markov Model to analyze and detect vulnerable
and malicious extensions. Toreini et al. [24] created DOMtegrity to
monitor and flag malicious DOM changes like ‘document.write’ or
swapping child nodes. Previous research proposed dynamic analy-
sis frameworks that analyze runtime code bases of extensions and
match them to set heuristics to flag them as malicious [5, 11].

Our work complements this line of study, offering a security
analysis of vulnerabilities affecting browsers and generic solutions
to address these vulnerabilities. We note that in this work, we focus
on Google Chrome as it is well-documented, and is the most popular
browser.

2.3 LLMs and Program Analysis
Large language models (LLMs) are tranformer [26] based models
that are trained on massive text datasets, allowing them to generate
human-like text and engage in natural language conversations.
These models can contain billions of parameters; the release of these
models has enabled new applications in areas like conversational
agents, text generation, and question answering.
Program Analsis. Program analysis refers to analyzing a pro-
gram’s source code to identify errors, and potential security vul-
nerabilities. LLMs have been used to perform program analysis [14,
19, 33]. For example, LLMs have been proposed to understand the
behavior of code constructs [18] and generate test cases [22, 27].
In this work, we leverage LLMs to understand the data flows in
extensions that access sensitive data. Specifically, we first identify
extensions that access user passwords. We then propose an LLM
driven framework to analyze the extension to uncover the data

iFrame

Background Script

HTML DOM Tree

Username Password SSN Security Boundary

Content Script

External Server

Extension

Figure 1: Comparison between iframes and browser exten-
sions in relation to a website’s DOM tree. While iframes are
isolated by the Same Origin Policy, extensions operate with-
out such restrictions allowing them to access any element of
the DOM tree, including sensitive user data.

flow associated with the passwords to identify if the extensions are
leaking passwords.

LLM Frameworks. LLM frameworks are software platforms that
enable to users to develop and deploy LLM based applications.
These frameworks provide APIs for interacting with LLMs and
tools for managing and deploying applications. In this work, we
use LangChain to build a framework to understand the data-flows
in potentially malicious extensions, described in detail in Section 7.

3 SECURITY LANDSCAPE OF EXTENSIONS
We analyze the interaction of browser extensions with input fields
to identify potential design issues in the accessibility of input fields
by extensions. We note here that while JavaScript running on the
page can also access theHTML elements in a similar way, we restrict
our analysis to extensions in this work as they operate within a
controlled environment constrained by browsers’ policies which
allows us to identify and analyze potential security risks.

3.1 Extension Priviledges
The existing permissions framework across all browsers exhibits
a coarse-grained approach, particularly with respect to access to
web page content. The interaction of extensions with the HTML
DOM tree is shown in Figure 1. Once an extension is loaded on
a webpage, it has unrestricted access to all elements on the page,
including sensitive input fields. Such an extension, essentially a
JavaScript program loaded into the DOM tree of the page, can
access and potentially manipulate any data in the input fields on
the page (Figure 1). This coarse-grained control contrasts with
the fine-grained access control for certain software and hardware
resources, such as location information or file storage.

One consequence of this coarse-grained model is the absence of
a security boundary between the extension and the HTML elements
(Figure 1). This contrasts iframes, governed by strict same-origin

3
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policies that restrict access to the parent DOM tree and thus lie
outside the security boundary (as shown in Figure 1).
Isolating Extensions. Browsers follow a set of rules to isolate
extensions to their own environment. Before December 2020, Man-
ifest V2 (MV2) governed the extensions’ interactions within the
browser’s boundaries. Previous research [20] identified MV2’s limi-
tations and showed how extensions can bypass it, raising security
issues. One significant MV2 security loophole was allowing eval()
statements, enabling extensions to execute any external JavaScript
without any checks. This lead to attacks such as iframe-based phish-
ing and password stealing [20].

3.2 Security landscape after Manifest V3
In December 2020, Chrome introduced Manifest V3 (MV3), substan-
tially changing privacy, security, and performance. From a security
standpoint, MV3 introduced declarativeNetRequest API for net-
work request modifications and discontinued the webRequest API,
disallowing extensions to modify network requests in real-time,
closing a major loophole [9]. MV3 also prohibited the execution of
remote code and the use of eval statements. This vulnerability was
exploited by attackers in [20] to extract sensitive user data.

Despite MV3’s intended advancements in user privacy and secu-
rity, content scripts’ operations remain unchanged. This maintains
the lack of security boundary between the extension and web page
and allows an extension to be loaded on the DOM tree and gain un-
restricted access to the webpage, posing security risks for the users.
We use this vulnerability to design our PoC extension (Section 3.3).
Impact on Review Process. Before MV3, Chrome’s web store
review process involved using both static and dynamic analysis,
combined with developer-centric heuristics to detect malicious ex-
tensions. However, as demonstrated by [20], extensions can bypass
this system, enabling the successful upload of a malicious extension
to the web store. After MV3, Google prohibited all remote code
execution and mandated that all code be included within extensions
as this permits more reliable and efficient reviews of extensions
submitted to the web store [9].

3.3 Building PoC extension
Prior work has exploited the lack of security boundary between
the extension and the rest of the DOM tree [3, 7, 17, 25, 28]. They
either used static or dynamic code injection to extract sensitive
data. Extensions with static code are impractical as the malicious
code can be detected via code analysis [6, 10, 25, 29, 34]. On the
other hand, dynamic code injection attacks are not feasible after
the introduction of MV3. Thus, to build a practical extension and
exploit the observed vulnerabilities, we need - a) to access the input
elements without using dynamic code injection, b) to overcome
any obfuscation on the values of input fields, and c) to submit the
extension to chrome web store and clear the review process.

We note here that a malicious extension can also manipulate
the elements and modify the content to perform other attacks such
as screenshot attack [7] and phishing attacks [2, 20]. However, for
the PoC extension, we focus on the security of text input fields
and the sensitive information that can be extracted from them. As
our primary objective is to build a practical extension to pass the
webstore review process and extract sensitive information, we build

a hybrid attack that leverages techniques from static and dynamic
code injections. Specifically, we design our extension to include
a benign code template that identifies an element with a given
CSS selector. We dynamically retrieve the CSS selector string from
a server which allows us to control the input fields at runtime.
Once we get access to the sensitive input field, we obtain it’s value
and store it. This technique is similar to that used by Khandelwal
et al. [12]. Note that we do not require additional permission to
communicate with the server and retrieve the CSS selector. We
instead use the background page to fetch the string and pass it
through messages to the content script, as shown in Figure 1.

3.4 Uploading to Web Store
Finally, we submit the extension to the web store to evaluate the
web store’s review process. The extension passed the review process
on the Google Chrome web store. To hide the extension’s malicious
aspects, we disguised it as a GPT-based assistant offering ChatGPT-
like functions on websites. The extension asked for permission to
run on all websites, which is reasonable as most extensions that
offer assisting features ask for this permission.

Webstores’ failure to identify the malicious extension highlights
the need for more robust verification systems for browser exten-
sions. The existing security checks may not be sufficiently com-
prehensive or effective in identifying potential threats. This is par-
ticularly concerning given the potential for extensions to access
sensitive user data, including passwords and other input field data,
as shown in this work.
Ethical Considerations.We maintained ethical integrity through-
out the process by adhering to the established guidelines from
prior works [20]. Specifically, we ensure we do not collect sensitive
information from manual testers during the review process. Our
extension was engineered to interact with our servers, identify
the type of HTMLElement we were targeting (in this case, input
elements), monitor the values on those elements, and ultimately
transmit the recorded values back to our server. To protect the
privacy of the manual tester while not revealing the extension’s
malicious nature, we deactivated our data-receiving server, retain-
ing only our element-targeting server online. Consequently, our
extension would request the target element, acquire the CSS selec-
tor, and then attempt to send the recorded data to a non-existent
server. This procedure ensured that the primary operation of the
extension remained consistent with our original design. We up-
loaded the extension to the web store once, ensuring we did not
waste testers’ time during the manual review process. Additionally,
once approved, we immediately removed the extension from the
web store. We always kept the extension in “unpublished” mode so
the users could not find and install the extension.

Upon approval, we disclosed this vulnerability to Google; how-
ever, they responded, stating, “...We understand that there are ma-
licious Chrome extensions on the store, and it is difficult to limit the
number of these extensions.”

4 MEASUREMENT OVERVIEW
Our next objective is to conduct comprehensive measurements
analyzing the robustness of existing practices in light of the vul-
nerabilities discussed above. Specifically, we perform large-scale

4
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measurements along two dimensions: 1) Website measurement and
Extension Measurement.
Wesbite Measurement. In website measurement (Section 5), we
analyze the login pages of top 10K websites to check if there are
any protections in place for password fields (shown in Figure 2).
Interestingly, we find a previously unknown vulnerability, Plaintext
Visible, where the password values are stored in plain text in the
HTML source code of the page. We found that more than 1100
websites had this vulnerability. We also found that password values
were accessible via JavaScript APIs for all the login pages that we
analyzed. It is noteworthy that the ability of JS to access input
fields is essential for various types of form fields and in password
managers. However, it also exposes the passwords to any extension
that has permission to run on the page.
Extension Measurement. In extension measurement (Section 6),
we use a combination of static and dynamic analysis to analyze 19K
chrome extensions to identify: a) how many extensions have the
necessary permission to steal user passwords, and b) how many
extensions actively access passwords fields. Figure 4 shows the
pipeline for measurement. We find 190 extensions accessing and
storing password fields. To further analyze the data flows in these
flagged extensions, we propose a novel LLM-driven framework,
Extension Reviewer (Section 7) that analyzes the source code and
allows us to analyze the behavior of the extension. We further
discuss the motivation to use LLMs in Section 7.

Tranco 

Top-10K 

8410 

websites

Analyzing 

login pages

1100 websites

7400 websites

Crawler
Login Page 

Detector

Plaintext 
Visible

API 
Accessible

Figure 2: Our website vulnerability measurement pipeline
uses a custom crawler to identify login pages of websites and
detect the type of vulnerabilities present.

5 WEBSITES’ VULNERABILITIES
We conduct a comprehensive measurement to check the robustness
of the password fields against a malicious extension. Our infras-
tructure consists of a custom-built web crawler to navigate popular
websites’ login pages and inspect the HTML and JavaScript (JS)
elements associated with password fields. The crawler is equipped
with capabilities to handle different types of login forms, including
both static and dynamic forms.We ran the crawler from a controlled
environment to ensure consistency in the measurements.
Methodology: We perform the measurement using a Chromium
browser controlled via the Selenium library in Python. We also
install our PoC extension (Section 3) to extract the passwords. The
overview of the measurement pipeline is shown in Figure 2.

We use the top-10K domains from the Tranco list generated on
Feb. 2nd, 2023. We employ a two-tiered approach to identify and

analyze the login pages of these domains. First, we attempt to locate
the login button on the homepage of each domain by analyzing
the text of all clickable elements on the page and searching for
keywords associated with the login function. In case of failure, we
perform a search on DuckDuckGo using the query <domain name>
log[-?]in. We then select the top five pages from the search results
as potential login page candidates and analyze each candidate page
to determine if it is a login page. In particular, we treat a page as a
login page if there is a username/email field or a password field.

After finding the login page, we automatically enter a unique
username and password and attempt to extract them using the
extension. We note that a login page can exist without password
fields (e.g., linkedin.com). Specifically, there can be login pages
where the password fields appear only after the email/username
is entered. To capture the password field in such cases, we press
ENTER after inserting the username and check if the password
field is present. This allows us to capture login pages where the
password fields are initially hidden.
Results: In our study, we identified login pages for 8,410 websites
out of the top 10,000 domains. Among these, we found password
fields present on 7,140 websites. The remaining 1,270 pages con-
tained username or email fields but no password fields. Notably, we
could extract password data from all the websites that presented
the password fields. Further analysis revealed that 1,100 websites
exhibited Plaintext Visible vulnerability; the password values were
displayed in plain text within the HTML DOM. Figure 3 shows
snapshots of these vulnerabilities, depicting password values in
plain text in the HTML. The underlying issue is that the value at-
tribute of the input element is set to update at each keystroke. In
most implementations of password fields, this value attribute is
omitted or kept empty.

Notably, we find that the Plaintext Visible vulnerability was
present on several popular websites, including but not limited to
gmail.com and cloudflare.com. The results indicate that this se-
curity vulnerability can potentially impact billions of users. The
existence of such a basic security oversight on popular websites
is concerning, as even websites with substantial resources are not
immune to security lapses. We disclose this finding to Google and
they responded with “..We don’t consider passwords in HTML to be a
serious vulnerability in this case.”

6 EXTENSION MEASUREMENT
Potential Ability To Exploit Vulnerability.We analyze the ex-
tensions on the Chrome store to identify how many extensions can
potentially access sensitive information. We analyze the manifest
files and look for extensions that request the scripting permis-
sion, or that request the content scripts to be run on all_urls.
Scripting permission allows the extension to inject content script.
We find that 12.5% (17.3K) extensions have the necessary permis-
sions to extract sensitive information on all web pages. This includes
popular extensions such as AdBlockPlus and Honey with more than
10M users. We also find that 33.6% (46.4K) extension request content
scripts to be run on at least one website.

Potential Prevalence. Prior research has demonstrated the exis-
tence of malicious extensions in the webstore [7, 15, 29]. In this
study, we focus on the potential for extensions to select and store
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<input type="password" class="whsOnd zHQkBf" 
jsname="YPqjbf" autocomplete="current-
password" spellcheck="false" tabindex="0" 
aria-label="Enter your password" 
name="password" autocapitalize="off" dir="ltr" 
data-initial-dir="ltr" data-initial-
value="testing123" badinput="false">

(a) Plaintext Visible vulnerability
on google.com

<input type="password" class="inputtext _55r1 
_6luy _9npi" name="pass" id="pass" data-
testid="royal_pass" placeholder="Password" 
aria-label="Password">

> let t = document.querySelector(‘#pass’)
> t.value;
< testing123

(b) API Accessible vulnerability
on facebook.com

Figure 3: Different types of vulnerabilities found in the wild.
(a) The password is visible in the outerHTML of the element
and can be extracted directly from the source code. (b) The
vulnerability allows a malicious extension attached to the
DOM tree to extract login credentials.

password fields in a variable and aim to measure how many exten-
sions access the password fields.
Methodology: Figure 4 shows the extension analysis pipeline. Our
objective is to identify extensions that select any password fields.
Identifying access to input fields is a challenging problem as JavaScript
provides numerous methods to select a HTMLInputElement. Thus,
filtering extensions using all possible selection methods is infeasi-
ble [16]. Therefore, we perform static analysis and create custom
ESLint rules to filter extensions that include a function containing
the querySelector or getElement keywords and include input
as its function parameter. This selects extensions that are selecting
input fields. This filtered list contains some extensions that do not
perform any input field selection, but their function call matches
our filtering criteria. Conversely, our filters may fail to capture
extensions that use alternative forms of element selection.

Next, we perform dynamic analysis to identify extensions that se-
lect and store password-type input fields. Following prior works [7,
34], we instrument the extension to flag whether the passwords
are stored in a variable within the extension code. Specifically, we
insert a console.log below the declaration to print its value.

Upon instrumenting the filtered set of extensions, we recompress
them into CRX files and then use Selenium to load them automati-
cally into a Google Chrome instance. We then visit the login pages
of Facebook and Citi Bank, input a unique string in the username
and password field, and verify whether these strings appear in the
console window. If they do, we flag the extension as selecting and
storing password-type input fields in variables.
Results: Our scraping of the web store resulted in 160K extensions.
After applying our static analysis filters, we retained 28K extensions.
Dynamic analysis of these 28K extensions flagged 190 extensions
storing password values in a variable. Of these 190 extensions, 12
had more than 10K downloads, and three had more than 100K
downloads. While some flagged extensions functioned as password

managers, many were random extensions that selected and stored
password fields. For example, Remote Torrent Adder’s extension,
with over 40K downloads, accesses input fields, including password
fields, and stores them in a variable.

7 EXTENSION REVIEWER
To analyze the data flows in the flagged extensions, we propose a
novel LLM-driven framework that can analyze and understand the
sensitive data flows in browser extensions. Previous research has
shown that both static and dynamic analysis have their inherent
limitations [7, 30]. In browser extensions, this is further exacerbated
due to the versatility of JS which makes it difficult to track the work-
flow of an extension. On the other hand, LLMs have been proposed
to identify data flows [35], understand the behavior of code con-
structs [31, 35], and even generate test cases [21]. Furthermore,
static and dynamic analysis can be sensitive to code obfuscation [1].
We note that [14] argued that code obfuscation poses challenges for
LLMs. However, our findings from testing with JavaScript suggest
that the opposite may be true. This can be attributed to the fact
that JS is a more high-level language that authors used in [14].
Framework Design: We build an LLM-powered framework using
LangChain [4]. Previous research [14], has shown LLMs capable of
advanced code-based reasoning and answering questions based on
provided code. With our framework, we propose Extension Reviewer
that can assist in performing extension reviews. Our framework
is a Retrieval Augmented Generation (RAG) model; it uses exter-
nal context to assist in the generation of answers. Specifically, for
each extension, we first split the JS code into chunks, maintaining
code context by ensuring that text splitting occurs at the end of
the functions. We then generate embeddings of these chunks and
store them in a vector database. Given a query at run-time, we
extract the top 20 matches, pass them along with the query to pro-
vide additional context, and have the LLM generate the response.
During our initial testing, we noted that directly asking complex
or directed questions about the data flow lead to the LLM agent
giving vague answers. To overcome this limitation, we performed
chain of thought reasoning. Chain of thought prompting has been
shown to improve the accuracy of the produced results as well as
the reasoning skills of LLMs [8, 32]. We note that we tested our
framework on the proof-of-concept extension designed in Section 3.
The extension had malicious data flow and passed the Chrome Web
Store review process. Our framework successfully designated the
extension as potentially malicious due of the dynamic nature of
its HTML element value capture, and transmission to an external
server (Figure 6 in Appendix).
Validation Pipeline: To verify that LLMs can understand JavaScript
extensions, we set up a validation pipeline that required the gener-
ation of workflow descriptions of a given extension. For analysis,
we use the extension samples provided by Google Chrome3. These
samples already have tutorials describing its workflowwhich would
serve as the ground truth. We then performed a manual evaluation
of the descriptions generated by LLMs and the ground truth.

To perform this task, we implemented a multi-agent framework.
In this framework, we created personas for two agents, one as an

3https://github.com/GoogleChrome/chrome-extensions-samples
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Figure 4: Our extension analysis pipeline uses a mix of static analysis, filtering out extensions that select input fields, and
dynamic analysis to check if the password field’s content is stored.

expert about a given extension, and the other as an enthusiast want-
ing to know the working and functioning of the given extension.
The expert had access to all the JS files from the extension, and it’s
task was to answer questions asked to it. The enthusiast was tasked
to create automatic prompts, starting at a high-level, and progres-
sively asking detailed questions about the extension to the expert,
with the end goal being to completely understand the workflow
of the extension, and create a brief summary of the workflow. We
note here that these example extensions are often designed to help
developers create their own extensions. Thus, they often contain
useful comments and easy-to-understand variable names which
may help LLMs understand the workflow of these extensions more
easily than those in the wild. To account for this, we minified all
the source code to remove all comments and to obfuscate variable
names.
Validation Results: At this point, we have 170 extensions with
their workflow descriptions generated by the LLM and the ground
truth description. Next, two of the authors equally divided exten-
sions, and independently evaluated the output of the LLM. The au-
thors had an overlap of 35 extensions and exhibited a near-perfect
agreement on the evaluation of the LLM-generated workflows (sim-
ilar vs. dissimilar).. In particular, Cohen’s Kappa for both authors
was very high (𝜅 = 0.86) [13]. We observed that the LLM correctly
identified theworkflow present in 88.7% of the extensions indicating
that we can use LLMs to perform data flow analysis of extensions.
Analysis of Potentially Malicious Extensions Next, we apply
our framework to the 190 flagged extensions to look for malicious
dataflows. An example of malicious data flow could be an extension
storing passwords and sending them via network request.We follow
the chain-of-thought prompting strategy and ask the LLM questions
about the workflow and provide evidence to support its answers.
The series of questions asked are shown in Appendix A.2.1. Using
this methodology, we are able to narrow down the 190 extensions
accessing passwords to 12 extensions that had potential malicious
dataflow inside the extension. We then manually examine these
extensions and identify one extension that collects the username
and password from text fields and sends them in plaintext to an
external server. The extension4, tracks and analyze the daily activity
of the users. They do report collecting authentication information
in their privacy practices.

4https://chrome.google.com/webstore/detail/form-cookies-search-track/
ckioaaenplghmmdjkmmhcnlcfonoipkf

8 DISCUSSION
8.1 Possibility of Exploitation
Webstore Vulnerability Our study shows that the online review
process for extensions may not be robust. This can allow malicious
extensions to pass through the review process undetected (as shown
in Section 3.4), providing them with a platform to launch attacks.
This can have a significant impact on the security of passwords.
Note that adding malicious code to an existing extension with a
large number of users is another way to exploit this vulnerability.
This highlights the need for robust checks during the review process.
The LLM framework that we proposed in this work could be used
as a signal to identify potentially malicious extensions, which in
turn can help with the detection of such extensions.
PlainText Vulnerability Our measurement studies on the top 10K
websites show that sensitive information can be extracted program-
matically easily. The widespread presence of these vulnerabilities
indicates a systemic issue in the design and implementation of input
fields. Furthermore, the presence of PlainText vulnerability, where
passwords are visible in plain sight in the HTML source code, in
more than 15% websites is concerning. This severe vulnerability
bypasses any browser protections, even the ones presented in this
paper, leaving sensitive data exposed and easily accessible to any-
one viewing the source code. This highlights the need for more
awareness for security measures among web developers.

8.2 Possible Solutions to Protect Sensitive
Information

As we have shown in this work, the lack of security boundary
between the extension and the webpage can allow a malicious
extension to extract sensitive user information entered in input
fields. In this section, we propose a two-fold approach to address
these vulnerabilities.
Bolt On: In the Bolt-on solution, we provide a JavaScript package
that the developers can use to protect sensitive input fields. Specifi-
cally, we introduce a new HTMLInputElement type, SecureInput5
that leverages WeakMaps to store the sensitive information as pri-
vate data. Unlike previous solutions [7, 15], our solution is ready
to use and does not necessitate a major revamp of the current
browser extension architecture. Developers can simply import the

5https://osf.io/nbdfj/?view_only=c496010851314a3299c9e816804aac52
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secure-input library and designate any input they wish to secure
as follows:

1 <input is="secure-input" type="password">

The SecureInput class inherits all the properties associatedwith
the base HTMLInputElement or the input tag. We store the real
value of the input field in the WeakMap while presenting a masked
value to the value attribute of the HTMLInputElement. We note that
the website retains full access to the input field and its methods as
the SecureInput class is employed by the website.
Built In: The solution proposed above, SecureInput, acts as an
add-on solution to prevent unrestricted access of sensitive input
fields. However, this does not address the root cause of the vulner-
ability, i.e. lack of a fine-grained permission model for sensitive
fields. Prior works [7, 15] have proposed modifying the browser
architecture to address this vulnerability.

Another possible route could be to instrument Chrome to alert
users whenever any JavaScript function accesses any password
fields. We note here that instrumenting chrome is a big undertaking,
and hence is out of scope for this work. Here, we present a proof-
of-concept solution showcasing the necessary steps required to
achieve the desired functionality. Our key insight here is that to
programmatically access the sensitive values, the adversary must
first select the element. We can aim to intercept this access flow and
alert users when the access originates from JavaScript or browser
extension. We describe the development of PoC in Appendix B.
Trade-offs. The bolt-on solution comprises a JavaScript library that
keeps the password variable private, preventing JavaScript from
accessing password values. It offers protection against numerous
attacks that exploit JavaScript’s access to password fields. However,
the solution has its shortcomings. It doesn’t guard against attacks
that tamper with the entire HTML element. On the other hand, the
built-in solution proposes a change at the browser’s OS level and
alerts users whenever an extension or JavaScript tries to access
a sensitive field. This solution provides a more all-encompassing
defense, tackling various potential attacks. Since it operates at the
OS level, it offers a more cohesive and constant layer of protection.

Impact on Usability of Password Managers. As a core part of
their functionality, password managers rely on access to the pass-
word fields to read the user passwords. The security vulnerability
that allows JS to access sensitive input fields likely originates from
the need to maintain the usability of extensions like password man-
agers. However, we note that password managers have two core
functionalities: (1) Suggest strong passwords at the time of account
creation (2) Save passwords entered by users in the password fields
and autofill them later to ease users’ burden. We argue that the
solutions proposed above only affect the second functionality of
password managers. The workflow of suggesting strong passwords
and storing them remains unaffected. The second workflow can
also be restored by asking the user to enter the password directly in
the password manager. The change in the workflow represents the
trade-off between the security of sensitive fields and the usability
of password managers.

8.3 Limitations
Website Measurements. We note two main limitations associ-
ated with our methodology. First, we may have missed dynamically
loaded pages that rely on user interaction to reveal login forms. Sec-
ond, our method for identifying login pages relied on the presence
of certain HTML input fields (such as email and password fields).
However, some websites may employ unconventional methods or
unique identifiers for their login procedures, making it difficult to
identify all login pages correctly.
Extension Analysis: In our extension analysis, we use a combi-
nation of static and dynamic components to identify problematic
extensions. During the static analysis phase, we only include ex-
tensions that select input fields with methods like querySelector,
querySelectorAll, getElementBy, and getElementsBy. However,
our static analysis can’t include every extension that selects input
fields due to the numerous ways to select elements.

In dynamic analysis, we modify the extensions to automatically
insert a log statement into the variable holding a selected element.
This lets us track extensions that store input data in a variable but
misses extensions that process the input data directly without stor-
age. Some malicious extensions activate after a time delay, which
our method also misses. Finally, our dynamic analysis does not
detect extensions that add an event listener to input fields instead
of simply reading the values.

9 CONCLUSION
In this paper, we have presented a comprehensive analysis of the
vulnerabilities associated with text input fields in web browsers,
focusing on the exposure of sensitive information such as pass-
words. We find that the lack of security boundary between the
browser extension and the webpage results in vulnerabilities. We
exploit these vulnerabilities to build a proof-of-concept extension
capable of stealing user passwords, and also demonstrate the feasi-
bility of such a malicious extension bypassing the current security
review protocols, highlighting the need for more robust security
measures. Our large-scale measurements highlight the extent of
these vulnerabilities, with alarming findings such as the exposure
of passwords in plain text on over 1000 websites, including popular
ones like Google and Cloudflare.We also propose a new LLM-driven
framework to analyze browser extensions to identify potentially
malicious data-flows. Finally, we propose two solutions to address
these vulnerabilities: a JavaScript library that makes password vari-
ables private and a modified version of Chrome that notifies users
when a password field is being accessed. While these solutions
address some of the issues, they also highlight the need for a more
comprehensive approach to securing sensitive input fields.
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A APPENDIX
A.1 Proof-of-Concept Extension
In Figure 5 we show a snippet of how our extension uses pseudo-
dynamic code to extract data from sensitive fields. During the review
process, the server would send a benign selector which would hide
the sensitive data extraction functionality of the extension.

1 ...

2 fetch('server_url ') // Retrieve CSS selector

3 .then(response => response.text ())

4 .then(data => {

5 var els = document.querySelectorAll(data); //

Select the target element

6 for (let el of els) {

7 var outerHTML = el.outerHTML

8 var typeA = checkForTypeA(outerHTML); //

Determine if Type-A

9 if (typeA){

10 el.addEventListener(text ,
sourceExtractionScript)

11 }

12 else{
13 el.addEventListener(text ,

valueExtractionScript)

14 }}});

15 ...

Figure 5: Skeleton code showing how the extension extracts
the content of sensitive fields by determining the type of
vulnerability that can be exploited.

A.2 Extension Reviewer
We gave the LLM Framework an extension that would override
the download filenames so that the same filenames don’t have a
number prepended to them.

Below is the example of the ground truth and the LLMGenerated
output:

Ground Truth:
All downloads overwrite existing files instead of adding ’ (1)’, ’ (2)’,
etc.
- downloads.onDeterminingFilename

LLM Output:
Based on the information provided, this browser extension interacts
with the user’s downloads using the ’chrome.downloads’ API and the
’onDeterminingFilename’ event.
Its primary function appears to be overwriting any existing files with
the same name as a new download, potentially ensuring that users
always have the most recent version of a downloaded file.
It requires the "downloads" permission, and possibly "downloads.open"
or "downloads.shelf" permissions, depending on its specific function-
ality.

A.2.1 Questions Asked to LLM. For the chain of thought prompting
we asked the LLM the follwoing questions:

(1) Does this extension access input fields? Give evidence to
support your answer.

(2) Does this extension access all input fields? Give evidence
to support your answer.

(3) Can this extension access password fields? Give evidence
to support your answer.

(4) Does this extension access password fields? Give evidence
to support your answer.

(5) Is this extension a password manager? Give evidence to
support your answer.

(6) Does this extension perform any operation with the pass-
word fields? Give evidence to support your answer.

(7) Does this extension save/store the value from password
fields? Give evidence to support your answer.

(8) Does this extension manipulate password fields? Give evi-
dence to support your answer.

(9) Does this extension send the password field value to an
outside server? Give evidence to support your answer.

(10) Does this extension’s workflow need to access passwords to
perform properly? Give evidence to support your answer.

(11) Can this extension leak the value from password fields?
Give evidence to support your answer.

(12) Can this extension maliciously steal user data? Give evi-
dence to support your answer.

(13) Does this extension maliciously steal user data? Give evi-
dence to support your answer.

B BUILT-IN SOLUTION: POC
To develop a proof-of-concept solution, we focus on the flow where
document.querySelector is used. We notify users both when the
sensitive input field is selected and when its value is read. To ac-
complish this, we update the compiler file responsible for managing
the document object to log a message whenever a querySelector se-
lects the sensitive element. Finally, we update the core compiler for
HTMLInputElement to log when the value of the sensitive field is
read. Figure 7 shows the the logggin functionality on facebook.com.

It’s important to note that this represents only a proof-of-concept
for a possible system that could be used to notify users. Updating
Chromium to notify users with a more user-friendly design exceeds
the scope of this paper. Furthermore, we only show the logging by
intercepting one selection method document.querySelector, but
the methodology can be extended to other selection methods as
well.
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Figure 6: Extension Reviewer output when asked about our PoC extension’s workflow.
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Figure 7: The output of the logging code as a part of our chrome instrumentation to intercept sensitive element selection and
notify users.

12


	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 HTML Fundamentals
	2.2 Browser Extensions
	2.3 LLMs and Program Analysis

	3 Security Landscape of Extensions
	3.1 Extension Priviledges
	3.2 Security landscape after Manifest V3
	3.3 Building PoC extension
	3.4 Uploading to Web Store

	4 Measurement Overview
	5 Websites' Vulnerabilities
	6 Extension Measurement
	7 Extension Reviewer
	8 Discussion
	8.1 Possibility of Exploitation
	8.2 Possible Solutions to Protect Sensitive Information
	8.3 Limitations

	9 Conclusion
	References
	A Appendix
	A.1 Proof-of-Concept Extension
	A.2 Extension Reviewer

	B Built-in Solution: PoC

